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Abstract
Two extreme learning machine (ELM) frameworks are proposed to handle supervised and semi-supervised classifications.
The first is called lagrangian extreme learning machine (LELM), which is based on optimality conditions and dual theory.
Then LELM is extended to semi-supervised setting to obtain a semi-supervised extreme learning machine (called Lap-
LELM), which incorporates the manifold regularization into LELM to improve performance when insufficient training
information is available. In order to avoid the inconvenience caused by matrix inversion, Sherman-Morrison-Woodbury
(SMW) identity is used in LELM and Lap-LELM, which leads to two smaller sized unconstrained minimization problems.
The proposed models are solvable in a space of dimensionality equal to the number of sample points. The resulting iteration
algorithms converge globally and have low computational burden. So as to verify the feasibility and effectiveness of the
proposed method, we perform a series of experiments on a synthetic dataset, near-infrared (NIR) spectroscopy datasets and
benchmark datasets. Compared with the traditional methods, experimental results demonstrate that the proposed methods
achieve better performances than the traditional supervised and semi-supervised methods in most of considered datasets.

Keywords Optimality conditions · Lagrangian function · Extreme learning machine · Semi-supervised learning ·
Classification

1 Introduction

Due to its simple structure, low computational complexity
and good generalization, extreme learning machine (ELM)
[1–6] has been successfully applied in many fields [7–
10]. Compared with traditional neural networks, the main
advantages of ELM are that it runs fast with global
optimal solution and is easy to implement. Its hidden
nodes and input weights are randomly generated and
the output weights are expressed analytically. Recently,
many researchers have done in-depth researches on ELM.
For example, Wang et al. [7] proposed a self-adaptive
extreme learning machine (SaELM). It can select the best
neuron number in hidden layers to construct the optimal
networks. This method trains fast and can obtain the global
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optimal solution, with good generalization. Zhang et al.
[8] proposed a ELM+ which introduces the privileged
information to the traditional ELM method. Zhang et al.
[9] proposed a memetic algorithm based extreme learning
machine (M-ELM). It embeds the local search strategy
into the global optimization framework to obtain optimal
network parameters. Huang et al. [2] proposed a ELM
based on optimization theory (OPT-ELM) by introducing
hinge loss into the ELM framework. It minimizes the
norm of the output weights to find a separating hyperplane
with the maximal margin between two classes of data,
which is similar to the idea employed in support vector
machine (SVM) [11]. Compared to ELM, the minimization
norm of output weights enables OPT-ELM to get better
generalization performance. OPT-ELM solves a quadratic
programming (QP) problem, which assures that a global
optimal solution can be found.

The manifold regularization method has been widely
used for semi-supervised learning tasks. One of the most po-
pular manifold regularization is the Laplacian regularization
[12–18], which utilizes graph Laplacian to determine the
geometry information of data. ELMs are very popular in
many fields and are mainly used to supervised learning
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tasks, which greatly limits their applicability. Many resear-
chers introduced Laplacian regularization into the ELM
framework for semi-supervised learning tasks [19–23].

Lagrangian support vector machine (LSVM) [24] is a
computationally powerful machine learning tool. It mini-
mizes an unconstrained differentiable convex function in a
space of dimensionality equal to the number of classified
points. In recent years, some researchers have extended the
idea of LSVM to twin support vector machines [25–33].

In this paper, inspired by the studies above, we propose
two novel ELM formulations for supervised and semi-
supervised classifications. The main contributions of this
paper are summarized as follows:

(1) The first is called lagrangian extreme learning machine
(LELM), which is based on optimality conditions
and dual theory. Then LELM is generalized to
semi-supervised setting to obtain a semi-supervised
lagrangian extreme learning machine (Lap-LELM),
which incorporates the manifold regularization into
LELM to improve performance when insufficient
training information is available.

(2) In order to avoid the inconvenience caused by matrix
inversion, Sherman-Morrison-Woodbury (SMW) [24]
identity is used in LELM and Lap-LELM optimization
problems, which leads to two smaller sized uncon-
strained minimization problems. The proposed models
are solvable in a space of dimensionality equal to the
number of samples.

(3) Two fast and simple algorithms are designed to
optimize the proposed LELM and Lap-LELM, which
requires only iteratively solving equations rather than
quadratic programming like OPT-ELM. The resulting
iteration algorithms converge globally and have low
computational burden.

(4) Difference from the lagrangian SVM (LSVM) which
has difficulty in dealing with nonlinear problems, the
proposed LELM and Lap-LELM have the explicit
kernel function form, and are convenient to use in
nonlinear classifications.

The rest of this paper is organized as follows. Section 2,
briefly dwells on the OPT-ELM, LSVM and MR. We
propose LELM and Lap-LELM in Sections 3 and 4,
respectively. The experimental results, and discussions are
presented in Sections 5. Finally, the conclusion is drawn in
Section 6.

2 Related work

In order to propose an improved version of OPT-ELM, we
review OPT-ELM in Section 2.1, and introduce LSVM and
MR in Sections 2.2 and 2.3, respectively.

2.1 Optimizationmethod based ELM

Consider a supervised learning problem with training data
Tl = {xi , yi}li=1, i = 1, . . . , l, where xi ∈ R

n, yi ∈
{−1, +1}, Tl denotes a set of l labeled samples.

Huang et al. [2] proposed ELM framework based on
optimization theory (called OPT-ELM), in which the hinge
loss function was introduced. This leads to the following
optimization:

min
β,ξ

1
2 ‖ β ‖2 +C

∑l
i=1 ξi

s.t. yih(xi)
T β ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l

(1)

where h(x) = (g(wT
1 x + b1), . . . , g(wT

Lx + bL))T actually
maps the data from the n-dimensional input space to ELM
feature space; L is the number of hidden layer nodes;
ξ = (ξ1, . . . , ξl) is a slack variable; C is a positive penalty
parameter. This is a quadratic programming with global
solution.

According to the optimization theory, the dual problem
of optimization problem (1) is

min
α

1
2

∑l
i=1

∑l
j=1 yiyjαiαjh(xi )h(xj ) − ∑l

i=1 αi

s.t. 0 ≤ αi ≤ C, i = 1, ..., l.
(2)

We can define the ELM kernel function as:

KELM = h(xi)h(xj )

= [G(a1, b1, xi ), . . . ,G(aL, bL, xi)]T · [G(a1, b1, xj ), . . . ,

G(aL, bL, xj )]T (3)

where G(a, b, x) is a nonlinear piecewise continuous
function satisfying ELM universal approximation capability
theorems [1–6] and {(ai, bi)}Li=1 are randomly generated
according to any continuous probability distribution.

Thus, we can get the following optimization problem:

min
α

1
2

∑l
i=1

∑l
j=1 yiyjKELM(xi , xj )αiαj − ∑l

i=1 αi

s.t. 0 ≤ αi ≤ C, i = 1, ..., l.
(4)

The decision function of OPT-ELM is

f (x) = sign

(
l∑

i=1

αiyiKELM(x, xi)

)

(5)

2.2 Lagrangian support vector machine

Mangasarian and Musicant modified the standard SVM and
proposed Lagrangian Support Vector Machine [24]:

min
w,γ,y

ν
ξT ξ
2 + 1

2 (w
T w + b2)

s.t. D(Aw − eb) + ξ ≥ e
(6)
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where parameter ν > 0, w is the normal to the bounding
planes and b determines their location relative to the origin.
According to duality theory, the dual of this problem is:

min
0≤u∈Rn

f (u) = 1

2
uT Qu − eT u. (7)

where Q = (
I
ν

+ D(AAT + eeT )D
)
.

The LSVM Algorithm is based directly on the Karush-
Kuhn-Tucker necessary and sufficient optimality conditions
of the dual problem (7):

0 ≤ u ⊥ Qu − e ≥ 0

These optimality conditions lead to the following
very simple iterative scheme which constitutes LSVM
Algorithm:

ui+1 = Q−1(e + ((Qui − e) − αui)+); i = 0, 1, . . . ,

for which we will establish global linear convergence from
any starting point under the easily satisfiable condition:

0 < α <
2

ν

More details can refer to [24].

2.3 Manifold regularization

Consider a semi-supervised learning problem with training
data T = Tl ∪ Tu = {xi , yi}li=1 ∪ {xj }l+u

j=l+1, i = 1, . . . , l,
where xi ∈ R

n, xj ∈ R
n, yi ∈ {−1, +1}, Tl denotes a set of

l labeled samples, Tu denotes a set of u unlabeled samples.
The manifold regularization approach [13] takes advantage
of the geometry of the marginal distribution PX. We assume
that the support of data probability distribution has the
geometry of the Riemannian manifold M. The label of the
two closest samples in the PX intrinsic geometry should
be the same or similar, which means that the conditional
probability distribution P(y | x) should vary little between
two such points. As a result, we have

‖ f ‖2I =
l+u∑

i=1

l+u∑

j=1

Wij (f (xi) − f (xj ))
2 = f T Lpf (8)

where Lp = D − W is the graph Laplacian; D is the
diagonal degree matrix of W given by Dii = ∑l+u

j=1Wij ,

and Dij = 0 for i �= j ; the normalizing coefficient 1
(l+u)2

is the natural scale factor for the empirical estimate of
the Laplace operator. If kernel function k(·, ·) is given, we
estimate the target function by minimizing

f ∗ = arg min
f ∈Hk

=
l∑

i=1

V (xi, yi, f ) + γA ‖ f ‖2A + γI ‖ f ‖2I
(9)

where V is loss function, γA controls the complexity
of functions in the ambient space and γI controls the
complexity of functions in the intrinsic geometry of sample
probability distribution.

3 Lagrangian extreme learningmachine

In this section, based on the optimization method theory, we
propose a new lagrangian extreme learning machine (LELM).
Then, we compare LELM with other related algorithms.

3.1 Lagrangian extreme learningmachine

We change slightly the OPT-ELM with hinge loss-function.
First, we change the l1-norm of ξ to l2-norm squared which
makes the constraint ξ ≥ 0 redundant and guarantees
the strictly convexity of the object function. Therefore,
based on the optimization theory we can get the following
optimization problem:

min
β,ξ

1
2 ‖ β ‖2 +C

2 ‖ ξ ‖2
s.t. D(Hβ) + ξ ≥ e

(10)

where C is a tradeoff parameter, Dl×l is diagonal matrix
with yi(i = 1, 2, . . . , l) along its diagonal, H =
[h(x1), . . . , h(x1)]T is output matrix, e is a column vector of
any dimension. The object function above is strictly convex,
which guarantees that (10) has a unique solution.

The Lagrange function of the primal LELM optimization
(10) is

L(β, ξ, α) = 1

2
‖ β ‖2 +C

2
‖ ξ ‖2 −αT (DHβ + ξ − e)

(11)

where α = (α1, . . . , αl)
T are the Lagrange multipliers with

non-negative values.
Based on Karush-Kuhn-Tucker (KKT) condition we

have:

∂L

∂β
= β − HT Dα = 0 ⇒ β = HT Dα (12)

∂L

∂ξ
= Cξ − α = 0 ⇒ ξ = α

C
(13)

Substituting (12) and (13) into (11) we can get the dual form
of LELM:

min
α≥0

1

2
αT

(
I

C
+ DHHT D

)

α − eT α (14)

Before stating our algorithm we define two matrices to
simplify notation as follows:

M = [DH, 0], Q = I

C
+ MMT . (15)
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With these definitions, the dual problem (14) can be written
as follows:

min
α≥0

1

2
αT Qα − eT α (16)

Similarly, the Lagrange function of the optimization
problem (16) is

L(α, γ ) = 1

2
αT Qα − eT α − γα

Based on the Karush-Kuhn-Tucker necessary and sufficient
optimality conditions we can get

∂L(α, γ )

∂α
= Qα − e − γ = 0 ⇒ γ = Qα − e ≥ 0,

γ α = 0,

α ≥ 0.

Thus, we have

0 ≤ α⊥Qα − e ≥ 0. (17)

For any two real numbers or vectors x and y, the following
identity can be established

0 ≤ x⊥y ≥ 0 ⇔ x = (x − ay)+, a > 0.

Thus, the optimality condition (17) can be written in the
following equivalent form for any positive θ :

Qα − e = ((Qα − e) − θα)+ (18)

These optimality conditions lead to the following very
simple iterative scheme which constitutes our LELM
Algorithm:

αi+1 = Q−1[e + ((Qαi − e) − θαi)+], i = 0, 1, ...., (19)

where θ satisfies the condition

0 < θ <
2

C
. (20)

Next, we will introduce the projection theorem [34] to
prepare for the subsequent proof of the global convergence
of our algorithm.

Theorem 1 (Projection Theorem [34]) Let X be a
nonempty, close, and convex subset of Rn.

(a) For every z ∈ R
n, there exist a unique x∗ ∈ X that

minimizes ‖ z − x ‖ over all x ∈ X. This vector is
called the projection of z on X and denoted by [z]+.

(b) Give some z ∈ R
n, a vector x∗ ∈ X is equal to

projection [z]+ if and only if

(z − x∗)T (x − x∗) ≤ 0 (21)

(c) The mapping f : Rn �→ X defined by f (x) = [x]+ is
continuous and nonexpansive, that is

‖ [x]+ − [y]+ ‖≤‖ x − y ‖, ∀x, y ∈ R
n. (22)

(d) In the case where X is a subset, a vector x∗ ∈ R
n is

equal to the projection [z]+ if and only if z − x∗ is
orthogonal to X, that is,

(z − x∗)T x = 0. (23)

Theorem 2 (Global Convergence of LELM) Let Q be the
symmetric positive definite matrix defined by (15) and let
(19) hold. Starting with an arbitrary α0, the iterates αi of
(20) converge to the unique solution ᾱ of (16) at the linear
rate:

‖ Qαi+1 − Qᾱ ‖≤‖ I − θQ−1 ‖ · ‖ Qαi − Qᾱ ‖ . (24)

Proof Suppose ᾱ is the solution of (16), it must satisfy the
optimality condition (18) for any θ > 0. So, we have

Qαi+1 − e = ((Qαi − e) − θα)+ (25)

and

Qᾱ − e = ((Qᾱ − e) − θᾱ)+, (26)

From (25) and (26) we can get:

‖ Qαi+1 − Qᾱ ‖=‖ (Qαi − θαi)+ − (Qᾱ − e − θᾱ)+ ‖ .

(27)

The Projection Theorem 1 states that the distance between
any two points in R

n is not less than the distance between
their projections on any convex set in Rn. We can obtain the
following inequality:

‖ Qαi+1 − Qᾱ ‖ ≤ ‖ (Q − θI)(αi − ᾱ) ‖
≤ ‖ I − θQ−1 ‖ · ‖ Q(αi − ᾱ) ‖ (28)

Now we only need to prove ‖ I − θQ−1 ‖< 1. This
follows (20) as follows. Noting the definition (15) of Q and
letting λi, i = 1, ..., m, denote the nonnegative eigenvalues
of MMT , all we need is:

0 < θ(
1

C
+ λi)

−1 < 2, (29)

which is satisfied under the assumption (20).

Based on the above discussion, the LELM is summarized
as Algorithm 1.
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3.2 Compared with other related algorithms

We compared the proposed Lagrangian extreme learning
machine (LELM) with other related algorithms: Lagrangian
support vector machine (LSVM) [24], Unconstrained
Lagrangian twin support vector machine (ULTWSVM)
[28], Optimization method based extreme learning machine
(OPT-ELM) [2] and L2-Regularized Extreme Learning
Machine (ELM) [1].

Compared with LSVM and ULTWSVM:

(1) Obviously, the objective is different. The bias b is
not required in LELM since the separating hyperplane
βT h(x) = 0 passes through the origin in LELM
feature space, while LSVM needs bias b to determine
the hyperplane. The goal of ULTWSVM is to look
for two non-parallel classification hyperplanes, but the
goal of our proposed LELM is to look for classification
hyperplanes that cross the origin.

(2) Difference from the LSVM and ULTWSVMwhich are
difficult to optimize in dealing with nonlinear prob-
lems because of the unknown implication mapping
and the kernel parameters, kernel function of proposed
LELM (10) has the explicit form: KELM(xi , xj ) =
h(xi )

T h(xj ), and its network parameters are randomly
generated without tuning.

Compared with OPT-ELM and ELM:

(1) Compared with the OPT-ELM, we change slightly
the OPT-ELM with hinge loss-function. First, we
replace the l1-norm with the l2-norm of the slack
variable ξ by weighing C

2 , which guarantees the strict
convexity of the object function. This leads to the
LELM optimization problem with unique solution.

(2) The traditional ELM tends to reach zero training
errors, however, in LELM training errors are generally
not equal to zero, which leads to more better gene-
ration performance on testing data.

4 Laplacian lagrangian extreme learning
machine

In this section, we propose a semi-supervised lagrangian
extreme learning machine (Lap-LELM) via extending
LELM to a semi-supervised learning framework. The pro-
posed Lap-LELM incorporates the manifold regularization
to leverage unlabeled data to improve the classification
accuracy when labeled data are scarce. Then, we compare
Lap-LELM with other related algorithms.

4.1 Laplacian lagrangian extreme learningmachine

For the binary classification applications, the decision
function of ELM is f (x) = sign(β · h(x)), where h(x)
maps the data from the d-dimensional input space to the
L-dimensional hidden layer ELM feature space. By means
of the Representer Theorem [2], output weights β can be
expressed in the dual problem as the expansion over labeled
and unlabeled samples

β =
l+u∑

i=1

αih(xi),

where h(x) = [h(x1), . . . , h(xl+u)]T and α =
[a1, . . . , αl+u]. Then, the decision function is

f (x) =
l+u∑

i=1

αiK(xi, x) (30)

and K is the kernel matrix formed by kernel functions
K(xi, xj ) = h(xi)·h(xj ). Therefore, the regularization term
can be expressed by the kernel matrix and the expansion
coefficient:

‖ f ‖2H=‖ β ‖2= (h(x)α)T (h(x)α) = αT Kα. (31)

The geometry of the data is represented by a graph, where
nodes represent labeled and unlabeled samples connected
by weights Wij . Regularizing the graph follows from the
manifold assumption. We can get the manifold term via
spectral graph theory [13],

‖ f ‖2I = 1

(l + u)2

l+u∑

i,j=1

Wij (f (xi) − f (xj ))
2 = 1

(l + u)2
f T Lpf,

(32)
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where Lp = D − W is the graph Laplacian; D is the
diagonal degree matrix of W given by Dii = ∑l+u

j=1Wij ,

and Dij = 0 for i �= j ; the normalizing coefficient 1
(l+u)2

is the natural scale factor for the empirical estimate of the
Laplace operator; and f = Kα.

Therefore, based on the above (9), (31) and (32) we
propose the following Lap-LELM:

min
ξ∈Rl ,α∈Rl+u

1
l

∑l
i=1 ξi + γAαT Kα + γI

(l+u)2
αT KT LpKα

s.t. yi

∑l+u
j=1 αiK(xi , xj ) ≥ 1 − ξi , i = 1, . . . , l.

ξi > 0, i = 1, . . . , l.

(33)

where γA and γI is regularization parameters, K is the
kernel matrix formed by kernel functions K(xi, xj ) =
h(xi) · h(xj ).

The Lagrange function of the primal Lap-LELM
optimization (33) is

L(α, ξ, λ) = 1

l

l∑

i=1

ξi + γAαT Kα + γI

(l + u)2
αT KT LpKα

− λi

(

yi

l+u∑

i=1

αiK(xi , xj

)

− 1 + ξi) − θi

l∑

i=1

ξi (34)

where λ = [λ1, . . . , λl]T are the Lagrange multipliers. In
order to find the optimal solutions of (34) we should have

∂L

∂ξi

= 1

l
− λi − θi = 0 ⇒ θi = 1

l
− λi (35)

Substitute (35) into (34) we have

min
α,λ

1

2
αT (2γAK+ 2γI

(l + u)2
KT LpK)α−αT KJT Yλ+

l∑

i=1

λi

(36)

where J = [I, 0]l×(l+u), Il×l , 0l×u, Y = diag(yi, . . . , yl).
Taking derivatives again with respect to α, we obtain the
solution

α = (2γAI + 2γI

(l + u)2
LpK)−1JT Yλ (37)

Thusly, we obtain the following quadratic-programming
problem:

min
λ

1

2
λT Sλ − ∑l

i=1 λi

s.t. 0 ≤ λi ≤ 1
l

(38)

where S = YJK(2γAI+ 2γI

(l+u)2
LpK)−1JT Y. The Lagrange

function of the optimization (38) is

L(λ, η) = 1

2
λT Sλ − eT λ − ηT λ (39)

where η = [η1, . . . , ηl]T are the Lagrange multipliers.
According to the Karush-Kuhn-Tucker Conditions (KKT
conditions), we can get

∂L

∂λ
= Sλ − e − η = 0 (40)

λT η = 0 (41)

λ > 0 (42)

From (40)–(42), we have

0 ≤ λ⊥Sλ − e ≥ 0 (43)

The optimality condition (43) can be written in the
following equivalent form for any positive ϑ :

Sλ − e = (Sλ − e − ϑλ)+ (44)

As mentioned above, these optimality conditions will result
in a very simple iteration scheme for our Lap-LELM
algorithm:

λi+1 = S−1[e + (Sλi − e − θλi)+], i = 0, 1, . . . (45)

Our algorithm has the property of globally linear con-
vergence when the initial point of iteration satisfies the
following conditions:

0 < ϑ <
2

C
(46)

Thusly, we can get output weight

β = h(x)α = h(x)(2γAI + 2γI

(l + u)2
LpK)−1JT Yλ. (47)

Based on the above discussion, the Lap-LELM algorithm
is summarized as Algorithm 2.
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4.2 Compared with other related algorithms

We compare Laplacian lagrangian extreme learning
machine (Lap-LELM) with other related algorithms: Lapla-
cian support vector machine (Lap-SVM) [13], Manifold
proximal support vector machine (MPSVM) [18], Semi-
superviesd extreme learning machine (SS-ELM) [21], and
Manifold regularized extreme learning machine (MR-ELM)
[23].

Compared with Lap-SVM andMPSVM:

(1) The bias b is not required in Lap-LELM since
the separating hyperplane βT h(x) = 0 passes
through the origin in ELM feature space, while Lap-
SVM and MPSVM need threshold to determine the
hyperplane.

(2) Different from the Lap-SVM and MPSVM which is
difficult to optimize in dealing with nonlinear prob-
lems because of the unknown implication mapping,
however, the proposed Lap-LELM (33) kernel func-
tion has the explicit form: KELM(xi , xj )

= h(xi )
T h(xj ). Thus the proposed Lap-LELM with

fast running speed has less decision variables than the
existing Lap-LSVM and MPSVM.

Compared with SS-ELM andMR-ELM:

(1) The SS-ELM and MR-ELM are based on the
traditional ELM framework, our proposed Lap-LELM
is based on the OPT-ELM framework. Relative to
SS-ELM and MR-ELM our proposed Lap-LELM is
robust, since the quadratic loss function is used in SS-
ELM and MR-ELM, but the hinge loss is used in the
proposed Lap-LELM.

(2) Compared with SS-ELM and MR-ELM, Lap-LELM
has the advantages of fast operation, global conver-
gence and low computational burden. The Lap-LELM
is solvable in a space of dimensionality equal to the
number of sample points, however, the SS-ELM and
MR-ELM models are solved in a space with a dimen-
sion greater than the number of sampling points, so
the calculation is complicated and the computational
burden is high.

5 Numerical results

To evaluate the accuracy and efficiency of the LELM
and Lap-LELM algorithm, we performed experiments on
benchmark datasets and four NIR spectroscopy datasets. All
algorithms were implemented using MATLAB R2014b on
a 3.40 GHz machine with 8 GB of memory.

5.1 Experimental design

The evaluation criteria and datasets description should be
specified before presenting the experimental results.

5.1.1 Algorithm evaluation criteria

In order to evaluate the effectiveness of the proposed met-
hod, the evaluation criteria used in this paper are ACC
(accuracy), F1-measure and MCC (Matthews correlation
coefficient), where ACC is the recognition rate of two sam-
ples, F1 is the precision and recall rate of the two indicators
of the harmonic average, MCC is a comprehensive
evaluation criteria. The CPU-time also serves as an indicator
of algorithm evaluation. They are defined as:

ACC = T P + T N

T P + FN + T N + FP
,

MCC = (T P · T N) − (FP · FN)√
(T P + FP) · (T P + FN) · (T N + FP) · (T N + FN)

,

F1 = 2T P

2T P + FP + FN
.

5.1.2 Datasets description

Our experiments performed on eleven UCI datasets1 and
four NIR spectroscopy datasets [5], respectively. The eleven
UCI datasets are listed in Table 1.

The two classes of data are generated from different 2-
dimensional normal distributions N(μ1, σ1) and N(μ2, σ2),
where μ1 = [4.5, 1.5], μ2 = [1.5, −0.5] and σ1 = σ2 =
[0.5, 0.5] and each class contains 1000 sample points.

Licorice is a traditional Chinese herbal medicine. We
utilize 244 licorice seeds including 122 hard seeds and
122 soft seeds in our experiment. Near-infrared (NIR)
spectroscopic datasets of licorice seeds was obtained via
an MPA spectrometer. The NIR spectral range of 5000-
10000 cm−1 is recorded with a resolution of 4 cm−1.
The initial spectra are digitized by OPUS 5.5 software.
To comprehension validation, numerical experiments are
carried out in four different spectral regions: 5000-6000
cm−1, 6000-7000 cm−1, 7000-8000 cm−1 and 8000-10000
cm−1. The corresponding spectral regions are denoted
regions A, B, C and D, respectively. Information in them is
summarized in Table 2.

5.2 Supervised learning results

Before experiment, all datasets are normalized to the range
of [0, 1]. We choose the LSVM [24], OPT-ELM [2],

1http://archive.ics.uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
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Table 1 Description of UCI
datasets Datasets  of samples Attribute Datasets  of samples Attribute

Balance 576 4 Wholesale 440 7

Breast Cancer 699 9 Australian 690 14

Vote 432 16 Diabetes 1151 19

German 1000 24 WDBC 569 30

Ionosphere 350 34 QSAR 1055 41

Pima 768 8

NLTWSVM [28], SLTWSVM [28] and SVM [11] as the
baseline methods. We conduct numerical experiments on
UCI datasets and NIR spectroscopy datasets, respectively.
We perform ten-fold cross validation in all considered
datasets. In other words, the dataset is split randomly into
ten subsets, and one of those sets is reserved as a test set.

In our experiment, the RBF kernel K(xi, xj ) =
e−σ ||xi−xj ||22 is considered in SVM, LSVM, NLTWSVM and
SLTWSVM. In the LELM and OPT-ELM model we use
Sigmoid function 1/(1 + exp(−(w · x + b))) (w and b are
randomly generated) as the activation function. For SVM,
LSVM, NLTWSVM, SLTWSVM and LELM, we carry out
grid search and 10-fold cross-validation on the training
sets to get the optimal parameters (C, ν, L, σ ) with highest
accuracy. All of the following experimental results are
performed on these optimal parameters. The parameter C is
selected from {10−5, · · · , 105}. The parameter ν is selected
from {20, 21, · · · , 28}. The RBF kernel parameter σ is se-
lected from {2−5, · · · , 25}. The Hidden layer nodes L is se-
lected from {200, 300, 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000}. Theoretically, the larger L is and
the better the generalization performance of LELM [5].
For the algorithm LSVM and LELM we set the parameter
0 < δ < 1.9

ν
and 0 < θ < 1.7

C
.

5.2.1 Experiments on artificial dataset

In order to verify the performance of the proposed
LELM, we compared LELM with SVM, LSVM,

Table 2 Near-infrared spectral sample regions of licorice seeds

Regions Spectral range (cm−1) Number of Number of

samples variables

Region A 5000-6000 244 520

Region B 6000-7000 244 518

Region C 7000-8000 244 778

Region D 8000-1000 244 1555

OPT-ELM, NLTWSVM and SLTWSVM on artificial
datasets. The results of this experiment are shown in
Table 3. We can see that LELM outperforms SVM, LSVM,
OPT-ELM, NLTWSVM and SLTWSVM in the analysis of
ACC and CPU-time analysis.

5.2.2 Experiments on UCI datasets

We compare the proposed LELM with OPT-ELM and
LSVM, on eleven UCI datasets. All experimental results
are shown in Figs. 1, 2, 3 and 4. Compared with the
OPT-ELM and LSVM, Fig. 1 illustrate that the LELM
improves generalization ability and has higher ACC values
on most data sets. In Fig. 2, we compare the MCC values
of the proposed LELM with OPT-ELM and LSVM on each
datasets. As can be seen from Fig. 2, in addition to Prima,
the MCC values of LELM is higher than that of OPT-
ELM and LSVM in most cases. Further, we can also find
that OPT-ELM outperforms LSVM on most datasets except
Australian and Vote. Figure 3 presents a comparison of the
F1 values of the proposed LELM with LSVM and OPT-
ELM on each datasets. From the experimental results in
Fig. 3, we can find that in the comparison of F1 values,
LELM has better performance than OPT-ELM and LSVM
in most cases. Figure 4 compare the number of support
vectors for the proposed LELM with OPT-ELM and LSVM
on each datasets. From Fig. 4, we find that LELM has fewer
support vectors (SVs) than OPT-ELM and LSVM on most
datasets. It can be further found that the number of support
vectors of LELM and OPT-ELM is similar on some data
sets. More precisely, the former has better performance.

To further verify the performance of our proposed
LELM, we compared the proposed LELM with the
traditional methods OPT-ELM and LSVM on seven UCI
datasets. The experimental results are presented in Table 4.
The classification accuracy and CPU-times presented in
Table 4 are the average of five-times experiments. From
Table 4, we can find that the LELM classification accuracy
and time analysis are superior to other algorithms on the
seven datasets. It is further found that the performance of
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Table 3 Performance comparison of SVM, LSVM, OPT-ELM, NLTWSVM, SLTWSVM and LELM on on artificial datasets

Datasets SVM LSVM OPT-ELM NLTWSVM SLTWSVM LELM

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

(C∗, σ ∗) (C∗, σ ∗) (C∗, L∗) (C∗
1 = C∗

2 , σ
∗) (C∗

1 = C∗
2 , σ

∗) (C∗, L∗)
CPU-time(s) CPU-time(s) CPU-time(s) CPU-time(s) CPU-time(s) CPU-time(s)

99.48 99.75 99.81 99.73 99.73 99.85

Artificial dataset (1000 ∗ 2) (102, 2−1) (103, 2−3) (102, 2000) (103, 2−1) (101, 2−2) (102, 2000)

53.371 46.815 39.646 11.253 11.247 9.736

Fig. 1 Performance comparison
of ACC (%) of OPT-ELM,
LSVM and LELM on eleven
UCI datasets, where 1 denote
Diabetes, 2 denote Australian, 3
denote Balance, 4 denote Breast
Cancer, 5 denote German, 6
denote Ionosphere, 7 denote
Pima, 8 denote QSAR, 9 denote
Vote, 10 denote WDBC, 11
denote Wholeasle
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Fig. 2 Performance comparison
of MCC (%) of OPT-ELM,
LSVM and LELM on eleven
UCI datasets, where 1 denote
Diabetes, 2 denote Australian, 3
denote Balance, 4 denote Breast
Cancer, 5 denote German, 6
denote Ionosphere, 7 denote
Pima, 8 denote QSAR, 9 denote
Vote, 10 denote WDBC, 11
denote Wholeasle
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Fig. 3 Performance comparison
of F1 (%) of OPT-ELM, LSVM
and LELM on eleven UCI
datasets, where 1 denote
Diabetes, 2 denote Australian, 3
denote Balance, 4 denote Breast
Cancer, 5 denote German, 6
denote Ionosphere, 7 denote
Pima, 8 denote QSAR, 9 denote
Vote, 10 denote WDBC, 11
denote Wholeasle
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the LELM we proposed on most of the data sets is similar
to that of the NLTWSVM and SLTWSVM. To be precise,
LELM is better than NLTWSVM and SLTWSVM. The
above analysis of experimental results further validates that
our proposed algorithm is effective and reliable, which fully
demonstrates the correctness of our theory.

5.2.3 Experiments on NIR spectroscopy datasets

We compared the proposed LELM with the SVM, LSVM,
OPT-ELM NLTWSVM and SLTWSVM on NIR spec-
troscopy datasets. Our experimental results are presented in

Table 5. We find from Table 5 that the LELM achieves bet-
ter performance than SVM, LSVM, OPT-ELM NLTWSVM
and SLTWSVM with respect to the ACC and CPU-time
analysis. Further find that the performance of our pro-
posed LELM are very similar to that of NLTWSVM and
SLTWSVM on the NIR spectroscopy datasets. Accurately
our algorithm is better than NLTWSVM and SLTWSVM.

5.3 Semi-supervised learning results

In order to verify the generalization performance of the
proposed semi-supervised LELM algorithm, we conducted

Fig. 4 Performance comparison
of SVs (%) of OPT-ELM,
LSVM and LELM on eleven
UCI datasets, where 1 denote
Diabetes, 2 denote Australian, 3
denote Balance, 4 denote Breast
Cancer, 5 denote German, 6
denote Ionosphere, 7 denote
Pima, 8 denote QSAR, 9 denote
Vote, 10 denote WDBC, 11
denote Wholeasle
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Table 4 Performance comparison of SVM, LSVM, OPT-ELM, NLTWSVM, SLTWSVM and LELM on UCI datasets

Datasets SVM LSVM OPT-ELM NLTWSVM SLTWSVM LELM

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

(C∗, σ ∗) (C∗, σ ∗) (C∗, L∗) (C∗
1 = C∗

2 , σ
∗) (C∗

1 = C∗
2 , σ

∗) (C∗, L∗)
CPU-time CPU-time CPU-time CPU-time CPU-time CPU-time

85.65 86.17 85.89 87.25 87.25 89.71

Australian (10−1, 22) (10−3, 21) (102,1000) (10−5, 23) (10−5, 23) (103,1000)

12.111 10.563 8.113 0.989 1.046 0.781

97.08 95.74 96.14 97.38 97.38 98.55

Breast cancer (10−1, 2−1) (10−2, 2−1) (10−1,500) (10−3, 21) (10−3, 21) (10−2,500)

11.940 8.634 7.691 1.008 1.034 1.004

92.03 89.02 91.50 94.02 93.48 95.16

Ionosphere (100, 20) (101, 21) (102,500) (100, 22) (10−4, 2−1) (103,500)

3.131 3.218 1.017 0.277 0.256 0.214

96.09 95.43 95.70 96.79 96.34 97.62

Vote (100, 20) (102, 2−1) (102,500) (101, 25) (101, 25) (102,500)

4.792 4.801 5.643 0.405 0.509 0.472

98.07 96.75 97.41 98.25 98.42 98.51

WDBC (101, 2−1) (102, 2−2) (102,500) (101, 21) (101, 21) (102,1000)

8.277 7.794 5.931 0.830 1.104 0.672

76.90 75.99 75.90 76.50 76.50 78.01

German (102, 24) (101, 23) (103,1000) (10−1, 24) (10−1, 24) (102,1000)

26.197 19.675 15.587 2.368 2.493 2.237

77.79 76.75 77.08 77.14 77.14 78.95

Pima (103, 23) (101, 2−2) (103,500) (100, 21) (100, 21) (101,1000)

8.880 9.715 6.631 1.193 1.897 1.156

Table 5 Performance comparison of SVM, LSVM, OPT-ELM, NLTWSVM, SLTWSVM and LELM on NIR spectroscopy datasets

Datasets SVM LSVM OPT-ELM NLTWSVM SLTWSVM LELM

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

(C∗, σ ∗) (C∗, σ ∗) (C∗, L∗) (C∗
1 = C∗

2 , σ
∗) (C∗

1 = C∗
2 , σ

∗) (C∗, L∗)
CPU-time(s) CPU-time(s) CPU-time(s) CPU-time(s) CPU-time(s) CPU-time(s)

70.48 66.67 71.75 71.13 71.13 72.50

Region A (101, 2−3) (102, 2−3) (102, 300) (103, 2−1) (103, 2−1) (103, 300)

1.712 1.461 1.651 0.663 0.704 0.573

72.27 72.08 74.37 74.56 74.56 75.83

Region B (101, 2−2) (10−3, 2−3) (103, 300) (10−3, 21) (10−3, 21) (101, 500)

3.128 2.802 2.361 1.375 1.411 0.554

61.67 61.32 62.78 62.42 62.42 63.17

Region C (102, 20) (10−3, 2−1) (101, 300) (10−2, 2−3) (10−2, 2−3) (103, 300)

1.115 1.137 1.342 0.867 0.732 0.503

72.06 72.08 72.65 72.33 72.33 73.75

Region D (10−2, 2−3) (104, 2−1) (10−2, 500) (10−1, 20) (10−1, 20) (10−1, 1000)

1.429 1.154 1.367 0.675 0.713 0.547
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Table 6 Performance comparison of LapSVM, LELM, SS-ELM, MR-ELM and Lap-LELM on artificial dataset

Datasets LapSVM LELM SS-ELM MR-ELM Lap-LELM

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

(C∗, γ ∗
A, γ ∗

I , σ ∗) (C∗, L∗) (C∗, λ∗, L∗) (C∗, γ ∗
A, γ ∗

I , L∗) (C∗, γ ∗
A, γ ∗

I , L∗)

Artificial dataset 97.65 95.37 97.58 97.81 97.91

(2000 ∗ 2) (10−1, 101, 103, 2−2) (10−2, 2000) (101, 10−2, 2000) (102, 101, 102, 2000) (103, 100, 103, 2000)

experiments on eleven UCI datasets, COIL20(B) and
USPST(B)2 datasets, respectively, and five times 10-fold
cross validation. We choose LapSVM [13], SS-ELM [21]
andMR-ELM [23] as the benchmark comparison algorithm.

Before experiment, all datasets are normalized to the
range of [0, 1]. The LapSVM, SS-ELM, MR-ELM and Lap-
LELM constructed data adjacency graphs using k-nearest
neighbors. Binary edge weights were chosen, and the
neighborhood size k was set to be 9 for all the all datasets.
We used the Sigmoid function 1/(1 + exp(−(w · x + b)))

as the activation function for SS-ELM, MR-ELM, LELM
and Lap-LELM. The RBF kernel K(xi, xj ) = e−σ ||xi−xj ||22
is considered in LapSVM. We carry out grid search and
ten-fold cross-validation on the training sets to get the
optimal (C, γA, γI , σ, λ) with highest accuracy. γA and
γI are selected from {100, · · · , 103}; C and λ are selected
from {10−5, · · · , 105}; RBF kernel parameter σ is selected
from {2−5, · · · , 25}. The Hidden nodes L is selected from
{200, 300, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000,
4500, 5000}. All the following experimental results are
performed in the optimal parameters.

5.3.1 Experiments on artificial datasets

In order to further verify the generalization performance
of proposed Lap-LELM, we performed experiments on
artificial data. The experimental results are shown in
Table 6. We find that Lap-LELM are better than LapSVM,
LELM, SS-ELM and MR-ELM in classification accuracy.

5.3.2 Experiments on UCI datasets

In this subsection, we perform LELM, LapSVM, SS-ELM,
MR-ELM and Lap-LELM on eleven UCI datasets. Most
of these datasets have appeared in previous experiments.
We conduct the experiments with different proportions of
labeled samples, i.e., 10% and 20%. The testing accuracy
are computed using standard 10-fold cross validation.
For supervised algorithm (LELM), training samples were
divided into 10 parts, one (when 20% samples were labeled,

2http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

this should be two) part for training and the rest for testing,
and for semi-supervised algorithm (LapSVM, SS-ELM,
MR-ELM Lap-LELM), all samples are involved in training.

We compare the proposed classification accuracy of Lap-
LELM with LELM, LapSVM, SS-ELM and MR-ELM. All
experimental results are based on the optimal parameters.
The classification accuracy was the average of five-time
experiments. Results are listed in Table 7. Let’s summarize
the results in a simple language. We find from Table 7 that
the performance of Lap-LELM is better than that of LELM
on all datasets. This shows that in the semi-supervised
learning problem the use of the graph Laplacian operator
can improve the classification accuracy of the model. It
is further found that the propose Lap-LELM is superior
to the traditional semi-supervised learning algorithm Lap-
SVM on the vast majority datasets. We can also find that
our algorithm Lap-LELM outperforms ELM-based semi-
supervised algorithms SS-ELM and MR-ELM on most da-
tasets. The analysis of experimental results further validates
that the introduction of manifold regularization in the
LELM framework can effectively improve the performance
of LELM when the sample information is insufficient.

To further verify the performance of our proposed Lap-
LELM. We compared the proposed Lap-LELM with OPT-
ELM and Lap-SVM on six UCI datasets of different
proportioned label samples (10%, 30%, 50%, 70%, 90%).
The experimental results are presented in Fig. 5. Figure 5
shows the performance of LapSVM, LELM and Lap-
LELM on Balance, Breast Cancer, Australian, WDBC, Vote
and Ionosphere with different number of labeled samples.
In this experiment, all the settings are similar to above,
except that we varied the proportion of labeled data in
the training set. We can observe that LapLSVM and Lap-
LELM outperformed LELM significantly when there is a
small amount of labeled data. Further, we can find that
the classification accuracy of LELM will grow with the
gradually increasing of the labeled samples number.

5.3.3 Experimental results on COIL20(B) and USPST(B)
datasets

As we all know, COIL20(B) and USPST(B) are widely used
in semi-supervised learning algorithm evaluation datasets.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Table 7 Performance comparison of LapSVM, LELM, SS-ELM, MR-ELM and Lap-LELM on UCI datasets

Datasets Labeled Ratio LapSVM LELM SS-ELM MR-ELM Lap-LELM

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

(C∗, γ ∗
A, γ ∗

I , σ ∗) (C∗, L∗) (C∗, λ∗, L∗) (C∗, γ ∗
A, γ ∗

I , L∗) (C∗, γ ∗
A, γ ∗

I , L∗)

Diabetic 10% 59.62 49.12 59.07 59.07 58.78

(10−2, 101, 100, 2−1) (10−1, 1000) (101, 10−2, 1000) (101, 101, 100, 500) (103, 101, 103, 1000)

20% 59.58 59.62 59.34 59.34 59.65

(10−2, 101, 100, 20) (10−1, 1000) (101, 10−2, 1000) (103, 100, 100, 1000) (103, 101, 101, 1000)

Australian 10% 85.28 52.89 84.11 84.11 84.05

(100, 102, 101, 2−3) (101, 500) (10−2, 10−1, 500) (103, 100, 103, 500) (103, 102, 103, 1000)

20% 86.31 67.6 85.86 85.86 85.73

(100, 102, 102, 2−3) (101, 500) (10−2, 100, 500) (103, 100, 103, 500) (103, 101, 100, 1000)

Balance

10% 82.12 51.79 84.01 84.01 84.55

(101, 102, 101, 20) (103, 500) (101, 10−1, 500) (10−1, 101, 103, 500) (10−2, 102, 100, 500)

20% 87.12 63.75 88.85 88.85 89.36

(102, 102, 101, 2−3) (102, 500) (103, 10−1, 500) (10−1, 101, 103, 500) (10−2, 102, 100, 500)

Breast Cancer

10% 96.57 51.39 91.23 91.23 92.74

(10−2, 100, 101, 2−1) (10−1, 500) (101, 10−2, 500) (100, 101, 101, 500) (102, 103, 100, 1000)

20% 96.62 61.45 94.74 94.74 94.35

(10−1, 100, 101, 20) (102, 500) (101, 10−2, 500) (101, 101, 101, 500) (103, 103, 100, 1000)

WDBC

10% 93.32 50.33 93.57 93.57 94.09

(103, 100, 101, 21) (102, 500) (103, 100, 500) (10−2, 101, 102, 500) (10−1, 103, 101, 500)

20% 93.35 63.33 95.08 95.08 95.15

(103, 100, 102, 21) (102, 500) (103, 101, 500) (10−2, 103, 102, 500) (10−1, 102, 101, 500)

German

10% 66.96 51.13 66.89 66.89 67.66

(10−3, 101, 103, 2−2) (100, 500) (10−1, 10−2, 500) (101, 100, 100, 500) (10−3, 101, 100, 500)

20% 69.11 68.93 68.91 68.91 69.11

(10−3, 101, 103, 2−2) (100, 500) (10−1, 10−2, 500) (101, 100, 101, 500) (10−3, 101, 101, 500)

Ionosphere

10% 82.47 52.19 82.39 82.39 83.54

(101, 101, 102, 21) (102, 500) (10−2, 10−3, 500) (10−1, 101, 103, 500) (102, 103, 100, 500)

20% 86.08 64.19 87.26 87.26 87.43

(101, 101, 101, 21) (102, 500) (10−2, 100, 500) (10−1, 102, 102, 500) (102, 103, 101, 500)

Pima

10% 71.81 51.79 71.18 71.18 70.18

(100, 102, 103, 2−1) (100, 500) (10−1, 10−1, 500) (103, 102, 100, 500) (103, 101, 103, 1000)

20% 73.64 63.55 73.38 73.38 73.26

(101, 102, 103, 2−1) (100, 500) (10−1, 10−1, 500) (101, 102, 100, 500) (102, 101, 103, 1000)

QSAR

10% 75.70 51.41 76.24 76.24 77.52

(103, 101, 101, 2−3) (102, 1000) (10−3, 10−3, 1000) (101, 100, 101, 1000) (102, 101, 102, 1000)

20% 79.48 62.95 79.66 79.66 81.17

(102, 102, 101, 2−2) (102, 1000) (10−3, 102, 1000) (102, 101, 101, 1000) (102, 102, 103, 1000)
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Table 7 (continued)

Datasets Labeled Ratio LapSVM LELM SS-ELM MR-ELM Lap-LELM

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

(C∗, γ ∗
A, γ ∗

I , σ ∗) (C∗, L∗) (C∗, λ∗, L∗) (C∗, γ ∗
A, γ ∗

I , L∗) (C∗, γ ∗
A, γ ∗

I , L∗)

Vote

10% 90.09 51.63 89.97 89.97 90.16

(102, 103, 101, 20) (101, 500) (103, 100, 500) (10−1, 101, 101, 500) (100, 103, 101, 500)

20% 90.17 59.83 90.31 90.31 91.45

(101, 103, 101, 20) (103, 500) (102, 100, 500) (10−1, 101, 101, 500) (102, 103, 101, 500)

Wholesale

10% 71.93 50.85 72.21 72.21 72.65

(102, 102, 103, 23) (101, 500) (10−2, 10−2, 500) (103, 101, 100, 500) (101, 102, 102, 500)

20% 76.30 62.3 76.56 76.56 76.89

(103, 103, 103, 23) (100, 500) (10−2, 101, 500) (102, 101, 101, 500) (101, 103, 102, 500)

We compared the proposed Lap-LELM with Lap-SVM, SS-
ELM and MR-ELM on COIL20(B) and USPST(B) datasets

The COIL20(B) and USPST(B) datasets are described as
follows:

The Columbia object image library (COIL20) is a set of
1440 gray-scale images of 20 different objects. Each sample
represents a 32 × 32 gray scale image of an object acquired
from a specific view. The COIL20(B) is a binary data set
generated by grouping the first 10 objects in COIL20 to
class 1 and the remaining objects to class 2.

The USPST data set is a collection of hand-written
digits from the USPS postal system. Each digit image
is represented by a resolution of 16 × 16 pixels. The
USPST(B) is a binary data set which was built by grouping

the first 5 digits to class 1 and the remaining digits to
class 2.

The proposed Lap-LELM is compared with Lap-SVM,
MR-ELM and SS-ELM. We use the classification accuracy
on USPST(B)and COIL20(B) datasets to evaluate the per-
formance of these algorithms. The experimental results are
shown in Table 8. All experimental results are performed
under optimal parameters. From Table 8, we can see that
our method is better than Lap-SVM semi-supervised learn-
ing algorithms on on both USPST(B)and COIL20(B). It can
be further found that the proposed method has good perfor-
mance compared to other ELM-based semi-supervised algo-
rithms. The above experimental analysis further validates
that our proposed Lap-LELM is effective and reliable.

Fig. 5 Testing ACC with respect
to different number of labeled
data
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Table 8 Performance comparison of the OPT-ELM, LapWSC-SVM, Lap-ELM and LapWSC-ELM

LapSVM SS-ELM MR-ELM Lap-LELM

Datasets ACC(%) ACC(%) ACC(%) ACC S(%)

(C∗, γ ∗
A, γ ∗

I , σ ∗) (C∗, λ∗, L∗) (C∗, γ ∗
A, γ ∗

I , L∗) (C∗, γ ∗
A, γ ∗

I , L∗)
COIL20(B) 92.51 92.61 91.76 93.95

(103, 101, 103, 10−1) (103, 10−3, 1000) (102, 103, 102, 1000) (103, 103, 102, 2000)

USPST(B) 73.24 90.51 90.92 92.39

(102, 103, 100, 10−2) (10−2, 100,1000) (10−3, 101, 102, 1000) (10−2, 101, 103, 2000)

6 Conclusion

In this paper, we have first proposed a new type of lagrange
extreme learning machine (LELM) based on the optimiza-
tion theory. Then, a semi-supervised lagrangian extreme
learning machine (Lap-LELM) is proposed via extending
LELM to a semi-supervised learning framework, which
incorporates the manifold regularization into LELM to
improve performance when insufficient labeled samples
are available. Compared to existing supervised and semi-
supervised ELM algorithms, the proposed LELM and Lap-
LELM maintain almost all the advantages of ELMs, such
as the remarkable training efficiency for binary classifica-
tion problems. In addition, through the SMW identities,
LELM and Lap-LELM are transformed into two smaller
unconstrained optimizations. At the same time, two very
simple iterative algorithms are constructed to solve the two
unconstrained optimization problems. Theoretical analysis
and numerical experiments show that our iterative algo-
rithms are globally converged, have a low computational
burden and a certain degree of generalization performance
compared with traditional learning algorithms.

In the near future, we will further optimize our proposed
framework and study the sparse regularization problem for
our framework. In addition, we will extend our method to
multi-class classification and some practical applications.
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