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Abstract
The NSGA-II algorithm uses a single population single crossover operator, which limits the search performance of the
algorithm to a certain extent. This paper presents an improved version of the NSGA-II algorithm, named adaptive multi-
population NSGA-II (AMP-NSGA-II) that divides the original population into multiple populations and assigns a different
crossover operator to each subspecies. It introduces an excellent set of solutions (EXS), which can make the individuals in
the EXS set close to the Pareto front and improve the convergence performance of the algorithm. And based on the analysis
of the EXS set, the size of each subpopulation can be dynamically adjusted, which can improve the adaptability for different
problems. Finally, the computation results on benchmark multi-objective problems show that the proposed AMP-NSGA-II
algorithm is effective and is competitive to some state-of-the-art multi-objective evolutionary algorithms in the literatureis.

Keywords Multi-population · NSGA-II · Multiobjective · Adaptive

1 Introduction

In practical engineering applications, multi-objective opti-
mization is a very important research topic [1]. We often
need to use the best possible decision-making problem for
multiple targets in a given feasible domain, but the improve-
ment of these targets may come into conflict with each other,
a set of objectives must be taken to neutral balance. Multi-
objective genetic algorithms have good solvability for such
problems [17, 18]. Non-dominated Sorting Genetic Algo-
rithm 2 (NSGA-II) is one of the most representative genetic
algorithms. NSGA-II was developed by Deb in 2000, which
is NSGA improved non-inferior classification genetic algo-
rithm [14], adopts a better accounting strategy and thus
reduces the overall running time of the algorithm.

In recent years, many scholars have proposed improved
algorithms for the NSGA-II in order to improve the diversity
of the population and the convergence of the algorithm.
Some researches improved the individual sequencing of
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NSGA-II by ranking individuals in the population as 1 ∼
mr , and setting the sequence of repeated individuals in
the population to mr + 1 to ensure the uniqueness of
individuals in the sequence 1 ∼ mr , improving the diversity
of the population and avoiding the population into local
optimum [7]. Some researches improved the crossover
operation method of NSGA-II genetic algorithm, such
as selecting crossover individuals by using the principle
of adjacent maximum, that is, selecting the individuals
with the largest distance among adjacent individuals for
crossover operation, taking advantage of the hybridization
to improve the population Distribution at the forefront
of Pareto [16]. In some research, the cross-operation
of NSGA-II is replaced by an orthogonal array and
Taguchi method to optimize the algorithm performance
and improve the convergence of the algorithm [11]. The
theory of intermittent equilibrium points out that evolution
and generation of new species cannot occur in the core
area where a major group of species is located. In the
core areas where the population is clustered, there is less
pressure for biological survival, simple living environment
and poor diversity. Therefore, it is extremely difficult to
produce a system that can withstand harsh environments
and has a strong adaptability of offspring individuals.
Based on this, multi-population genetic algorithms have
been proposed and are widely developed [10, 13]. Each
subpopulation performs independent genetic operations,
effectively improving the diversity of the population.
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In order to further improve the population diversity
and search performance of NSGA-II, this paper uses the
idea of intermittent equilibrium to establish the genetic
operation mode of multi-population and multi-crossover
operator, to avoid the population from getting into local
optimum. According to the contribution of sub-population
to EXS solution set, Logistic model is used to adaptively
adjust population. Combined with local search method,
the algorithm has strong local optimization ability and
improves the individual distribution on the Pareto front, and
then proposes an adaptive multi-population non-dominated
Sorting Genetic Algorithm II (AMP-NSGA-II). This paper
describes the operation process of AMP-NSGA-II by
introducing the establishment of multi-population.

2 Adaptivemulti-population NSGA-II

2.1 Introducingmulti-population and crossover
operators

Multi-objective optimization usually does not have a
solution that can achieve all the objectives simultaneously.
Rather, it needs to obtain a Pareto optimal solution
set whose optimal solution is theoretically optimal (also
referred to as Pareto front-end of the target space)
and should have the best possible approximation and
uniformity. NSGA-II is an algorithm for solving this
multi-objective optimization problem. It conducts the
non-dominated sorting of the initial population, then
selects, crosses and mutates to obtain a new population,
merges the subpopulation with the parent population,
and conducts a non-dominated sorting to obtain a non-
dominated solution front. In previous NSGA-II, only one
population is maintained during the evolution of the
population. The disadvantage of this approach is that
population diversity may be poor, because for some multi-
objective optimization problems with many local optima,
populations tend to converge to local optimal locations.
This paper decomposes a single population of NSGA-II
into multiple subpopulations, each of which is assigned a
unique crossover operator. The blend crossover (denoted as
BLX − α) [5], the simulated binary crossover (denoted as
SBX) [3], the simplex crossover (denoted as SPX) [15],
and parent centric crossover (denoted as PCX) [2] operator
are proved to be suitable for solving different problems
of different ability. Therefore, it is reasonable to adjust
the scale of each subpopulation adaptively by assigning
different crossover operators to each subpopulation and
designing an appropriate management strategy.

In this paper, the population is divided into four parts
and assigned with above four different crossover operators,
respectively. Different crossover operators have different

global search capabilities, different search methods, and
different crossover populations. Parents of population I
adopt blend crossover (BLX−α) [5] operation. The parent
individuals are p1 = (x1

1 , x1
2 , ···x1

n) and p2 = (x2
1 , x2

2 , ···x2
n)

respectively, and the crossover formula is:

BLX − α(p1, p2) :
{

y1
j = (1 − β)x1

j + βx2
j

y2
j = (1 − β)x1

j + βx2
j

(1)

where p2 = (x2
1 , x2

2 , · · ·x2
n) and β = (1 + 2α)U(0, 1) − α.

The individuals generated by the crossover operator have
better diversity, improve the individual distribution of the
population and have good ability to solve the segmentation
function. The crossover operator has an advantage of
generating diversity offspring, that allows GA to converge,
diversity or adapt to changing fitness landscapes without
incurring extra parameters or mechanisms. However, there
are limitations to the multi-objective problem with strong
correlation between variables, such as epistasis problem.
Parents of population II adopt binary crossover (SBX) [3]
operation, the parents individuals were p1 = (x1

1 , x1
2 , · · ·x1

n)

and p2 = (x2
1 , x2

2 , · · ·x2
n), the formula for the crossover:

SBX(p1, p2) :
{

y1
i = 0.5

[
(1 − β)x1

i + (1 + β)x2
i

]
y2
i = 0.5

[
(1 + β)x1

i + (1 − β)x2
i

] (2)

where β(u) =
{

(2u)
1

ηc+1 , u ≤ 0.5

(2(1 − u))
1

ηc+1 , others
, and u is a

uniformly distributed random number in interval [0,1]. The
crossover operator can cross two parents to obtain any
child individuals and has good solving ability for multi-
objective optimization problems with globally optimal
upper and lower bounds with narrow global domains.
Parents of population III adopt simplex crossover (SPX)
[15] operations, and their parents were p1 = (x1

1 , x1
2 , ···x1

n),
p2 = (x2

1 , x2
2 , · · ·x2

n) and p3 = (x3
1 , x3

2 , · · ·x3
n) respectively.

The crossover formula was:

SPX :
⎧⎨
⎩

yi
1 = (1 + ε)(xi

1 − x̄)

yi
2 = (1 + ε)(xi

2 − x̄)

yi
3 = (1 + ε)(xi

3 − x̄)

(3)

where x̄ denote the center of the selected individual.
The crossover operator can balance the development of
the population and explore the performance, so that
the formation of the offspring of individuals from the
coordinate system independent. Can perform well in
multimodal functions and low-dimensional functions with
three parents or high-dimensional functions with four
parents. However, it is disadvantageous to solve the
test function composed of strong correlation. Parents of
population IV adopt the parent centric crossover (PCX)
[2] operation and the parents are p1 = (x1

1 , x1
2 , · · ·x1

n),
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p2 = (x2
1 , x2

2 , ···x2
n) and p3 = (x3

1 , x3
2 , ···x3

n). The crossover
formula is:

PCX : yp = pp + ωςdp +
nu∑

i=1,i �=p

ωηD̄ei (4)

where ei = di/
∣∣di

∣∣; dp = pp − g, g is the average
vector of nu parent individuals; D is the mean of the
vertical distance to the vector dp for the remaining nu − 1
individuals. The crossover operator uses an adaptive method
to cross-operate and The sub-individuals generated with the
crossover operator are not close to the center of the selected
parent but close to the parent.

The main process of genetic algorithm shown in Fig. 1,
including multi-population genetic manipulation, updating
EXS solution set and adjusting the size of the population
adaptively and other parts.

In Fig. 1, Pi.t is the t-generation parent population
of i; Qi.t is the t-generation sub-population of i. The
four sub-populations assigned four different crossover
operators. In multi-populations genetic manipulation phase,
each subpopulation uses NSGA-II algorithm to perform
non-inferior sorting and crowd-distance sorting operations
respectively. Fj is the set of individuals with rank j in
population Ri.t = Pi.t ∪ Qi.t ; and P ′

i.t+1 is the t +
1-generation parent population dynamically adjusted by
population i. From a global perspective, the application
of cross-operation can find some good individuals. In the
EXS solution collection update phase, the EXS is updated
according to the fitness of individuals, and the dominant
individuals in the subpopulations are collected in the EXS
solution set. Through the proposed local search method,
the crossover operator of the dominant population is used
to further increase the search ability of the algorithm and
improve the Pareto frontier EXS solution set distribution.
In order to get the population closer to the Pareto frontier,
individual selection of crossover operations are randomly
selected from the population Pi,t (i = 1, 2, 3, 4), Qi,t (i =
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Fig. 1 The main procedure of the AMP-NSGA-II

1, 2, 3, 4) and the EXS set, respectively, to ensure that new
individuals crossing the generation continually approximate
the optimal solution set. In adjusting population size phase,
the contribution of different populations to the EXS is
counted, and the population with a large contribution is
considered to be more suitable for solving the target
problem. Therefore, the number of the individuals is
appropriately increased, otherwise it is decreased. The
crossover operator is:

Crossoveroperator(k)

⎧⎪⎪⎨
⎪⎪⎩

BLX − α(p1, p2), k = 1
SBX(p1, p2) , k = 2
SPX(p1, p2, p3) , k = 3
PCX(p1, p2, p3) , k = 4

(5)

Where k is serial number of four populations. Population
Pi.t (i = 1, 2, 3, 4) were crossed and mutated to obtain
population Qi.t , and population Ri.t = Pi.t ∪ Qi.t was
ranked non-inferior and crowded by distance P1.t+1, P2.t+1,
P3.t+1, P4.t+1. In order to improve the local search ability
of the population, this algorithm preserves the mutation
operator of the original NSGA-II to adjust some gene values
in individual chromosome strings. From a local point of
view, the individual is more approximate to the optimal
solution set and the genetic algorithm local search Sufficient
ability to maintain the diversity of the population, to prevent
premature phenomenon. When the algorithm introduces the
above crossover operator, the various subpopulation can
make up each other and coordinate with each other so
that the algorithm can find effective crossover operator
for different multi-objective optimization problems, cross
better individuals and enhance the adaptation of the
algorithm Sexual and population diversity.

The NP individuals are divided into 4 populations P1.1,
P2.1, P3.1 and P4.1, and the initial size of each population
is NP /4, respectively. The population was initialized using
the method in [8]. From the initial four sub-populations
Pi.1(i = 1, 2, 3, 4), four progeny populations Qi.1 are
generated through the selection, crossover and mutation
operation of the binary tournament respectively. By sorting
the Ri.1 = Pi.1 ∪ Qi.1 populations non-inferiorly, Rank1
individuals bi in Ri.1 populations are added to the EXS
solution sets so that the initial EXS solution has a much
denser distribution on the Pareto frontier. EXS solution
set initialization process is shown in Fig. 2. If |EXS| =

4∑
i=1

bi > NEXS , the non-inferior ordering and crowding

distance ranking of the EXS solution sets are performed
and remove the bad solution from the EXS solution so that

|EXS| = NEXS . Or if |EXS| =
4∑

i=1
bi < NEXS , it will

not be processed. When the EXS solution set is updated,
the EXS solution sets the number of individual to NEXS .
The process of updating is to replace the inferior solution in
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Fig. 2 The excellent solution set initial process

the population of the dominant individual in the population,
so that the EXS collection is constantly approaching Pareto
optimal solution set. The update steps for the EXS collection
are as follows:

step 1 If the solution in the population i(i = 1, 2, 3, 4)

is better than the solution in the EXS solution set,
the solution in the EXS solution set is removed
and the dominant individuals corresponding to the
population i are added to the solution set.

step 3 If the solution in the population is worse than the
solution in the EXS solution, do not deal with it;

step 3 If the number of individuals in the EXS solution
set exceeds the set value NEXS , the bad solution is
removed according to the non-inferior sorting and
crowding distance sorting method of NSGA-II.

2.2 Local search algorithm

To improve the individual distribution of EXS solution
sets, the algorithm process is divided into two stages. The
first phase is EXS-pop-Update, which updates the EXS
solution via populations Q1.t+1, Q2.t+1, Q3.t+1 and Q4.t+1.
This method can search and exploit the population P1.t+1,
P2.t+1, P3.t+1 and P4.t+1 well and find out more excellent
individuals to improve the distribution of EXS solution
sets on the Pareto frontier. The second phase is EXS-
self-Update, which is a set of self-updating for the EXS
solution. Through the EXS solution of the inter-personal
cross-operation, local search the EXS solution, mining
EXS solution sets the potential of the optimal solution
individual. Based on the analysis of the update process of
EXS solution by Pi.t+1(i = 1, 2, 3, 4), the contribution
of each subpopulation to EXS solution is calculated and
the crossover operator in this phase is determined. The
specific process shown in Table 1, where j represents the
serial number of the four populations, NEXS represents
the number of individuals in the EXS. The individuals
with the greatest contribution and the individuals in EXS
are randomly selected to cross-mutate and generate sub-
individuals, and the disadvantaged individuals in the EXS
are replaced by the dominant individuals.

2.3 Adaptive adjustment of population size

The distribution of crossover operators in each subpopu-
lation leads to different distribution of individuals in each

Table 1 The excellent solution
set updated by itself
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population when solving different multi-objective prob-
lems. Sub-population Pi.t+1(i = 1, 2, 3, 4) differ in their
contribution to the EXS solution set during the updating
of the EXS solution set. Under the condition of keeping
the total number of individuals NP unchanged, by adjust-
ing the size of each population, the density of individuals
in front of Pareto is increased, the number of population
with fewer density in Pareto frontier is reduced, and each
subpopulation can be realized with different adaptive opti-
mization problems, the optimal solution set can be found
as soon as possible for different multi-objective optimiza-
tion problems, which effectively improves the adaptability
of the population. Select two populations with large contri-
bution to increase the individual number of the population.
With the gradual increase of population size, the individ-
ual number of each population can not exceed the max-
imum population psmax because of limited resources and
the number of increase individuals variable ni

inc should be
gradually reduced. Select two small contribution popula-
tions to reduce the number of selected individuals, with
the gradual reduction of population size, it should ensure
that the number of individuals in the sub-population not
less than the population minimum psmin. Using the discrete
time Logistic model to adjust the number of individual
population, the number of increase individuals and reduce
individuals are calculated by (6) and (7) respectively:

ni
inc = β1 · psi

g ·
(

1 − psi
g

psmax

)
(6)

ni
dec = β2 · psi

g ·
(

1 − psi
g

psmin

)
(7)

Where psi
g denotes the size of the g-th population of

population i,

(
1 − psi

g

psmax

)
and

(
1 − psi

g

psmin

)
are the density

dependences, psmax and psmin are the maximum and
minimum number of individuals we have set. The Logistic

models show density dependence, meaning the per capita
population growth rates decline as the population density
increases. In addition, the negative density dependence(

1 − psi
g

psmin

)
gradually decreases the decreasing individuals

to psmin. The two selected subpopulations with large (or
small) contributions have some differences in updating the
number of EXS solutions. Therefore, this paper proposes
the following adjustment strategy:

The number of individuals updating the four population-
based EXS solution sets is c1

i , c2
j , c3

k , and c4
l , where

i, j, k, l indicates the population label, here c1
i means the

contribution of population i to update the EXS solution set
and the subscript 1 means it is the largest among the four

populations. The size of sub-population i, j, k, l are denote
by (8)-(11) respectively.

Subi = psi
g + ci

1 + cl
4

4∑
t=1

ct

· ni
inc (8)

Subj = ps
j
g +

(
c
j

2 + ck
3

) /
2

4∑
t=1

ct

· n
j
inc (9)

Subk = psk
g +

(
c
j

2 + ck
3

) /
2

4∑
t=1

ct

· nk
dec (10)

Subl = psl
g + ci

1 + cl
4

4∑
t=1

ct

· nl
dec (11)

To ensure that the number of individuals in each subpop-
ulation is not less than psmin and not large than psmax ,
constraint the number of individuals Subd with (12). Prop-
erly reduce/increase the individuals of the largest/smallest
subpopulations, leaving the total number of individuals
unchanged.

Subd =
⎧⎨
⎩

psmin, Subd < psmin (d = 1, 2, 3, 4)

Subd, others

psmax, Subd > psmax (d = 1, 2, 3, 4)

(12)

After determining the size of each subpopulation
Subd (d = 1, 2, 3, 4), non-destructive sorting of each
population, and then proceed as follows:

Case 1 If the number of population d Subd is smaller than
the number of original population, delete it from
the worst one in the population until the number of
population reaches Subd .

Case 2 If the number of population d Subd is greater than
the number of original population, do:

step 1 Pick an individual randomly from the
population d;

step 2 Pick an individual (or two individuals
randomly from the EXS solution set if the
population d is assigned an SPX or PCX
crossover operator);

step 3 For the two individuals (or three) obtained,
new solutions are added to the population
d by cross-operation of crossover opera-
tors assigned to the population;

step 4 If the number of population d reaches
Subd , stop. Otherwise, skip to step1.
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3 Experimentation

This section is devoted to presenting the experiments
performed in this work. The performance of the algorithm
is analyzed using 12 standard test problems, including
the dual-objective test problems ZDT [19]: ZDT1, ZDT2,
ZDT3, ZDT4, ZDT6 and three-target test problems DTLZ
[4]: DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6,
DTLZ7. GD (General Distance) to measure whether the
updated EXS solution set converges to the true Pareto
optimal solution set. GD represents the distance between
the obtained EXS solution set and the true Pareto optimal
solution set, the smaller its value is, The optimal solution set
converges to the true Pareto optimal solution set. It can be
calculated by (13):

GD =
√√√√|EXS|∑

i=1

di
2/ |EXS| (13)

where |EXS| is the number of individuals in the EXS pop-
ulation; di is the Euclidean distance between the nearest
individuals in individuals i ∈ EXS and P ∗ in the target
space. Ih (Hypervolume) index evaluation method is a solu-
tion set comprehensive quality evaluation method, which
can simultaneously evaluate the convergence, uniformity
and universality of the solution set. The larger the value
of Ih, the comprehensive performance of the optimal solu-
tion set obtained The better. In this paper, the objective

function is normalized in the range of [0,1]. The standard-
ization formula is:

f ′
j (x) =

(
fj (x) − f min

j

)
/
(
f max

j − f min
j

)
(14)

where fj (x) is the j -th objective function value of solution
x; fj

min (fj
max) is the minimum value (maximum value) of

the 6th target value in the solution set obtained by genetic
algorithm, and the reference point is set as (1.0, 1.0).

According to the flow of the algorithm, it can be seen that
the updating process of the EXS set is to replace the more
dominant individuals in the four populations into the EXS
set. Therefore, the result of EXS(t +1) (t +1 means the t +1
generation of evolution) is definitely better than EXS(t),
that is, there is no individual in EXS(t) can dominate any
individual in EXS(t + 1), so the algorithm is definitely
convergent. Figure 3 shows EXS individuals initial states
and its evolution process at generations 50, 200, 500 when
the algorithm solves the ZDT1 problem.

Table 2 shows the comparison between the convergence
index (GD) and the comprehensive performance index (Ih)
of AMP-NSGA-II algorithm and NSGA-II algorithm on
12 test problems and verify whether there is a significant
difference between the two algorithms in GD and Ih

through independent-samples t-test by SPSS (Statistical
Product and Service Solutions) software. The resulting
values are the median (xm) and the interquartile range
(IRQ) of the results obtained by running 100 times. Better
values are in bold style. As is shown, the AMP-NSGA-
II algorithm obtained 12 superior GD values out of 12

Fig. 3 AMP-NSGA-II
convergence process
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Table 2 Experimental results comparison between AMP-NSGA-II and NSGA-II algorithm

Problems GD Ih

AMP-NSGA-II NSGA-II
SD

AMP-NSGA-II NSGA-II SD

xm IRQ xm IRQ xm IRQ xm IRQ

ZDT1 1.410e-04 3.196e-05 4.586e-04 5.976e-05 Y 6.619e-01 4.164e-05 6.551e-01 9.119e-04 Y

ZDT2 4.791e-05 4.814e-06 5.225e-04 9.523e-05 Y 3.287e-01 4.087e-05 3.206e-01 1.362e-03 Y

ZDT3 3.348e-05 3.048e-06 1.799e-04 3.695e-05 Y 5.876e-01 2.071e-05 5.835e-01 8.462e-04 Y

ZDT4 1.034e-04 4.488e-05 1.606e-04 5.000e-05 Y 6.620e-01 3.278e-05 6.595e-01 9.191e-04 Y

ZDT6 8.413e-03 0.715e-03 9.627e-02 1.357e-02 Y 4.013e-01 6.867e-05 6.587e-01 0.000e+00 Y

DTLZ1 5.654e-04 3.060e-05 7.416e-04 2.683e-04 Y 7.662e-01 6.529e-03 7.623e-01 7.801e-03 Y

DTLZ2 6.399e-04 1.681e-04 1.366e-03 2.414e-04 Y 3.867e-01 6.033e-03 3.754e-01 9.428e-03 Y

DTLZ3 1.102e-03 9.371e-05 4.420e-03 1.156e-02 Y 3.872e-01 6.354e-03 3.342e-01 3.843e-02 Y

DTLZ4 4.628e-03 3.684e-04 5.137e-03 3.862e-04 Y 3.839e-01 5.823e-03 3.759e-01 8.662e-03 Y

DTLZ5 2.482e-04 3.115e-05 3.684e-04 7.521e-05 Y 9.400e-02 4.973e-05 9.288e-02 2.400e-04 Y

DTLZ6 5.766e-04 3.630e-05 6.314e-04 2.361e-03 Y 9.494e-02 3.682e-05 9.355e-02 1.857e-02 Y

DTLZ7 2.062e-03 8.198e-04 2.665e-03 7.560e-04 Y 2.940e-01 4.417e-03 2.841e-01 7.348e-03 Y
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Fig. 4 Comparison of AMP-NSGA-II and NSGA-II experimental results
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test problems and obtained 11 superior Ih values out of
12 test problems, except for the ZDT6. This shows that
the algorithm has a better adaptability than NSGA-II.
Independent-samples t-test showed significant differences
(SD) between the two genetic algorithms. Therefore, the
proposed AMP-NSGA-II genetic algorithm is superior to
the NSGA-II genetic algorithm in terms of convergence
and overall performance. A graphical overview of 2 bi-
objective problems is given in Fig. 4. As is shown, on the
ZDT1 and ZDT3 test problem, a large number of individuals
in NSGA-II fall into f1 = 0 and the individuals are
unevenly distributed, indicating that the NSGA-II algorithm
is easy to fall into local optimum when solving the test
problem and individuals in AMP-NSGA-II were uniformly
and accurately distributed on the Pareto front. On the
ZDT2 problem, AMP-NSGA-II distributed more evenly
than NSGA-II, with less deviation from the Pareto front. On
the ZDT4 problem, NSGA-II individuals are concentrated
in the range of [0, 0.7]. As f1 increases, individuals
gradually diverge from the Pareto front and is divergent.
The Pareto front obtained by NSGA-II and AMP-NSGA-II
of the three-objective problem DTLZ4 is shown in Fig. 5.
As is shown, in the results of NSGA-II, the distribution of

individuals is disorganized, with obvious overlap between
individuals. In contrast, the distribution of individuals in
AMP-NSGA-II is closer to the Pareto optimal solution and
the individual diversity is better. Therefore AMP-NSGA-
II distributes more evenly than NSGA-II individuals and
has better convergence performance, which proves that the
improved method in this paper is effective.

In order to test the competitiveness of proposed AMP-
NSGA-II, it was compared with some state-of-the-art
multi-objective evolutionary algorithms (MOEAs) such as
AbYSS [8], GWASFGA [12], SMPSO [9] and DMOPSO
[6]. Source codes of these algorithms are available
through the website: https://jmetal.github.io/jMetal/ and
their parameters are set as suggested by the original.
Tables 3 and 4 show the performance comparison over GD

and Ih performance on 12 test problem. As is shown in
Table 3, in terms of GD metric in 12 test problems, AMP-
NSGA-II obtained 4 best result, including 1 best result of
the bi-objective problem and 3 best results of the three-
objective problems. It is worth mentioning that DMOPSO
obtained 7 best result in GD metric, but in terms of Ih

metric, as is shown in Table 4, DMOPSO obtained none best
result, and AMP-NSGA-II algorithm obtained 5 best result.

Fig. 5 Comparison of
AMP-NSGA-II and NSGA-II
experimental results in DTLZ4
problem

https://jmetal.github.io/jMetal/
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Fig. 6 Comparison experimental
results in DTLZ7 problem
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Table 3 Experimental results in term of GD between AMP-NSGA-II and NSGA-II algorithm

GD AMP-NSGA-II AbYSS GWASFGA SMPSO DMOPSO

Problems xm IRQ xm IRQ xm IRQ xm IRQ xm IRQ

ZDT1 1.410e-04 3.20e-05 1.525e-04 2.14e-05 2.624e-04 3.19e-05 1.088e-04 4.29e-05 9.784e-05 2.27e-05

ZDT2 4.791e-05 4.81e-06 5.223e-05 1.15e-05 9.461e-05 2.76e-06 4.740e-05 2.68e-06 4.658e-05 1.69e-06

ZDT3 3.348e-05 3.05e-06 3.393e-05 3.42e-06 2.467e-04 2.15e-06 3.609e-05 2.72e-06 1.609e-04 3.43e-06

ZDT4 1.034e-04 4.49e-05 2.316e-04 1.02e-04 1.408e-03 1.33e-05 1.212e-04 4.16e-05 9.473e-05 2.68e-06

ZDT6 8.413e-03 0.72e-03 7.475e-05 8.61e-06 1.037e-03 8.12e-06 5.031e-05 8.38e-06 3.527e-05 7.62e-06

DTLZ1 5.654e-04 3.06e-05 6.034e-04 8.94e-05 6.295e-04 2.61e-04 5.191e-03 1.38e-03 4.654e-04 7.76e-06

DTLZ2 6.399e-04 1.68e-04 6.841e-04 3.74e-05 8.780e-04 1.60e-04 3.393e-03 6.47e-04 8.730e-04 3.43e-05

DTLZ3 1.102e-03 9.37e-05 4.091e-03 1.02e-04 9.826e-03 3.12e-03 3.360e-03 1.16e-03 2.171e-02 7.36e-03

DTLZ4 4.628e-03 3.68e-04 4.881e-03 3.15e-04 6.283e-03 2.49e-04 5.745e-03 5.06e-04 8.716e-03 4.61e-04

DTLZ5 2.482e-04 3.16e-05 2.539e-04 3.14e-05 2.581e-04 6.27e-05 2.611e-04 3.35e-05 2.344e-04 3.31e-05

DTLZ6 5.766e-04 3.63e-05 9.373e-03 7.67e-03 6.951e-02 7.12e-05 5.664e-04 3.34e-05 5.347e-04 3.29e-05

DTLZ7 2.062e-03 8.20e-04 1.287e-03 1.06e-03 2.601e-03 5.11e-04 4.675e-03 1.07e-03 2.725e-03 1.04e-03

GWASFGA obtained 5 best Ih value, but the convergence
of the algorithm is limited and didn’t get a the superior
GD value. SMPSO and AbYSS obtained 1 best Ih result
and 1 best GD result, respectively, that show a little
inferior performance than AMP-NSGA-II, GWASFGA and
DMOPSO. Pareto front for each algorithm with the best
GD metric for problem DTLZ7 is plotted in Fig. 6. As
is shown, though the GD result obtained by AbYSS is
the best one, the distribution of individuals are trapped
in the first block of the true Pareto front, which is not
in line with our expectation. The other five algorithms
have similar performance in Fig. 6, but the individuals
obtained by DMOPSO have a high overlap in the fourth

part of the pareto front and GWASFGA (80 individuals)
is more biased toward the boundary of the pareto front.
The individuals obtained by AMP-NSGA-II distributes
visually more evenly than NSGA-II and SMPSO. In
pairwise comparison from Tables 3 and 4 , our AMP-
NSGA-II obtained 10 better GD results and 8 not less
Ih results than the AbYSS, 11 better GD results and 7
not less Ih results than GWASFGA, 8 better GD results
and 11 not less Ih results than SMPSO, 5 better GD

results, 11 not less Ih results than DMOPSO. Through
the comparison with other four MOEAs, AMP-NSGA-II
can be found to have superior results for most of the test
problems.

Table 4 Experimental results in term of Ih between AMP-NSGA-II and NSGA-II algorithm

Ih AMP-NSGA-II AbYSS GWASFGA SMPSO DMOPSO

Problems xm IRQ xm IRQ xm IRQ xm IRQ xm IRQ

ZDT1 6.619e-01 4.16e-05 6.620e-01 7.17e-05 6.626e-01 4.59e-05 6.620e-01 4.58e-05 6.615e-01 4.69e-05

ZDT2 3.287e-01 4.09e-05 3.287e-01 7.60e-05 3.287e-01 2.42e-06 3.287e-01 3.72e-05 3.284e-01 3.73e-05

ZDT3 5.876e-01 2.07e-05 5.876e-01 2.40e-05 5.158e-01 2.71e-06 5.875e-01 7.42e-05 5.137e-01 8.77e-05

ZDT4 6.620e-01 3.28e-05 6.599e-01 2.32e-03 6.625e-01 1.03e-04 6.618e-01 1.00e-04 6.609e-01 8.99e-05

ZDT6 4.013e-01 6.87e-05 4.006e-01 1.43e-04 4.019e-01 2.17e-04 4.013e-01 6.40e-05 4.013e-01 4.38e-05

DTLZ1 7.662e-01 6.53e-03 7.612e-01 8.17e-03 7.384e-01 1.36e-03 7.401e-01 9.50e-03 7.409e-01 6.06e-03

DTLZ2 3.867e-01 6.03e-03 3.847e-01 7.12e-03 3.924e-01 4.58e-04 3.548e-01 7.30e-03 3.678e-01 8.22e-03

DTLZ3 3.872e-01 6.35e-03 3.417e-01 4.18e-02 1.872e-01 4.81e-04 3.561e-01 1.45e-02 3.409e-01 9.67e-03

DTLZ4 3.839e-01 5.82e-03 3.867e-01 5.25e-03 3.822e-01 6.22e-05 3.632e-01 8.70e-03 2.729e-01 7.54e-03

DTLZ5 9.400e-02 4.97e-05 9.401e-02 3.00e-05 9.425e-02 8.04e-06 9.390e-02 6.70e-05 9.203e-02 4.67e-05

DTLZ6 9.494e-02 3.68e-05 4.883e-02 1.90e-02 9.472e-02 2.44e-03 9.490e-02 4.58e-05 9.312e-02 4.75e-05

DTLZ7 2.940e-01 4.42e-03 2.604e-01 0.00e+00 2.441e-01 1.17e-03 2.764e-01 6.20e-03 2.583e-01 4.84e-03
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4 Conclusion

In this paper, a multi-objective optimization algorithm
for multi-population and multi-crossover operator mode
is constructed. Single population in NSGA-II is divided
into four subpopulations to improve the diversity of the
population. According to the different contribution of sub-
population to EXS solution set, Logistic model is used to
realize adaptive adjustment of sub-population. The update
of EXS solution set is divided into pop-Update and self-
Update two stages, thus the local search program of the
algorithm is given. The paper gives a scheme to adjust
the size of various groups, so that the population quantity
is related to the contribution of EXS solution set. The
proposed algorithm is tested by 12 standard test functions,
the experimental results show that:

1) The comparison with the original NSGA-II shows
that the improvement of the proposed strategy is
positive and the t-test shows that the performance of
the algorithm is significantly different and has been
qualitatively improved.

2) The addition of multiple populations increases the
diversity of the population and makes the distribution
of individuals more even and overcome local optimality
effectively.

3) The adaptive scheme combined with local search algo-
rithm allocate more evolution chances to certain sub-
populations with more appropriate crossover operators,
making the algorithm guarantee a robust performance
for different kinds of multi-objective problems.

4) Under the combination of multiple partial changes, the
performance of the proposed algorithm is comparative
or superior to some state-of-the-art MOEAs for the
ZDT and DTLZ series of problems.
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