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Abstract
Detection of changes in streaming data is an important mining task, with a wide range of real-life applications. Numerous
algorithms have been proposed to efficiently detect changes in streaming data. However, the limitation of existing algorithms
is that they assume that data are generated independently. In particular, temporal dependencies of data in a stream are still not
thoroughly studied. Motivated by this, in this work we propose a new efficient method to detect changes in streaming data
by exploring the temporal dependencies of data in the stream. As part of this, we introduce a new statistical model called
the Candidate Change Point (CCP) model, with which the main idea is to compute the probabilities of finding change points
in the stream. The computed probabilities are used to generate a distribution, which is, in turn, used in statistical hypothesis
tests to determine the candidate changes. We use the CCP model to develop a new algorithm called Candidate Change Point
Detector (CCPD), which detects change points in linear time, and is thus applicable for real-time applications. Our extensive
experimental evaluation demonstrates the efficiency and the feasibility of our approach.

Keywords Data streams · Change detection · Temporal dependence · Adaptive estimation

1 Introduction

The availability of modern technology and the proliferation
of mobile devices and sensors have resulted in a tremen-
dous amount of streaming data. Due to its broad real-life
applications, including consumption data (electricity, food,
oil), finance and stock exchanges, healthcare, and intru-
sion/fraud detection, detection of changes in streaming data
is an important data mining task. A main challenge with
mining streaming data is that data in a stream is inher-
ently dynamic, and its underlying distribution can change
and evolve over time, leading to what is referred to as con-
cept drift [40]. As an example, in consumption data, we
might have data about customer purchasing behavior over
time that could be influenced by the strength of the econ-
omy. In this case, the concept is the strength of the economy,
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which can drift. A concept drift can be either a real or vir-
tual concept drift, where changes in the distribution can, in
turn, have four different forms [21] namely abrupt, reoccur-
ring, incremental, and gradual, as illustrated in Fig. 1. In
addition, we can have mixtures of these forms in streaming
data.

What can be inferred from this is that a method developed
for mining changes in streaming data has to take into
account the different characteristics of concept drifts. In
particular, the learning model has to be trained and adapted
to the changes, and model parameters should be able to
adapt themselves following the changes in the streams.
Numerous algorithms have been proposed to detect changes
in streaming data [19, 20]. Still, most existing algorithms
have been built based on the assumption that streaming
data have stable flows, and that they are arriving in the
same distribution. In addition, they assume the data to be
identically and independently distributed (i.i.d.). However,
such an assumption hardly holds in real-life streaming
environments.

Focusing on non-stationary environments, several learn-
ing algorithms have been proposed to overcome the lim-
itation of the i.i.d. assumption [27, 29]. The majority of
existing approaches have, however, assumed that data in a
stream are independently but not identically distributed [10,
45]. Adaptive estimation is among the proposed techniques
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Fig. 1 Illustration of the four
different types of concept
drift [21]
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for handling temporal dependencies of data. For example,
in [3, 11, 32, 37], the approaches employed adaptive esti-
mation methodology by considering a so-called forgetting
factor. Here, according to a decay function of the forgetting
factor, the underlying assumption is that the importance of
a data in a stream is inversely proportional to its age. As
part of this, cumulative measures of the underlying distribu-
tion and estimators are maintained and monitored to detect
changes, while new data continuously arrive.

Despite their efficiency with respect to detecting changes
in data streams, the underlying assumption of the above
methods is that data are generated independent of other
data in the same stream. Meanwhile, several empirical
experiments, e.g., [6, 45], have shown that there are
important temporal dependencies among data points in a
stream of data, thus making it crucial for further studies,
especially focusing on change detection. Motivated by this,
the main goal of this work is to investigate the temporal
dependencies of data points in a data stream, and use this
to develop a novel method that enables monitoring changes
in the stream while continuously estimating the underlying
data distribution.

To summarize the principle behind the proposed method,
Fig. 2 shows a block diagram of the important steps of
the method. As shown in this figure, our approach takes
a stream of data as input, and the main output is the list
of candidate change points. In order to generate this list,
the stream is processed in three main steps. The first step
is to extract the distribution and determine the dependency
information. To do this, we use the Euclidean projection
method to generate projections of given data points in a
stream onto k previously seen/processed data points. This
produces a set of (probabilistic) paths between pairs of
observed data points, called trails. In the second step, the
mean values of the trails are estimated and used as inputs

for the third and final step, in which the change detection is
carried out through statistical hypothesis tests. Note that due
to the dynamic nature of streaming data, each of the steps
has to be efficient and be able to adapt to changes in the
stream.

In this work, we make the following main contributions:

1. We introduce a new model named Candidate Change
Point (CCP) that we use to model high-order temporal
dependencies and data distribution in streaming data.

2. We develop a new concept called CCP trail, which is
the path from a given observed data to another specific
data in the observation history. Our approach uses the
mean value of the CCP trail as a measure of data
distribution, and to capture the temporal dependencies
among observed data in the stream.

3. We develop a method that is able to handle the fact
that data arrives in a high-velocity stream by providing
continuously updating estimation factors as part of the
CCP model.

4. We propose an efficient real-time algorithm, based
on pivotal statistic tests for change detection named
Candidate Change Point Detector (CCPD).

5. In order to demonstrate the feasibility, efficiency, and
generality of our method, we conduct a thorough
evaluation based on several real-life datasets and
comparison with related approaches.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the related work. Section 3
introduces the problem of change detection. Section 4
presents the proposed model and the adaptive estimation
method for detecting changes in evolving streaming data.
Section 5 describes and discusses the results from our
experimental evaluation. Finally, Section 6 concludes the
paper and outlines possible topics for future work.

Fig. 2 Overview of the
proposed method
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2 Related work

Change detection in streaming data has a wide-range
of applications in many domains and has attracted lots
of interests from the research community. To tackle the
problem of change detection in streaming data, numerous
methods and algorithms have been proposed [1, 2, 20,
22, 23]. In the context of event detection in streaming
data, due to the large volume of data, and that the data is
dynamic and continuously arrives at a high speed, online
learning approaches are necessary to be able to meet the
induced challenges. As a result, several online learning
algorithms have been proposed [17, 18]. However, an
important requirement of online methods is to minimize
the computational cost, and that approaches for online
event/change detection must have constant time and space
computational complexity for them to be feasible.

The algorithms for concept drift detection can be
categorized into four main categories [21] (see also Table 1
for a summary). The first category consists of detectors
that are based on sequential analysis. Cumulative Sum
(CUSUM) and its variant, Page-Hinkley (PH) [32], are
the representative algorithms in this category. Their main
idea is to estimate the probability distribution value and
update the value when new data comes. A concept drift
occurs if there is significant change in the value of the
estimated parameters. The main advantage with sequential
analysis-based algorithms is that they generally have low
memory consumption. One of the disadvantages, on the
other hand, is that the performance depends on the choice
of parameters. The second category includes detectors that
are based on statistical process control, with which the

idea is to estimate statistical information (such as error and
standard deviation). Monitoring this error rate, the detectors
determine a concept drift if the error increases above a
pre-specified threshold value. Examples of methods in this
group are DDM [19], EDDM [4], ECDD [39], AFF [11],
and RDDM [5]. The main advantage with the methods
in this category is that in addition of being efficient and
having low memory consumption, they work generally well
on streams with abrupt changes. However, slow gradual
change detection is a one of the main weaknesses of the
algorithms in this category. The third category comprises
detectors that monitor distributions on two different time
windows, i.e., applying statistical tests on the distributions
of two windows in a stream. Here, the first window is a
fixed reference window used to summarize the information
from past data; whereas the second window is a sliding
window summarizing the information of the most recent
data. Examples of representative algorithms in this category
are ADWIN [7], HDDM [18], SEQDRIFT2 [33], and
MDDM [34]. The main advantage with the window-based
methods are that they are able to provide more precise
localization of change points. The disadvantages are the
high memory cost and the space requirements for processing
the aforementioned two windows. The fourth and final
category consists of detectors that are contextual-based. The
approaches in this category keep the balance of incremental
learning and forgetting in detecting a concept drift with
respect to the time of an estimated window. An example of
contextual approaches is SPLICE [24]. The main advantage
of methods in this category is that they can detect gradual
and abrupt drifts, in addition to the ability to control the
number of errors. However, contextual-based methods are

Table 1 Summary of the related change detection methods

Category Algorithms Advantages Disadvantages

Sequential analysis CUSUM [32], Low memory consumption. Depends on the choice of

PAGE-HINKLEY [32] parameters.

Statistical process control DDM [19], EDDM [4], Low memory consumption, Slow gradual changes.

ECDD [39], AFF [11], work well on abrupt

RDDM [5] changes, and fast execution

time.

Windows-based methods Kifer et al. [26], ADWIN [7], Precise localization of Memory and space

HDDM [18], change points. requirements for

SEQDRIFT2 [33], processing two windows.

FHDDM [36], ACWM [41],

FHDDMs [35], MDDM [34]

Contextual approaches SPLICE [24] Gradual and abrupt drift, Complex and difficult to

and control of the number of implement and long

errors. execution time.
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generally complex and have long execution time, thus
making them less suitable for mining of streaming data.

Hoeffding’s Inequality [25] is one of the most well-
known inequalities. It has been used to design several
upper bounds for drift detection [18]. These upper bounds
have been used in algorithms such as the Drift Detec-
tion Method Based on Hoeffding’s Bounds (HDDM) [18],
the Fast Hoeffding Drift Detection Method for Evolving
Data Streams (FHDDM) [36], Hoeffding Adaptive Tree
(HAT) [8], and the HAT + DDM + ADWIN [2] algorithm
which extends the ADaptive sliding WINdow (ADWIN)
algorithm [7], the Drift Detection Method (DDM) [19],
and the Reactive Drift Detection Method (RDDM) [5],
which is a recent drift detection algorithm based on DDM.
Nevertheless, Hoeffding inequalities have the disadvantage
of dropping the dependence on the underlying distribu-
tion [43]. Although these algorithms are useful to detect
changes in streaming data, most of them assume that data
is identically and independently distributed. However, as
mentioned earlier, in real-life streaming data, data is inher-
ently dynamic, and is not identically and independently
distributed [10, 45]. Also, temporal dependencies are very
common in data streams [45]. Thus, to address this issue,
temporal dependencies in the streams should be considered.

Regarding temporal dependencies in data streams,
adaptive models for detecting changes in the underlying data
distribution have been proposed and extensively studied.
The main idea of these approaches has been to estimate,
maintain some interesting targets in the stream, and then
compute the data distributions. The main method used
has been based on statistical hypothesis tests, where the
hypothesis H1 means change has been discovered, whereas
the null hypothesis H0 means no change. An example
of such an approach has been suggested by Bodenham
et al. [11]. They adopted a so-called forgetting factor,
originally suggested by Anagnostopoulos et al. [3], to
develop a new approach for continuously monitoring
changes in a data stream, using adaptive estimation.
They proposed an exponential forgetting factor method
to decrease the importance of data according to a decay
function, which is inversely proportional to the age of the
observed data.

Although Bodenham’s approach enables monitoring
changes in data streams by applying so-called Adaptive
Forgetting Factor (AFF) [11], it does not address the
challenges with temporal dependencies of data. Further,
while AFF enables detecting multiple data point changes
with adaptive estimation, the approach presented in this
paper focuses on temporal dependencies of data, in addition
to supporting online change detection in a data stream.

In conclusion, different from previous approaches, the
proposed method in this paper generalizes the concept of
temporal dependency in streaming data, by supporting both
the first-order and the higher-order of dependencies. To
achieve this, as discussed later in this paper, we propose
a probabilistic method that can be used to analyze the
differences between a data point at a given observation point
and k previously observed points in the stream.

3 Problem definition

Formally, we define the problem of change detection in
streaming data by the following definition. Let there be a
data stream S, which is an open-ended sequence of values
{v1, v2, . . . , vi, . . . }. Assume that our observation Vi of vi

in the data stream is drawn from a Gaussian model with
an unknown distribution, Vi ∼ N (μ, σ 2I ), where μ is the
(unknown) mean and is the interest measure in our change
detection method, and σ 2 is the error variance. At each
observation time i, the observed mean is μi . Hence, for
a data stream S, we have a sequence of observed mean
μ1, μ2, . . . , μi , . . . corresponding to observation times 1,
2, . . . , i, . . . . Our change detection method considers the
difference between adjacent means μi and μi+1, where not
all adjacent means are not necessarily equal. The change
detection method is designed to detect all change points i

between two observed adjacent means μi and μi+1, for any
i and μi �= μi+1. Assume that t1, t2, . . . tj , . . . are the true
change points in a distribution of means. Then, the change
detector verifies a change point tj by testing the following
statistical hypotheses:

H0 : μtj−1 � · · · � μtj −1 � μtj � μtj +1 � · · · � μtj+1−1

against

H1 : μtj−1 � · · · � μtj −1 �= μtj � μtj +1 � · · · � μtj+1−1

] Given a significance confidence ρ, the rule to accept the
H1 hypothesis is if an objective interest measure of mean,
i.e., f (.), satisfies:

f (μtj ) /∈ [vρ
2
, v1− ρ

2
], (1)

where vρ
2

and v1− ρ
2

are values such that Pr(f (μtj ) <

vρ
2
) = ρ

2 and Pr(f (μtj ) > v1− ρ
2
) = 1 − ρ

2 , and f (.) is
an objective function. A change point is said to occur at an
observation time tj if H0 is rejected. This means that the
task of detecting change points is to find all the observation
times where there are significant differences in the data
distribution for a given measure.
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To illustrate, consider a stream of data shown in Fig. 3,
which can be modeled using a piece-wise function with
different values depending on the time intervals, [1, 50],
[51, 80] and after 81. The estimated mean values are
controlled/computed by the function to be 50 in the first
interval, 100 in the second and then 80. In conclusion, as
also can be observed, significant changes in the stream
appear at timestamps 51 and 81.

To automatically detect change points, we propose an
approach called Candidate Change Point (CCP) detection,
which can be summarized as follows. First, we investigate
the temporal dependence of each data to its k previous
data points. We project a vector of that k data onto a �1

constraints to optimize the minimum difference between
k previous observations and the current observation. The
noisy or decay factor that weighs the importance of previous
data on the current observation is inversely proportional to
its age. Moreover, our approach employs truncated form
of the geometric distribution to simulate the decaying
probability of looking back into the history. Second, an
adaptive estimator on CCP trail and CCP propagation is
maintained online during the monitoring process of the
stream (to be described in more detail in Section 4.2).
Finally, our approach uses a statistic test on interest measure
of mean values to determine if there is a change point at
a given observation time. Specifically, a p-value of a mean
and a pivotal statistic function are used to map the problem
into a uniform Gaussian model on the interval [0, 1]. Then
we use this to perform the truncated Gaussian statistic to test
the hypotheses in order to decide change point occurrences
in real-time.

4 The candidate change point (detection)
approach

In this section, we propose a new model to represent the
temporal dependency of the current observation to its his-
tory in the data stream to detect changes. As mentioned in
Section 1, most existing work has assumed the streaming
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Fig. 3 An example a stream of data with two change points

data to be identically and independently distributed (i.i.d.).
However, focusing on real-life applications, this assump-
tion is too restrictive. In fact, the probability of the current
observation is largely dependent on previous data and the
history of the stream. With this in mind, we consider
Markov chain [31] as the natural choice for modelling
streaming data, since a Markov process can be used to
represent the probability of transitions between states of
data in a stream. However, note that the space requirement
for maintaining parameters with a higher-order Markov
process grows exponentially as functions of the number
of parameters. Thus, approaches employing higher-order
Markov processes have a cubic space complexity, and are
for this reason inefficient. To cope with this issue, more
efficient parameterization approaches, such as the Linear
Additive Markov Process (LAMP [28]) and the Retrospec-
tive Higher-Order Markov Process (RHOMP [44]), have
been proposed. In contrast to the higher-order Markov pro-
cess, the number of maintained parameters in the LAMP
model and the RHOMP model grow linearly, which makes
them more suitable for streaming data.

In this work, we build on the ideas of these linear Markov
process models to develop an efficient model for temporal
dependency in evolving data streams, and use the developed
model for detecting concept drifts. We do this based on
the fact that the probability of a data to appear in a stream
at a specific time is not dependent on the first-order data
only. This means that the appearance of data in specific
observations can be assumed to be a cause of k previous
observations. To be more specific, we propose a novel
model, called the candidate change point (CCP) model, for
detecting concept drifts. This is done by using the temporal
dependency information from previously observed data in
the current observation to compute the probability of finding
changes in the given observation. What this implies is that
with a first-order CCP model, any data that is observed at a
specific time has only temporal dependency from the most
recent previously observed data in the stream. On the other
hand, if the current data point depends on its k previous data
points and is a mix of these k data points, then it has a CCP
from k-order ancestors. In such a case, the model that we
apply is the k-order Candidate Change Point (CCP) model,
defined as follows.

Definition 1 (k-order candidate change point) Given a
stream of observations with an open end x1, x2, . . . , xn, . . . ,
the k-order Candidate Change Point is denoted as CCPk ,
and at observation time t, the CCP model is presented as
CCPk(xt ) = (C1, C2, . . . , Ck), where 0 ≤ Ci ≤ 1 for
i = 1, 2, . . . , k,

∑k
i=1 Ci = 1. We call Ci is the probability
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proportion of CCP in current descendant obtained from i-th
order in its k ancestors.

Definition 2 (k-order fading candidate change point) Given
a stream of observations with an open end x1, x2, . . . , xn,
. . . , the k-order Fading Candidate Change Point is the k-
order Candidate Change Point considering forgetting factor
α of ancestors by order denoted as CCPk,α . At observation
time t, the CCP model is presented as CCPk,α(xt ) = (α1 ×
C1, α2 × C2, . . . , αk × Ck), where 0 ≤ αi ≤ 1 for i =
1, 2, . . . , k,

∑k
i=1 αi = 1, 0 ≤ Ci ≤ 1 for i = 1, 2, . . . , k,

∑k
i=1 Ci = 1.

We call αi a decaying probability of CCP in current
descendant from i-th ancestor in its k ancestors into the
history context. Given a scalar x, we denote −−−→

xCCPk
as a

vector of x projected on its k-order ancestors. We have−−−→
xCCPk

= (C1, C2, . . . , Ck), it is the k-order Candidate
Change Point of the scalar. In the rest of the paper, we
use a bold face letters (x) to present the vector for short
(−−−→
xCCPk

). Suppose L is a cost function, the value and option
of cost function L will be discussed in the next section.
In this paper, our purpose is to solve the minimum of cost
function subject to conditions �1-norm constraint on k-order
Candidate Change Point. The problem is described as:

minimize
CCPk

(L(CCPk)), (2)

subject to 0 ≤ Ci ≤ 1, ∀i = 1, 2, . . . , k,
∑k

i=1Ci = 1.
Projected (sub)gradient methods minimize an objective

function f (x) subject to the constraint that x belongs to
a convex set CS. The constrained convex optimization
problem is minimizef (x) subject to x ∈ CS.

The projected (sub)gradient method is given by generat-
ing the sequence x(t) via:

x(t+1) =
∏

CS
(x(t) − γt × g(t)), (3)

where
∏

CS is a projection on CS, γt is step size, x(t) is the
t-th iteration, and g(t) is any (sub)gradient of f at x(t), and
will be denoted as ∂f (x)/∂x(t).

4.1 Evolving data and CCP parameter selection

Given a data stream where data evolves over time, i.e., its
population distribution or its structure changes over time,
the goal is to maximize the probability proportion of CCP
for current observation in the set of the k last/previously
observed data by solving an optimal problem, using the

projected (sub)gradient method with an optimal function
to minimize the divergence of the currently observed data
when it is projected onto �1-norm constraints of k previous
ancestors. Here, the cost function f (x) on Euclidean
projections can be chosen as Euclidean norm (�2 norm)
L(x) = 1

2 ‖ x − v ‖2.
The Euclidean projection in this paper is to project a

streaming data xt onto a set of k previously observed data,
defined as:

∏

CCPk

(xt ) = arg min
x∈CCPk

1

2
‖ x − xt ‖2, (4)

subject to ‖ x ‖1= ∑k
i=1 Ci = 1. The optimal solution for

this problem can be solved in linear time as in [14, 16, 30].
The Lagrangian of Eq. 4 with Karush Kuhn Tucker (KKT)
multiplier ζ and μ is:

L(x, ζ ) = 1

2
‖ x − xt ‖2 +ζ(‖ x ‖1 −1) − μx (5)

Derivation of Lagrangian function at xi with optimal
solution x∗ by dimension i is ∂L

∂xi
(x∗) = (x∗

i −xt
i )+ ζ −μi .

Because x∗ is an optimal point then ∂L
∂xi

(x∗) = 0 → x∗
i =

xt
i − ζ + μi . The KKT inequalities in the problem is that

xi ≥ 0, then by the complementary slackness, we have
μi = 0, hence x∗

i = max (xt
i − ζ, 0). Moreover, we project

our vector using a fast and linear method as in [14]. In
particular, we consider a vector of the last k data points as
the vector of current observation with k elements. This k
elements vector will be projected onto �1 ball constraints by
using (sub)gradient method.

Definition 3 (CCP heritage) Given a k-order Candidate
Change Point with forgetting factor α, the CCP model is
CCPk,α(xt ) = (α1 × C1, α2 × C2, . . . , αk × Ck), where
0 ≤ αi ≤ 1 for i = 1, 2, . . . , k,

∑k
i=1 αi = 1, 0 ≤ Ci ≤ 1

for i = 1, 2, . . . , k, and
∑k

i=1 Ci = 1. The CCP Heritage of
the model at time t is denoted as CHk,α(xt ) and computed
as CHk,α(xt ) =

∑k
i=1 αi × Ci . This value of the scalar can

be used to present the temporal dependency proportion of
the scalar to history. For the sake of brevity, the notation cht

will be used to refer to the CCP heritage value at observation
time t in the rest of this paper. The sequence of CCP heritage
of the stream is denoted ch1, ch2, . . . , cht , . . . .

In this work, the key idea is to investigate how to exploit
the temporal dependencies of data for detection of changes
in a stream. The method we propose is inspired by the
ideas behind linear Markov process models with which the
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main principle is to estimate the probability of transition
between states, i.e., to determine the likelihood of each
state transition. Nevertheless, the main difference between
our approach and previous Markov-based approaches is that
our approach considers the temporal dependencies based
on several prior observations. In addition, the proposed
model enables estimating the dependency measures in a data
stream in an online fashion, thus making it possible to detect
changes in the stream in real time.

4.2 Adaptive estimation of data in streaming

Adaptive estimation approaches were previously proposed
to handle issues with the uncertainty of data. In streaming
data, the importance of historical data is weighted using
a forgetting function with a decay factor [3, 11, 41]. This
means that, in the stream, the most recent data is more
important than the older ones. A decay function is also
useful to flush any noise when detecting concept drifts.
There are several approaches to select the decay factor α.
Once the value can be set to constant, then we can conduct
trial experiments and obtain the optimal value for individual
application. The factor can be any function of exponential
family of distribution. In [11], the authors proposed an
adaptive forgetting factor to weigh the importance of
historical data by solving an optimal problem in movement
of mean. The estimator is continuously monitored when
new data arrives to detect changes in the data stream. The
principle behind building a forgetting factor is to build an
exponential decay function of observation time such that the
importance of a data in a stream is inversely proportional to
its age, and the temporal dependencies can be seen is just
1-order dependency, which is a special case, with k=1 and
α = 1. In the proposed method, we introduce an adaptive
estimation for detecting changes, we use CCP heritage of
the CCP model to estimate the CCP mean distribution of
streaming data. This method can be compared to the linear
high order of states based on Markov chain [28, 44].

To adapt the evolving factor in streaming data, we
introduce CCP trail to denote the CCP path from a given
observation to another previous observation in the streaming
data. Hence, a CCP trail can be considered as the probability
of finding the heritage from a data stream. This is formally
defined as follows.

Definition 4 (CCP Trail) Given two different observation
times t1 and t2, 0 < t1 ≤ t2, of a streaming data S, which is
an open-ended sequence of values {v1, v2, . . . , vi , . . . }. The
CCP trail between two given observations is the probability
of finding the heritage of the data at observation time t1 in

the data at observation time t2. A CCP trail is denoted as
ct (t2, t1), and is formally defined as:

ct (t2, t1) =
⎧
⎨

⎩

1 if t2 = t1
cht2 if t2 = t1 + 1
ct (t2, t2 − 1) × ct (t2 − 1, t1) otherwise.

(6)

Property 1 The CCP trail can be computed by as the
product of CCP heritages for all t1 ≤ t2 as follows:

ct (t2, t1) =
t2∏

t=t1

(1{t �=t1} × cht + 1{t=t1}), (7)

where 1{x} is binary indicator function. In other words, 1{x}
is equal to 1 if x is TRUE, otherwise 1{x} is equal to 0.

1{x} =
{

1 if x is TRUE
0 otherwise.

(8)

Proof The detailed proof is provided in Appendix A.1.

CCP trail mean at observation time t in the data stream is
then defined by:

CCP(t) = 1
∑t

i=1ct (t, i)

t∑

i=1

vi ×ct (t, i) = cp(t)

ctsum(t)
, (9)

where cp(t) = ∑t
i=1vi × ct (t, i), ctsum(t) = ∑t

i=1ct

(t, i).
cp(t) is the CCP propagation at observation time t

looking back into its history in the data stream. ctsum(t) is
the coefficient presenting sum of the CCP trail at time t.

Proposition 1 Given a data stream, ctsum(t) can be
computed by the following equation:

ctsum(t) = ctsum(t − 1) × cht + ct (t, t). (10)

Proof The detailed proof is provided in Appendix A.2

Proposition 2 Similar to the coefficient estimation, the
CCP propagation can be estimated by the following
sequential updating:

cp(t) = cp(t − 1) × cht + vt . (11)

Proof The detailed proof is provided in Appendix A.3

Equations 10–11 show that we can sequentially update
the CCP model, CCP coefficient, and CCP propagation
in the stream at each observation time, while new data
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arrives. Hence, the CCP trail mean at the next observation,
CCP(t + 1), is easily estimated in linear time by Eq. 9.

4.3 Change detection

Change point detection relies on the null hypothesis H0

and the alternative hypothesis H1. The null hypothesis
H0 is a hypothesis that assumes the population means
are drawn from the same distribution while the alternative
hypothesis H1 supposes the observations are from the
different distribution. The change detector defines a rule to
accept H1 and reject H0. When H0 is rejected, it means that
there is a significant movement in underlying distribution of
data, and change point occurs. In our approach, the detector
monitors the movement in CCP trail mean in an online
manner.

Given a random variable v, we consider the Gaussian
model with mean θ , variance σ 2, and assume that v ∼
N (θ, τ 2 = σ 2I ). The cumulative distribution function [42]
for a linear contrast pT θ of mean θ is as follows:

D[v1,v2]
pT θ,τ 2(p

T v)|Gaussian ∼ Unif orm(0, 1), (12)

where [v1, v2] is the boundary interval of the Gaussian
model and D is pivotal statistic function. The pivotal
statistic function D is defined and computed as:

D[v1,v2]
μ,τ 2 (x) =

CDF(
(x−μ)

τ
) − CDF

(
(v1−μ)

τ

)

CDF
(

(v2−μ)
τ

)
− CDF

(
(v1−μ)

τ

) , (13)

where CDF(.) is a standard normal cumulative distribution
function, and in our proposed method we use the standard
normal right tail probabilities as in [12] due to its
simple form, and it has a very small error. We use the
truncated Gaussian pivot [42] to test hypothesis H0 with
an assumption that the population distribution is equal to
zero, H0 : pT θ = 0. The alternative positive hypothesis is
H1+ : pT θ > 0. The truncated Gaussian statistic then is
computed by: T = 1 − D[v1,v2]

0,τ 2 (pT v). Given a confidence
value 0 ≤ ρ ≤ 1, in our change detector, we find the vρ

satisfying 1−D[v1,v2]
vρ,τ 2 (pT v) = ρ → P(pT θ ≥ vρ) = 1−ρ.

Similar to the two-sided test, we compute the confidence
interval [vρ

2
, v1− ρ

2
]. vρ

2
and v1− ρ

2
are computed based on

conditions such that:

1 − D[v1,v2]
v ρ

2
,τ 2 (pT v) = ρ

2
, (14)

1 − D[v1,v2]
v1− ρ

2
,τ 2(p

T v) = 1 − ρ

2
. (15)

Then we have P(v ρ
2

≤ pT θ ≤ v1− ρ
2
) = 1 − ρ. Change

is identified with a confidence ρ if the pivotal population
mean does not lie in the interval [vρ

2
, v1− ρ

2
].

4.4 Choosing decay factor

In our method, we consider forgetting factor α of k previous
ancestors by order to the current model. The meaning of α is
similar to the decaying probability of looking back into the
history in [44]. To select the parameter α, we use truncated
form of the geometric distribution [13]. The truncated form
of the geometric distribution is presented by parameter η,
subject to 0 < η ≤ 1, and k terms (ancestors). The
probability density function at term i, 1 ≤ i ≤ k, is defined

by P(i) = η(1−η)i−1

1−(1−η)k
. We set this probability density at term

i as our forgetting factor αi of the i-th ancestor,

α1 = η

1 − (1 − η)k
, α2 = η(1 − η)

1 − (1 − η)k
, . . . ,

αk = η(1 − η)k−1

1 − (1 − η)k
.

Observe that the truncated form of the geometric distribu-
tion subjects to the condition that sum of probability of
k terms equals to 1. In other words, it subjects to

∑k
i=1

αi = 1.

k∑

i=1

αi = η

1 − (1 − η)k
+ η(1 − η)

1 − (1 − η)k

+ · · · + η(1 − η)k−1

1 − (1 − η)k

= η

1 − (1 − η)k
(1 + (1 − η) + · · · + (1 − η)k−1)

= (1 − (1 − η))(1 + (1 − η) + · · · + (1 − η)k−1)

1 − (1 − η)k

= 1 − (1 − η)k

1 − (1 − η)k
= 1.

Furthermore, the condition 0 ≤ αi ≤ 1 is also satisfied. The
value of η is application-specific and can be chosen either by
a procedure of polynomial interpolation or using a heuristic
optimal as in [44].

4.5 The online change detection algorithm

Figure 4 gives an overview of the CCPD algorithm, and our
method for change detection is presented in Algorithm 1.
The input of the algorithm is a sequence of open end values
v1, v2, . . . , vi , . . . , and a confidence value ρ. When a new
value vi is read from the stream, a linear projection onto
�1 ball constraints is performed to project a vector of the
k last data values to get CCPk of the current observation
in line 3 (see [14] for more detailed information about the
projection method). Line 4 computes chi using the truncated
form of the geometric distribution. Line 5 is executed to
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Fig. 4 Flow diagram of the CCPD algorithm

estimate ctsum(i) and cp(i). Then CCP trail mean CCP(i)

is computed by line 6. In line 7, the boundary interval
with confidence ρ is calculated using the pivotal statistic
function. The pivotal truncated Gaussian value of the current
data is specified in line 8. A check is performed in line 9 to
determine if there is a change or not. If a change occurs, the
estimators are reset and the algorithm outputs that change.

An illustrative example Let us consider a sample synthetic
data stream presented in Fig. 3. The stream contains 100
elements with significant changes appearing at timestamps
51 and 81. Assume our parameter k = 3. In this example,
we include the last data in the projection. Considering
the observation at timestamp 50, the values of estimated
parameters at timestamp 50 are as follows: ch=0.487,
ct(ctsum)=1.493, cp=75.372, and CCP is computed as
cp
ct

= 75.372
1.493 = 50.484. Assume that the incoming element

in the stream at timestamp 50 is 50.45 and the three latest
elements in the stream are sequentially 50.45, 50.66, and
50.08. The processing steps of the proposed method are the
following:

Step 1: Project a vector of the last 3 elements (50.45,
50.66, 50.08) on �1 constraints.

The result of this projection is (0.39, 0.59,
0.02).

Step 2: Calculate the value of CCP Heritage, ch.
Assume the parameter η is set to 0.98, the

decay factors αi, i = 1, . . . , 3, are computed to be
(0.98, 0.0196, 0.0004), and the new value of ch is
0.39∗0.98+0.59∗0.0196+0.02∗0.0004 = 0.394.

Step 3: Calculate values of estimators ct and cp.

cp = 75.372 ∗ 0.394 + 50.45 = 80.147,

ct = 1.493 ∗ 0.394 + 1 = 1.588.

Step 4: Update mean CCP = cp
ct

= 80.147
1.588 = 50.470.

Step 5: Compute the pivotal truncated Gaussian of the
new mean, and the confidence interval of the old
mean with a confidence ρ = 0.01.

We have pval(CCP ) = 1.0, and tailarea =
[vρ

2
, v1− ρ

2
] = [0.0, 1.0].

Step 6: Check condition pval(i) /∈ tailarea.
Because 1.0 ∈ [0.0, 1.0], the detector deter-

mines that there is no change at timestamp 50.
Step 7: A new data in the stream at timestamp 51 can now

be processed. At the timestamp the data value is
100.56, so the last 3 elements in the stream are
(100.56, 50.45, 50.66). Repeat Step 1 to Step 6 to
process the rest of the stream.

When new data comes in the stream, if a change is
detected, the values of the estimators are reset to default. In
our example, with the sample synthetic dataset, the CCPD
detects two change points at timestamps 52 and 82 (1 delay
in comparison with two true change points at timestamps 51
and 81).

Figures 5 and 6 depict the visualization of the real values
of the stream and the estimated mean values by the CCPD
method, running on the sample synthetic streaming data
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Fig. 5 A stream of data with two detected change points

shown in Fig. 3. In particular, Fig. 5 plots the real values
and the estimated mean values computed using the CCPD
method with two true change points at timestamps 51 and
81, and two detected change points at timestamps 52 and 82.
Figure 6 shows the estimated mean values while we vary the
value of η in the decay factor. The importance of the degree
of the current data is the combination of the projection
vector (on k latest data) and the decay factors, which are, in
turn, affected by the choice of η. Because we chose decay
factors in a form of geometric distribution, the most effect
on the importance of current data can be derived from the
most recent data in the stream. We observe that when the
stream is stable, the value of the estimator is stable with
different values of the decay factor. However, the obtained
estimator significantly changes around the change point.

Complexity The procedure of processing each arrival
stream data point has three main parts. The first part
is the Euclidean projection of the k last data points on
�1 ball constraints. This process is a fast projection [14]
and has complexity O(k). Normally, k is small, thus the
process can be performed in constant time. The second part
is the process of calculating values of CCP, CCP mean,
and updating estimators. The complexity of this process is
constant O(1). The last part is a process which we calculate
tail area and pivotal Gaussian value. We use a fixed number
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Estimated mean: k=5, =0.98

Estimated mean: k=5, =0.8

Estimated mean: k=5, =0.7

Fig. 6 Estimated mean while varying η

(100) of steps to search for the boundary of the tail. Hence,
this process also has constant complexity O(1). In summary,
the complexity of our method is O(k) + O(1) + O(1) =
O(k), thus the proposed algorithm CCPD has a constant
complexity with constant k, O(k).

5 Evaluation

We have performed thorough experiments to evaluate the
performance of our method and compare it to the state-of-
the-art algorithms.

To make our experiments as real and generic as possible, we
performed our evaluation on several different real-world data-
sets, with various characteristics. Besides that, an extensive
experiment was conducted to evaluate the flow rates of the
stream including detection delay, true positive, true negative,
false negative, and accuracy on several artificial datasets
with known ground-truth. We carried out the experiments on
a computer running the Windows 10 operating system, hav-
ing a 64 bit Intel i7 2.6 GHz processor, and 16 GB of RAM.
The proposed algorithm was implemented in Java. All
evaluations are performed using the MOA framework [9]1,
with our algorithm integrated. In the experimental results
below (Tables 2–7), the bold value is to indicate the highest
accuracy and standard deviation per dataset.

5.1 Real-world datasets

For our experiments, we used eight real-world datasets,
that are widely-used as benchmark datasets for change-
detection methods [7, 18, 36, 45], consisting of Electricity,
Poker (Hand), Forest Covertype, Spam, Usenet1, Usenet2,
Nursery, and EEG Eye State.

Electricity is an electricity consumption dataset collected
from the Australian New South Wales Electricity Market.
The dataset has 45,312 instances which contains electricity
prices from 7 May 1996 to 5 December 1998. The instances
were recorded by an interval every 30 minutes.

Poker-Hand is data of a hand consisting of five playing
cards drawn from a standard deck of 52. The dataset
contains 829,201 instances.

Forest Covertype is forest cover type for a given observa-
tion of 30 x 30 meter cells. The dataset was obtained from
US Forest Service (USFS) Region 2 Resource Information
System (RIS) data. The dataset is recorded in the Roosevelt
National Forest of northern Colorado, US. Forest Covertype
and contains 581,012 instances.

1Version 4.0.0, June 2017.
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Spam is a dataset based on the Spam Assassin collection
and contains both spam and legitimate messages. The Spam
dataset has 9,324 instances.

Usenet1 and Usenet2 are based on the twenty newsgroups
data set, which consists of 20,000 messages taken from
twenty newsgroups. Each of Usenet1 and Usenet2 contains
1,500 instances obtained from twenty newsgroups data set
to present a stream of messages of a user.

Nursery was derived from a hierarchical decision model
originally developed to rank applications for nursery
schools in Ljubljana, Slovenia. The dataset contains 12,960
instances.

EEG Eye State was originally used to predict eye states
by measuring brain waves with an electroencephalographic
(EEG), i.e., finding the correlation between eye states and
brain activities [38]. It consists of 14,980 instances with 14
EEG values, where each value indicates the eye state.

Electricity, Forest Covertype and Poker-Hand were
obtained from the most popular open source framework for
data stream mining MOA2, while the remaining datasets
were obtained from the UCI Machine Learning Repository3

(University of California, Irvine)

5.2 Performance

This section presents the experimental results of the
proposed method compared to the state-of-the-art algo-
rithms. We performed empirical experiments to evaluate
our proposed algorithm and compared it against HDDMW ,
HDDMA [18], DDM [19], EDDM [4], SeqDrift2 [33],
FHDDM [36]4, and RDDM5 [5]. These algorithms were
chosen because they are the state-of-the art algorithms in
drift detection (see also Section 2). Implementation of the
algorithms are provided by the MOA framework. In all
our experiments we used Naı̈ve Bayes (NB) and Hoeffding
Tree (HT) classifiers as the base learners, which are fre-
quently used in the literature [7, 18, 33, 36]. In addition, we
performed comparison with a baseline method, called “No
Change Detection”, that detects changes with base learners
only. The confidence value is set to 0.001, η is set to 0.99.
The λ in HDDMW is set to 0.05 as recommended by the
authors. The sliding window size is set to 25 in FHDDM.

2https://moa.cms.waikato.ac.nz/datasets/
3http://archive.ics.uci.edu/ml/datasets.html
4Source code of the FHDDM is provided by the authors of the
algorithm
5Source code of the RDDM is obtained from the authors personal
website

According to the authors, it is the optimal value providing
the best classification accuracy. With the other algorithms,
in all the tests we use the default parameters and configura-
tion values as recommended by the authors of the original
work.

Accuracy evaluator is computed base on a window with
size 100. Frequency of sampling process is every 100
samples. Furthermore, we prepare two versions, named
CCPDk=5 and CCPDk=3. CCPDk=5 is our proposed
method running with a projection on the last five data points
in the stream, while CCPDk=3 runs with a projection on
the last three data points in the stream.

Tables 2–3 show the average (a) and standard deviation
(std) accuracy of the change detection algorithms with NB
and HT classifiers as base learner, respectively. In case
of same accuracy result, we consider the algorithm with
the lowest standard deviation to be the best. The results
show that CCPD wins 5 times on total 8 datasets with
NB classifiers and 4 times on total 8 datasets with HT
classifiers. Further, Table 4 shows that our proposed method
obtains the best accuracy scores with the majority of the
datasets (five out of eight datasets), including Electricity,
Spam, Usenet1, Covertype, and Poker datasets; while on
EEG Eye, Nursery, and Usenet2, the accuracy ranks are
2, 4, and 6.5 (the same rank with FHDDM), respectively.
Another observation from the experiments is that, while
varying the order of temporal dependency k, the accuracy
scores on Nursery and Usernet2 change abruptly. This can
be explained as follows. On the Usernet2 dataset, the reason
is that the concept drift is moderate and the topic shift
on the dataset is blunt and blurred. Moreover, the number
of samples in the dataset is small for the training. On
Nursery, on the other hand, the change behavior may be due
to the large number of distinct values of attributes in the
dataset. Thus, the temporal dependency is loose, which has
in turn an impact on detecting the changes. Nevertheless,
the difference from the best accuracy is not significant.
Overall, the empirical results show that CCPD has the best
performance in all cases of combinations with NB and HT
classifier.

To further evaluate the performance of the proposed
method, and in order to get a fair comparison among the
algorithms, we performed statistical significance tests based
on the average rank of accuracy of the algorithms [15].
Firstly, we select the best accuracy of the algorithms with
NB classifier and HT classifier and then report rank of
accuracy of the algorithms. Secondly, we use Friedman test
because it is a nonparametric analogue of the parametric
two-way analysis of variance by ranks. Table 4 shows
statistical test results using the methodology proposed
in [15]. The number in parentheses at each cell is the
rank of accuracy. The bold values indicate the best results
per dataset. Based on the methodology, we reject the

https://moa.cms.waikato.ac.nz/datasets/
http://archive.ics.uci.edu/ml/datasets.html
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Table 2 Accuracy results (%) with Naı̈ve Bayes (NB) classifier

Algorithm Factor Electricity Spam Usenet1 Usenet2 Covertype Nursery Poker EEG Eye

(%) (%) (%) (%) (%) (%) (%) (%)

CCPDk=5 a 85.19 92.65 75.67 61.20 88.98 83.46 79.96 99.45

std 5.93 8.60 10.30 19.87 9.39 14.69 9.33 1.62

CCPDk=3 a 86.20 92.88 78.27 63.00 89.18 91.85 80.42 99.43

std 5.45 7.98 11.67 21.81 8.46 9.20 8.36 1.68

HDDMW−test (0.05) a 84.47 91.51 75.07 70.93 86.23 91.71 77.11 97.60

std 6.57 7.39 11.91 13.79 8.07 7.61 8.80 5.13

HDDMA−test a 85.09 90.67 75.20 71.00 87.44 92.51 76.48 98.33

std 6.33 9.31 11.59 13.29 7.97 6.50 9.82 3.73

DDM a 82.70 89.50 73.73 72.93 88.03 91.72 61.97 99.57

std 8.70 13.89 12.69 12.09 8.35 7.11 21.36 1.19

EDDM a 84.93 90.66 75.13 73.27 86.09 92.02 77.48 96.85

std 6.23 8.60 12.32 12.76 8.66 6.77 8.40 7.26

SeqDrif t2 a 79.83 89.87 65.80 72.13 82.45 87.18 72.25 93.04

std 11.50 13.38 23.51 11.54 12.31 8.84 14.29 17.05

RDDM a 84.88 91.45 74.73 73.07 86.87 92.70 76.67 99.06

std 6.36 7.44 11.87 12.10 8.32 6.10 9.11 2.88

FHDDM a 83.32 91.36 74.73 71.20 85.10 89.09 76.68 97.28

std 7.29 6.99 11.86 12.43 9.07 10.82 9.12 5.96

NoChangeDetection a 74.17 90.63 63.33 72.13 60.53 83.35 59.55 47.35

std 14.69 10.93 23.64 11.54 21.76 14.94 21.96 46.67

Table 3 Accuracy results (%) with Hoeffding Tree (HT) classifier

Algorithm Factor Electricity Spam Usenet1 Usenet2 Covertype Nursery Poker EEG Eye

(%) (%) (%) (%) (%) (%) (%) (%)

CCPDk=5 a 83.49 92.67 74.47 57.20 89.44 72.22 79.15 99.62

std 6.56 8.45 11.22 23.14 9.49 13.26 9.75 1.04

CCPDk=3 a 84.26 92.98 75.53 71.20 89.51 86.35 79.53 99.62

std 6.21 7.78 6.80 12.31 8.67 14.82 8.98 1.04

HDDMW−test (0.05) a 85.46 91.48 74.73 70.00 85.98 90.48 77.12 97.49

std 6.91 7.85 8.41 9.00 8.23 6.66 8.93 4.94

HDDMA−test a 86.11 91.66 74.60 68.87 87.27 90.93 76.40 98.89

std 6.45 7.22 8.14 8.24 8.02 6.02 9.93 2.62

DDM a 85.83 91.94 73.00 69.80 82.58 91.31 72.74 99.64

std 7.17 7.22 10.03 9.34 12.95 6.41 15.14 1.04

EDDM a 85.26 91.68 73.93 72.00 86.02 90.17 77.31 96.64

std 6.66 7.88 8.96 10.44 8.46 6.79 8.68 7.33

SeqDrif t2 a 82.30 91.55 69.67 72.00 82.86 89.01 72.51 93.63

std 11.12 9.23 20.38 11.01 12.09 6.83 13.89 16.42

RDDM a 85.83 92.09 74.27 69.60 86.43 91.75 76.70 99.06

std 6.64 7.45 8.39 8.57 8.53 5.68 9.21 4.34

FHDDM a 84.93 92.38 74.40 69.93 85.07 89.85 76.72 97.02

std 7.74 7.11 8.31 9.12 9.14 7.82 9.15 6.15

NoChangeDetection a 78.87 90.17 63.13 72.00 80.58 89.85 76.07 75.35

std 12.40 12.84 21.78 11.01 13.28 7.82 16.19 28.62
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Table 4 Rank of accuracy of the algorithms and significance tests

Datasets FHDDM HDDMW HDDMA DDM EDDM SeqDrif t2 RDDM NoChange CCPDk=3

Electricity 84.93(7) 85.46(5) 86.11(2) 85.83(3.5) 85.26(6) 82.23(8) 85.83(3.5) 78.87(9) 86.20(1)

Spam 92.38(2) 91.51(8) 91.66(6) 91.94(4) 91.68(5) 91.55(7) 92.09(3) 90.63(9) 92.98(1)

Usenet1 74.73 (5.5) 75.07(4) 75.20(2) 73.73(7) 75.13(3) 69.67(8) 74.73(5.5) 63.33(9) 78.27(1)

Usenet2 71.20(6.5) 70.93(9) 71.00(8) 72.93(3) 73.27(1) 72.13(4.5) 73.07(2) 72.13(4.5) 71.20(6.5)

Covertype 85.10(7) 86.23(5) 87.44(3) 88.03(2) 86.09(6) 82.86(8) 86.87(4) 80.58(9) 89.51(1)

Nursery 89.85(7.5) 91.71(6) 92.51(2) 91.72(5) 92.02(3) 89.01(9) 92.70(1) 89.85(7.5) 91.85(4)

Poker 76.72(4) 77.11(3) 76.48(6) 72.74(8) 77.48(2) 72.51(9) 76.70(5) 76.07(7) 80.42(1)

EEG Eye 97.28(6) 97.60(5) 98.89(4) 99.64(1) 96.85(7) 93.63(8) 99.06 (3) 75.35(9) 99.62(2)

average rank 5.69 5.63 4.13 4.19 4.13 7.69 3.38 8.0 2.19

mean rank Value of χ2 FF Critical F-value

5.0 31.8167 6.9202 2.1782

null-hypothesis because FF > Critical F-value. This means
that there are significant differences between the algorithms.
Finally, we use the Nemenyi post-hoc test to present these
differences. We set the significance level at 5%. The critical
value for 9 algorithms is 3.10. The critical difference at
level 5% is CD = 4.24. Figure 7 shows the results of
the Nemenyi test of the data from Table 4. On the figure,
the methods on the right side have lower average rank of
accuracy and are better than the methods on the left.

5.3 Impact of the k-order

In this section, we run tests to evaluate the dependencies of
data points in the streams in the Electricity, Poker, Forest
Covertype, Spam, Usenet1, Usenet2, Nursery, and EEG Eye
State datasets. We record average accuracy and standard
deviation of the CCPD on the datasets with NB classifier
while varying the parameter k from 2 to 7.

Table 5 shows the average accuracy and standard
deviation of the CCPD method while varying k from 2 to
7. From the results, we can observe that the different values
of k will affect to the accuracy of the algorithm. The best
accuracy is almost obtained at order k = 2 or k = 3.
On Electricity, Usenet2, and Covertype datasets, the best
performance is obtained when we project on k = 2 data,
while on the remaining datasets, the best performance is at
k = 3. On the EEG Eye State dataset, when the value of k

increases from 2 to 7, the accuracy also slightly increases.
For the sake of comparison, the table only shows k ∈ [2, 7].
Since we observed that the values were still increasing, we
decided to vary k, until k = 20 to find the optimal value.
The optimal accuracy of 99.55% was found at k = 13.
The best accuracy at different order k also depends on
the characteristics of the input dataset. Furthermore, the
results show that change in accuracy, abrupt or slight, is
dataset-dependent. On Electricity, Spam, Covertype, and
Poker datasets, when we vary value of order k, the accuracy
changes slightly. In contrast, the accuracy varies abruptly on
Usenet1, Usenet2, and Nursery datasets.

As shown in the results in Table 5, the best results are
usually in 2 or 3 orders of dependency. The reason can
be explained as that the proposed method uses the fixed
length for projection of temporal dependencies. In real
life datasets, the order of dependencies may not be fixed
length, which means that each data point in a stream may
have temporal dependencies of a different number from its
previous data points. For this reason, our further research
will include studying higher-order temporal dependencies.

5.4 True change point and delay

One of the disadvantages of some real-world datasets in
change detection problem is that the ground truth of the
datasets is unknown. On the other hand, the performance

Fig. 7 Nemenyi test with
confidence level α = 0.05 1234567

CD = 4.24
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RDDM

EDDM
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SeqDri�2
No Change
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Table 5 Accuracy results (%) of CCPD with Naı̈ve Bayes classifier

CCPDk Electricity Spam Usenet1 Usenet2 Covertype Nursery Poker EEG Eye

(%) (%) (%) (%) (%) (%) (%) (%)

k=2 86.29 ± 5.35 92.84±7.79 76.07±11.40 70.40 ± 10.63 89.29±8.02 85.35±14.23 80.29±8.12 99.43±1.68

k=3 86.20±5.45 92.88 ± 7.98 78.27 ± 11.67 63.00±21.81 89.18±8.46 91.85 ± 9.20 80.42 ± 8.36 99.43±1.68

k=4 85.78±5.62 92.80±8.18 77.13±10.53 65.07±20.62 89.06±8.94 83.45±14.72 80.29±8.80 99.45±1.68

k=5 85.19±5.93 92.65±8.60 75.67±10.30 61.20±19.87 88.98±9.39 83.46±14.69 79.96±9.33 99.45±1.62

k=6 84.83±6.08 92.74±8.40 71.47±9.89 61.27±19.88 88.95±9.55 52.02±12.51 79.61±9.83 99.46±1.57

k=7 84.39±6.39 92.66±8.57 61.87±10.91 53.00±14.85 88.95±9.65 43.02±5.15 79.29±10.23 99.48 ± 1.45

of a detection method is evaluated base on the accuracy
and delay of detected change points to the real change
points in the data. In the above section, we have presented
the efficiency of our proposed method with high accuracy
detection. In this section, for a further evaluation of the
algorithm, we describe the tests we performed with CCPD
on a real-world dataset for which its ground truth has been
known. This is the Electricity dataset, which is also widely-
used in many methods [10, 45] for change detection. In
this dataset, data are heavily autocorrelated with frequency
peaks in every 48 instances [45].

In this experiment, we performed tests on the first 1,000
instances of the dataset. We then record change points
detected by CCPD and other state-of-the-art algorithms with
respect to true change points that are known as ground
truth. Specifically, we did experiments employing CCPD,
HDDMW , HDDMA, CUSUM, and PAGE-HINKLEY algo-
rithms. CCPD, HDDMW , and HDDMA are online detection
algorithms. PAGE-HINKLEY is a concept drift detection
based on the Page Hinkley Test, while CUSUM is a drift
detection method based on cumulative sum. For the best
competitive comparison, CUSUM and PAGE-HINKLEY
are executed in an online manner at every data point in the
stream. Here, we set sample frequency to 1. We adjust the
minimal number of instance to 1, and set all the other param-
eters to default values as in MOA framework according to
prior works.

Table 6 shows the change points detected by the
algorithms on Electricity dataset. The CCPD detects online
and at exact change points. CUSUM and PAGE-HINKLEY
have the same result with a short delay detection of change,

Table 6 Change points detected, where i =1, 2, . . .

Algorithm Detected Points

CCPD5 (48 × i + 1) ± 0

HDDMW−test (0.05) (48 × i + 1) ± 4

HDDMA−test (48 × i + 1) ± 15

CUSUM (48 × i + 1) ± 1

PAGE − HINKLEY (48 × i + 1) ± 1

which is 1 data point. HDDMA−test produces the largest
delay with 15 data points in delay. And the last algorithm
HDDMW−test detects change with 4 data points in delay.

5.5 Experiments on synthetic datasets

This subsection presents experiments to evaluate detection
delay, true positive (TP), true negative (TN), false negative
(FN), and accuracy of our proposed method. We compared
the results with several state-of-the-art drift detectors,
including EDDM [4], ECDD [39], SeqDrift2 [33], and
RDDM [5], on four widely-used synthetic data streams in
the literature [18, 36]: Mixed, Sine, Circles, and LED. Each
dataset contains 100,000 instances, and 10% noise in class
of instances. In brief, the characteristics of these datasets are
as follows:

– Mixed: This dataset contains four attributes, including
two Boolean attributes and two numeric attributes
in the [0, 1] interval. The Mixed dataset contains
abrupt concept drifts. The drifts occur at every 20,000
instances with a transition length ξ = 50.

– Sine1: In this dataset there are two attributes that are
uniformly distributed in the [0, 1] interval. The Sine1
dataset contains abrupt concept drifts. The drifts occur
at every 20,000 instances with a transition length ξ =
50.

– Circles: This dataset uses four circles to simulate
concept drifts. Each instance has two numeric attributes
on the [0, 1] interval. The Circles dataset contains
gradual concept drifts. The drifts occur at every 25,000
instances with a transition length ξ = 500.

– LED: This dataset is a seven-segment display of digit
dataset. The LED dataset contains gradual concept
drifts. The drifts occur at every 25,000 instances with a
transition length ξ = 500.

All experiments on the synthetic datasets were performed
using the MOA framework with parameters set to the
optimal values for all the compared algorithms as recom-
mended in the original papers. We adopted the acceptable
delay length metric [36] to evaluate the performance of the
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Table 7 Results with Naı̈ve Bayes(NB) and Hoeffding Tree(HT) classifiers on synthetic datasets

Algorithms Delay TP FP FN Accuracy Rank

Mixed dataset

NB CCPD 62.60 ± 7.74 4.0 ± 0.0 0.01 ± 0.1 0.0 ± 0.0 83.34 ± 0.08 1

RDDM 104.97 ± 12.12 3.99 ± 0.1 1.86 ± 1.66 0.01 ± 0.1 83.24 ± 0.09 2

SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.39± 0.79 0.0 ± 0.0 82.91 ± 0.08 3

ECDD 38.87 ± 24.65 3.81 ± 0.42 142.29 ± 7.90 0.19 ± 0.42 81.00 ± 0.15 4

EDDM 247.47 ± 8.65 0.11 ± 0.31 20.22 ± 7.70 3.89 ± 0.31 80.30 ± 2.33 5

HT CCPD 63.22 ± 9.23 4.0 ± 0.0 0.04 ± 0.20 0.0 ± 0.0 83.37 ± 0.10 1

RDDM 106.68 ± 11.32 3.99 ± 0.1 3.49 ± 2.48 0.01 ± 0.1 83.17 ± 0.12 2

SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.98 ± 1.21 0.0 ± 0.0 82.91 ± 0.11 3

ECDD 39.76 ± 26.08 3.79 ± 0.46 138.34 ± 7.95 0.21 ± 0.46 80.95 ± 0.15 4

EDDM 248.46 ± 7.73 0.05 ± 0.22 21.51 ± 7.74 3.95 ± 0.22 80.65 ± 0.82 5

Sine1 Dataset

NB CCPD 59.54 ± 6.89 4.0 ± 0.0 0.01 ± 0.1 0.0 ± 0.0 86.03 ± 0.25 1

RDDM 89.73 ± 16.54 3.99 ± 0.10 3.93 ± 2.92 0.01 ± 0.1 85.98 ± 0.27 2

SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.26 ± 0.0 0.0 ± 0.58 85.60 ± 0.25 3

ECDD 33.30 ± 23.22 3.85 ± 0.39 153 ± 8.34 0.15 ± 0.39 84.38 ± 0.14 4

EDDM 234.28 ± 22.33 0.57 ± 0.64 33.53 ± 11.56 3.43 ± 0.64 83.44 ± 2.88 5

HT CCPD 58.45 ± 6.55 4.0 ± 0.0 0.03 ± 0.17 0.0 ± 0.0 87.02 ± 0.15 1

RDDM 93.54 ± 7.82 4.0 ± 0.0 4.72 ± 3.59 0.0 ± 0.0 86.79 ± 0.19 2

SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.83 ± 1.16 0.0 ± 0.0 86.53 ± 0.15 3

ECDD 36.58 ± 25.54 3.8 ± 0.43 153.78 ± 7.67 0.2 ± 0.43 84.28 ± 0.14 5

EDDM 243.83 ± 22.33 0.22 ± 0.64 33.77 ± 11.56 3.78 ± 0.64 84.71 ± 2.88 4

Circles Dataset

NB CCPD 621.09 ± 139.12 1.59 ± 0.57 0.50 ± 0.64 1.41 ± 0.57 83.49 ± 0.52 3

RDDM 406.50 ± 69.75 2.99 ± 0.1 2.15 ± 1.95 0.01 ± 0.1 84.05 ± 0.12 2

SeqDrift2 276.67 ± 91.56 2.92 ± 0.27 2.49 ± 0.98 0.08 ± 0.27 84.13 ± 0.14 1

ECDD 194.64 ± 158.13 2.84 ± 0.37 174.53 ± 7.62 0.16 ± 0.37 83.18 ± 0.11 4

EDDM 938.27 ± 107.14 0.35 ± 0.5 31.09 ± 18.23 2.65 ± 0.5 83.12 ± 0.4 5

HT CCPD 524.62 ± 144.31 2.02 ± 0.57 0.67 ± 0.78 0.98 ± 0.57 85.94 ± 0.42 3

RDDM 293.80 ± 38.72 2.98 ± 0.14 0.79 ± 1.26 0.02 ± 0.14 86.46 ± 0.16 2

SeqDrift2 202.67 ± 16.19 3.0 ± 0.0 3.08 ± 0.91 0.0 ± 0.0 86.47 ± 0.14 1

ECDD 186.40 ± 151.67 2.86 ± 0.35 175.16 ± 8.39 0.14 ± 0.35 83.21 ± 0.12 5

EDDM 987.75 ± 54.64 0.06 ± 0.24 24.45 ± 14.57 2.94 ± 0.24 84.89 ± 0.29 4

LED Dataset

NB CCPD 481.75 ± 129.42 2.77 ± 0.55 13.44 ± 7.75 0.23 ± 0.55 89.15 ± 0.57 2

RDDM 321.80 ± 51.19 2.98 ± 0.14 0.61 ± 0.96 0.02 ± 0.14 89.63 ± 0.04 1

SeqDrift2 445.33 ± 193.24 2.75 ± 0.46 278.82 ± 47.74 0.25 ± 0.46 76.54 ± 2.27 5

ECDD 194.53 ± 139.51 2.86 ± 0.40 60.51 ± 3.58 0.14 ± 0.40 86.41 ± 0.19 4

EDDM 949.61 ± 69.29 0.70 ± 0.73 6.33 ± 1.97 2.3 ± 0.73 88.32 ± 0.53 3

HT CCPD 479.84 ± 124.70 2.77 ± 0.55 13.9 ± 7.07 0.23 ± 0.55 89.21 ± 0.31 2

RDDM 321.88 ± 51.20 2.98 ± 0.14 0.61 ± 0.96 0.02 ± 0.14 89.63 ± 0.04 1

SeqDrift2 426.0 ± 174.18 2.78 ± 0.44 277.06 ± 47.71 0.22 ± 0.44 76.51 ± 2.29 5

ECDD 197.07 ± 140.93 2.85 ± 0.41 60.19 ± 3.68 0.15 ± 0.41 86.39 ± 0.19 4

EDDM 954.97 ± 63.30 0.66 ± 0.71 5.97 ± 1.70 2.34 ± 0.71 88.33 ± 0.50 3

Algorithms CCPD RDDM SeqDrift2 ECDD EDDM

Average Rank 1.75 1.75 3.0 4.25 4.25
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Table 8 Evaluations on running time of the CCPD

Metrics Electricity Spam Usenet1 Usenet2 Covertype Nursery Poker EEG Eye

Number of learning evaluations 454 94 15 15 5,812 130 8,293 150

Average total running time 3.135(s) 5.401(s) 0.190(s) 0.323(s) 59.513(s) 23.719(s) 40.557(s) 11.220(s)

Average time/learning 6.90(ms) 57.46(ms) 12.67(ms) 21.53(ms) 10.24(ms) 182.45(ms) 4.89(ms) 74.8(ms)

Number of processing/second 144.8/(s) 17.4/(s) 78.9/(s) 46.5/(s) 97.7/(s) 5.5/(s) 204.5/(s) 13.4/(s)

algorithms. Given a threshold, if a detector can detect a
change within a threshold delay from the true change point,
it is considered as a true positive. In the experiments on the
Mixed and Sine1 datasets, the level of temporal dependency
k is set to 3 and the acceptable delay is set to 250. While on
the Circles and LED datasets, k is empirically set to 5 and
the acceptable delay is set to 1,000.

Table 7 shows the average and standard deviation
of classification results for the CCPD, EDDM, ECDD,
SeqDrift2, and RDDM running on 100 samples of datasets.
The results show that, in most cases, ECDD and EDDM
are the worst detectors. On the Circles dataset, SeqDrift2
has the best performance, while SeqDrift2 has the worst
performance on the LED dataset. This can be explained as
follows. SeqDrift2 maintains a fixed size reservoir sampling
for concept drift detection. The reservoir sampling contains
200 instances, and this size is suitable for the Circles dataset
since it contains gradual concept drifts with a transition
length of 500. The low accuracy of SeqDrift2 on LED is a
result of its very high false positive. On the Mixed and Sine1
datasets, we observe that, the shortest delay is obtained by
ECDD. The reason is that the number of instances in the
estimated window in ECDD is small. However, with ECDD,
both the TP rate and the FP rate are high, thus resulting
in a low accuracy. In almost all cases, CCPD and RDDM
have the best accuracy and very good flow rates of detection
delay, TP, FP, and FN. The CCPD has the most accurate
and very low FP, FN rates on the Mixed and Sine1 datasets;
while RDDM has good performance on the LED dataset.
This is because RDDM discards old instances from the
stream, while in CCPD, we weigh the current instance based
on a projection on k latest instances in the stream. Therefore,
any concept drifts can be quickly detected on abrupt concept
drift datasets like Mixed and Sine1. Overall, the CCPD and
RDDM have the same rank (1.75).

5.6 Runtime performance

In terms of runtime performance, we performed experi-
ments to evaluate the classification time and the streaming
processing speed of our proposed method. Table 8 presents
the evaluations of the method in terms of running time in
streaming on Electricity, Poker, Forest Covertype, Spam,
Usenet1, Usenet2, Nursery, and EEG Eye datasets. It shows

a number of learning evaluations, average total running time
in seconds, average time using for each learning process and
number of learning that can be processed per second. From
this table, we can observe that our detector is capable of pro-
cessing a streaming at high velocity, up to 204.5 process per
second. Hence, it is feasible to detect changes in an online
setting as in streaming manner.

6 Conclusion

In this paper, we presented a new approach for detecting
changes in an open-ended data stream. We proposed a k-
order Candidate Change Point (CCP) Model that builds on
linear higher order Markov processes, in order to exploit
the temporal dependency among data in a stream. The
main idea with the model is to compute the probability
of finding change points in a given observation time
window, using the temporal dependency information or
factors between different observed data points in a stream.
To cope with the dynamic nature of the stream, we proposed
an approach that can continuously optimize the temporal
dependency factors by using an Euclidean projection on
�1 ball constraints. In addition, we introduced a concept
called CCP trail, which refers to the probabilistic path
from a specific observed data point to another previously
observed data point. Our approach adapts the probability
of finding change points to continuously estimate the CCP
trail means in streaming data. Using CCP trail mean values,
we applied statistical tests to detect the change points. To
evaluate our approach, we performed extensive experiments
using several datasets and compared our algorithm to the
state-of-the-art algorithms. Our evaluation showed that our
k-order Candidate Change Point Model is effective, and that
the Candidate Change Point Detector (CCPD) algorithm
outperforms the state-of-the-art algorithms on most of
the datasets. In addition, our method has a linear time
performance, which enables it to be deployed online in
real-world stream applications.

There are several directions to extend this work. First, it
is worth investigating how the number of different CCPs in
different data points affects the dependency model.

Second, in data stream, a large volume of data arrives
at a high speed. Therefore, it is infeasible to maintain
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information of all data. Developing sketching algorithms
that combine temporal dependency for detecting drifts and
outliers is an area for further study.
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Appendix: Proof

A.1 Proof of property 1

Proof Equation 7 can be easily proved by induction. When
t2 = t1, we have:

t2∏

t=t1

(1{t �=t1} × cht + 1{t=t1}) = 1{t1 �=t1} × cht1 + 1{t1=t1}

= 0 × cht1 + 1 = 1

= ct (t1, t1) = ct (t2, t1).

When t2 = t1 + 1, we have:

t2∏

t=t1

1{t �=t1} × cht + 1{t=t1} =
t1+1∏

t=t1

1{t �=t1} × cht + 1{t=t1}

= cht1+1 = ct (t1 + 1, t1)

= ct (t2, t1) .

Assume that Eq. 7 is satisfied when t2 = t1 + m, with
m ∈ N, m > 0. We prove that Eq. 7 is also satisfied with
t2 = t1 + m + 1. We have:

ct (t2, t1) = ct (t1 + m + 1, t1)

= ct (t1 + m + 1, t1 + m) × ct (t1 + m, t1)

= cht1+m+1 ×
t1+m∏

t=t1

(1{t �=t1} × cht + 1{t=t1})

=
t1+m+1∏

t=t1

(
1{t �=t1} × cht + 1{t=t1}

)
.

A.2 Proof of proposition 1

Proof We have:

ctsum(t − 1) × cht + ct (t, t)

= ct (t, t) + cht ×
t−1∑

i=1

ct (t − 1, i)

= ct (t, t) +
t−1∑

i=1

cht × ct (t − 1, i)

= ct (t, t) +
t−1∑

i=1

ct(t, t − 1) × ct (t − 1, i)

= ct (t, t) +
t−1∑

i=1

ct(t, i) =
t∑

i=1

ct(t, i) = ctsum(t).

A.3 Proof of proposition 2

Proof We have:

cp(t) =
t∑

i=1

vi ×ct (t, i)=
t∑

i=1

vi

t∏

j=i

(1{j �=i}×chj + 1{j=i})

=
t−1∑

i=1

vi

t∏

j=i

(1{j �=i} × chj + 1{j=i})

+vt

t∏

j=t

(1{j �=t} × chj + 1{j=t})

= vt +
t−1∑

i=1

vi(1{t �=i} × cht + 1{t=i})

×
t−1∏

j=i

(1{j �=i} × chj + 1{j=i})

= vt + cht

t−1∑

i=1

vi

t−1∏

j=i

(1{j �=i} × chj + 1{j=i})

= vt + cht × cp(t − 1).
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