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Abstract

This paper proposes a new model for single image super-resolution (SR) task by utilizing the design of densely connected
convolutional networks (DenseNet). The proposed method is an end-to-end model which is able to learn mapping between
low- and high-resolution images. The proposed method takes the low-resolution images as input and generates its high-
resolution version. Unlike those conventional methods which adjust each component of convolutional networks separately,
our model jointly optimizes all layers. Besides, the proposed model has a lightweight structure and is extensively evaluated
on widely adopted data sets. In our experiments, the proposed method outperforms state-of-the-art methods both qualitatively
and quantitatively. In addition, we also carried out experiments in terms of different designs and configurations to achieve
better balance between reconstruction performance and speed in this paper.

Keywords Image super-resolution - DenseNet - Deep learning

1 Introduction

Nowadays, in the field of image processing, image super-
resolution (SR) has become one of the greatest challenges.
Image SR aims at reconstructing high-resolution images
(HR) by enlarging pixels of low-resolution images (LR),
and makes sure that HR images can contain as much high-
frequency details as possible. Unlike HR images which can
be easily down-sampled into LR images. There are a lot of
possible choices existing for the given LR images to become
HR images, and we don’t know which option can be the
right one. Typically, this problem was solved by limiting the
solution space through prior information.
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The example-based [13] strategy is one of the most
prevalent approaches used by computer vision community
to learn the prior information. Its basic idea either explore
internal connections and similarities of the same images
[1, 3, 5, 17, 18], or just learn a mapping function from
two different resolution external images pairs [2, 4, 6, 14,
18-23, 27, 28]. According to different training samples,
those example-based methods, to some extent are able to
be designed as a general-purpose SR method. The sparse-
coding-based(SC) method [28, 29], as a widely adopted
and publicly accepted example-based SR method, utilizes
some special steps to achieve image super-resolution.
Firstly, they randomly crop and pre-process a small size
of overlapping patches from input. Secondly, the pre-
processed patches will be encoded by a low-resolution
dictionary. Simultaneously, the sparse coefficients will
subsequently be passed into a high-resolution dictionary
for creating high-resolution version of patches. Finally, the
final output will be produced by aggregating overlapping
reconstructed patches. Almost every external example-
based method shares the same steps, which requires they
to pay more attention to learn to optimize the low/high
dictionaries [6, 28, 29] or building mapping functions [17,
18, 21, 22] (Fig. 1).

In the meanwhile, learning-based methods have caught
more and more attention of people who interested in image
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Fig.1 A DenseNet model with
5-layer dense block, followed by
a1 x 1 convolutional layer and
one deconvolution layer

process and achieved better performance in image SR.
Unlike the example-based methods, it focuses on learning
a proper mapping function from the connections between
LR images and HR images by using auxiliary data which
could be collected either from input LR image itself directly
[1, 3, 7], or from fruitful natural images indirectly [8—11].
Multifarious machine learning algorithms, e.g., regression
trees or forests [12, 15, 16], sparse coding [10, 21], anchored
neighbor [3, 4, 7, 19, 24], have already been adopted to
learn the mapping function. Although these methods have
achieved significant progresses, their successes are based on
hand-designed features, which means the data must be pre-
processed and people can easily make mistakes and further
affect the whole prediction results. In these methods, their
solution pipeline heavily relies on hand-designed features
to describe LR images, which are not originally learned
from the models. Moreover, their learning abilities are
limited, because of adopting shallow models. Therefore, the
performance of these methods is influenced by its shallow
structure and limited learning capacity.

Lately, deep neural networks(DNNGs), specifically, deep
convolutional neural networks(CNNGs), has already achieved
breaking performance in various image processing tasks,
including image classification, object detection, semantic
segmentation, etc. In addition, this kind of neural network
has been applied in image SR. Most of these initial attempts
constitute two steps. In the first step, Bicubic interpolation
is applied to LR image to upscale the LR image to the size
of its HR counterpart. Then the CNNs take the up-scaled LR
images as input and reconstruct its HR version. Compared
with example-based methods, CNNs have a much deeper
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structure which can learn more information and ensure a
stronger learning capacity and more accurate prediction
of HR images. Furthermore, CNNs could also learn rich
feature hierarchies without using hand-designed features,
which is more suitable for image SR task.

Although impressive performance has been demon-
strated, existing deep learning based SR methods have sev-
eral drawbacks. Firstly, when CNNs become increasingly
deep, there is a serious problem. During training phase,
input or gradient can vanish by the time it reaches the end or
beginning of the network, because they go through too many
layers. That means a large number of features will be lost
through deep network, and that could further affect learn-
ing capacity and may loss key information of LR image.
Secondly, the exploration of training deeper networks for
SR is still very limited. It is widely known that deeper net-
works with more complex architectures are more possible to
show great performance, at the same time, however, make
the training process more challenging. Most prior methods
avoid this issue with relatively shallow CNNs (no more than
five layers) [25, 26, 30, 33]. The research in [31] proposes
to train very deep networks for SR and good performance
has been achieved.

2 Related work

At present, the research of image super-resolution is
generally concluded as three main categories: interpolation-
based [32, 34], reconstruction-based [35-37] and learning-
based methods [3, 7, 15]. This paper mainly focuses on
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learning-based methods. Its fundamental principle is to use
training dataset to create a learning model, which could
be utilized to reconstruct HR images from LR images. In
other words, the original purpose of learning-based method
is to learn a mapping function between LR and HR images.
The mapping function could be trained and optimized in
a supervised learning process. For example, Baker et al.
[38] first proposed a method based on the recognition of
prior knowledge. Their basic idea is to learn and train a
certain category by algorithm, and apply the attained prior
knowledge to image SR. Motivated by this idea, Freeman
W T [9] proposed an example-based method, whose core
solution is to learn details of high- resolution images which
correspond to different regions of low resolution images in
the image library by using the Markov network. Recently,
Yang et al. [10] put forward a new measure based on
sparse signal recovery to single-image SR. In this method,
each patch of low-resolution input is constrained in a
sparse representation and it utilize coefficients of these
representations to generate HR output. And in [22], the
primary goal is to learn a mapping function between LR
patches and HR patches. To further accelerate the training
speed and improve computational efficiency, Yang and
Yang [7] divided the feature space into multiple subspaces
and collected samples to learn priors of each subspace.
It is noteworthy that most of existing image SR methods
prefer to learn regressor to predict residual between HR and
LR, because the LR and HR images are highly correlated.
By utilizing this method, the training process can be more
reliable.

Recently, more and more researchers focus their attention
on applying convolutional neural networks(CNNS) to image
SR, which indeed achieved good results. For example, in
[26], the researcher started to utilize the advantage of deep

Fig.2 SR results of different
networks with an upscaling
factor 3. The discrepancy
between results of ground truth,
deep network and the shallow
network varies across different
images. It is notable that shallow
network fail to restore
high-frequency details. On the
other hand, deep network has
better results and could restore
more high-frequency contents

Ground Truth

learning to solve SR problem, their underlying idea is to
directly learn an end-to-end mapping between low/high-
resolution images. Other than that, Liu et al. [33] showed
deep networks based on sparse coding could further improve
training efficiency and deliver promising results. However,
there are still many potentials of convolutional networks can
be exploited.

Figure 2 shows that structure of convolutional networks
is one of the most crucial factors that can directly affect
performance of image SR. Shallow models with few layers
are not able to acquire enough high-frequency contents to
reconstruct HR images and its learning capacity is limited.
Therefore, DNNs becomes a more suitable model for image
SR. However, it is not easy to apply a very deep network
to image SR. Because too many layers make the whole
network difficult to train and could further lose many low-
frequency contents. However, Kim et al. [31] proposed a
new method using a very deep convolutional networks, they
resolve the difficult-training problem by learning residual
between HR images and LR images.

3 Our method

Compared with [31], we replace the deep convolution
networks with relatively Shallow DenseNet (Fig. 1) and
few normal convolution layers, where the DenseNet seek
abundant high-frequency contents to ensure accurate HR
reconstruction and the convolution layers stabilize our
training. Although our work gets a similar spirit with prior
DNNs, the proposed method significantly differs from them
in three aspects: i) adopts a relatively shallow network; ii)
unlike the previous work which need hand-design to create
labels, our network will automatically extract small patches

Deep Network Shallow Network
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from training images and utilize those patches to generate
labels while training; iii) instead of using bicubic to upscale
images, we adopt a deconvolution layer to achieve this
without augmenting the number of parameters.

3.1 Architecture

In this section, we introduce our method for image SR.
Figure 3 overviews the architecture of the network which
consists of 28 layers in total, and can be further divided
into four parts: data enhancement, feature extraction, up-
sampling and reconstruction (data enhancement are not
counted in the number of layers). As the first step of our
network, we randomly crop certain number of fixed size
fragments from the training images, and each label will be
generated from those fragments. The feature extraction part
consists of 20 densely connected convolutional layers (5
dense blocks) and 6 normal convolution layers and followed
by a 1 x 1 convolution layer and a deconvolution layer.
The complex composition enables the network to perform
greatly, at the same time, however, makes the training
process more challenging. Usually, more than 28 layers are
adopted in a DenseNet, here, a relatively shallow DenseNet
is much easier to converge, which aims at stabilizing the
training process.

3.2 Data enhancement

The network loads the complete image and then intercept
it into small pieces. Here we tried two kinds of image
segmentation methods. The first one is sequential cropping,
by using this method we cut pieces every few pixels. That

means we can get 10000 patches from one 100 x 100 image,
when we cut patches every one pixels. As for other larger
images, the number of patches would be extremely huge,
which is difficult to train. Hence we utilize another method:
random cropping, by which means the amount of patches
could be controlled and make our network much easier
to train. In the training phase, we randomly intercepted a
certain number of patches. The size of patches we set into
p X p. Moreover in our configuration, we set the input
size to [ x [ and the scaling is S. Therefore the size of
label is & x h(h=1 x §). Again we randomly intercept an
h x h image from every patch as label (high resolution
image), then apply random flip, random brightness and
random contrast to the label (data enhancement). In order
to get network input, we need to down-sampling the labels.
We provide three methods to achieve this purpose: nearest
neighbor, bicubic and area. Every time we randomly select
one of these algorithms to down-sampling the images to
obtain / x [ low resolution(LR) images as input. Here we
abandon the bilinear, because bilinear can be seen as a
powerful low frequency filter. That means it could lose
a large amount of high-frequency content. In addition to
above data enhancements, we can also add noise into the LR
images, for example, the jpeg noise.

3.3 Feature extraction

In order to extract local features of high-frequency contents,
prior shallow networks implement extraction process by
calculating the first and second order gradients of image
patches, which is equivalent to filtering the input image
with hand-designed high-pass filters. Instead of manually
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Fig. 3 Network architecture: Our network consists of 6 normal convolution layers followed by a leaky-Relu and 5-layer dense blocks where

contains 4 densely connected convolution layers
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designing these filters, deep learning based methods
automatically learn the filters from training data. However,
most previous works, no matter adopting shallow or deep
models, extract features from low precision HR images,
which are generated by up-sampling the LR images to
the HR size with bicubic interpolation. A lot of previous
studies have shown that bicubic interpolation is not the
best approach [30], because it can be integrated into the
network and regarded as part of the training (or the process
of amplifying). According to this theory, our method adopts
an alternative strategy which performs feature extraction
directly on the original LR images with convolution layers
and one deconvolution layer.

Our feature extraction module consists of 20 densely
connected convolutional layers in total (separate into 5
dense blocks, each block has 4 layers), 7 convolution layers
and 1 deconvolution layer. In densely connected part, every
convolutional layer is followed by a rectified linear unit
(ReLU) and adopts zero padding to preserve the spatial size
of the output feature maps. The other convolutional layers
are followed by leaky rectified linear unit (Leaky ReLU).
Each convolutional layer can be expressed as:

Fy = max(0, W; x Fj—1) (D

Where W, denotes the /-th convolutional layer’s kernel’s fil-
ter; F; presents the output feature map of the [/-th layer,
especially, F denoting the original LR images. All convolu-
tion layers (including densely connected convolution layers)
have the same kernel size of 3 x 3, the growth rate of densely
connected layer is set to 12. In other words, if every function
produces feature-maps as output, it follows that the / 4+ 1-th
layer has k x (I — 1) + ko input feature-maps, where the kg
is the channel numbers of input.

3.4 Upsampling

The output of feature extraction phase is utilized to
upscale to the target HR size. Recent studies have noticed
that bicubic interpolation is not necessary and can be
integrated into the network by using deconvolution and
unpooling operations. Thus, this kind of upsampling method
is learning based and could give rise to an end-to-end
trainable system. The reason why we abundant unpooling
operation in our network is that the unpooling operation
with an upscaling factor replaces each entry in the input
feature maps with a s x s block, where the top left
element in the block is set to the value of the input
entry and the others to zero. That means the output of
unpooling layers will enlarge feature maps of output as
well as make them more sparse. By comparison, the
deconvolution operation up-scales the input feature maps
by s — fold through reversing forward and backward

propagation of convolutional layers with an output stride
of s. Although unpooling and deconvolution have different
implementations, they are similar in upscaling feature maps
and both are suitable to image SR task. Therefore, we adopt the
deconvolution layer and achieve a promising performance.

The upsampling module plays a key role in our image
SR method. During our experiments, the results show that
the size of deconvolution kernel has a great effect on
the upsampling quality, which further enhances the final
performance. This may be attributed to the fact that bigger
kernel size offers the up-sampling operation a bigger view
that enables it to process a larger input neighborhood and
better enforces spatial consistency. In order to preserve the
spatial size, deconvolution layer adopts zero padding on
each side of the output feature maps. In addition, one 1 x 1
convolutional layer is implemented before the up-sampling
to reduce the computational complexity, where the 1 x 1
convolutional layer maps d — channel input feature map to
3 — channel output feature map for up-sampling.

3.5 Reconstruction

As it is mentioned in the Data Enhancement section that
we don’t use a complete image as an input for training,
instead, we randomly intercepted a certain number of
patches from a complete image and used those patches
to generate their own labels and inputs. In other words,
we do not reconstruct the whole picture, because we only
trained randomly copped patches in training phase, thus,
we only reconstruct high-resolution patches and put all the
high-resolution patches together in testing phase to generate
complete high-resolution picture. In order to reconstruct a
complete HR image, testing images will be divided into
small patches sequentially, and all the patches will be input
into our network to generate corresponding high resolution
patches. Finally, HR images will be reconstructed by
splicing those patches in order. Unlike [10] who proposed
a HR reconstruction module which consists of 7 trainable
layers, we do not utilize any trainable layers to fulfill this
task. An obvious reason is our unique learning method,
where the input data is subsequently selected from original
LR images, thus there is a potential rule here for ours to
put their corresponding output together to generate another
complete image. Another consideration is that the network
is too deep already, adding additional layers in the network
might make training results unstable and more challenging.

3.6 Training
During the training phase, we provide numbers of high-

resolution images Y; and their corresponding low-resolution
version X;, the proposed networks are learned by minimiz-
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ing the mean square error(MSE) loss between the predicted
HR image Y and ground truth Y:

1
L©) == IF(Y;0) - Xl )

Where n is the number of training samples, F(Y; ®)
is the predicted HR image Y " of Y;. The optimization
is implemented by mini-batch stochastic gradient descent
method with AdagradOptimizer. In our configuration, the
batch size is set to 8. Our experiment empirically shows
that large batch size leads to huge loss and makes it
difficult to converge. Moreover, in this task, the gradient
competition in each sample of batch is intense, which slow
down the convergence rate. Thus relatively small batch size
could benefit efficiency of our training and perform better
results. To initialization, every filter in our model (including
convolutional layers and deconvolutional layers) will be
randomly initialized by zero-mean Gaussian distribution,
where the standard deviation is calculated by:

Stddev =2.0/(f x f x¢) 3)

where f denotes the kernel size and ¢ is number of input
channels, and the kernels’ size of each convolutional layer
are shown in Fig. 3. The learning rate is initially set to
0.001 and decreased by a factor of 1.5 every 10000 epochs,
and we train one million epochs in total. In addition, we
utilize Peak Signal to Noise Ratio(PSNR) to evaluate our
predicted results. The PSNR is an objective criterion that
can be utilized to evaluate image’s restoration quality, to
some extent, PSNR is also perceptual quality related.

4 Expreriments

We firstly investigated how the size of training dataset can
affect our model’s reconstruction performance. Secondly,
we build several model versions with different structures
and study the relation between reconstruction performance
and different design of network. Subsequently, in order to
fairly compare our method with other existing approaches,
we will use the same training datasets and test datasets that
are widely adopted. For facilitating comparison, we only
use a relatively small training datasets [27] which merely
contains 91 images, and because we have applied several
data augmentation techniques during data enhancement
phase, the actual number of training data could be much
bigger than 91. For each upscaling factor (i.e., 2, 3, or 4),
the size of LR image is set to 28 x 28. The size of ground
truth HR example is set to 56 x 56, 84 x 84, and 112 x
112 respectively, and these HR examples are all cropped
from 120 x 120 patches, which are randomly cropped
from original images. Especially, the LR training samples
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are generated by downsampling those HR examples. The
proposed model is trained by using Tensorflow framework
on a workstation with Intel 4 GHz and a GTX1080
GPU. We use Set5 [41], Setl4 [19] and BSD100 [40]
as the test datasets, which contain 5, 14 and 100 images
respectively. Furthermore, we utilize PSNR and SSIM
metrics to compare our method with recent state-of-the-art
both quantitatively and qualitatively, which are widely used
in image SR literature.

4.1 Analysis

In order to obtain an insight of our contributions, we conduct
additional evaluations on different variants of the proposed
method. Because the SR results tend to be similar with
different up-scaling factors, we only report the results for
the upscaling factor of 2 and 3. Moreover, the experiments
we present next are internal comparison and analysis of
the network itself. Thus, we only want to get an average
performance of every version of our model. And there is
no need to spend a lot of time to excavate every network’s
potentials, because we just want to prove that our design and
strategy have positive effect on final results.

Training data It is widely known that, one of the simplest
ways to improve a neural network’s performance is to
expand its training datasets. Here we will find out to
what degree the size of training is related to the final
performance. For comparison, we utilize a relatively small
training set [10, 24] which contains 91 images, and a much
larger training set that comprises 395,909 images from
the ILSVRC2013 ImageNet detection training partition.
Because of our data augmentation techniques, the 91-image
dataset could be decomposed into more than 30,000 patches
while the ImageNet will provide over 5 million patches.
Next we will give specific parameter settings, i.e., size of
patches is 120 x 120, batch size is 4, input size is 28 x 28.
The learning rate is initially set to 0.001 and decreased by
a factor of 1.25 every 5000 epochs, and we train 30,000
epochs in total. We use Set5 to validate the training effect.
Similar results can be seen if we use larger validate set like
Set14. The upscaling factor is set to 2. We use SC method
[10] as our base line, which achieves an average PSNR value
of 31.42 dB.

The performance of our method trained on different
training sets are shown in Fig. 4. In accordance with
this figure, with the same number of backpropagations,
the performance of our method trained on ImageNet is
better than on 91-image dataset. This results obviously
prove that our method performance may be further boosted
by using a larger training set. The reason why we don’t
use ImageNet as our training set is mainly because that
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Fig.4 Performance by using 33.4

91-image dataset and ImageNet
dataset 33.2
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our method is a relatively small and shallow network,
which could not exhaustively absorb all the information
that ImageNet dataset consists of, and 91-image dataset has
already captured sufficient variability of natural images.

Number of layers A recent study by He and Sun [42]
proposed an idea that CNN’s performance can be directly
improved by moderately deepening its network structure.
Here our method jointly trains a deeper version of our model
named Dense-13 (13 dense blocks) by adding additional

Number of backprops

densely connected layers and convolutional layers, and we
also trained a shallow one named Dense-3 (3 dense blocks)
by removing several dense blocks and normal convolutional
layers. We use a 91-image dataset as training set in this
experiment, learning rate is set to 0.01 and decreased by
a factor of 1.5 every 10000 epochs, and we train one
100,000 epochs in total. The performance of our proposed
method (5 dense blocks), Dense-13 method and Dense-3
method during training is measured on a 91-image dataset
in Fig. 5 and the upscaling factor is set to 3. Fig. 5

Dense-13
Dense-3
Proposed(Dense-5)

1 1 L L 1

Fig.5 Performance of different 335
architectures on 91-image
dataset with an upsampling
factor 3
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Table1 Average PSNR (dB) of different architecture on three datasets
with an upscaling factor 3

Model ND NWD NFD NLD
Set5 33.55 31.86 32.01 32.73
Setl4 29.53 28.15 28.57 29.717
BSD100 28.83 27.64 27.88 28.42

depicts the convergence plots of all three models on the 91-
image dataset. The Dense-3 method with a shallow network
structure converge faster than other methods. However,
limited by its building, the final performance of Dense-
3 is relatively low in comparison with the Dense-13 and
our proposed method (5 dense layers). On the other hand,
it could be seen from Fig. 5 that it is more difficult to
train Dense-13 method than Dense-3 and our proposed
method. Upon convergence, the Dense-13 method achieves
higher PSNR than Dense-3. However, the performance of
Dense-13 is not stable. The deep architecture of Dense-
13 is adequately complex to restore high-frequency details.
Whereas, the generated HR images normally suffer from
lacking of low-frequency contents and illumination changes
compared to the ground truth.

The truth is that deeper structure used in super-resolution
task is not able to play a key role, just like it does in
image classification field [42]. Moreover, we also found
that deeper network does not always outperform the shallow
one. Specifically, if we go deeper by adding additional dense
blocks, then we have to set a smaller learning rate and take
more time to train, but we still do not observe superior
performance. Every experiment we have done previously
has indicated that “the deeper the better” doesn’t work for
super-resolution. The difficulty of training network may
be the primary reason for this phenomenon. Because of
our unique design, our model contains no pooling layers
and full-connected layers. As a result of that our model is
sensitive to the initialization of learning rate and parameters.
When we have a deeper model, it is more difficult to
have an appropriate learning rate that is able to guarantee
convergence. Even if it converges, the loss value could fall
into an extremely bad local optimum. Why deeper structure
results lead bad performance is still an open question, which
requires more investigations to better understand change
of gradients and training dynamics in deep architectures.
Because of that, we only adopt a limited number of dense
blocks.

Densely connected structure To investigate to what degree
densely connected architecture is related to SR perfor-
mance, we compare the proposed method namely ND (net-
work with densely connected layers) with three variants:
NWD (network without densely connected layers). NFD
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(network with densely connected layers in the first half of
the architecture) and NLD (network with densely connected
layers in the last half of the architecture). The NWD model
is obtained by removing all the densely connected links in
the dense blocks in Fig. 3. Similarly, the NFD and NLD
models are obtained by removing densely connected links
in the last and first 3 dense blocks. All of these three mod-
els are trained on 91-image datasets, the learning rate is 0.01
and decreased by a factor of 1.5 every 10000 epochs, and we
train one 100,000 epochs in total. Table 1 reports the average
PSNR of the compared methods on three test dataset, ND
and NLD considerably improves the performance of NWD
and NFD respectively.

4.2 Comparison with state-of-the-art

We compare the proposed method with other recent SR
methods on all the images in Set5, Set14 and BSD100 for
different upscaling factors. The compared methods include
traditional bicubic interpolation and other popular learning
based methods: EEDS [10], SRCNN [25], SRCNN-L [26],
SC [29], CSC [33], CSCN [39], ESPCN [30] and A+ [19].
The results of the compared methods we used in Table 2 are
aquired by using avaliable codes the authors published.

Here we collected the best results of every SR method,
therefore, in this experiment we have to get the best
performance of our model. Through previous experiments
we realize how training data, number of network layers
and densely connected structures affect final results. Thus,
in this experiment we adopt 5 dense block in our model
(just the same structure as Dense-5 in Fig. 5) and we use
ImageNet as our training set (in order to obtain the beset
performance of our model). The learning rate is initially set
to 0.001 and decreased by a factor of 2 every 10,000 epochs,
and we train one 200,000 epochs in total. In order to have a
fair evaluation, we use Set5, Set14 and SSD100 to evaluate
each method and use PSNR and SSIM for statistics and
comparison.

Table 2 summaries the quantitative performance of
compared methods measured by average PSNR and SSIM.
It can be seen from Table 2 that our method consistently
outperforms all previous methods in both PSNR and SSIM,
and with multi-view testing the results can be further
improved. As demonstrated in the last three lines of Table 2,
our method achieves similar performance with EEDS,
despite sometimes the results of ours are not the best. It is
worthy to notice that the EEDS method adopts a shallow
CNN to restore the overall illumination and also utilizes
deep CNN to capture high-frequency details, and that give
a lot of help to improve reconstruction quality. Other than
that, our model can be further improved by using the same
strategy or with more training data. Figures 6 and 7 illustrate
some sampled results generated by the compared methods.
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Table2 Average PSNR(SSIM) comparison on three different test datasets among different methods

DataSet Set5 Setl4 BSD100

Upscaling x2 x3 x4 x2 x3 x4 x2 x3 x4

Bicubic 33.66(0.9299) 3039 (0.8682)  28.42(0.8104)  30.24 (0.8687)  27.55(0.7736)  26.01(0.7019)  29.56(0.8431)  27.21 (0.785) 25.96 (0.6675)
SC 33.66(0.9299) 3039 (0.8821)  28.42(0.8104)  30.23(0.8687)  28.31(0.7954)  26.00 (0.7019)  29.56(0.8431)  28.34(0.7954)  25.96 (0.6675)
Csc 36.62(0.9548) 3266 (0.9098)  30.36(0.8607)  32.31(0.9070)  29.16(0.8209)  27.30(0.7499)  31.27(0.8876)  28.31(0.7853)  26.83 (0.7101)
SRCNN 36.34(0.9521)  3239(0.9033)  30.09 (0.8530)  32.18(0.9039)  29.00(0.8145)  27.21(0.7413)  31.11(0.8835)  28.20(0.7794)  26.70 (0.7018)
SRCNN-L 36.66 (0.9542)  32.75(0.9090)  30.48 (0.8628)  32.45(0.9067)  29.30(0.8215)  27.50(0.7513)  31.36(0.8879)  28.41(0.7863)  26.90 (0.7103)
A+ 36.55(0.9544)  32.59(0.9088)  30.29 (0.8603)  32.28 (0.9056)  29.13(0.8188)  27.32(0.7491)  30.78 (0.8773)  28.18(0.7808)  26.77 (0.7085)
CNN 36.34(0.9521)  3239(0.9033)  30.09 (0.8530)  32.18(0.9039)  29.00 (0.8145)  27.20(0.7413)  31.11(0.8835)  28.20(0.7794)  26.70 (0.7018)
CNN-L 36.66 (0.9542)  32.75(0.9090)  30.49 (0.8628)  32.45(0.9067)  29.30(0.8215)  27.50(0.7513)  31.36(0.8879)  28.41(0.7863)  26.90 (0.7103)
ESPCN 36.62(0.9548)  32.55(0.9098)  30.36(0.8607)  32.31(0.9070)  29.16(0.8209)  27.30(0.7499)  31.27(0.8876)  28.31(0.7853)  26.83 (0.7101)
CSCN 36.93(0.9552)  33.10 (0.9144)  30.86(0.8732)  32.56(0.9074)  29.41(0.8238)  27.64(0.7578)  31.40(0.8884)  28.50(0.7885)  27.03 (0.7161)
EEDS 37.29(0.9579)  33.47(0.9191)  31.14(0.8783)  32.81(0.9105)  29.60 (0.8284)  27.82(0.7626)  31.64(0.8928)  28.64(0.7925)  27.11(0.7200)
OurMethod ~ 37.26 (0.9573)  33.59(0.9234)  31.16 (0.8788)  32.69 (0.8986)  29.54 (0.8244)  27.85(0.7644)  31.55(0.8908)  28.80(0.7973)  27.08 (0.7090)
Our Gain —0.03(—0.006)  0.12(0.043) 0.02 (0.0005) —0.12(=0.012)  —0.06(—0.004)  0.03 (0.0018) —0.09(—0.002)  0.16 (0.0048) —0.03(—0.011)

Red and blue indicate the best and the second best performance

(f) €sc

(g) CSCN

(h) CNN-L

Fig.6 The 'Tiger’ image from BSD100 with an upscaling factor 3

a) Ground Truth

(f csc

Fig.7 The ’old man’ image from BSD100 with an upscaling factor 3

g) CSCN

(h)

¢) Bicubic

g8

CNN-L

(i) EEDS

(d) A+

(j) Our Method

(e) SRCNN-L
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Table 3 Average PSNR (dB) of every 10,000 training step with an
upscaling factor 3

Epoch(thousand) 20 40 60 80 100
Our Model 8.47 13.37 18.61 22.94 26.47
EEDS 9.28 12.75 17.11 23.54 26.04
CNN 6.89 11.33 16.46 21.52 25.86
SRCNN 7.04 14.24 16.33 20.94 25.65
A+ 25.06

SC 25.32

Bicubic 23.87

The HR images generated by our method are perceptually
more distinct with relatively sharp edges and little artifacts.

4.3 Average comparison with state-of-the-art

In order to further prove that our method averagely performs
well in SR task, and can be applied to cope with realistic
problems, we additionally collected over 15,000 natural
pairs from the internet, among which each pair has two
dictionaries for high resolution and low resolution image
patches. And, 10,000 of those image pairs are used to train
and the remaining images are used for test and validation.
Specifically, our model has the same structure as Dense-
5 in Fig. 5, every kernel’s size is shown in Fig. 3. The
learning rate is initially set to 0.001 and decreased by a
factor of 1.5 every 10,000 epochs, and we train our model
100,000 epoches in total. The upscaling factor is set to 3.
The whole training phase on our workstation(configuration
information is shown in Section 4) lasted for approximately
7 hours. The test results are shown in Table 3. Here we
show our model’s reconstruction performance every 10,000
training epoches, and we use PSNR to make a quantitative
comparison. As for example-based method, we give its final
results. In order to have fair comparison, the listed method
in Table 3 utilize the same training set as ours, and train
100,000 epoches too, other parameters remain unchanged.

Table 3 illustrates that our model’s performance regularly
improves with training epoches. While the performance
is limited by original small training set compared with
ImageNet, the reconstruction accuracy is still better than
numbers of methods like CNN and SRCNN.

5 Conclusion

This paper presents a new deep learning model with densely
connected layers for image super resolution. Our method’s
core idea is to learn an end-to-end mapping between
low and high-resolution images. During the process, all
the features are directly extracted and learnt from input,

@ Springer

and are used to up-sampling and expand latent feature
resolution to target resolution. Furthermore, due to the
ability of densely connected layers, our network is able
to extract more features which contribute to acquire more
high-frequent information, and that information is the
main factor for image reconstruction. With lightweight
structure, our method has achieved better super-resolution
quality than most of current methods. Still, our model’s
speed can be further improved by applying more advanced
network construction methods. For instance, in our future
research, we will draw lessons from DeepSCNs network
[43], building a deep network by randomized approach.
Through this method, network’s weights and biases will
be constrained and every hidden layer can have a direct
connection with output layer. As a result, the network is
able to produce more rich representations and speed up the
construction of itself. Other than that, we will also adopt
PBT [44] (population based training) to shorten our model’s
training and fine-tuning time.
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