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Abstract
The least squares twin support vector machine (LSTSVM) generates two non-parallel hyperplanes by directly solving a
pair of linear equations as opposed to solving two quadratic programming problems (QPPs) in the conventional twin support
vector machine (TSVM), which makes learning speed of LSTSVM faster than that of the TSVM. However, LSTSVM fails
to discover underlying similarity information within samples which may be important for classification performance. To
address the above problem, we apply the similarity information of samples into LSTSVM to build a novel non-parallel
plane classifier, called K-nearest neighbor based least squares twin support vector machine (KNN-LSTSVM). The proposed
method not only retains the superior advantage of LSTSVM which is simple and fast algorithm but also incorporates
the inter-class and intra-class graphs into the model to improve classification accuracy and generalization ability. The
experimental results on several synthetic as well as benchmark datasets demonstrate the efficiency of our proposed method.
Finally, we further went on to investigate the effectiveness of our classifier for human action recognition application.

Keywords Classification · Twin support vector machine · Least squares · K-nearest neighbor · Similarity information

1 Introduction

Support vector machine [6] is a powerful method for pat-
tern classification and regression. It has been successfully
applied in a wide variety of real-world problems such as
face recognition [28], voice classification [33], text cate-
gorization [20], bioinformatics [25] and civil engineering
[27]. SVM is on the basis of Vapnik-Chervonekis (VC)
dimension and structural risk minimization. Its basic idea is
to find the optimal separating hyperplane between positive
and negative samples which involves solving of a convex
quadratic programming problem (QPP).

Researchers have made many improvements on the
basis of SVM. For instance, Fung and Mangasrian [22]
proposed proximal support vector machine (PSVM) for
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binary classification. This method generates two parallel
hyperplanes for each class of data points. That is, each
plane must be as close as possible to its class and as far
as possible from other class. Following PSVM, Mangasrian
and Wild [23] proposed generalized eigenvalue proximal
SVM (GEPSVM) which does binary classification by
obtaining two non-parallel hyperplanes. In this method,
samples of each class are proximal to one of two non-
parallel planes. Two non-parallel planes are obtained by
solving the eigenvector corresponding to the smallest
eigenvalue of a generalized eigenvalue problem.

Jayadeva et al. [12] proposed twin support vector
machine (TSVM) for binary classification, inspired by
GEPSVM. TSVM seeks two non-parallel hyperplanes such
that each hyperplane is as close as possible to samples of its
own class and as far as possible from samples of other class.
The main idea is to solve two smaller QPPs rather than a
single large QPP which makes training speed of TSVM four
times faster than that of a standard SVM. The experimental
results in [12] show the superiority of TSVM over SVM and
GEPSVM on UCI datasets.

In the last decade, TSVM has been enhanced rapidly [8,
9, 13, 38]. Some improvements have been made to TSVM
by researchers to obtain higher classification accuracy
with lower computational time such as Least Squares
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Twin Support Vector Machine (LSTSVM), Twin Bounded
Support Vector Machine (TBSVM), Weighted TwinSVM
with local information (WLTSVM), Energy-based Least
Squares TwinSVM (ELS-TSVM), Robust Energy-based
Twin Support Vector Machines (RELS-TSVM), Angle-
based Twin Support Vector Machine (ATSVM) and An
Improved v-Twin Bounded Support Vector Machine (Iv-
TBSVM) [15–17, 26, 31, 35, 37, 41, 42].

The major disadvantage of TSVM is that it fails to exploit
the similarity information between any pair of samples that
may be important for classification. Yi et al. [42] proposed
WLTSVM which considers the similarity information
between pairs of samples by finding the k-nearest neighbors
for all the samples. This approach has three additional
advantages over TSVM: (1) close or better classification
accuracy compared to TSVM. (2) Different from TSVM,
it considers marginal points of each class instead of all the
data points. (3) It has only one penalty parameter.

Similar to TSVM, LSTSVM [17] fails to exploit
the similarity information between any pair of samples.
However, LSTSVM is simple, extremely fast and solves
two systems of linear equations as opposed to solving two
QPPs in TSVM. In this paper, we present an improvement
on LSTSVM and embed the similarity information between
pairs of samples into the optimization problems of
LSTSVM based on k-nearest neighbor graph. The proposed
method possesses the following advantages:

1. Similar to WLTSVM, the proposed method (KNN-
LSTSVM) makes full use of similarity information
between pairs of samples. That is, it uses k-nearest
neighbor graph to characterize the intra-class compact-
ness and inter-class separability, respectively. Based
on this, KNN-LSTSVM achieves higher classification
accuracy and better generalization ability.

2. Unlike WLTSVM, KNN-LSTSVM solves two systems
of linear equations which leads to simple algorithm
and less computational time. As a result, the proposed
method does not need any external optimizer.

3. The LS-TSVM is more sensitive to the outliers.
However, KNN-LSTSVM gives much less weight to the
outliers. As a result, the final hyperplane is less sensitive
to the outliers and noisy samples and is potentially
robust.

Numerical experiments on several synthetic and bench-
mark datasets show that our KNN-LSTSVM obtains better
classification ability in comparison with TSVM, WLTSVM
and LSTSVM. We also explored the application of lin-
ear KNN-LSTSVM to human action recognition problem.
It is the task of assigning a given video to one of action
categories. Moreover, human action recognition has sev-
eral challenges such as intra-class and inter-class variations,
environment settings and temporal variations [30].

This paper is organized as follows. Section 2 briefly
introduces SVM and TSVM. Section 3 gives the details
of KNN-LSTSVM, including linear and non-linear cases.
Section 4 discusses the experimental results on various
datasets to investigate the effectiveness and validity of our
proposed method. Finally, concluding remarks are given in
Section 5.

2 Background

In this section, we briefly explain the basics of SVM and
TSVM.

2.1 Support vector machine

Consider the binary classification problem with the training
set T = {(x1, y1), ..., (xn, yn)}, where are xi ∈ R

n feature
vectors in the n-dimensional real space and yi ∈ {−1, 1}
are the corresponding labels. The idea is to find a separating
hyperplane wT x+b = 0 where w ∈ R

n and b ∈ R. Figure 1
shows geometric interpretation of standard SVM for a toy
dataset.

Assume that all the samples are strictly linearly separable.
Then, the optimal separating hyperplane is obtained by
solving the following optimization problem.

minw
1
2‖w‖2

s.t. yi(w
T xi + b) ≥ 1, ∀i

(1)

The problem defined by (1) is called ’hard margin’ and
the inequality constraint should be satisfied for all the
samples. In real world scenarios, two classes are not often
linearly separable. Therefore, an error occurs in satisfying
the inequality for some samples. The slack variable added

Fig. 1 Geometric interpretation of standard SVM
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to the problem (2) to classify samples with some error. The
problem (2) is modified as

minw
1
2‖w‖2 + C

n∑

i=1
ξi

s.t. yi(w
T xi + b) + ξi ≥ 1, ∀i

(2)

Where ξi is a slack variable associated with xi sample
and C is a penalty parameter. In this case, the classifier is
known as soft margin. The Wolfe dual of (2) is given by

minα
1
2

n∑

i=1

n∑

j=1
αiαjyiyj x

T
i xj −

n∑

i=1
αi

s.t.
n∑

i=1
αiyi = 0, 0 ≤ αi ≤ C, ∀i

(3)

Where α ∈ R are Lagrange multipliers. The parameters
of optimal separating hyperplane are given by

w =
n∑

i=1
α∗

i yixi (4)

Where α∗ is the solution of the dual problem (3). A new
sample is classified as +1 and -1 according to the decision
function D(x) = sign(wT x + b). SVM can be extended in
a simple manner to handle nonlinear kernels [36].

2.2 Twin support vector machine

Consider a binary classification problem of m1 positive
samples and m2 negative samples (m1 +m2 = m). Suppose
that samples in class +1 are denoted by a matrix A ∈ R

m1×n,
where each row represents a sample. Similarly, the matrix
B ∈ R

m2×n represents the samples of class -1. Unlike
SVM, TSVM does classification using two non-parallel
hyperplanes:

xT w(1) + b(1) = 0, xT w(2) + b(2) = 0 (5)

where w(1), w(2) ∈ R
n and b(1), b(2) ∈ R. Each hyperplane

is close to samples of one class and far from the samples

Fig. 2 Geometric interpretation of standard TSVM

of other class. Figure 2 shows geometric interpretation of
standard TSVM for crossplane dataset.

TSVM solves the following two QPPs for obtaining two
non-parallel hyperplanes:

min
w(1),b(1)

1
2

∥
∥Aw(1) + e1b

(1)
∥
∥2 + C1e

T
2 y

s.t. −(Bw(1) + e2b
(1)) + y ≥ e2 , y ≥ 0

(6)

min
w(2),b(2)

1
2

∥
∥Bw(2) + e2b

(2)
∥
∥2 + C2e

T
1 y

s.t. (Aw(2) + e1b
(2)) + y ≥ e1 , y ≥ 0

(7)

where C1, C2 ≥ 0 are penalty parameters, e1, e2 are vectors
of ones of appropriate dimensions. It can be noted that
samples of one class appear in the constraints of each
QPP. As a result, TSVM is almost four times faster than
a standard SVM. By introducing Lagrange multipliers, the
Wolf dual of QPPs (6) and (7) are represented as follows:

min
α

1
2αT G(HT H)

−1
GT α − eT

2 α

s.t. 0e2 ≤ α ≤ C1e2
(8)

min
β

1
2βT P (QT Q)

−1
P T β − eT

1 β

s.t. 0e1 ≤ β ≤ C2e1

(9)

where H = [A e], G = [B e], P = [A e] and Q = [B e],
α ∈ R

m2 and β ∈ R
m1 are Lagrangian multipliers. The

two dual QPPs (8) and (9) have the advantage of bounded
constraints and reduced number of parameters, implying
that QPP (8) has only m2 parameters and QPP (9) has only
m1 parameters.

The two non-parallel hyperplanes (5) can be obtained
from the solution of QPP (8) and (9) by
[

w(1)

b(1)

]

= −(HT H)
−1

GT α (10)

[
w(2)

b(2)

]

= (QT Q)
−1

P T β (11)

The matrices HT H and QT Q are of size (n+1)×(n+1)

where n � m. Once the two hyperplanes (5) are obtained, a
new sample is assigned to class i (i = +1, −1) depending
on which of the two hyperplanes in (5) it is closer to

Class i = arg min
j=1,2

∣
∣
∣xT w(j) + b(j)

∣
∣
∣ (12)

where |.| is perpendicular distance. The case of non-linear
kernels is handled similar to linear kernels [12]. According
to [42] TSVM has the following two limitations:

– It fails to exploit the similarity information between
pairs of samples. Previous studies have shown that most
of the samples are highly correlated [42]. Therefore,
underlying similarity is crucial for data classification
[4].

– In TSVM, hyperplane of each class should be far
from all the samples of other class. Consequently,
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TSVM may misclassify margin points. By utilizing a
few margin points from other class instead of all the
samples, TSVM may achieve better result [42].

WLTSVM addressed these limitations by making full use
of similarity information in terms of the data affinity [42].

3 KNN-based least squares twin support
vector machine

In this section, we present our proposed method(KNN-
LSTSVM) and explain its details. Section 3.1 discusses
construction of weight matrices. Details of linear KNN-
LSTSVM are given in Section 3.2. Proposed method
extended to nonlinear kernels in Section 3.3.

3.1 Construction of weight matrices

The central idea of WLTSVM and proposed method is to
give larger weights to the samples with high density and
extract possible margin points from the samples of other
class. In other words, the hyperplane yielded by KNN-
LSTSVM fits the samples with high density and are far
from the margin points of other class. Figure 3 shows the
geometrical interpretation of LSTSVM and KNN-LSTSVM
for both linear and Gaussian kernel. As shown in Fig. 3, the
hyperplane of KNN-LSTSVM is less sensitive to outliers
and noisy samples. On the other hand, the hyperplane of
LSTSVM is close to the outliers of circle class, because the
hyperplane is as close as possible to all the samples of its
own class. In order to demonstrate the main idea of KNN-
LSTSVM clearly, the perpendicular distance of one margin
point is calculated for both classifiers in Fig. 3.

Fig. 3 The comparison of LSTSVM with KNN-LSTSVM

Similar to WLTSVM, a k-nearest neighbor graph is
constructed as follows:

Wij =
{

1, if xi ∈ N
(
xj

)
or xj ∈ N (xi)

0, otherwise.
(13)

where the set N(xj ) contains k-nearest neighbors of xj and
is given by: [4]

N(xj ) = {x1
j , x2

j , . . . , xk
j } (14)

However, the graph W cannot reveal the discriminative
structure in data [42]. Instead, a within-class graph Ww and
between-class graph Wb are constructed to model the intra-
class compactness and inter-class separability, respectively.
The weight matrices Ww and Wb of class +1 are respectively
defined as:

Ww,ij =
{

1, if xi ∈ Nw(xj ) or xj ∈ Nw(xi)

0, otherwise.
(15)

Wb,ij =
{

1, if xi ∈ Nb(xj ) or xj ∈ Nb(xi)

0, otherwise.
(16)

where Nw(xj ) stands for k-nearest neighbors of xj from
same class and Nb(xj ) contains k-nearest neighbors of xj

from different class. The two sets Nw(xj ) and Nb(xj ) are
respectively given by:

Nw (xi) = {xj
i | l(x

j
i ) = l(xi), 1 ≤ j ≤ k} (17)

Nb (xi) = {xj
i | l(x

j
i ) 	= l(xi), 1 ≤ j ≤ k} (18)

where l(xi) denotes the class label of xi . Clearly, Nw(xi)

∩ Nb(xi) = ∅ and Nw(xi) ∪ Nb(xi) = N(xi). The distance
between pairs of samples is measured by using the standard
Euclidean metric. In order to find the margin points of class
-1, the weight matrix Wb,ij is redefined as follows:

fj =
{

1, if ∃i,Wb,ij 	= 0
0, otherwise.

(19)

The weight of each sample in class +1 is computed by

dj =
m1∑

i=1

Ww, ij , j = 1, 2, . . . , m1 (20)

where dj denotes the weight of xj . The value of dj shows
how much dense xj is. In other words, the number of
neighbors with same label determines the weight of a
sample.

3.2 Linear KNN-LSTSVM

Similar to WLTSVM, proposed method seeks a pair
of non-parallel hyperplanes, each of which fits samples
with high density and is far from the margin points
of other class. However, KNN-LSTSVM modifies the
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primal problems of WLTSVM by replacing the inequality
constraints with equality constraints and using the square
of 2-norm slack variables. The solution of two modified
primal problems requires solving two systems of linear
equations as opposed to solving two QPPs in WLTSVM.
Also note that modification of primal problems leads to
extremely fast and simple method for obtaining two non-
parallel hyperplanes. The modified primal problem of class
1 can be expressed as follows:

min
w(1),b(1)

1
2 (Aw(1) + eb(1))

T
D(Aw(1) + eb(1))

+C
2 yT y

s.t. −F(Bw(1) + eb(1)) + y = Fe

(21)

where D = diag(d1, d2, . . . , dm1) and F =
diag(f1, f2, . . . , fm2) are the weight matrix of class +1
and the margin points of class -1, respectively. Cleary, fj is
either 0 or 1 and di is greater than or equal to zero (di ≥ 0).

The modified primal problem (21) allows to substitute
the equality constraints into the objective function, thus
Lagrangian of (21) becomes:

min
w(1),b(1)

L = 1
2

∥
∥D(Aw(1) + eb(1))

∥
∥2

+C
2

∥
∥F(Bw(1) + eb(1)) + Fe

∥
∥2

(22)

By taking partial derivative of (22) with respect to w(1) and
b(1), gives:

∂L

∂w(1) = AT D(Aw(1) + eb(1))

+CBT F(Bw(1) + eb(1) + Fe) = 0e
(23)

∂L

∂b(1) = eT D(Aw(1) + eb(1))

+CeT F (Bw(1) + eb(1) + e) = 0
(24)

Next, combining (23) and (24) and solving for w(1) and
b(1), leads to a system of linear equations which is expressed
as follows:

[
BT FB BT Fe

eT FB eT Fe

] [
w(1)

b(1)

]

+ 1

C

[
AT DA AT De

eT DA eT De

] [
w(1)

b(1)

]

+
[

BT Fe

eT Fe

]

= 0e. (25)

[
w(1)

b(1)

]

=
[

BT FB + 1
C

AT DA BT Fe + 1
C

AT De

eT FB + 1
C

eT DA eT Fe + 1
C

eT De

]−1

×
[ −BT Fe

−eT Fe

]

(26)

[
w(1)

b(1)

]

=
[ [

BT

eT

]

F
[
B e

] + 1
C

[
AT

eT

]

D
[
A e

]
]−1

×
[ [ −BT

−eT

]

Fe

]

(27)

By defining H = [A e] and G = [B e], the solution of
minimization problem (21) becomes:
[

w(1)

b(1)

]

= − (GT FG + 1

C
HT DH)

−1

GT Fe (28)

The modified primal problem of class -1 can be represented
as follows:

min
w(2),b(2)

1
2 (Bw(2) + eb(2))

T
Q(Bw(2) + eb(2)) + C

2 yT y

s.t. P(Aw(2) + eb(2)) + y = Pe

(29)

where Q = diag(q1, q2, . . . , qm2) and P =
diag(p1, p2, . . . , pm1) are the weight matrix of class -1
and the margin points of class +1, respectively. Similar to F

matrix, the pj is either 0 or 1. In similar way, the solution
of primal problem (29) can be obtained as follows:
[

w(2)

b(2)

]

= (HT PH + 1

C
GT QG)

−1

HT Pe (30)

The solutions of (28) and (30) involves two matrix
inverses of size (n+1)×(n+1) where n is much smaller than
the number samples of classes 1 and -1. Consequently, the
learning speed of linear KNN-LSTSVM is extremely fast.

The decision function for assigning a class i(i =
+1, −1) to a new sample xi is defined as follows:

D(xi) =
{ +1, if |xT w(1) + b(1)| < |xT w(2) + b(2)|

−1, otherwise.

(31)

where |.| denotes perpendicular distance of a sample
from the hyperplane. In summary, algorithm 3.1 shows
the required steps for constructing linear KNN-LSTSVM
classifier.
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3.3 Non-linear KNN-LSTSVM

Following the same idea, the linear KNN-LSTSVM can be
extended to non-linear version by considering the following
kernel-generated surfaces instead of planes:

K(xT , CT )u(1) + b(1) = 0 and K(xT , CT )u(2) + b(2) = 0

(32)

where C =
[

A

B

]

and K is any arbitrary kernel function.

Similar to linear version, the primal problems of linear
KNN-LSTSVM can be modified in the same way with
inequality constraints replaced by equality constraints as
expressed in (33) and (34).

min
u(1),b(1)

1

2
(K(A, CT )u(1) + eb(1))

T
D(K(A, CT )u(1)

+eb(1)) + C

2
yT y

s.t. −F(K(B, CT )u(1) + eb(1)) + y = Fe (33)

min
u(2),b(2)

1

2
(K(B, CT )u(2) + eb(2))

T
Q(K(B, CT )u(2)

+eb(2)) + C

2
yT y

s.t. P(K(A,CT )u(2) + eb(2)) + y = Pe (34)

where K(A, CT ) and K(B, CT ) are kernel matrices of
sizes m1 × m and m2 × m respectively (m = m1 + m2).
By substituting the constraints into objective function, The
QPPs (33) and (34) become:

min
u(1),b(1)

1
2

∥
∥D(K(A, CT )u(1) + eb(1))

∥
∥2

+C
2

∥
∥F(K(B, CT )u(1) + eb(1) + Fe)

∥
∥2

(35)

min
u(2),b(2)

1
2

∥
∥Q(K(B, CT )u(2) + eb(2))

∥
∥2

+C
2

∥
∥P(K(A, CT )u(2) + eb(2) + Pe)

∥
∥2

(36)

In a similar way, the solutions of QPPs (35) and (36) can
be obtained as follows:
[

u(1)

b(1)

]

= −(ST FS + 1
C

RT DR)−1ST Fe (37)

[
u(2)

b(2)

]

= (RT PR + 1
C

ST QS)−1RT Pe (38)

where R = [
K(A, CT ) e

]
and S = [

K(B, CT ) e
]
. A

new sample is classified in the same way as it is done in
linear case. The decision function for non-linear case is
given by:

D(x) =
⎧
⎨

⎩

+1, if |K(x, CT )u(1) + b(1)|
< |K(x, CT )u(2) + b(2)|

−1, otherwise.
(39)

It can be noted that the solution of non-liner KNN-
LSTSVM requires inversion of matrix size (m + 1) × (m +
1) twice. However, using Sherman-Morrison-Woodbury
(SMW) formula [10], the solution (37) and (38) can be
solved using four inverses of smaller dimension than (m +
1)×(m+1). The solution of (37) and (38) can be rewritten as:

[
u(1)

b(1)

]

= −(Y − YRT D(CI + RYRT D)
−1

RY)ST Fe (40)

[
u(2)

b(2)

]

= (Z−ZST Q(CI + SZST Q)
−1

SZ)RT Pe (41)

where Y = (ST FS)
−1

and Y = (RT PR)
−1

. The matrix
(ST FS) and (RT PR) might be positive semi-definite.
Following [12], a regularization term εI , ε > 0 is
introduced to Y and Z to avoid the possibility of the ill-
conditioning of (ST FS) and (RT PR). This allows us to use
SMW formula in finding Y and Z as

Y = 1

ε
(I − ST F (εI + SST F )

−1
S) (42)

Z = 1

ε
(I − RT P (εI + RRT P )

−1
R) (43)

After using SMW formula, the solution of non-linear
case requires two matrix inverses of size (m1 ×m1) and two
matrix inverses of size (m2 × m2). In summary, algorithm
3.2 shows the required steps for constructing non-linear
KNN-LSTSVM classifier.

3.4 Discussion on KNN-LSTSVM

3.4.1 KNN-LSTSVM vs. LSTSVM

Compared with LSTSVM, KNN-LSTSVM incorporates
KNN method into LSTSVM and embodies the similarity
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Table 1 The characteristics of benchmark datasets

Datasets #Samples #Positive #Negative #Features

Austrailian 690 307 383 14

Bupa-Liver 345 145 200 6

Cleveland 303 139 164 13

Haber-Man 306 225 81 3

Heart-Statlog 270 120 150 13

Hepatits 155 32 123 19

Ionsphere 351 225 126 34

Monk3 554 288 266 6

Pima-Indian 768 268 500 8

Sonar 208 97 111 60

Titanic 891 342 549 7

Votes 435 267 168 16

Wdbc 569 212 357 30

Wpbc 198 47 151 33

information between pairs of samples into the objective
function. Therefore proposed method is less sensitive to the
outliers and noisy samples than LSTSVM. Both algorithms
solve a pair of linear equations instead of two QPPs. As a
result, they have fast learning speed.

3.4.2 KNN-LSTSVM vs. WLTSVM

Both WLTSVM and KNN-LSTSVM find two non-parallel
hyperplanes by making full use of similarity information.
They also give weight to the samples and have noise
suppression capability. However, KNN-LSTSVM needs to
solve two systems of linear equations as opposed to solving
two QPPs in WLTSVM. It implies that the proposed method
is faster than WLTSVM.

4 Numerical experiments

To demonstrate the performance of our proposed KNN-
LSTSVM, we conducted experiments on 14 datasets from
UCI machine learning repository.1 They are Australian,
Bupa-Liver, Cleveland, Haber-man, HeartStatlog, Hepatits,
Ionsphere, Monk3, Pima-Indian, Sonar, Titanic, Votes,
WDBC and WPBC. Table 1 shows the characteristics of
these datasets.

Classification accuracy of each method is measured by
standard 10-fold cross-validation. More specifically, each
dataset is split into ten subsets randomly. One of those sets
is reserved as a test set whereas the remaining data are
considered for training. This process is repeated ten times
until all of the ten subsets is tested [3].

1http://archive.ics.uci.edu/ml/datasets.html

4.1 Implementation details

All the methods were implemented in Python 3.6 program-
ming language and ran on Windows 8 PC with Intel Core
i7 6700K (4.0 GHZ) and 32.0 GB of RAM. In addition,
NumPy package [40] was used for linear algebra operations
and SciPy [14] package was employed for distance calcula-
tion and statistic functions. The solver is critical part of the
code and is implemented in Cython2 [2] which improves the
training speed.

4.1.1 Optimizer

The proposed method solves two systems of linear
equations for obtaining the hyperplanes. However, other
algorithms such as standard SVM, standard TSVM and
WLTSVM need an external optimizer for solving their QPPs
problem. The clipDCD algorithm [29] was employed to
solve the dual QPPs of these classifiers. This optimizer
has simple formulation, fast learning speed and is easy-to-
implement. It only solves one single-variable sub-problem
according to the maximal possibility-decrease strategy [29].
The dual QPP of the standard SVM can be expressed as
follows:

min
α

1
2αT Qα − eT α,

s.t. 0 ≤ α ≤ C.
(44)

the clipDCD algorithm only updates one component of
α at each iteration. More information on the convergence of
this algorithm and theoretical proofs can be found in [29].

4.2 Parameters selection

The performance of TSVM and its extentions depend
heavily on the choice of optimal parameters. Therefore, the
grid search method is used to find the optimal parameters.
Moreover, the Gaussian kernel function k(xi, xj ) =
exp(− ∥

∥xi − xj

∥
∥2

/γ 2) was only considered as it is often
employed and yields great generalization performance.
The penalty parameters in TSVM, WLTSVM, LSTSVM
and KNN-LSTSVM are selected from set {2i | i =
−10, −9, . . . , 9, 10}. The Gaussian kernel parameter γ is
selected from the set {2i | i = −15,−14, . . . , 5}. The
neighborhood size k in WLTSVM and KNN-LSTSVM is
chosen from the set {2, 3, . . . , 10}.

4.3 Synthetic datasets

To illustrate graphically advantage of our KNN-LSTSVM
over LSTSVM, we conducted experiments on artificial

2The Cython is a superset of the Python programming language and
generates efficient C code. More info at http://cython.org

http://archive.ics.uci.edu/ml/datasets.html
http://cython.org/
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Fig. 4 The performance and decision boundary of KNN-LSTSVM and LSTSVM on Ripley’s dataset with Gaussian kernel

Ripley’s datset [32] which contains 250 samples and
checkerboard dataset [11] of 1000 samples. 70% of samples
were selected randomly for training both algorithms.
Figures 4 and 5 depict performance of KNN-LSTSVM
and LSTSVM on Ripey’s and checkerboard dataset,
respectively. It can be seen that KNN-LSTSVM obtains
better separating hypersurface. This indicates that our
proposed method significantly improves the classification
performance of LSTSVM.

4.4 Experimental results and discussion

Table 2 shows the averages and standard deviation of the test
accuracies (in %) for the TSVM, WLTSVM, LSTSVM and
KNN-LSTSVM on fourteen UCI benchmark datasets. In
addition, the training time of each classifier is demonstrated
(It should be noted that the training time of WLTSVM
and KNN-LSTSVM include KNN finding). The optimal
parameters of four algorithms used in the experiments are
also shown in Table 2. From the experimental results, we
can draw the following conclusions:

1. From the perspective of classification accuracy, our
proposed method (KNN-LSTSVM) outperforms the
other three algorithms. This result validates that the

necessity of introducing similarity information within
samples into the objective function which improves the
accuracy of classifier.

2. In terms of computational time, LSTSVM is the fastest
algorithm, because it solves two systems of linear
equations. Even though two systems of linear equations
are solved in our KNN-LSTSVM, KNN finding
increases computing time. In comparison to WLTSVM,
our proposed method costs shorter computational time
as it inherits the advantage of LSTSVM which is
solving a pair of linear equations rather than QPPs.

3. In order to show the effect of parameter k on the
accuracy of KNN-LSTSVM, an experiment conducted
on the Australian and Hepatits datasets. The value of
k ranges from 2 to 30, and the step is 2. Figure 6
indicates the importance of selecting parameter k.
The maximum accuracy appears when k is equal to
12. This implies that k = 12 is an optimal choice
for the Australian dataset. For Hepatits dataset, the
classification accuracy improves significantly as the
value of k increases. Therefore, the choice of optimal
parameter k is prominent.

4. In comparison with new non-parallel classifiers (i.e.
RELS-TSVM [37] and Iv-TBSVM [41]), our KNN-
LSTSVM has better classification ability as shown

Fig. 5 The performance and decision boundary of KNN-LSTSVM and LSTSVM on checkerboard dataset with Gaussian kernel
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Table 2 Comparison of accuracy and training time for TSVM, WLTSVM, LSTSVM and KNN-LSTSVM

Datasets TSVM WLTSVM LSTSVM KNN-LSTSVM

(m × n) Accuracy(%) Time(s) Accuracy(%) Time(s) Accuracy(%) Time(s) Accuracy(%) Time(s)

(C1, C2, γ ) (C,γ, k) (C1, C2, γ ) (C, γ, k)

Austrailian 87.97±2.75 0.070 87.25±3.65 0.264 87.68±3.79 0.058 87.39±3.31 0.230
(690 × 14) (2−4, 2−4, 2−6) (2−1, 2−14, 6) (2−7, 2−5, 2−6) (23, 2−13, 7)

Bupa-Liver 73.62±4.77 0.082 74.82±3.84 0.193 74.51±6.89 0.007 75.96±5.40 0.041
(345 × 6) (2−3, 2−3, 2−6) (22, 2−7, 4) (25, 24, 2−6) (210, 2−6, 7)

Cleveland 84.86±3.76 0.037 84.48±6.29 0.082 85.49±4.92 0.005 85.51±6.41 0.026
(303 × 13) (20, 2−1, 2−11) (23, 2−9, 7) (22, 21, 2−11) (2−2, 2−15, 5)

Haber-Man 76.14±3.60 0.082 75.80±5.22 0.138 76.73±7.83 0.005 76.81±5.82 0.031
(306 × 3) (21, 2−1, 2−9) (23, 2−4, 2) (29, 29, 2−7) (2−10, 2−9, 9)

Heart-Statlog 85.56±5.84 0.041 85.19±5.49 0.032 85.19±6.20 0.004 85.19±5.74 0.022

(270 × 13) (21, 20, 2−11) (21, 2−13, 6) (20, 2−1, 2−12) (2−1, 2−14, 7)

Hepatits 85.79±8.65 0.003 86.50±8.79 0.040 87.79±6.57 0.001 87.13±7.59 0.006

(155 × 19) (2−4, 2−2, 2−8) (28, 2−3, 3) (23, 25, 2−11) (2−1, 2−5, 7)

Ionsphere 92.59±3.19 0.028 92.04±5.50 0.126 91.74±4.32 0.006 92.59±4.47 0.040

(351 × 34) (2−1, 2−3, 2−5) (21, 21, 3) (26, 21, 2−5) (21, 2−5, 5)

Monk3 98.37±1.26 0.150 98.38±1.69 0.494 98.55±1.36 0.032 98.56±1.34 0.126

(554 × 6) (2−4, 22, 2−3) (23, 2−6, 2) (2−6, 2−3, 2−3) (20, 2−3, 5)

Pima-Indian 77.87±4.73 0.147 77.86±3.49 0.566 77.61±5.89 0.073 78.01±3.64 0.339

(768 × 8) (21, 21, 2−3) (24, 2−5, 2) (2−1, 2−1, 2−4) (2−1, 2−4, 10)

Sonar 86.14±8.35 0.012 87.50±3.17 0.033 85.55±8.31 0.002 87.48±6.65 0.011

(208 × 60) (2−5, 2−1, 2−3) (25, 2−4, 7) (2−10, 23, 2−3) (2−4, 2−6, 4)

Titanic 81.94±3.23 0.225 81.49±4.70 0.692 82.38±4.63 0.108 82.27±3.80 0.486

(891 × 7) (2−4, 2−5, 2−3) (20, 2−6, 7) (21, 21, 2−5) (28, 2−5, 10)
Votes 96.78±2.11 0.145 97.01±1.79 0.098 97.02±2.89 0.012 97.01±3.11 0.064
(435 × 16) (2−6, 2−3, 2−6) (27, 2−13, 7) (2−6, 2−3, 2−9) (26, 2−9, 3)

Wdbc 98.42±1.23 0.003 97.54±2.51 0.206 98.07±2.54 0.034 97.72±1.12 0.154
(569 × 30) (2−3, 2−1, 2−8) (2−2, 2−5, 6) (2−4, 2−2, 2−8) (2−5, 2−7, 5)

Wpbc 82.39±9.20 0.006 80.84±8.94 0.019 81.32±9.01 0.002 82.76±5.48 0.010
(198 × 33) (2−4, 2−5, 2−6) (21, 2−10, 2) (2−2, 2−4, 2−7) (2−2, 2−7, 6)
Mean accuracy 86.31 86.19 86.40 86.74

Bold value denotes the best result

Fig. 6 Changes of accuracy with the growth of k
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Table 3 The comparison of
accuracy for KNN-LSTSVM,
RELS-TSVM and Iv-TBSVM
in the case of Guassian kernel

RELS-TSVM [37] Iv-TBSVM [41] KNN-LSTSVM

Datasets Accuracy(%) Rank Accuracy(%) Rank Accuracy(%) Rank

Austrailian 86.00 2 84.79±6.26 3 87.39±3.31 1
Bupa-Liver 69.23 3 74.32±5.04 2 75.96±5.40 1
Haber-Man 77.35 2 83.33±8.59 1 76.81±5.40 3

Heart-Statlog 85.71 1 84.81±1.17 2 85.19±5.84 2

Ionsphere 96.19 1 95.61±4.11 2 92.59±4.47 3

Pima-Indian 80.52 1 77.56±4.13 3 78.01±3.64 2

Votes 96.90 2 96.51±2.26 3 97.01±3.11 1
Wdbc 85.51 3 99.28±1.02 1 97.72±1.12 2

Wpbc 80.70 2 79.90±4.13 3 82.76±5.48 1
Average rank 1.88 2.22 1.77

Bold value denotes the best results

in Table 3. It obtains the lowest rank among new
alogorithms. The results of RLES-TSVM and Iv-
TBSVM were taken from [37] and [41], respectively.
It should be noted that Iv-TBSVM solves two QPPs as
opposed to solving a pair of linear equations in KNN-
LSTSVM and RELS-TSVM. As a result, its learning
speed is slower than least squares algorithms.

4.5 Statistical test

To further analyze the performance of four algorithms on
fourteen UCI datasets as it was suggested in [7]. The
Friedman test was used with corresponding post hoc tests
which is proved to be a simple, nonparametric and safe. For
this, the average ranks of four algorithms on accuracy for
all datasets are calculated and listed in Table 4. Under the

Table 4 Average rank on classification accuracy of four algorithms

Datasets TSVM WLTSVM LSTSVM KNN-LSTSVM

Austrailian 1 4 2 3

Bupa-Liver 4 2 3 1

Cleveland 3 4 2 1

Haber-Man 3 4 2 1

Heart-Statlog 1 3 3 3

Hepatits 4 3 1 2

Ionsphere 1.5 3 4 1.5

Monk3 4 3 2 1

Pima-Indian 2 3 4 1

Sonar 3 1 4 2

Titanic 3 4 1 2

Votes 4 2.5 1 2.5

Wdbc 1 4 2 3

Wpbc 2 4 3 1

Average rank 2.61 3.18 2.43 1.79

Bold value denotes the best results

null hypothesis that all the algorithms are equivalent, one
can compute the Friedman test according to (45):

χ2
F = 12N

k(k + 1)

⎡

⎣
∑

j

R2
j − k(k + 1)2

4

⎤

⎦ , (45)

where Rj = 1
N

∑
i r

j
i , and R

j
i denotes the j -th of k

algorithms on the i-th of N datasets. Friendman’s χ2
F is

undesirably conservative and derives a better statistic

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

(46)

which is distributed according to the F-distribution with
k−1 and (k−1)(N −1) degrees of freedom. We can obtain
χ2

F = 8.293 and FF = 3.198 according to (45) and (46).
Where FF is distributed according to F-distribution with
(3, 39) degrees of freedom. The critical value of F(3, 39)

is 1.42 for the level of significance α = 0.25, similarly,
it is 2.23 for α = 0.1 and 2.84 for α = 0.05. Since
the value of FF is larger than the critical value, there is
significant difference between the four algorithms. Table 4
also illustrate that our KNN-LSTSVM is more valid than
other three algorithms, because the average rank of KNN-
LSTSVM is the lowest among other algorithms (Table 4).

4.6 Experiments with NDC datasets

In this subsection, experiments were conducted on large
datasets to compare computing time of KNN-LSTSVM
with other three algorithms as the number of datapoints
increase. Large datasets were generated using NDC Data
Generator [24]. Table 5 shows the description of NDC
datasets. For experiments with these datasets, the penalty
parameters of all algorithms were fixed to be one (i.e, C=1).
The Gaussian kernel (RBF) was used with γ = 2−15 for
non-linear case. The neighborhood size k is also 5 for all
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Table 5 The description of NDC datasets

Datasets #Training data #Test data #Features

NDC-500 500 50 32

NDC-700 700 70 32

NDC-900 900 90 32

NDC-1K 1000 100 32

NDC-2K 2000 200 32

NDC-3K 3000 300 32

NDC-4K 4000 400 32

NDC-5K 5000 500 32

NDC-10K 10000 1000 32

NDC-25K 25000 2500 32

NDC-50K 50000 5000 32

datasets. Table 6 shows the comparison of computing time
for all four algorithms on NDC datasets with both linear and
Gaussian kernel.

KNN-LSTSVM performed several orders of magnitude
faster than WLTSVM on all datasets, because KNN-
LSTSVM does not require any external optimizer whereas
WLTSVM is implemented with clipDCD algorithm. While
KNN-LSTSVM is fast, it is not as fast as LSTSVM which is
evident from Table 6. LSTSVM obviously requires solving
two systems of linear equations whereas KNN-LSTSVM
requires KNN-finding plus solving two systems of linear
equations. For non-linear test, a rectangular kernel [22]
was employed using 10% of total datapoints. Results with
reduced kernel indicate that LSTSVM and KNN-LSTSVM
are much faster than TSVM and WLTSVM, because even

Fig. 7 The changes of time with the growth of k on the NDC-10K
dataset

with reduced kernel (m × m̄), TSVM and WLTSVM still
require solving two QPPs of size m1 and m2.

In order to show the influence of parameter k on the
computing time of KNN-LSTSVM, an experiment was
conducted on the relatively large dataset, NDC-10K. As
shown in the Fig. 7, the value of k does not influence the
computing time for KNN-LSTSVM. In summary, results on
NDC datasets reveal that our KNN-LSTSVM is suitable for
medium and large problems.

4.7 Application in human action recognition

To further investigate the efficiency and robustness of our
KNN-LSTSVM, we apply it into human action recognition
which is one of the active research area in the field of

Table 6 The comparison of computing time for four algorithms on NDC datasets

TSVM WLTSVM LSTSVM KNN-LSTSVM

Datasets Time (s) Time (s) Time (s) Time (s)

Kernel Linear RBF Linear RBF Linear RBF Linear RBF

NDC-500 0.222 0.324 0.583 0.838 0.004 0.034 0.031 0.399

NDC-700 0.45 0.744 1.115 1.741 0.004 0.064 0.053 0.757

NDC-900 0.83 1.111 1.884 2.761 0.004 0.223 0.084 1.362

NDC-1K 0.976 1.599 2.315 3.499 0.004 0.266 0.1 1.657

NDC-2K 6.606 12.746 16.297 22.474 0.004 1.055 0.387 6.21

NDC-3K 25.387 41.908 73.451 70.213 0.004 2.588 0.904 14.041

NDC-4K 72.19 129.932 163.249 176.899 0.005 5.314 1.647 25.812

NDC-5Kb 137.909 277.463 319.574 339.347 0.005 10.024 2.618 39.788

NDC-10Kb 696.562 a a a 0.007 67.475 11.249 164.655

NDC-25Kb a a a a 0.011 967.458 75.707 a

NDC-50Kb a a a a 0.02 a 383.829 a

aWe terminated the algorithm as computing time was very high
bA rectangular kernel K(A, Ā) with Ā typically of size 10% of A was used
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Fig. 8 Examples of sequences
corresponding to different types
of actions from KTH dataset

computer vision and pattern recognition. It has a wide
range of applications in surveillance video, automatic video
retrieval and human computer interaction [1]. The difficulty
of human action recognition problems may originate from
several challenges such as illumination changes, partial
occlusions, and intra-class variations [26].

An action is a sequence of body movements that
may involves several body parts concurrently [5]. From
the perspective of computer vision, the goal of human
action recognition is to correctly classify the videos into
its action category [1]. Major components of human
action recognition system include action representation and
classification.

4.7.1 Action representation

Sparse space-time features have been frequently used in
human action recognition research which are extracted
from 3-dimensional space-time volumes to represent and
classify actions [1]. Space-time interest points are detected
using Harris3D operator [18]. The Histogram of Oriented
Gradient (HoG) and Optical Flow (HOF) were employed for
action representation [19].

After extracting space-time features, the Bag of Video
Words (BoVW) technique was applied which treats videos
as documents and visual features as words. This technique
proved its robustness to location changes and to noise.
The visual words are constructed by utilizing K-means
clustering [21] as it is the most popular algorithm to
construct visual dictionary. Since the total number of
features is very large to use for clustering, a subset of 105

features were selected randomly. The number of clusters is
set to 4000 which has shown empirically to produce good
results. The resulted clusters are equivalent to the visual

words. Finally, the word frequency histogram are computed
and used as video sequence representation.

4.7.2 KTH dataset

In Section 4.7, the experiments are carried out on KTH
dataset which was introduced by Schuldt et al. [34] and
is one of the most popular human activity dataset. It
contains six types of human actions (boxing, hand clipping,
hand waving, jogging, running and walking) performed by
25 people in four different scenarios including outdoor,
indoor, changes in clothing and variations in scale. The
dataset consists of 2391 sequences where the background is
homogeneous in all cases. Figure 8 shows several examples
frames corresponding to different types of action.

4.7.3 Results and discussion

Due to the limited number of persons in the KTH dataset,
the leave-one-person-out is used where each run uses 24
persons for training and one person for testing. Then,
the average of the results is calculated to give the final
recognition rate.

For experiment with KTH dataset, our linear KNN-
LSTSVM was extended to handle multi-class problems
based on One-versus-All (OVA) strategy. For K-class
classification problem, the linear OVA KNN-LSTSVM
solves K-linear equations and determines K non-parallel
hyper planes, one for each class [39]. Table 7 shows
a comparison between our KNN-LSTSVM and other
classifiers on KTH dataset. The result shows that our
proposed method has the highest mean accuracy among
other algorithms. This further validates the effectiveness of
our KNN-LSTSVM in real-world application.
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Table 7 Mean accuracy rates of different methods on KTH dataset

Method Mean accuracy (%) Time (s)

Standard SVM 91.8 18430

LSTSVM 92.33 60.29

KNN-LSTSVM 93.54 245.87

Bold value denotes the best results

5 Conclusion

Motivated by both LSTSVM and WLTSVM, we present a
novel algorithm, i.e, the KNN-based least squares twin sup-
port vector machine. Similar to WLTSVM, our new algo-
rithm takes full advantage of similarity information within
each samples by KNN method before classification which
improves prediction accuracy. Furthermore, the proposed
method not only inherits the advantage of LSTSVM algo-
rithm, which owns low computational time by solving linear
equations, but also addresses the shortcoming of outlier
sensitivity and noise tolerance in LSTSVM. The experi-
mental results reveal that KNN-LSTSVM outperforms other
three algorithms in terms of classification accuracy. The
computational result on NDC datasets also indicates that
KNN-LSTSVM is faster than WLTSVM and can handle
large-scale classification problems. We also investigated
the application of linear KNN-LSTSVM to human action
recognition. The comparison of experimental results against
linear LSTSVM show that linear KNN-LSTSVM has bet-
ter classification ability on KTH dataset. The subject of our
future work is to find effective methods which improves
KNN-LSTSVM in terms of learning speed and memory
consumption.
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