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Abstract

1

In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed.
However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only
a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method
called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on
minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme,
complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is
approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows

that minstpixel could rival state-of-the-art in every aspect.

Keywords Superpixels - Energy minimization - Minimization spanning tree

1 Introduction

Superpixels are usually defined as perceptually meaningful
atomic regions [1] that can not only effectively capture image
features but also greatly reduce the number of entities to be
processed in subsequent image processing tasks, such as
image segmentation, saliency detection [2, 3], contour closure
[4], sketches extraction [5], object location [6], object track-
ing [7], 3D reconstruction [8], and many others [9].

According to previous work [10-12], we sum up five
important properties of superpixel.

1. Connectivity: Each superpixel is an individual con-
nected region, all of the superpixels constitute the whole
image, and superpixels do not overlap each other.

2. Homogeneity: Pixels in the same superpixel should
present same or similar visual features, especially in
color and texture.

3. Adhesion: The boundary of superpixels should
strongly adhere to the boundary of objects in an image.
In other words, the set of objects’ boundary is a proper
subset of the set of superpixels’ boundary.
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4. Regularity: The regular arrangement, similar size,
and the same shape are necessary, which provides
more convenience for subsequent analysis. In the past,
regularity is always ignored and devalued.

5. Complexity: Algorithm complexity includes time
complexity and space complexity. As an image
preprocessing technique, linear time complexity and
linear space complexity are necessary.

Among the above properties, connectivity is the essential
qualification for image segmentation; homogeneity and
adhesion are the premise and foundation for the accuracy
of subsequent image analysis tasks; regularity is a
convenience to application developers and helps reduce
the trouble of development. Unfortunately, adhesion and
regularity are a pair of contradictions, while homogeneity
and efficiency are another pair of contradictions. Most
superpixel segmentation methods attempt to strike a
balance among these contradictions. Besides these four
properties, computation efficiency is also an important
qualification obviously. Superpixels are typically used
to accelerate complex image understanding and analysis
process. Therefore, the superpixel generation algorithm
itself should be simple, straightforward to implement and of
linear complexity, otherwise it will not be useful.

Each superpixel segmentation method is a compromise,
and no method is perfect. For example, ERS is good at
adhesion but weak in regularity, while SLIC is good at
regularity but weak in adhesion [13—15]. Minstpixel devotes
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itself to strike a balance among the five properties. To
meet this goal, we regard the superpixel segmentation prob-
lem as an energy minimization problem then design an
energy functional based on the minimal spanning tree, and
finally develop a greedy optimization strategy to optimize
it. Unlike previous work, minstpixel never needs sophis-
ticated optimization schemes, complicated mathematical
deductions or a fussy iteration process. In benchmark, we
implement minstpixel with approximately linear time com-
plexity, which has achieved state-of-the-art performance on
homogeneity, adhesion, regularity, and efficiency. Addition-
ally, the Appendix mathematically proves that the greedy
optimization strategy can exactly achieve the optimal value
of the proposed energy functional. The drawback of min-
stpixel we have noted is that an individual pixel has the
potential to be an independent superpixel, especially when
there are too many superpixels. To overcome the drawback
minstpixel merges the individual pixel into neighboring
superpixels in a post-processing. Both theoretical analy-
sis and experimental results demonstrate that minstpixel is
effective and practical (Fig. 1).

2 Related works

Scientists have developed more than twenty distinctive
superpixel generation methods. We selectively pick out
seven methods for the contrastive experiments, and each
chosen method is recognized as an excellent one [10].
They are SLIC(2012) [10], Ncut(2000) [16], ERS(2012)
[17], Quick shift(2008) [18], Watersheds(1991) [19],
Waterpixel(2015) [20], SEEDS(2012) [21], LSC(2017)
[22], Manifold SLIC(2016) [1] and FH(2004) [23]. We

will make a comparison between minstpixel and these
seven methods in the experiment section of this article.
Watershed transformation [19] proposed by Vincent and
Soille is a pioneer of superpixel segmentation algorithms.
It automatically seeks minimal gradient pixels as seed
points and gradually extends these points to superpixels.
The latest improved watershed transformation is waterpixel
which achieves a tunable tradeoff between the superpixel
regularity and the adherence to object boundary. Simple
linear iterative clustering (SLIC) clusters pixels of input
image to k superpixels using modified K-means algorithm.
Due to its simplicity and high performance, SLIC is widely
used. LSC and MSLIC are the last improved scheme of
SLIC. MSLIC extends SLIC to content sensitive superpixels
which means small superpixels are in dense regions and
large superpixels are in sparse regions [1]. LSC further
enhances the performance of SLIC using the conclusion
that the objective functions of the weighted K-means and
the normalized cuts share the same optimum points by
mapping each point to specific feature space [22]. To
generate superpixels, Ncut [16] recursively partitions a
given graph by minimizing a cost function defined on
the edges between partition boundary [10]. Mean-shift
[24] and Quick-shift [18] are mode-seeking algorithms
that generate superpixels by recursively moving to the
kernel smoothed centroid for every data point in the pixel
feature space [10]. SEEDS [21] extracts superpixels by
minimizing a cost function defined by color distribution
term and boundary term using hill-climbing method. Except
the chosen methods above, ERGC [25], ETPS [26], Vcell
[27], VCCS [28], PF [29], TPS [30], DASP [31], superpixel
lattice [12] and Turbopixels [32] are meaningful methods
as well.

Fig. 1 Superpixel illustration. The original image comes from the famous Berkeley segmentation database. From left to right each superpixel

contains about 1000, 500, 250 pixels respectively

@ Springer



A graph based superpixel generation algorithm

4487

3 Minstpixel

This section provides a detailed description of minstpixel. In
this section, we first show a method to represent a superpixel
via minimal spanning tree (MST), next propose an approach
to construct energy functional based on MST, then introduce
a strategy to get the global optimal solution of the energy
functional, and finally analyze the time complexity.

3.1 Requisite knowledge

Graph representation An undirected graph is a tuple
GV, &), where V and &£ are vertex set and edge set,
respectively. In edge set £, each edge e(v;, v;) consists of a
pair of vertices v;, v; and a weight w(v;, v;).

Connected component A connected component is a sub-
graph in which any two vertices are connected to each
other by a path which only consists of vertices in this sub-
graph. Besides, vertices in two distinct subgraphs are not
connected. Any undirected graph consists of one connected
component at least.

Minimal spanning tree A spanning tree T of an undirected
graph G is a tree that includes all of the vertices of G.
A minimal spanning tree (MST) of a graph is a spanning
tree whose weight (the sum of the weights of its edges)
is no larger than any other spanning tree. Figure 2 shows

Fig.2 minimal spanning tree

N

an example of minimal spanning tree. Figure 2a and c are
undirected connected graphs where each vertex has a pixel
value and each edge has a weight representing the difference
between two adjacent vertices. Figure 2b and d are the
minimal spanning trees of Fig. 2a and c respectively. As we
can see, the weight of minimal spanning tree in Fig. 2c is
smaller than that in Fig. 2d. This means vertices in Fig. 2a
are more homogeneous than these in Fig. 2c.

Graph partition A graph partion S refers to a division of
the vertex set V into disjoint connected components S =
{S1,82,--+, Sk} such that §; N §; = ¥ fori # j and
(U; Si = V. In other words, the graph partion aims to turn
a graph G(V, €) into a new graph G(V, A) which consists
of k connected components by removing some edges from
edge set £. It can be restated as a subset selection problem.
The goal of subset selection problem is to select a subset of
edges A € & such that the resulting graph (V, A) consists
of k connected components.

3.2 Construct graph

We now associate a weighted undirected graph (V, £) with
an image I. Each vertex v; € V corresponds to one pixel
I(x;, y;) in image L. If pixel I(x;, y;) and pixel I(x;, y;)
are neighbors in image I, there is an edge (vi,v;) € &
between vertice v; and vertice v;. Weight w(v;, v;) is a non-
negative measure of the distance between pixel I(x;, y;) and
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I(x;, y;), usually based on the differences in intensity, color,
texture or some other local attributes. In our experiment,
distance between pixels is determined in CIElab color space
which is widely considered as perceptually uniform for
small color distances [10], as shown in (1). From the
viewpoint of graph theory, superpixels generation problem
can be restated as the graph partition problem. In graph
partition problem, people manage to divide graph (V, &)
into a group of smaller separated connected components, all
the connected components form a new graph (), A). The
graph (V, A) corresponds to a segmentation S, and each
connected component ¢; corresponds to a superpixel s; in
segmentation S. There are various criteria to describe the
quality of a segmentation but almost all criteria support that
the pixels in the same superpixel should share as many of
the same features as possible, while the pixels in the distinct
superpixels should share as less of the same features as
possible. This means that the lower the weight of edges
in A and the higher weight of edges in £ — A, the better
the segmentation result. Any partition of a graph can be
determined by the edge set A or £ — A. So, there are two
ways to get the partion. One method, such as Ncut, is to
manage to get the set £ — A, that is to say, some chosen
edges will be removed from the graph (V, £) [33]. The other
method, such as minstpixel, is to manage to get the edge

set A.

w(v;, vj) = \/(Li — L)+ (aj —aj)>+ b —bp)> (1)
3.3 Energy functional

From the viewpoint of graph theory, minstpixel regards
a superpixel as an individual connected component and
defines the internal similarity measure as the weight of
minimal spanning tree. It is

D)= Y

eeM ST (s;)

w(e) (2)

In principle, this measure is problematic since it depends
on the size of ¢;. It leads to that D(c;) can not compare
to each other directly because their size may be unequal.
However, we have found this measure works quite well in
practice because minstpixel tends to generate superpixels
with little differences in size. Although some definitions are
more robust to outliers, they make the optimization strategy
NP hard.

For a graph G(V, . A) (or corresponding superpixel
segmentation S), we define the similarity measure as the
sum of all superpixels. It is,

ES)=) D)= )

s;€S s; €S ee M ST (s;)

w(e) 3)
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3.4 Constraint condition

Energy functional (3) has at least two obvious defects.

e [t can not provide any way to control the number of
superpixels explicitly.

e [t can not allow us to explicitly adjust the distribution of
superpixels.

In order to ameliorate these defects, we define a seed
point set P containing k seed points. Meanwhile, we impose
that each superpixel must have one and only one seed point.
If seed points are evenly distributed across the whole image,
the superpixels will be distributed across the whole image
evenly. More formally,

ES) =)y X

c;€S eeM ST (c; ,E)

w(e)

Vi,  |sUP|=1

Obviously, the minimal value of (4) corresponds to the
optimal superpixel segmentation.

3.5 Initial seed points placement

In minstpixel each superpixel grows up from a seed pixel,
thus it is important to start from a good initial seed point set.
SLIC [10], Turbo Pixels [32] and some other methods use
regular grid points as seed points, but minstpixel considers
that the center of each homogeneous region is the optimum
position for seed. This seed point set makes the initial
energy lower than regular grid points, so minstpixel can
achieve better segmentation result.

To locate these points heuristically, minstpixel employs
(6) to describe edge distribution because it performs well
when searching for edges of the image [34].

By = — 5)
T Goy * VI +
1 -
D(x.¥) = — (Go * (E(x. y) + 2E(x. 7)) ©)

Eq.5 describes the calculation of the normalized gradient,
where Gy, [|VI|| and y are the Gaussian function with
standard deviation o, the gradient magnitude of color
image I and the parameter to reduce the noise disturbance
respectively. In (6), the E(x, y) is the mean of E(x, y), and
the Z is the regularized factor making sure that the integral
of D(x, y) is 1. D(x, y) can be regarded as a probability that
(x, ¥) lies on edges of objects.

Furthermore, we suppose that point set P’ = {(x’, y')}
contains k grid points which have the same span /m/k,
where m is the total pixel number of the image and k
is the number of superpixels. Our initialization method
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can be represented as a map P’ — P. Equation (7a,b)
quantitatively describes the relationship between P’ and P.

Xi D(x, y)d
/ D(x, y)dx = xi/ X fo(x—y)x (7a)
0 w

i . JoD@. y)dy
/0 D(x, )y =y x (7b)

From (7a), x; and y are in one-to-one relationship, then
(7a) is a curve extending in direction y. Similarly, (7b) is
a curve extending in direction x. The intersection of the
two curves is the seed point (x;, y;). If there are multiple
points of intersection, minstpixel will choose the one with
the lowest D(x, y).

3.6 Energy minimization

Mathematically, the problem that we are facing is a typical
combination optimal problem. It’s almost impossible to find
any analytical solution with current technologies. Instead,
we craft a greedy method to gain reasonable superpixel
segmentation. Our method begins by sampling k seed pixels
and then gradually extend to all pixels based on a greedy
rule. Then, we have proved that the optimum point can be
reached by this method using mathematical induction in the
Appendix.

Fig.3 An example of algorithm
1. a Each vertex corresponds to a
pixel of input image. The figures
on the vertex are pixel values.
The figures on the edges are the
distances between neighboring
pixels. Blue vertex and green
vertex are both seed points. b
After two iterations, two edges
are chosen. ¢ After ten
iterations, ten edges are chosen.
d The graph is divided into two
components. Each component is
a minimal spanning tree and (a)
each minimal spanning tree
corresponds to a superpixel

(©)
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Algorithm 1

The input is a graph G(V, £) with n vertices, m edges and a
seed point set P = {(x;, y;)}. The output is a segmentation
of V with k components in S = (cy, - -+, ck).

1. Sort & into queue ¥ = (eq, - - - , €;), by non-decreasing
edge weight.

2. Start with a segmentation S°, where each vertex v; is in
its own component.

3. Given S97! construct S9. Let v; and v ; denote the

vertices connected by the first edge in the queue, c?f

and cj_l denote the connected components containing

" are disjoint

components of S¢~! and neither cf_l or cj_l contains
seed points, then merge the two components. More
formally, if(ciq_1 £ c?_l) N ((cl.q_1 NP =0)uU (c?_1 N
P = ¢)) is true, then S¢ is obtained from §7~! by
merging 6?71 and ¢!, otherwise $7 = $9-1.

4. Repeat step 3 until S? remains k independent connected
components i.e. |S?| = k.

5. Return § = &9.

v; and v; respectively. If c?_l and c?_

We now have established a segmentation S obeying
energy functional (4). Figure 3 shows the complete
process of algorithm 1. It is inescapably clear that the
result graph includes m vertices, m — k edges and k
connected components, and each component corresponds

- 0 R
(b)
H B-E N

- 0 N
(d)
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to a superpixel. In the sequel we show that algorithm 1
converges exactly to the global optimal solution of (4),
although it makes greedy decisions in each iteration.

3.7 Implementation and complexity

Algorithm 1 maintains the segmentation S using a disjoint
set with path compression and union by rank. This disjoint
set can finish n merge operations and m search operations
in O(ma(n)) time, where ma(n) is inverse Ackerman’s
function which is an approximate linear function [35]. Step
1 sorts m weights into nondecreasing order. In general, it
can consume O (m logm) time using Quick Sort [35]. Step
2 and Step 3 find and merge eligible components. There
are m — k merge operations and up to m search operations,
so it consumes O ((m — k)a(m)) time. All in all, the time
complexity of algorithm 1 is O (m logm + (m — k)a(m)).

4 Experiments

We compare minstpixel with ten state-of-the-art algorithms,
namely SLIC(2012) [10], Ncut(2000) [16], ERS(2012)

1.0

[17], Quick shift(2008) [18], Watersheds(1991) [19], Water-
pixel(2015) [20], SEEDS(2012) [21], LSC(2017) [22],
Manifold SLIC(2016) [1] and FH(2004) [23], using pub-
licly available source codes on the Berkeley Segmentation
Database [36]. All benchmarks are conducted on a desktop
PC equipped with two intel xeon E5-2620 v4 processors and
16GB of memory.

4.1 Adhesion

The adhesion refers to the ability to adhere object boundary.
Superpixels generally serve as the foundation of object
detection, so adhesion is a key evaluation criterion. In order
to evaluate adhesion, predecessors propose boundary recall
against the number of superpixels (BR). BR is the fraction of
ground truth boundary that fall in the superpixel boundary
as (8). A ground truth boundary pixel is counted if it falls
within strictly less than 2 pixels from superpixel boundary.

TP

BR = ——
TP + FN

®)

Where TP (True Positives) is the number of boundary pixels
that fall in the superpixel boundary, TN is the number of

NBR

e 14 ¢ o
[ o o )
|

Normalization Boundaries Recall

o4
=

— ER
mSLIC
LSC
Quick shift
FH 1
SEEDS
Watershed
= NCuts
SLIC
Waterpixel
— Minstpixel

200 400

600 800 1000

Superpixels' Number

Fig. 4 Illustrations of boundary recall benchmark. a shows the com-
parison between minstpixel and eight fine methods, and minstpixel
reaches upper-middle level. b—e demonstrate the boundary missed
by minstpixel. b is an image slice from the Berkeley segmentation
database in which the color and texture are very similar between fore-
ground and background, so it’s very difficult to accurately distinguish
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objects from background. ¢ and d are minstpixel and the boundary
recalled by minstpixel respectively, and boundaries are marked out by
double pixels. e shows groundtruth marked out by single pixel, green
parts represent the boundary minstpixel hit and red parts represent the
boundary minstpixel miss
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boundary pixels that fail to fall in the superpixel boundary.
A high BR indicates that the majority of true boundary
are preserved. However some previous algorithms also
achieved high BR in benchmark, because these algorithms
tend to generate tortuous boundary which result in high
boundary density. For example, boundary density of FH
significantly exceeds minstpixel, so FH has more chances
to hit true boundary than minstpixel, as shown in Fig. 6.
It is unfair to the method tending to generate smooth
boundary. Machairas and Kalinin have noticed this problem
and propose boundary density against boundary recall to
evaluate adhesion of superpixels [11]. However, boundary
density against boundary recall still ignores the influence of
the quantity of superpixels. In order to take both the quantity
of superpixels and the density of boundary into account, we
define normalization boundary recall as NBR = BR/C,
by introducing the penalty factor C which is proportional
to boundary density. Figure 4a demonstrates the results of
benchmark.

ASA
0.98
3 0.97
3 p—
3 0.96 — ERS
< —— msLiC
2 0.95 —— LsC
2 —— Quick shift
g 0.94 —  FH
5 —— SEEDS
2 0.93 1 —— Watershed
Q —
g 0921 NCuts
o SLIC
f-:a 0.91 —— Waterpixel
= Minstpixel
0.90 , T r T - - -
0 200 400 600 800 1000 1200 1400

Superpixels' Number

(©) (d)

Fig. 5 Homogeneity illustrations. a Achievable segmentation accu-
racy. b Under segmentation error. ¢ Original image. d Minstpixel. e
Object detection by minstpixel. a and b are line charts smoothed by
second order B spline function for the sake of beauty, and it can be seen

4.2 Homogeneity

Homogeneity refers to the similarity of the pixels from
the same superpixel. Superior homogeneity means that
a superpixel can only cover one object. The homo-
geneity benchmark consists of two common evaluation
criteria: under segmentation error (USE) and achiev-
able segmentation accuracy (ASA). USE measures what
extent superpixels stretch over the ground truth seg-
ment boundary. A lower USE indicates that fewer super-
pixels cross the boundary of objects. USE is defined

as [ L5 (X ppuszamin( Panl, [ PoutD) | /N, where N s
the number of pixels in image, |P;,| is the number of
pixels in part P;, and |P,,| is the number of pix-
els in part P,,;. A factitious case of USE is shown in
Fig. 5f, in this case N is (|Aous| + |Binl + 1Cinl)/IS|.
ASA measures the upper bound of accuracy when image
objects are reconstructed using a given set of superpix-
els as units. Given a ground truth segmentation G and a

USE

ERS

mSLIC

LsC

Quick shift
FH

SEEDS
Watershed
NCuts

SLIC
Waterpixel J

3
Minstpixel

Under Segmentation Error

200 400 600 800 1000 1200 1400
Superpixels' Number

(b)

Ground True Segmentation
Superpixel Acx

Superpixel B

)
|
J m HH H\ I Superpixel Cas
B Superpixel B

B cenic

Superpixel Ar

()

from these charts that minstpixel reaches the top three in these two
tests. c—e show an example of object detection by minstpixel. Red rep-
resents right detection pixels, blue represents missed detection pixels
and green represents over detection pixels
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(e) )

Fig.6 The shape of superpixels. a,e: Origin image. b.f: FH. ¢,g: ERS.
d,h Minstpixel. a,e are both 150 x 150 image slices from BSD500.
a comes from background region while (e) comes from foreground
region. It can be seen easily that the shape and boundary density of

superpixel segmentation S, achievable segmentation accu-
racy is defined as (Zk max; | Sy N G; |) /> 1Gil.

4.3 Regularity
The regularity is always devalued but it is an important

indicator. On the one hand, irregular boundary will
contribute to the false high performance in benchmark.

Contour Density

0.6

0.51

0.4

0.3 4

0.21

0.1

0.0-

Minstpixel ERS FH  NCuts SEEDS SLICWatershed

(a)

Qs

average standard deviation of size

k \

(2) (h)

distinct superpixels are various; for instance, the boundary of FH is
very twisted, while the boundary of ERS is smooth. Minstpixel has
regular shape and well maintains the border of objects in input image

On the other hand, irregular shape will cause trouble for
subsequent image analysis (Fig. 6).

The regularity contains two items [20]: (1) the smooth-
ness of boundary (2) the shape and size similarity of
superpixels. The smoothness is evaluated by the boundary
density which is defined as a ratio of the number of super-
pixel boundary pixels to the total number of pixels in the
image. The shape and size similarity is evaluated by average

ASDS
1000
800 - — ERS
—— mSLIC
600 - — LsC
—— Quick shift
— FH
400 A —— SEEDS
Watershed
—— NCuts
200 - SLIC
Waterpixel
= Minstpixel
0 ' ' ' : : ' ' o
0 250 500 750 1000 1250 1500 1750 2000

Superpixels' Number

(b)

Fig. 7 Benchmark: contour density and average standard deviation of size. a: a bar graph of average contour density on Berkeley segmentation
database and each method is set to generate 400 superpixels. d: average standard deviation of size against the number of superpixels
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standard deviation of size. Figure 7 shows the benchmark i Run Time
result in regularity. '
1.75
4.4 Efficiency 1.50 1 — ERS
msLIC
1.25 \ — LSC
Obviously, time complexity is also a crucial evaluation O —— Quick shift |
criterion for superpixel segmentation algorithm. Table 1 and £ 1007 — EEEDS
Fig. 8 shows the theoretical time complexity and actual run 0.75 1 Watershed
time on the Berkeley database. 0.50 - —— Ncuts
sLic
. . 0.25 - —— Waterpixel |
4.5 Application ——_Minstpixel-]
0.00 , : : :
0 200 400 600 800 1000

In this section, we display one typical computer vision
application that benefit from superpixels: object segmenta-
tion. Minstpixel reduces the number of entities to manipu-
late and improve the result of existing algorithm. The task
is to recognize 21 classes of objects from MSRC database
using Ada-Boost classifiers and the appearance features are
based on the work of Gould et al [9]. For each superpixel
s;, we construct an 83 dimensions feature vector ¢ (s;) to
describe region’s size, location, color, shape and texture
feature.
It specifically includes:

Size and location (1 + 2)
The ratio of area to circumference and inertia moment
(1+2)

e The mean, standard deviation, skewness and kurtosis
statistics of RGB and Lab color space components (4 x
3+3)

e The mean, standard deviation, skewness and kurtosis
statistics of texture feature drawn from 13 filters
responses (4 x 13)

In addition, we add the weighted mean of adjacent
superpixels’ feature vector to each superpixel as (9),

dos;eNsy | Si 1-0(S))

&)
Ysenn | 7]

where N'(s)) = {SjI(si,S;) € e(D)} is the set of
superpixels which are adjacent to s; and | S; | is the area of
superpixel S;. We train a one-vs-all Ada-Boost classifier o/
(¢’ is the class of object) for each object and then normalize

Table 1 Comparison of runtime among state-of-art superpixels

Superpixels' Number

Fig.8 Time consumption per image of eleven superpixel segmentation
algorithms against number of superpixels on Berkeley image
segmentation database. Minstpixel takes less than 0.5s at any number
of superpixels

over all classifiers to get the probability P(c; = ¢’ | s;,7)
as (10)

exp{oc (si)}

Pl =clsiD =5 o e

(10)

where o, is the Ada-Boost classifier for class c. Finally, let
¢; = argmax P(¢; = ¢’ | s;,7), then ¢; is the class of
C/
superpixel s;.
Compared with the original method, the accuracy is
increased by 1.8% and the running time is reduced by 99%,

as show in Table 2.
4.6 Discussion and analysis

We can draw many meaningful conclusions from exper-
iment results. Firstly, none of superpixel segmentation
algorithms can really defeat all other algorithms compre-
hensively. Each algorithm is a compromise between perfor-
mance and time consumption. The increase in performance
is usually accompanied by decrease in efficiency or other
properties. When performance reaches a certain level, time
consumption will increase exponentially. For instance, ERS
leads minstpixel by 1% in performance but ERS spends 10
times than minstpixel. Secondly, whether a superpixel is

Superpixel ERS SLIC Quick Shift FH SEEDS Watershed Ncuts Minstpixel
Complexity O (m? logm) O (m) 0(m?) O(mlogm) O(m) O (m) O(m%) O(mlogm)
Average time 1.37s 0.361s 4.67s 0.103s 0.526s 0.0167s 105.3s 0.205s

The numbers in first line show the theoretical computational complexity and m is the number of pixels in the image. The second line is the actual
average time per image on Berkeley image segmentation database for k = 400
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Table 2 Object class recognition for various superpixel methods

ERS SLIC Quick Shift SEEDS Watershed Origin Minstpixel
Accuracy 79.8% 77.1% 62.0% 74.6% 72.% 60.3% 75.5% 77.3%
Average time 3.06s 1.05s 5.59s 0.912s 1.23s 0.727s 106s 0.915s

good or bad should be judged based on a specific scene. For
example, ERS is good at dealing with the demand for high
accuracy, SLIC is good at dealing with the demand for regu-
lar shape and WS is skilled at dealing with real time scenes.
Finally, all things considered, minstpixel has reached the
level of state-of-art algorithms, although minstpixel can not
comprehensively defect all other algorithms.

5 Conclusions

We have presented a novel superpixel segmentation algo-
rithm called minstpixel, which produces compact and regular
shaped superpixels with high accuracy, low time complexity
and simple implementation. To generate high quality super-
pixels, minstpixel firstly proposes an energy functional based
on minimal spanning tree and the initialization strategy.
Then, minstpixel optimizes the energy functional by picking
out the specific edge at each iteration. Additionally, we
prove that the optimization algorithm can produce exactly
the global optimum of the energy functional. Both theory
and practice suggest that minstpixel is reasonable and
practicable. Certainly, minstpixel is not perfect and may be
improved by multi-scale mutual information [37-39].

e Similarity measure for single superpixel D(s;) in
energy functional (4) depends on the size of superpixel.
It causes the superpixel size to be nonuniform. Usually
it isn’t a serious implication, since the constraint
condition that each superpixel has one and only one
seed point to fill this gap to a certain extent.

e Energy functional (4) has multiple optimal solutions
but algorithm 1 can only find one. It means that there
may be some better solutions which are neglected by
algorithm 1.
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Appendix

This section prepares an proof for the global optimality of the
algorithm 1. Proposition 1 and proposition 2 demonstrate
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that the segmentation S generated by algorithm 1 is a valid
superpixel segmentation. Proposition 3 demonstrates that
algorithm 1 will always converge to the optimum of (4).

Proposition 1 There is one and only one seed point in each
connected component produced by algorithm 1.

Proof On the one hand, the number of seed points in each
component is less than 2 (1 or 0) according to the step
3 of algorithm 1. On the other hand, we suppose that
in segmentation S there exists one connected component
¢; without seed points, then the number of connected
components of segmentation is greater than k. There
is a contradiction between assumption and termination
condition of algorithm 1. So, the number of seed points in
each component cannot be other except 1. U

Proposition 2 Each connected component produced by
algorithm 1 is a minimum spanning tree.

Proof Let G(V, &) be an input graph, G(V, A) is the
segmentation result produced by algorithm 1, ¢;(v;, a;) is
the ith connected component of graph (V, A)ie.|J; vi =V
and |J; a; = A. Obviously, if we remove an edge e ¢ A from
graph (V, £), then the segmentation result (), A) produced
by algorithm 1 remains the same. Now, we build a graph
V', &) from graph (V, £) by removing all edges e(v1, v2)
satisfying v1 € ¢;, v2 € ¢j and ¢; # c;. Suppose that
(V', A) is the segmentation result produced by algorithm 1
on graph (V', £), ¢} (v}, a;) is the ith connected component
of graph (V', A') i.e. |J; v; = V' and | J; a; = A’. Graph
(V, A) and graph (V’, A’) is identical because all removed
edges don’t belong to A, and then each ¢; is identical to the
corresponding ;. On the other side, the process of algorithm
1 for graph (V', &) is perfectly equivalent to the process
of Kruskal algorithm for every c; [40]. So, each connected
component ¢; is a minimum spanning tree, and then each c;
is also a minimum spanning tree. O

Proposition 3 The algorithm 1 can converge to the global
minimum point.

Proof We define proposition P : If A is the set of edges
chosen at any stage of the algorithm 1, then there are some
optimal segmentations that contain .A. Clearly, proposition
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3 is equivalent to proposition P. We show that proposition
P is true by induction.

1.

Clearly, P is true at the beginning, when A is empty:
any optimal segmentation will do, and there exists
one because a weighted connected graph always has
some segmentation satisfying the constraint condition
of energy functional (4).

Now assume that P is true for a non-final edge set A
and let S be an optimal segmentation that contains .A.
If the next chosen edge e is also in S, then P is true for
A + e. Otherwise, S + ¢ has a cycle C or leads to a
superpixel which contains two seed points p; and p;.

e If, S+ e has acycle C and there is another edge f
that is in C but not .A. (If there were no such edge
f, then e could not have been added to A, since
doing so would have created the cycle C.) Then
S — f + e is a valid superpixel segmentation, and
it has the same weight as S, since S has minimum
weight and the weight of f cannot be less than the
weight of e, otherwise the algorithm 1 would have
chosen f instead of e. So S — f + e is a minimum
spanning tree containing .4 4 e and again, P holds.

e If, S + e leads to a superpixel contains two seed
points p; and p;. In other words, there is a path
between p; and p; and there is another edge f that
is in path p p> but not A. Then S — f + ¢ is a valid
superpixel segmentation, and it has the same weight
as S, since S has minimum weight and the weight
of f cannot be less than the weight of e, otherwise
the algorithm 1 would have chosen f instead of e.
So & — f +e is a minimum spanning tree containing
A + e and again, P holds.

3. Therefore, by the principle of induction, P holds when

A has become a valid segmentation, which is possible
only if A is a optimal superpixel segmentation itself.

O
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