
Applied Intelligence (2018) 48:4317–4337
https://doi.org/10.1007/s10489-018-1197-z

Explicit memory based ABC with a clustering strategy for updating
and retrieval of memory in dynamic environments

Hamid Parvin1,2 · Samad Nejatian3,4 ·Majid Mohamadpour4,5

Published online: 9 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The Artificial Bee Colony (ABC) algorithm is considered as one of the swarm intelligence optimization algorithms. It has
been extensively used for the applications of static type. Many practical and real-world applications, nevertheless, are of
dynamic type. Thus, it is needed to employ some optimization algorithms that could solve this group of the problems that
are of dynamic type. Dynamic optimization problems in which change(s) may occur through the time are tougher to face
than static optimization problems. In this paper, an approach based on the ABC algorithm enriched with explicit memory
and population clustering scheme, for solving dynamic optimization problems is proposed. The proposed algorithm uses the
explicit memory to store the aging best solutions and employs clustering for preserving diversity in the population. Using
the aging best solutions and keeping the diversity in population of the candidate solutions in the environment help speed-up
the convergence of the algorithm. The proposed approach has been tested on Moving Peaks Benchmark. The Moving Peaks
Benchmark is a suitable function for testing optimization algorithms and it is considered as one of the best representative
of dynamic environments. The experimental study on the Moving Peaks Benchmark shows that the proposed approach is
superior to several other well-known and state-of-the-art algorithms in dynamic environments.

Keywords Swarm intelligence · Optimization · Dynamic environment · Artificial bee colony · Explicit memory ·
Moving peaks benchmark

1 Introduction

In recent years, evolutionary algorithms have attracted
much interest among researchers for solving dynamic
optimization problems [52–54]. An evolutionary algorithm
suitable for dynamic optimization problems should not only
be able to locate the optimum, as it does in the static

� Samad Nejatian
nejatian@iauyasooj.ac.ir

1 Department of Computer Engineering, Nourabad Mamasani
Branch, Islamic Azad University, Nourabad Mamasani, Iran

2 Young Researchers and Elite Club, Nourabad Mamasani
Branch, Islamic Azad University, Nourabad Mamasani, Iran

3 Department of Electrical Engineering, Yasooj Branch,
Islamic Azad University, Yasooj, Iran

4 Young Researchers and Elite Club, Yasooj Branch,
Islamic Azad University, Yasooj, Iran

5 Department of Computer Engineering, Yasooj Branch,
Islamic Azad University, Yasooj, Iran

optimization problems, but also be capable of detecting the
time when the changes in the positions of optima occur
and also tracking the newly relocated optima. In the static
environments for the reason that optima are not moved in the
environment and each of them remains in a fixed position
passing the time, it is easy for evolutionary algorithms to
find the global optimum, but in an environment that the
optima are subject to change it is not an easy task to find
the global optimum following every change that occurs
in the environment. Thus strong heuristic mechanisms
are needed to solve dynamic optimization problems. One
of the weaknesses in evolutionary algorithms for solving
dynamic optimization problems is that they can’t single-
handedly solve them. Thus, they should employ a number
of appropriate strategies that make them able to manage
dynamic optimization problems. One proper strategy for
dynamic environments is to use a combination of some
auxiliary elements; for example, using of the memory
element in evolutionary algorithms can be very useful.
Some of these auxiliary elements are presented in [1–3]. The
main weakness of using Standard Evolutionary Algorithms
in a dynamic environment is that, once the algorithm starts

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1197-z&domain=pdf
mailto: nejatian@iauyasooj.ac.ir

4318 H. Parvin et al.

to converge around some optimal or near optimal solution,
it will likely lose its ability to continue the search for
new optima, when the environment changes. Thus, one
key point in optima tracking approaches is the need for
increasing or maintaining diversity among the individuals
in the population, so that the algorithm keeps its ability
to explore the new optima when the environments change,
even after the population has incompletely converged to an
optimum, i.e. the candidate solutions have become close to
the optimal solution. This paper involves a comprehensive
experimental study based on the Moving Peaks Benchmark
(MPB) problem [25]. In order to show whether the
proposed technique effects on increasing convergence
speed, the examinations will be conducted on MPB.
We compare the performance of the proposed approach
with other well-known and state-of-the-art approaches in
dynamic environments. Other algorithms selected to be
compared with the proposed approach are the state-of-the-
art algorithms that most of the researchers use as their
competent methods.

The contributions of the paper are as follows:

1. Introducing an explicit memory based artificial bee
colony algorithm for dynamic optimization,

2. Introducing a new mechanism suitable for diversity
preserving in the proposed dynamic optimization
algorithm based on an innovative updating-retrieving
mechanism using clustering of the population,

3. Huge experimental study on tuning the proposed
dynamic optimization algorithm’s parameters.

The second one is a vital contribution. Indeed, through
it we help memory usage be more goal-oriented. One
of the most important goals of memory usage has been
injecting diversity in the population after convergence of
the algorithm. Through the second contribution, this is
maximally satisfied. It is due to the clustering concept.
Indeed, through clustering of population and letting only
exchange occurrence in a cluster guarantees the diversity
in the population; while through clustering of memory and
letting only exchange occurrence in a cluster guarantees the
diversity in the memory.

This paper is organized as follows. Section 1 is
introduction. Section 2 is dedicated to memory definition
and its strategies for updating and retrieving in the
optimization algorithms. Section 3 includes backgrounds,
i.e. the ABC algorithm and paper definitions. Section 4
presents related work. The proposed method is presented
in sufficient detail in Section 5 along with its algorithmic
Pseudo code. Section 6 first presents MPB problem. Then
experimental results and their analysis have been presented
in the rest of Section 6. Finally, the paper is concluded in
Section 7 with a discussion on the possible future work of
the research.

2Memory types in dynamic environments

In dynamic environments,memory is applied to saveoutstanding
past solutions with the assumption that the optimummay return
to its previous point.When certain aspects of theproblempresent
some variety of periodic behavior, old solutions might be
used to bias the search in their vicinity and consequently
the computational time is reduced. The use of memory is
beneficial on those types of environments. Memory based
approaches can be divided in two categories. The first one
is implicit memory and the second one is explicit memory.

2.1 Implicit memory

The usage of redundant representations is the main character-
istic of the implicit memory methods. Memory implicit are
divided into two groups: (a) double memory and (b) diploid
memory. Diploid memory representations have been first
used by Goldberg et al. [10]. The diploid implicit memory
functions have been described in detail at [11]. Other works
using implicit memory based on diploid representations and
dominance mechanisms can be found in [12–16].

2.2 Explicit memory

Using explicit memory for the storage of useful environmental
information is in contrast to using implicit memory that even
additional information is also reserved. Here only useful
information is to be reserved (Fig. 1). Yang [17] has divided
explicit memory approaches into two main categories: (a)
direct memory and [18, 19] (b) associative memory [20, 21].

2.3 Updatingmemory

To replace the members of population in the memory,
different strategies have been proposed, some of which that
are discussed in [22] are presented here:

Strategy 1: In this strategy, two individuals in memory
with the least distance (the closest similarity) are selected
and among the two, the individual with lower efficiency
becomes the candidate for replacement. For example, if
fit(i) is the efficiency of the ith individual and fit(j) is the
efficiency of the jth individual, if fit(i)< fit(j), then the ith

Memory

Implicit
Diploid

Dualism

Explicit
Direct

Associa�ve

Fig. 1 Taxonomy of memory schemes for dynamic environments

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4319

individual in memory is replaced by the best individual
in the population and vice versa.

Strategy 2: If f it (j) × dij

dmax
≤ f it (new), then the jth

individual in thememorywill be replaced by the current ind-
ividual. In this equation fit(j) is the individual efficiency of
the jth person in thememory and dij is the distance between
two individuals i and j and dmax is the maximum
distance between any arbitrary pair of individuals.

Strategy 3: This strategy is known as similarity strategy
in which the most similar individual is replaced by the
best available individual in the population in the memory,
provided that this individual has more efficiency than the
individual in memory. In order to measure the similarity,
Euclidean distance can be employed. Euclidean distance
between ith and jth individuals, denoted by d(i, j),

is calculated according to equation
√∑D

d=1(x
d
i − xd

j)2.
In this strategy, the best individual of the population,
denoted by βpop, is nominated for being placed into the
memory. Then the most similar individual in the memory
with that βpop, denoted by αβpop , is replaced by βpop if
f (αβpop) ≤ f (βpop).

2.4 Memory retrieval

The information stored in memory should be used for
tracking of the optimum when optima are relocated. So
the best time to retrieve data from memory is the moment
when the environment is changed. Several strategies can be
adopted to retrieve information from memory. One of the
methods of memory information retrieval is to select the
best individual in the memory then to replace it with the
worst individual in the population [23].

3 Backgrounds

3.1 Artificial bee colony

In recent years a growing interest has been created in the field of
swarm intelligence in dynamic optimization problems accord-
ing to their importance in the real world. The collective
intelligence is an almost new field of research focused on
studying and modeling the behavior of social insects such
as bees. Artificial bee colony algorithm [24] simulates an
inquisitive and intelligent behavior of a set of bees. Artifi-
cial bee algorithm consists of six essential steps. These steps
are briefly described in the following subsection.

3.1.1 ABC steps

Step (1) Initialization of the artificial bee colony algorithm
parameters and the optimization problem parameters.

In general, optimization problem can be formulated
based on (1)

argmin
x

f(x)

s. t. xi ∈ Xi

g(x) < 0

h(x) = 0 (1)

In (1), f (x) is the objective function that should be
minimized. Each x is a set of decision variables (a bee)
that {xi ∈ Xi |i = 1, . . . , N}. Xi is the possible range for
ith decision variable. It means that X = {X1, X2, . . . , XN }
and Xi ∈ (LBi, UBi) where LBi and UBi are the lower
bound and upper bound of the ith decision variable Xi . N

is the number of decision variables (the number of features)
and g(x) and h(x) are the equality and inequality relations
respectively. Artificial bee colony algorithm includes three
other parameters as well. These parameters include:

(A): Parameter SN, which is the number of food sources
(solutions) in the population. SN is equal to the
number of employee bees.

(B): The maximum cycle parameter for algorithm is
denoted by MCN, which stands for the maximum
number of generations that algorithm is permitted to
proceed.

(C): Limit parameter is the frequency of motion of a bee
to a position without improvement. This parameter is
used to explore the food sources (solutions). If the
frequency of motion of a bee to a position without
improvement is more than the limit parameter, the
bee considers that position as a deserted position.

Step (2): Creation of food source memory.

Food Source Memory (FSM) consists of a SN × N

matrix. In each row of FSM, location of a food source is
assumed. The FSM is created based on the (2). Vectors
are arranged according to the adjacent cost equation in an
upside trend.

FSM =
⎡
⎢⎣
X1(1) X1(2) · · · X1(N) f(X1)

...
. . .

...
...

XSN(1) XSN(2) · · · XSN(N) f(XSN)

⎤
⎥⎦ (2)

Generally any xj (i) (the position of jth bee in ith dimension)
is generated as (3).

xj (i) = LBi + (UBi − LBi) × r

∀j ∈ (1, 2, . . . , SN),∀i ∈ (1, 2, . . . , N) (3)

where, r is a random number generated from uniform
distribution in the closed range from 0 to 1 (r ∈ [0, 1]). f(xi)
indicates the fitness of xi ; i.e. ith bee.

Step (3): Allocation of employee bees to food sources.

4320 H. Parvin et al.

Step (4): Sending the onlooker bees.

Onlooker bee phase includes three following phases.

1) Assigning a probability to each employee bee indi-
cating probability of its selection (for exploring the
environment around it) according to (5).

Pj = f (xj)∑SN
k=1f (xk)

(5)

2) Employing the probability that an employee bee is selected
by an onlooker bee is based on (5). This is done in fact by
a roulette wheel; i.e. the higher probability of a position
leads to the higher possibility of being selected.

Algorithm 1 Employed bee phase

1.

2. for 1 do
3.

4.

5.

6.

7.

8. if then
9. and
10. end if
11. end for

Form (1): The pseudo code of the employee bee phase

Step (5): Sending the scout bees to search for new food
sources.

3) Every onlooker bee randomly selects an employee bee
and moves toward it. So each bee finds a new position
after a move toward a randomly selected employee bee.
If the efficiency of the new position is higher than the
efficiency of its previous position, the bee selects to
stay at the new position and resets its non-improvement
counter; otherwise it returns to the previous position
and adds one unit to its non-improvement counter.
Non-improvement counter shows how many successive

trials have been failed to find a better position by an
onlooker bee. In other words, the non-improvement
counter counts the number of consecutive movements
of the bee with no improvement. The bee modifies its
new position based on (4). If non-improvement counter
of an onlooker bee exceeds a specified limit right after
the onlooker bee fails to improve its position; it means
that the food source has no nectar and that position
should be abandoned. Pseudo code of the onlooker bee
is based on Algorithm 2. In this pseudo code sum prob

is the cumulative probability of the employee bees
being selected by onlooker bees.

Algorithm 2 Onlooker bee phase

1.

2. for 1 do
3. sum prob 0

4. RandomNumberFrom
5. 0

6. while sum prob r do
7. 1

8. 1

9. end while
10. RandomSelectFrom 1 2

11. RandomSelectFrom 1 2

12.

13.

14.

15. and
16.

17. scout scout 1

18. end if
19. end for

Form (2): The pseudo code of the onlooker bee phase

The bee that is responsible to find new solutions in the
search environment is the scout bee. This bee moves in
search space randomly to explore new areas. These bees
must replace the found abandoned food sources with new
food sources with random search according to (3). Pseudo
code related to scout bee phase is presented in Algorithm 3.

Algorithm 3 Scout bee phase

1. for 1 do
2. if scout Limit then
3. generate using (3)
4. scout 0

5. end if
6. end for

Form (3): The pseudo code related to the scout bee phase

At this stage, any employee bee moves into the food
sources randomly and calculates the suitability of a position.
Each bee chooses a neighbor randomly and moves toward
it. The employee bee modifies its new position based on (4).

xnew
j (i) = xold

j (i) + r × (xold
j (i) − xold

k (i))

∃k ∈ (1, 2, . . . , SN), k �= j and r ∈ [−1, 1] (4)

In (4), xj (i) is the position of jth bee in the ith dimension
and xk(i) stands for a neighbor bee position. Parameter r is
a random number generated from uniform distribution in the
closed range from − 1 to 1 (r ∈ [−1, 1]). The pseudo code
of the employee bee is presented in Algorithm 1.

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4321

Step (6): Save the best food source.

In this step the best food source position denoted by
best x is stored in memory of food sources. The pseudo
code related to artificial bee colony algorithm is based on
Algorithm 4.

Algorithm 4 Artificial bee colony algorithm (Popfunction)

Input:
Algorithm parameters: N, SN, D, MCN, Limit, LB, UB
Output:
BEST Solution, BEST Fitness

1. Begin
% initialization%

2. Initialize solution population by (3)
% Evaluate population%

3. For 1 to SN
4.

5. End For
6. cycle 1

Repeat:
% employ bee phase%

7. For
8. Producenewsolutions foremploybeeby (4)
9. Apply the greedy selection process
10. End For
11. Apply the ranking evaluation bees

% end of employ bee phase%
% Onlooker bee phase%

12. For 1

13. sharing the entire solutions between employ bees and
onlooker bees

14. select a solution with roulette wheel strategy by (5) and
name it k

15. Produce new solutions for onlooker bees by (4)
16. Apply the greedy selection process
17. End For

% end of onlooker bee phase%
% scout bee phase%

18. if Trial Limit then
19. replace the solution with a new randomly produced

solution x by (3)
% end of scout bee phase%

20. Save in memory the best solution so far
21. cycle cycle 1

22. Until cycle MCN
23. End

Form (4): The pseudo code related to the ABC algorithm

3.2 Dynamic and static environment definitions

A dynamic environment is the one that changes over time.
We follow this subsection by presenting the definitions of
some keywords.

Dynamic environments are the ones that change contin-
uously or discretely over time. These changes can be in
large scale. Among the cases that may happen, the change
in parameter values over time is considered. Consequently,
after each environmental change, the problem optima have
probably been subject to change. One of the most complete
simulations of the dynamic environments is Moving Peaks
Benchmark that possesses almost all features of a real-world
dynamic environment. Indeed, a problem is considered as
a dynamic one if its objective function is subject to change
over time.

If the objective function is not a function of time, then
it can be considered as a static objective function. For
example, the problem of finding the shortest path in a graph
is a static problem, while by adding the online traffic of
paths to the problem, it will be a dynamic one.

Moment of environment change The moment in which the
environment changes (optimization function changes) is
called the moment of environment change (or the cycle of
environment change) and is denoted byMEC.

One of the challenges in dynamic environments is to
detect the moment of change. We need to identify the
moment of change in the environment after it is occurred,
because after a change in the environment a re-evaluation
for all individuals (artificial bees) is needed. To detect an
environment change, the algorithm computes the average
fitness values of all artificial bees in a generation is more
than the average fitness values of all artificial bees in the
previous generation.

This strategy is used to identify the moment of change.
Equation (6) presents a condition when it holds, then we
can assume the change has been occurred. If f (xnew

j)

presents the efficiency of the jth bee in current generation
(after the change) and f (xold

j) presents the efficiency of
jth bee in previous generation (before the change), then (6)
indicates the condition in where environment change has
been occurred.
∑SN

j=1f (xnew
j)

SN
≥

∑SN
j=1f (xold

j)

SN
(6)

Colony error The error of a colony xt (xt shows colony
at the t th function evaluation), denoted by E(xt , ft (�p)), is
defined in (7) by fitness function ft (�p)where �p is a position

4322 H. Parvin et al.

in the landscape of fitness function ft . The fitness function
ft is a function that is defined at t th function evaluation
(it is very important to note that except in the environment
change moment, τ , fτ �≡ fτ−1. In other words, fτ ≡ fτ−1

is always a valid sentence provided that τ isn’t environment
change moment).

E(xt , ft (�p)) = ft (p
∗
t) − max

j=1:SN
(ft (

−→
xj)) (7)

where p∗
t is the optimal position in the landscape of fitness

function ft (�p) (which is not available).

OfflineError To measure the effectiveness of an evolution-
ary algorithm in a dynamic environment, we use a measure
called offline error denoted by OffLineError. OffLineError
is obtained by (8).

OffLineError(π) = 1

π

∑π

t=1
E(xt , ft (�p)) (8)

where, π equals the number of fitness evaluations that have
been completed.

4 Related work

In recent years, several methods have been expanded for
solving dynamic optimization problems with the aim of
increasing and maintaining diversity as the generations
go forward during the entire run [4–6]. Ramsey and
Grefenstette [7] have introduced a case-based method for
initializing the genetic algorithm when a change is detected.
Louis and Xu [8] have applied the same idea to the open
shop scheduling problem. They have used an Evolutionary
Algorithm combined with case-based reasoning. Yang
et al. [9] have used a hybrid immigrant scheme. This
method has combined the concepts of elitism, dualism and
random immigrants. The best individual from the previous
generation and its dual individual are retrieved in order
to create immigrants via mutation. These elitism-based
and dualism based immigrants together with some random
immigrants were substituted into the current population,
replacing the worst individuals in the population.

A cellular automata-based artificial immune system
optimization algorithm has been proposed for dealing with
dynamic environments [47]. The cellular automaton has
been used as a diversity generator in population.

Xin et al. have used a self-adaptive mechanism for
the determination of transfer rate in using immigrants in
population to increase the diversity in the population. By
the mentioned strategy, they have proposed a dynamic
optimization algorithm [48].

In another work, a hybrid optimization algorithm has
been proposed based on combining the artificial bee colony
optimization algorithm and the particle swarm optimization

algorithm. The main foundation of the algorithm is the
artificial bee colony optimization algorithmwhere their bees
have been improved by the particle swarm optimization
algorithm. A cellular automaton has been employed to
increase the diversity in the population [49].

A method called DMGA is an evolutionary algorithm
that uses an explicit memory as a diversity generator in
population [50]. The memory size is m = 0.1 × n where it
is randomly initiated. In updating memory step, the memory
individual that is the most similar to the best individual
in the population is replaced the best individual in the
population. The updating times are random. In DMGA, the
fitness function values of all memory individuals should be
reevaluated after each environmental change. If the change
occurs, then from all population and memory individuals, a
subset of 0.9 × n individuals should be selected as the new
population, but the memory should not be changed.

The artificial fish swarm algorithm has been modified
by Yazdani et al. to become suitable for solving dynamic
environment optimization problems [51]. The Dynamic
Modified Artificial Fish Swarm Algorithm (DMAFSA)
is modified parameters, behaviors and procedure of the
standard AFSA so as to solve dynamic optimization
problems.

Mohamadpour et al. [46] have proposed a memory-based
approach for solving dynamic environment optimization
problems. In their method, the chaotic genetic algorithm
based on explicit memory has been employed. They also
have proposed a suitable approach for memory updating.

5 Proposed algorithm

The most important challenge for a dynamic method in
dealing with dynamic environments is how the method
accomplishes the self-adaptation to the new (changed) envi-
ronment. Therefore, it should track all local optima in its
evolution so as to find them as soon as possible if the
environment changes. To deal with the mentioned chal-
lenge, researchers have tried to improve the evolutionary
and swarm intelligence algorithms by adding some spe-
cial mechanisms. From another perspective, the dynamic
algorithm should be (a) fast and (b) accurate. The artifi-
cial bee colony optimization algorithm is one of the swarm
intelligence algorithms that has both high convergence rate
and high capability of local search. The ABC optimization
algorithm has been effectively used for solving the static
optimization problems.

In this paper, a new method based on the ABC
optimization algorithm has been proposed for solving
dynamic optimization problems. It has been proved that
the simple ABC optimization algorithm is unable to solve
these problems [46, 49]. Therefore, the proposed ABC

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4323

optimization algorithm has been enriched by a memory
mechanism and an updating strategy. One important feature
of all optimization algorithms is they can converge to the
optimal solution after some iterations and consequently they
lose their diversity. Therefore, these methods without some
improvements are unable to re-search the problem space
after an environmental change in order to find the new
optimal solution. Therefore, it is safe to acclaim that they
are unable to appropriately solve the dynamic optimization
problems. Therefore, the proposed method, as it is presented
in the flowchart of Fig. 2, uses some new improvements in
the ABC optimization algorithm.

5.1 Artificial bee colony algorithm based
on clustering andmemory

In this article we have proposed an Artificial Bee Colony
algorithm based on Clustering and Memory (ABCCM)

Yes

Start

Initialize main population and memory

Fitness evaluation for main population and
memory

Update memory

Change
environment?

Clustering population and memory

Memory retrieval

Stop criteria?

End

Yes

No

No

Fig. 2 Describing the proposed method by flowchart

for dynamic environments. In this method, we employ an
explicit memory to store the previously found optimum
solutions with the aim of benefiting from them in the new
environment at the change moment. Because in a dynamic
environment there are cyclic behaviors, it is probable for
a previous optimum which has been appeared in a past
generation, to be a good solution in current generation.

Employment of a memory raises seven prob-
lems/questions (including four challenging problems and
three approximately easy problems) to be managed. The
three approximately easy problems are: (Q1) “When should
we update the memory?”, (Q2) “How many individuals
(bees) should be swapped between population (colony) and
memory when it is decided to update population (colony)
and memory? (either from population to memory or vice
versa)”, and (Q3) “When should we update population
(colony) from the memory?”. The four challenging prob-
lems are: (Q4) “Which individual(s) (bee(s)) of population
(colony) should be selected to be placed in memory when it
is decided to update the memory?”, (Q5) “Which element(s)
of memory should be removed when it is decided to update
the memory?”, (Q6) “Which element(s) of memory should
be selected to be placed in population (colony) when it is
decided to update the population (colony) from the mem-
ory?”, and finally (Q7) “Which individual(s) (bee(s)) of
population (colony) should be removed when it is decided
to update population (colony) from the memory?”.

So employment of a memory can be useful. Before we
go forward, we define some keywords.

Memory updating time The moment that memory is
updated from population is named Memory Updating Time
(MUT) throughout all this paper.

Population element to be saved in memory A population
(colony) element that is needed to be saved in memory at
MUT is named a Population Element to be saved in Memory
(PEM) throughout all this paper. It is very important to note
that it is possible that there is more than one individual that
is of type PEM. If kth individual is of type PEM, we will
show it by xk ∈ PEM where xk indicates kth population
individual.

Element to be deleted from memory An element that is
needed to be deleted from memory at MUT is named an
Element to be deleted fromMemory (EM) throughout all this
paper. It is very important to note that it is possible that there
is more than one memory individual that is of type EM. If
kth memory individual is of type EM, we will show it by
memk ∈ EM wherememk indicates kth memory individual.

Number of individuals transferred from population to
memory The number of individuals (bees) that are needed

4324 H. Parvin et al.

to be transferred from population (colony) into memory
at MUT is named Number of individuals transferred from
Population to Memory (NPM) throughout all this paper.

Updated size The NPM is also named Updated Size (UdS)
throughout all this paper.

Population updating time The moment that population
(colony) is updated from memory is named Population
Updating Time (PUT) throughout all this paper.

Number of individuals transferred from memory to popula-
tion The number of individuals (bees) that are needed to be
transferred from memory into population (colony) at PUT
is named Number of individuals transferred from Memory
to Population (NMP) throughout all this paper.

Updating size The NMP is also namedUpdating Size (UgS)
throughout all this paper.

Memory element to be saved in population A memory
element that is needed to be saved in population (colony) at
PUT is named Memory Element to be saved in Population
(MEP) throughout all this paper. It is very important to note
that it is possible that there is more than one individual that
is of type MEP. If kth individual is of type MEP, we will
show it by xk ∈ MEP .

Element to be deleted from population An element that
is needed to be deleted from population (colony) at PUT
is named an Element to be deleted from Population (EP)
throughout all this paper. It is very important to note that it
is possible that there is more than one population individual
that is of type EP. If kth memory individual is of type
EP, we will show it by xk ∈ EP where xk indicates kth
population individual.

Cluster inmemory A number of memory individuals (bees)
that are similar to each other and construct a concentrated
group are considered as a Cluster in Memory (CM)
throughout all this paper. Indeed a CM is a set containing a
number of similar individuals in memory.

Cluster in population A number of population (or colony)
individuals (or bees) that are similar to each other and
construct a concentrated group are considered as a Cluster
in Population (CP) throughout all this paper. Indeed a
CP is a set containing a number of similar individuals in
population (colony).

Cluster size in memory The number of clusters defined
in the memory is named Cluster Size in Memory (CSM)
throughout all this paper.

Cluster size in population The number of clusters defined in
the population (colony) is named Cluster Size in Population
(CSP) throughout all this paper.

Cluster center in memory Each cluster defined in the
memory has a central assumptive element that is named
Cluster Center in Memory (CCM) throughout all the paper.
The j th feature of ith CM is denoted by CCMi (j) and is
defined according to (9).

CCMi(j) = 1

|CMi |
∑

memk∈CMi

memk(j) (9)

where CMi is ith Cluster in Memory, |CMi | is the number
of memory individuals (bees) in the ith Cluster in Memory,
and memk is kth memory individual.

Cluster center in population (colony) Each cluster defined
in the population (colony) has a central assumptive
element that is named Cluster Center in Population (CCP)
throughout all the paper. The j th feature of ith CP is
denoted by CCPi (j) and is defined according to (10).

CCMi(j) = 1

|CPi |
∑

xk∈CPi

xk(j) (10)

where CPi is ith Cluster in Population, |CPi | is the number
of population individuals in the ith Cluster in Population,
and xk is kth population individual.

All of the seven questions mentioned above should be
responded in a right manner. If we don’t control the above
questions properly, it will be highly likely that the memory
usage is more harmful than useful. Now we answer seven
questions respectively.

(A1) Assume MUT i be ith MUT. The first MUT is
assumed to be zero at cycle zero; i.e. MUT0 = 0. Also
assume ϑi be equal to MUT i+1 − MUT i . The ϑi is also a
random integer number between [Lϑ , Uϑ]. So for obtaining
MUT i+1, we first compute ϑi and then add it to MUT i ; as
presented in (11).

MUTi+1 = MUTi + ϑi (11)

(A2) both UdS and UgS are to set by user as two parameters
of algorithm throughout all the paper.

(A3) PUT is always done at the time ofMEC throughout
all the paper. It is assumed when environment changes, the
population needs to be updated.

(A4) When it is decided to update memory, we should
first of all select UdS individuals (it is worthy to mention
thatUdS is set by user, so in eachMUT onlyUdS individuals
are chosen) in the population that can be transformed
to memory. All PEMs should be chosen in such a way
that two constraints are satisfied. (1) Qualities of memory

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4325

individuals (bees) should be as high as possible, and (2)
Diversity among memory individuals (bees) should be
guaranteed.

To satisfy constraint (2), the proposed algorithm first
assumes that each population individual is a data sample
and each dimension is a feature; so we have a dataset. A
fast clustering algorithm partitions data samples (population
individuals) into CSP clusters, where CSP = UdS. The
proposed algorithm chooses one population individual per
each cluster. The proposed algorithm chooses as an PEM
individual for that cluster, the population individual that
have the most quality among individuals of that cluster. By
selecting the best individual in each cluster, the proposed
algorithm guarantees constraint (1).

(A5) When it is decided to update memory and after
making the clustering of population individuals, in the
second phase we should select UdS memory individuals
that can be removed (they should be replaced with PEM
individuals). All EM individuals should be chosen in such
a way that the two constraints mentioned in (A4) are
guaranteed to be satisfied. To satisfy constraint (1), the
proposed algorithm considers each memory individual as
a data sample and each dimension as a feature; so we
have a dataset again; we initially place each data sample
in a cluster produced in population, i.e. we cluster data
samples. The memi is placed in the j th cluster if we have
∀k : {1, 2, . . . , UdS} · |memi − CCPj | ≤ |memi − CCPk|,
where CCPk is the center of kth cluster produced right after
clustering task accomplished on the population individuals
and | · | indicates a norm function (here in the paper |a| =
(
∑p

i=1a
2
i)

0.5). To satisfy constraint (2), the algorithm selects
the worst memory element in each cluster as EM in that
cluster and it should be replaced with PEM individual in that
cluster.

Indeed the algorithm first partitions the population
individuals into CP.

CP Ud
t ={i�∀k : {1, 2, . . . ,UdS} · |popi − CCPt |≤|popi − CCPk |}

(12)

where t ∈ {1, 2, . . . , UdS} and CPUd stands for clustering
of populations individuals when it is wanted to update
memory and CPUd

t stands for its t th cluster. Let BestUd
i =

arg(maxj∈CP Ud
i

f (popj)). Then it places any memory
element in the cluster whose center is the nearest. i.e.

CP Ud
t = {i�∀k : {1, 2, . . . ,UdS} · |memi

−CCPt | ≤ |memi − CCPk|} (13)

Let WorstUd
i = arg(minj∈CMUd

i
f (memj)). Now we have

EMi = memWorstUd
i

and PEMi = popBestUd
i
.

(A6) When it is decided to update population, we should
first of all select UgS memory elements (it is worthy to
mention that UgS is set by user, so in each PUT only
UgS memory elements are chosen) in the memory that
can be transformed to population. All MEPs should be
chosen in such a way that two constraints are satisfied. (1)
Qualities of population individuals (bees) should be as high
as possible, and (2) Diversity among population individuals
(bees) should be guaranteed.

To satisfy constraint (2), the proposed algorithm first
assumes that each memory individual is a data sam-
ple and considers each dimension as a feature; so we
have a dataset. A fast clustering algorithm partitions data
samples (memory elements) into CSM clusters, where
CSM = UgS. The proposed algorithm chooses one mem-
ory individual per each cluster. The proposed algorithm
chooses the memory individual that has the most qual-
ity among individuals of that cluster, as an MEP indi-
vidual for that cluster. By selecting the best individ-
ual in each cluster, the proposed algorithm guarantees
constraint (1).

(A7) When it is decided to update population and after
making the clustering of memory individuals, in the second
phase we should select UgS population individuals that can
be removed (they should be replaced withMEP individuals).
All EP individuals should be chosen in such a way that
the two constraints mentioned in (A4) are guaranteed to be
satisfied. To satisfy constraint (1), the proposed algorithm
considers each population individual as a data sample and
each dimension as a feature; so we have a dataset again;
we initially place each data sample in a cluster produced
over memory individuals, i.e. we cluster data samples.
The popi is placed in the j th cluster if we have ∀k :
{1, 2, . . . ,UgS} · |popi − CCMj | ≤ |popi − CCMk|, where
CCMk is the center of kth cluster produced right after
clustering task accomplished on the memory individuals.
To satisfy constraint (2), the algorithm selects the worst
population element in each cluster as EP in that cluster
and it should be replaced with MEP individual in that
cluster.

Indeed the algorithm first partitions the memory individ-
uals into CM.

CM
Ug
t = {i�∀k : {1, 2, . . . ,UgS}·|memi−CCMt | ≤ |memi−CCMk |}

(14)

where t ∈ {1, 2, . . . , UgS}. Let Best
Ug
i =

arg(max
j∈CM

Ug
i

f (memj)). Then it places any population

element in the cluster whose center is the nearest. i.e.

CP
Ug
t = {i�∀k : {1, 2, . . . ,UgS}·|popi −CCMt | ≤ |popi −CCMk |}

(15)

4326 H. Parvin et al.

Let WorstUg
i = arg(min

j∈CM
Ug
i

f (popj)). Now we have

EPi = pop
WorstUg

i

and MEPi = mem
BestUg

i

.

Algorithm 5 Proposed algorithm

Input: N, SN, D, MCN, Limit, , , mem size
Output: BEST Solution, BEST Fitness, offline error

1. Begin

2. initialize x and mem % is population and mem
is memory population%

3. is fitness for population%
4. is fitness for memory

population%
5. 1

update time =
6. 1

Repeat:

7. update mem:
update mem 0

8. % cx is current
and is ABC algorithm%

9. % fitness for current x%
10. then chang flag 1 % change

detected%
11. % reuse memory%

1- mi

2- is number of
clusters %

3- Select jr 1

Subject to

4-

5- Select

Subject to

6-

12. if update time cycle
then update mem 1

13. cycle cycle 1

14. Until cycle MCN
15. End

Form (5): The pseudo code of the proposed algorithm

One of the main challenges in dynamic environments is
to maintain the diversity when implementing the algorithm
and in this method the diversity has been maintained
stable in the population using clustering of memory and the
population. In this method the memory and the population
in the first phase are initialized. Then memory and the
population are clustered after being initialized based (12)
and (13). Each bee needs to be placed in his cluster
for insertion and retrieval. Clustering is an unsupervised

learning field in which the samples are divided into a series
of clusters as the samples in a cluster are similar and they
are different than the samples in other clusters. There are
many criteria to measure the similarities between any pair
of samples. One of them is Euclidean distance between
the two samples. Similar samples have lower Euclidean
distance and they are placed in a cluster. This clustering is
called distance-based clustering. One of the distance-based
clustering is k-means clustering. In k-means clustering the
center of a cluster is the average amount of data within each
cluster. Then the data are clustered based on the Euclidean
distance to cluster centers. This method in each iteration
improves the inside cluster changes of the model which is
done by estimating the new cluster center in iteration phase.
In this way the data are allocated to different clusters based
on updated average. This work will continue until the center
of the cluster is fixed and the value will remain unchanged
in successive iterations and the clusters are stable. Pseudo-
code of the proposed method is based on Form (5).

As mentioned previously in order to update the memory
an alternative strategy should be used. The pseudo-code of
the update function in the memory is presented in Form (6).
In this pseudo-code it is mentioned that if there are two
similar persons (with the closest distance to each other) exist
in the memory the person with lower efficiency is removed
from the memory and the person with higher efficiency
remains in the memory.

Algorithm 6 memfunction mem x
Inputs: : set of solution in the memory; : new good

solution found.

Outputs: .

function

1. dist and
2. if dist is minimum

if fitness fitness
then is removed from memory
else
is removed from memory

3. end of if
4. s new replaced with worst solution

Form (6): The pseudo code of the memory update

5.2 Descriptions of the proposed algorithm pseudo
code

At the beginning of the algorithm the required parameters
are defined. In Phase 2 the population must be created. To
initialize the population (16) and (17) are used. Initializing

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4327

population for the base and memory population is done
based on (16) and (17).

popj (i) = LBi + rn(UBi − LBi), rn ∈ [0, 1]
∀j ∈ (1, 2, ... , |pop|), ∀i ∈ (1, 2, ... , N)

(16)

memj (i) = LBi + rn(UBi − LBi), rn ∈ [0, 1]
∀j ∈ (1, 2, ... , |mem|), ∀i ∈ (1, 2, ... , N)

(17)

where |mem| and |pop| are memory and population size. In
step 3 and 4 based on efficiency function, competence for
each individual memory is calculated by the base or memory
population. In phase 6 it becomes clear that memory update
is done and a randomized range of rand (5,10). If the
memory update time occurs in cycle iteration then the next
update for memory is in Rand(5,10) + cycle. The algorithm
cycle begins at stage 6. Steps 7 and 8 state the function
of updating for the bees and memory population (in step 8
popfunction(x) is ABC algorithm (algorithm 4)). In step 9
the reassess is performed to calculate the efficiency of the
bees and if the efficiency is changed even for a single bee,
we understand that the environment has changed. Step 11
based on the changes in the environment, the data stored
in the memory should be applied foe the new environment
which is done in 6 various phases as follows:

1. Efficiency is calculated for the base and memory
population.

2. Memory population is clustered.
3. The best person in each cluster of the population is

selected and the best person in this population is the one
who has the best efficiency.

4. The based population is clustered.
5. The worst person in each base population cluster is

selected (the worst individual from each cluster is the
least efficient one).

6. The worst person in each cluster is replaced by the best
individual from each cluster in the base population.

Step 12 indicates that if update time is greater than the
algorithm cycle, we activate update for active memory and
otherwise one unit is added to the cycle and finally when we
get to the cycle stop condition we leave the cycle and reach
the end of algorithm.

Example Figure 3 shows an example that helps to explain
the proposed approach. As it is presented in Fig. 3, the
problem space is divided into three clusters and in each
cluster, the position of the bees is defined by a small star,
the center of cluster is defined by the plus, the position of
the memory is determined by a circle, the center of cluster
of memory population is defined by the square, the center
of each peak is marked by a diamond and the new center of
the peal is marked by a bug star sign. As discussed before
the worst individual of the population is the one who has
the greatest distance from the center of the peak and in fact
it can be said that the worst person has the least efficiency.
If the environment change occurs and the peak center is
changed then the efficiency of the members can be changed.

The closestmemory to the newpeak is considered as the best
memory and this memory after the change and displacement
of the optimum peak can lead members of the population
toward the new peak. The question that arises here is that
how a memory understands is close or far from the new
peak center. In response to this question, we can say that, if
the efficiency of a memory after the change of environment
is increased the memory understands that it is closer to
the peak and if the efficiency is lowered the memory
understands that is far from it. The best individual of the
population is the closest one to the center of the peak center.

Fig. 3 Describing the proposed
method by image

4328 H. Parvin et al.

Fig. 4 The changes in the peaks in MPB function

Table 1 The standard configuration of the parameters for MPB

Parameter Value

peaks (number of peaks) 10

Change frequency (U) 5000

Height severity 7.0

Width severity 1.0

Peak shape Con

Basic function No

Shift length s 1.0

Number of dimensions (D) 5

Correlation coefficient (λ) 0

S [0, 100]

H [30.0, 70.0]

W [1, 12]

I 50.0

6 Tests and results

In order to perform the tests on the proposed algorithm
and its comparison with other algorithms in a dynamic

Table 2 The proposed algorithm parameters

Parameter Value

Lower bound 0

Upper bound 100

Total population 100

Memory Size 10

Number of Food 50

Limit 0.2

Number of main population clusters 2.0

The number of population clusters Momery 2.0

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4329

Table 3 Average Offline Errors
for Different Algorithms on
the MPB with Different Shift
Severities

Algorithm Shift Severity (s)

0 1 2 3 4 5 6

Proposed algorithm 0.0853 0.0995 0.1473 0.8629 0.9933 1.017 1.1096

CPSO [26] 0.465 0.715 0.843 0.911 0.997 1.08 1.23

mQSO [27] 1.17 1.75 2.40 3.0 3.59 4.24 4.79

rSPSO [28] 0.74 1.50 1.87 2.4 2.90 3.25 3.87

ESCA [29] 1.72 1.53 1.57 1.67 1.72 1.78 1.79

CESO [30] 0.58 1.38 1.78 2.03 2.23 2.52 2.74

mCPSO [31] 1.18 2.05 2.80 3.57 4.18 4.89 5.53

SPSO [32] 0.95 2.51 3.78 4.96 2.56 6.76 7.68

CGAR [33] 1.48 2.62 2.76 2.96 3.16 3.46 3.8

CDER [33] 2.56 2.52 7.47 8.62 9.81 10.7 11.4

PSO–CP [34] 0.87 1.31 1.98 2.21 2.61 3.20 3.93

CPSOR [33] 0.418 0.599 0.849 0.964 1.38 1.69 2.07

Bold means the best performance

environment Moving Peaks Benchmark [20] is used to test
the efficiency of the proposed method.

6.1 Moving peaks benchmark problem

MPB problem [25] is a good simulator for simulating the
dynamic environment. This problem includes m peaks in a

dimension space of the size nwith real value parameters and
the heights, widths and positions of peaks may change over
time. MPB function is formulated based on (18):

F(�x, t) = max(B(�x), max
i=1...m

P (�x, hi(t), wi(t), �pi(t)))

(18)

Table 4 Average offline errors
for different algorithms on the
MPB with different numbers of
peaks, where the suggested
configuration for the
framework and the default
settings for the MPB available
in Table 1

Algorithm Peaks number

1 2 5 7 10 20 30 50 100 200

Proposed algorithm 0.0595 0.0645 0.0635 0.0952 0.0995 0.1938 0.1871 0.2842 0.6922 0.5434

CGAR 2.02 1.88 2.56 2.98 2.62 3.66 3.12 3.26 2.68 2.39

CDER 0.903 2.6 8.02 6.74 5.52 7.49 5.51 5.79 4.12 3.71

CPSO 2.29 0.005 0.361 0.675 0.715 1.18 1.34 1.42 1.09 0.955

mCPSO 4.93 3.36 2.07 2.11 2.08 2.64 2.63 2.65 2.49 2.44

mQSO 5.07 3.47 1.81 1.77 1.80 2.42 2.48 2.50 2.26 2.36

mCPSO∗ 4.93 3.36 2.07 2.11 2.05 2.95 3.38 3.68 4.07 3.97

mQSO∗ 5.07 3.47 1.81 1.77 1.75 2.74 3.27 3.65 3.93 3.86

CESO 1.04 − − − 1.38 1.72 1.24 1.45 1.28 −
rSPSO 1.42 1.10 1.04 1.21 1.50 2.20 2.62 2.72 2.93 2.79

SPSO 2.64 2.31 2.15 1.98 2.51 3.21 3.64 3.86 4.01 3.82

ESCA 0.98 − − − 1.54 1.89 1.52 1.67 1.61 −
PSO – CP 3.41 − − − − 1.31 202 2.14 2.04 −
HmSO [35] 0.87 − 1.18 − 1.42 1.5 1.65 1.66 1.68 1.71

RVDEA [36] 1.02 − − − 3.54 3.87 3.92 3.87 3.37 3.54

FMSO [37] 3.44 − 2.94 − 3.11 3.36 3.28 3.22 3.06 2.84

Cellular PSO [38] 2.55 − 1.68 − 1.78 2.60 2.93 3.26 3.41 3.40

rPSO [39] 0.56 − 12.58 − 12.98 12.79 12.35 11.34 9.73 8.90

Adaptive mQSO [40] 0.51 − 1.01 − 1.51 2.00 2.19 2.43 2.68 2.62

Bold means the best performance

4330 H. Parvin et al.

A-Total bees:100, eval: 100

D-Total bees:100, eval: 1500

G-Total bees:100, eval: 3000 H-Total bees:100, eval: 3500 I-Total bees:100, eval: 4000

E-Total bees:100, eval: 2000 F-Total bees:100, eval: 2500

B-Total bees:100, eval: 500 C-Total bees:100, eval: 1000

Fig. 5 Cover of the peaks via bees for 10 peaks and the default setting of the MPB after different numbers of the fitness evaluations

where, B(�x) is the base value of the environment that
is independent of time and P is a function that defines
the shape of the peak, that each of m peaks has their
time variable parameters, height (h), width (w), and their
own position (p). In each �E fitness evaluations, height,

width and position of each peak are changed. The height
and width of each peak changes by adding a Gaussian
random variable. The change frequency parameter indicates
when the environment is changed or when the algorithm
must respond to changes in the environment. Moving

Table 5 Results of the
proposed method vs. the
state-of-the-art methods for
different dimensions when
number of the peaks is 10,
frequency of changes is 5000
and shift severity is 1

Algorithm Dimension

2 3 4 5 10 15 20

Proposde method 0.0485 0.0643 0.0731 0.0995 0.1517 0.2625 0.3547

Adaptive mQSO 0.71 1.16 1.33 1.51 3.37 4.91 5.83

mQSO 1.01 1.49 1.47 1.85 4.22 6.50 8.88

rPSO 2.62 6.61 10.43 12.98 16.87 18.48 18.48

mPSO 1.24 1.42 1.35 1.61 4.32 7.07 10.77

Bold means the best performance

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4331

Fig. 6 Diagrams of the offline
error for the proposed method
with dimension sizes 5 and 30 in
frequency change of 5000 with
10 peaks

Peaks Benchmark function has various parameters that by
changing each one of these parameters, the problem nature
can be changed. Figure 4 presents the change of the peaks
in this problem with multiple peaks.

The parameter s controls the amount of variation, �E

determines the frequency of changes, the parameter λ

determines how the position of a peak is changed based on
its previous motion.

If λ = 0, every motion can be random and if λ = 1, peaks
can move in a determined path. Whenever a change occurs in
the environment this change is mention on the location, height
and width of a peak as the equations mentioned in (19).

hi(t) = hi(t − 1) + heightseverity · σ

wi(t) = wi(t − 1) + widthseverity · σ

�pi(t) = �pi(t − 1) + �νi(t)

σ ∈ N(0, 1)

(19)

Transmission vector �νi(t) combines a random vector �ri with
the previous transmission vector �νi(t − 1). The random
vector �νi(t) is generated by producing the random numbers
in [0,1] for each dimension and normalizing it to a length of
s. Vector �νi(t) can be created based on the previous change

where the position of the peaks is aligned to the previous
changes or it is created randomly which changes the
position of the peaks and they would have no dependence to
the last change. Vector �νi(t) is calculated based on (20):

�νi(t) = S

|�r + �νi(t − 1)| ((1 − λ)�r + λ�νi(t − 1)) (20)

Peak function for height, width and position of each peak is
calculated based on (21).

P(�x, h(t), w(t), �p(t))= h(t)−w(t).

√∑
j=1...n

(xj −pj)
2

(21)

The part related to the radical mentions the distance between
a point and a peak position.

Numerical experiments concerning the Moving Peaks
Benchmark, scenario 2, as proposed by Branke (2001) were
performed in order to test behavior of the proposed method.
The default settings and definition of the benchmark used
in the experiments of this paper can be found in Table 1.
Parameter settings for the proposed algorithm are presented
in Table 2.

Fig. 7 Effect of the memory and
clustering on the proposed
algorithm

4332 H. Parvin et al.

Fig. 8 Offline error of the proposed algorithm when change frequency is 500 (a), 1000 (b), 2500 (c), 5000 (d), 10000 (e), and 15000 (f)

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4333

6.2 Varying shift severity

The shift severity parameter of the MPB controls the
severity of the change in height, width and position of
peaks. From Table 3, it can be seen that the results
achieved by the proposed algorithm are much better than
the results of the other 11 state-of-the-art algorithms on
the MPB problems with different shift severity. As we
know, the peaks are more and more difficult to track
with the increasing of the shift severity. Of course, the
performance of any optimization algorithm degrades when
the shift severity increases. However, the offline error of
the proposed algorithm is better than the other 11 state-
of-the-art algorithms. These results indicate the proposed
algorithm to adapt better than others algorithm to more
severe changes in the landscape.

6.3 Varying number of peaks

Table 4 presents the experimental results in terms of the offline
error for 19 algorithms, where the results of the other 18
state-of-the-art algorithms are provided by the correspond-
ing papers with their optimal configuration that enables
them to achieve their best performance. In Table 4, mCPSO∗
and mQSO∗ denote mCPSO without anti-convergence
and mQSO without anti-convergence, respectively. From
Table 4, it can be seen that the performance of the proposed
algorithm is not influenced too much when the number of
peaks is increased. Usually, increasing the number of peaks
makes it harder for algorithms to track the optima. However,
the offline error is less when the number of peaks is larger
than 50 for the proposed algorithm.

6.4 Coverage of bees around peaks

Figure 5 shows the distribution of bees around peaks that is
drawn in 2 dimensions for 10 peaks and the default setting of
the MPB after different numbers of the fitness evaluations.

6.5 Effect of the dimension size on the proposed
algorithm

Table 5 shows the results of the proposed method with
different dimensions when the number of peaks is 10, the
change frequency is 5000 and shift severity is 1; it also
represents the same results for mQSO, Adaptive mQSO,
rPSO and mPSO. The results presented in Table 5 shows
“the more dimensions of the landscape, the better the
performance of the proposed algorithm comparing to the
other algorithms”. Figure 6 presents the diagrams of the
offline error for the proposed method when number of
dimensions is 5 or 30, the frequency of changes is 5000 and
the number of peaks is 10.

6.6 Effect of memory and clustering

Memory and clustering are of those facilities that are able
to significantly improve both of the convergence time and
the performance metric of dynamic optimizers. In previous
sections, we have discussed about clustering in details. In
this subsection, the effect of these two concepts is evaluated
on dynamic optimization paradigm.

Todeterminehoweffective these twoconcepts are, the offline
errors for four paradigms have been produced: With-Memory-
withOut-Clustering (WMOC), withOut-Memory-With-Cl-
ustering (OMWC), withOut-Memory-withOut-Clustering
(OMOC), and With-Memory-With-Clustering (WMWC).
These results are depicted in Fig. 7. The parameters of these
results are the same mentioned as default parameters.

6.7 Effect of frequency change on offline error

In this section, the offline error is plotted for different
frequency changes (i.e. 500, 1000, 2500, 5000, 10000,
and 15000) when there are 10 peaks, 5 dimensions, and
parameter s is set to 1.

Table 6 The parameters employed for the sate-of-the-art methods

Algorithm Setting

PCAFSA Population size (Parent) = 2, Population size (Best child) = 2, Population size (Non-best child) = 2,
Swarm number(Parent) = 2, Swarm number(Best child) = 1, Swarm number(Non-best child)= N

A
, Try

number(Parent) = 4, Try number(Best child) = 10, Try number (Non-best child) = 2, Initial visual(Parent) =
25, Initial visual (Best child) = 1× Shift severity, Initial visual(Non-best child) = 25

Adaptive-SFA Population size = 100, α = 0.01, γ = 1, num seq iteration = 2, min activating discoverer = 2, wmin = 0.6,
wmax = 0.9, rcloud = 0.2 × severity

Mohammadpour Population size = 100, Memory Size = 10, Probability of Crossover = 0.6, Probability of Mutation = 0.2,
Logistic factor (A) = 4

CMBGA Population size = 100, DE scheme = DE/rand/1/exp, F = 0.5, w = 0.729844, vclamp = [−50,50], rs = 0.5
mNAFSA Population size = 100, Try number (Parent) = 4
Multi-pop-ABC Maximum number of iterations (MaxIt) = 50,000 fitness evaluations , Population size (Ps) = 100, Limit

parameter (Lit) = 30, Change strength threshold (Tv) = 0.05

4334 H. Parvin et al.

Table 7 Comparison of the proposed method with some of the sate-of-the-art methods

Algorithm Number of peaks

1 5 10 20 30 50 100

proposed method 0.692(0.01) 0.284(0.01) 0.187(0.00) 0.193(0.00) 0.099(0.02) 0.095(0.01) 0.063(0.00)
PCAFSA 0.33(0.01) 0.48(0.01) 0.65(0.02) 1.03(0.02) 1.46(0.02) 1.53(0.03) 1.60(0.02)
Adaptive-SFA 0.66(0.05) 0.79(0.06) 0.95(0.05) 1.29(0.07) 1.51(0.06) 1.71(0.04) 1.84(0.04)
Mohammadpour 0.92(0.09) 1.06(0.7) 1.15(0.10) 1.18(0.06) 1.35(0.05) 1.65(0.07) 1.80(0.06)
CDEPSO 1.02(0.14) 0.99(0.15) 1.75(0.10) 1.93(0.11) 2.28(0.10) 2.74(0.10) 2.84(0.12)
mNAFSA 0.38(0.06) 0.55(0.04) 0.90(0.03) 1.25(0.06) 1.47(0.05) 1.68(0.05) 1.83(0.05)
Multi-pop-ABC 0.14(0.00) 0.20 (0.00) 0.22 (0.01) 0.35 (0.00) 0.46 (0.00) 0.44(0.01) 0.52 (0.00)

Bold means the best performance

Figure 8a depicts the offline error curve of the proposed
method when the frequency change is 500 and the number
of the fitness evaluations is 50000 (it means that 100
changes occur). The number of peaks is 10 in all experi-
ments of this section. Figure 8b depicts the offline error
curve of the proposed method when the frequency change
is 1000 and the number of the fitness evaluations is 100000
(it means that 100 changes occur again here). Figure 8c,
d, e and f depict the offline error curves of the proposed
method when the frequency changes are 2500, 5000, 10000,
and 15000 respectively and the numbers of the fitness
evaluations are 250000, 500000, 1000000, and 1500000 (it
means that 100 changes occur in all of these cases).

6.8 Comparing with the state-of-the-art methods

In this section we have compared our method with 6 state-
of-the-art methods including PCAFSA [41], Adaptive-SFA
[42], CDEPSO [43], mNASA [44], Multi-pop-ABC [45],
and CMBGA [46] in terms of the offline and standard
errors. The employed parameters for these methods have
been extracted based on their papers and have been
presented in Table 6. The experimental comparison of the
proposed method with the algorithms mentioned in Table 6
has been presented in Table 7. The results indicate that by

Table 8 Effect of λ value on the offline error when the change
frequency is 500 and there are 10 peaks

Offline error λ value

0.887(0.00) 0

0.650(0.00) 0.2

0.521(0.00) 0.4

0.401(0.00) 0.6

0.280(0.00) 0.8

0.187(0.00) 1.0

increasing the number of the peaks, our method becomes
more superior to state-of-the-art methods.

Effect of λ value on the offline error of the proposed
method when the change frequency is 500 and there are 10
peaks has been investigated here. The experimental results
presented in Table 8 indicate as the value of the parameter
λ increases, our method performs better. It has been
predictable, because by increasing λ value, the randomness
in the movements of the peaks becomes more limited.

The memory size is the last parameter that should be
investigated in our experimentations so as to find out what
value is its best option. This parameter plays an important
role in effectuality of the proposed method. Figure 9 depicts
the proposed method efficacy in terms of the number of
peaks when change frequency is 5000 for memory sizes
10, 20, 30, and 40. The best value for memory size is 10
according to these results.

The effect of the population size on performance of the
proposed method in terms of average offline errors has been
examined in Table 9.

0

10

20

30

40

50

60

70

80

1 5 10 20 30 40 50 100 200

A
v
er

ag
e

o
ff

li
n

e
er

ro
r

Average offline error for f=500 and different

memory size

40

30

20

10

number of peaks

Fig. 9 The proposed method efficacy in terms of the number of peaks
when change frequency is 5000 for memory sizes 10, 20, 30, and 40

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4335

Table 9 Average offline error of the proposed method of the proposed
method with different population sizes and default parameters

Population size Average offline error of the proposed method

50 0.687(0.03)

100 0.187(0.00)
150 0.320(0.05)

200 0.591(0.04)

250 0.683(0.06)

300 0.916(0.09)

Bold means the best performance

The results presented in Table 9 indicate the best
population size is no more than 150 and no less than 50.
It can be 100 according to the results of Table 9. Due to
two reasons: (a) if the population size is a large value,
the algorithm should accomplish many fitness function
evaluations in one generation; and (b) if population is very
small, then the algorithm exploration is not guaranteed

7 Conclusions and future work

Intelligent optimization algorithms in dynamic environments
should be designed in such a way that they could track
the optima efficiently. In this article we use a combination
of the memory and artificial bee colony algorithm to
maintain good solutions. We increase algorithms’ efficiency
by clustering of population and memory individuals. We
employed an appropriate strategy to maintain diversity
in population. We experimentally have shown that the
proposed algorithm completely outperforms the state-of-
the-art algorithms in terms of convergence speed. Usage of
the proposed algorithm with chaos theory can be a good idea
for future works.

Acknowledgements Wewant to be thankful of Yasooj Branch, Islamic
Azad University, Yasooj, Iran, for supporting this research.

References

1. Branke J (1999) Memory enhanced evolutionary algorithms
for changing optimization problems. Proc Congr Evol Comput
3:1875–1882

2. Yang S (2006) Associative memory scheme for genetic algorithms
in dynamic environments. In: Proceedings of EvoWorkshops:
Appl. Evol. Comput., LNCS 3907, pp 788–799

3. Yang S, Yao X (2008) Population-based incremental learning with
associative memory for dynamic environments. IEEE Trans Evol
Comput 12(5):542–561

4. Cobb HG, Grefenstette JJ (1993) Genetic algorithms for tracking
changing environments. In: Proceedings of the 5th international
conference on genetic algorithms, pp 523–530

5. Grefenstette JJ (1992) Genetic algorithms for changing environ-
ments. In: Proceedings of the 2nd international conference on
parallel problem solving from nature, pp 137–144

6. Yang S (2008) Genetic algorithms with memory and elitism-based
immigrants in dynamic environment. Evol Comput 16(3):385–416

7. Ramsey CL, Grefenstette JJ (1993) Case-based initialization
of genetic algorithms. In: Forrest S (ed) Proceedings of the
fifth international conference on genetic algorithms. Morgan
Kaufmann, pp 84–91

8. Louis SJ, Xu Z (1996) Genetic algorithms for open shop
scheduling and re-scheduling. In: Cohen ME, Hudson DL (eds)
Proceedings of the eleventh international conference on computers
and their applications (ISCA), pp 99–102

9. Yang S, Tinos R (2007) A hybrid immigrants scheme for
genetic algorithms in dynamic environments. Int J Autom Comput
3(4):243–254

10. Goldberg DE, Smith RE (1987) Non-stationary function optimiza-
tion using genetic algorithms with dominance and diploidy. In:
Grefenstette JJ (ed) Proceedings of the second international con-
ference on genetic algorithms (ICGA 1987). Lawrence Erlbaum
Associates, pp 5968

11. Ryan C (1997) Diploidy without dominance. In: Nordic workshop
on genetic algorithms, pp 45–52

12. Ryan C, Alander JT (1997) Dyploidy without dominance. In:
Proceedings of the nordic workshop on genetic algorithms, pp
63–70

13. Lewis EHJ, Ritchie G (1998) A comparison of dominance
mechanisms and simple mutation on non-stationary problems. In:
Schoenauer M, Deb K, Rudolf G, Yao X, Lutton E, Merelo JJJ,
Schwefel H-P (eds) Proceedings of the parallel problem solving
from nature (PPSN V), vol 1917 of Lecture notes on computer
science. Springer, pp 139–148

14. Uyar AS, Harmanci AE (1999) Investigation of new operators
for a diploid genetic algorithm. In: Proceedings of SPIE’s annual
meeting

15. Uyar AS, Harmanci AE (2005) A new population based adaptive
dominance change mechanism for diploid genetic algorithms in
dynamic environments. Soft Comput 9(11):803–814

16. Yang S (2006) Dominance learning in diploid genetic algorithms
for dynamic optimization problems. In: Keijzer M et al (eds)
Proceedings of the eighth international genetic and evolutionary
computation. Conference (GECCO 2006). ACM Press, pp 1435–
1436

17. Yang S (2007) Explicitmemoryschemes for evolutionary algorithms
in dynamic environments. In: Yang S, Ong Y-S, Jin Y (eds) Evolu-
tionary computation in dynamic and uncertain environments, vol
51 of Studies in computational intelligence, pp 3–28

18. Ramsey CL, Grefenstette JJ (1993) Case-based initialization
of genetic algorithms. In: Forrest S (ed) Proceedings of the
fifth international conference on genetic algorithms. Morgan
Kaufmann, pp 84–91

19. Louis SJ, Xu Z (1996) Genetic algorithms for open shop
scheduling and rescheduling. In: Cohen ME, Hudson DL (eds)
Proceedings of the eleventh international conference on computers
and their applications (ISCA), pp 99–102

20. Trojanowski K, Michalewicz Z (1999) Searching for optima
in non-stationary environments. In: Proceedings of the IEEE
congress on evolutionary computation (CEC 1999). IEEE Press,
pp 1843–1850

21. Barlow GJ, Smith SF (2008) A memory enhanced evolutionary
algorithm for dynamic scheduling problems. In: Springer (ed)
Applications of evolutionary computing, vol 4974 of Lecture notes
in computer science, pp 606–615

22. Ryan C (1997) Dyploidy without dominance. In: Alander JT (ed)
Proceedings of the nordic workshop on genetic algorithms, pp
63–70

4336 H. Parvin et al.

23. Bird S, Li X (2007) Using regression to improve local
convergence. In: Proceedings of congress on evolutionary
computation, pp 592–599

24. Karaboga D, Basturk B (2009) A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm. J Glob Optim 39:459–471

25. Branke J (1999) Memory enhanced evolutionary algorithms for
changing optimization problems. In: Proceedings of the IEEE
congress on evolutionary computation (CEC 1999). IEEE Press,
pp 1875–1882

26. Yang S, Li C (2009) A clustering particle swarm optimizer
for dynamic optimization. In: Proceedings of congress on
evolutionary computation, pp 439–446

27. Blackwell T, Branke J, Li X (2008) Particle swarms for dynamic
optimization problems. In: Swarm intelligence. Springer, Berlin,
pp 193–217

28. Blackwell TM, Branke J (2006) Multiswarms, exclusion, and
anticon vergence in dynamic environments. IEEE Trans Evol
Comput 10(4):459–472

29. Lung RI, Dumitrescu D (2010) Evolutionary swarm cooperative
optimization in dynamic environments. Nat Comput 9(1):83–94

30. Lung RI, Dumitrescu D (2007) A collaborative model for tracking
optima in dynamic environments. In: Proceedings of congress on
evolutionary computation, pp 564–567

31. Blackwell TM, Branke J (2006) Multiswarms, exclusion, and
anticon vergence in dynamic environments. IEEE Trans Evol
Comput 10(4):459–472

32. Li X (2004) Adaptively choosing neighborhood bests using
species in a particle swarm optimizer for multimodal function
optimization. In: Proceedings of genetic and evolutionary
computation conference, pp 105–116

33. Yang S, Li C (2012) A clustering particle swarm optimizer for
locating and tracking multiple optima in dynamic environments.
IEEE Trans 4:16

34. Liu L, Yang S, Wang D (2010) Particle swarm optimization with
composite particles in dynamic environments. IEEE Trans Syst
Man Cybern B Cybern 40(6):1634–1648

35. Kamosi M, Hashemi AB, Meybodi MR (2010) A hibernating
multiswarm optimization algorithm for dynamic environments. In:
Proceedings of world congress on NaBIC, pp 363–369

36. Woldesenbet YG, Yen GG (2009) Dynamic evolutionary algo-
rithm with variable relocation. IEEE Trans Evol Comput
13(3):500–513

37. Yang S, Li C (2008) Fast multi-swarm optimization for
dynamic optimization problems. In: Proceedings of international
conference on natural computation, vol 7, no 3, pp 624–628

38. Hashemi B, Meybodi M (2009) Cellular PSO: a PSO for dynamic
environments. In: Advances in computation and intelligence.
Lecture notes in computer science, vol 5821, pp 422–433

39. Wang H, Yang S, Ip WH, Wang D (2012) A memetic
particle swarm optimization algorithm for dyanamic multi modal
optimization problems. Int J Syst Sci 43(7):1268–1283

40. Blackwell T, Branke J, Li X (2008) Particle swarms for dynamic
optimization problems. In: Swarm S, Yang C, Li A (eds)
Clustering particle swarm optimizer for locating and intelligence.
Springer, Berlin, pp 193–217

41. Yazdani D, Sepas-Moghaddam A, Dehban A, Horta N (2016) A
novel approach for optimization in dynamic environments based
on modified artificial fish swarm algorithm. Int J Comput Intell
Appl 15(2):1650010 (23 pages)

42. Nasiri B, Meybodi MR (2016) Improved speciation-based firefly
algorithm in dynamic and uncertain environment. Int J Bio-Inspir
Comput (in press)

43. Kordestani JK, Rezvanian A, Meybodi MR (2014) CDEPSO: a bi-
population hybrid approach for dynamic optimization problems.
Appl Intell 40:682–694

44. Yazdani D, Nasiri B, Sepas-Moghaddam A, Meybodi M,
Akbarzadeh-Totonchi M (2014) MNAFSA: a novel approach
for optimization in dynamic environments with global changes.
Swarm Evolut Comput 18:38–53

45. Shams KN, Abdullah S, Turky A, Kendall G (2016) An adaptive
multi-population artificial bee colony algorithm for dynamic
optimisation problems. In: Knowledge-based systems · 104
April 2016 with 138 reads. https://doi.org/10.1016/j.knosys.2016.
04.005

46. Mohammadpour M, Parvin H, Sina M (2018) Chaotic genetic
algorithm based on explicit memory with a new strategy for
updating and retrieval of memory in dynamic environments. J AI
Data Min 6:191–205 (in press)

47. Rezvanian A, Meybodi MR (2010) Tracking extrema in dyna-
mic environments using a learning Automata-Based immune al-
gorithm, grid and distributed computing. Control Autom 121:216–
225

48. Xin Y, Ke T, Xin Y (2011) Immigrant schemes for evolutionary
algorithms in dynamic environments: adapting the replacement
rate. Science in China Series F - Information Sciences II:543–552

49. Baktash N, Mahmoudi F, Meybodi MR (2012) Cellular PSO-
ABC: a new hybrid model for dynamic environment. Int J Comput
Theory Eng 4(3):365–368

50. Yang S (2007) Explicit memory schemes for evolutionary algo-
rithms in dynamic environments. In: Evolutionary computation in
dynamic and uncertain environments, vol 51. Springer, Heidel-
berg, pp 3–28

51. Yazdani D, Akbarzadeh-Totonchi MR, Nasiri B, Meybodi MR
(2012) A new artificial fish swarm algorithm for dynamic
optimization problems. In: IEEE congress on evolutionary
computation (CEC), pp 1–8

52. Saxena N, Mishra KK (2017) Improved multi-objective particle
swarm optimization algorithm for optimizing watermark strength
in color image watermarking. Appl Intell 47(2):362–381

53. Sharma B, Prakash R, Tiwari S, Mishra KK (2017) A variant of
environmental adaptation method with real parameter encoding
and its application in economic load dispatch problem. Appl Intell
47(2):409–429

54. Tripathi A, Saxena N, Mishra KK, Misra AK (2017) A nature
inspired hybrid optimisation algorithm for dynamic environment
with real parameter encoding. IJBIC 10(1):24–32

Hamid Parvin received a B.D.
degree from Shahid Chamran
Uni., Ahvaz, Iran, in 2006 and
an M.S. degree from Iran Uni-
versity of Science and Tech-
nology, Tehran, Iran, in 2008.

He then received his Ph.D.
degree from Iran University
of Science and Technology,
Tehran, Iran. His research
interests include data mining,
machine learning, and ensem-
ble learning.

https://doi.org/10.1016/j.knosys.2016.04.005
https://doi.org/10.1016/j.knosys.2016.04.005

Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic... 4337

Samad Nejatian received the
M.Eng. in Telecom. Tech. and
Ph.D. degree in Data Com.
from the UTM in 2008 and
2014, respectively. He holds
University Assistant Professor
position at the Faculty of
Elec. Eng., Islamic Azad Uni.,
Yasooj Branch, Yasooj, Iran.

His research interests are
in cognitive radio networks,
software-defined radio and
wireless sensor networks. He
is a registered member of pro-
fessional organizations such
as IEEE and IET.

MajidMohamadpour received
a B.D. degree from Kerman
Uni., and an M.S. degree
from Islamic Azad University,
Yasooj, Iran.

His research interests inc-
lude data mining, dynamic
optimization.

	Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic...
	Abstract
	Abstract
	Introduction
	Memory types in dynamic environments
	Implicit memory
	Explicit memory
	Updating memory
	Memory retrieval

	Backgrounds
	Artificial bee colony
	ABC steps

	Dynamic and static environment definitions
	Moment of environment change
	Colony
	OfflineError

	Related work
	Proposed algorithm
	Artificial bee colony algorithm based on clustering and memory
	Memory updating time
	Population element to be saved in memory
	Element to be deleted from memory
	Number of individuals transferred from population to memory
	Updated size
	Population updating time
	Number of individuals transferred from memory to population
	Updating size
	Memory element to be saved in population
	Element to be deleted from population
	Cluster in memory
	Cluster in population
	Cluster size in memory
	Cluster size in population
	Cluster center in memory
	Cluster center in population (colony)

	Descriptions of the proposed algorithm pseudo code

	Tests and results
	Moving peaks benchmark problem
	Varying shift severity
	Varying number of peaks
	Coverage of bees around peaks
	Effect of the dimension size on the proposed algorithm
	Effect of memory and clustering
	Effect of frequency change on offline error
	Comparing with the state-of-the-art methods

	Conclusions and future work
	Acknowledgements
	References

