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Abstract
This paper presents a new method for sensor dynamic reliability evaluation based on evidence theory and intuitionistic fuzzy
sets when the prior knowledge is unknown. The dynamic reliability of sensors is evaluated based on supporting degree
between basic probability assignments (BPAs) provided by sensors. First, the concept of asymmetric supporting degree
is proposed. By transforming BPAs to intuitionistic fuzzy sets, supporting degree between BPAs is calculated based on
intuitionistic fuzzy operations and similarity measure. Then the relationship between dynamic reliability and supporting
degree is analyzed. The process of dynamic reliability evaluation is proposed. Finally, the proposed dynamic reliability
evaluation is applied to evidence combination. A new evidence combination rule is proposed based on evidence discounting
operation and Dempster’s rule. Comparative analysis on the performance of the proposed reliability evaluation method and
evidence combination rule is carried out based on numerical examples. The proposed method for data fusion is also applied
in target recognition to show its feasibility and validity.

Keywords Sensor reliability · Evidence theory · Supporting degree · Intuitionistic fuzzy set

1 Introduction

As an important component in many fields dealing with
pattern recognition, identification, diagnosis, etc., multi-
sensor data fusion technology has received considerable
attention for both military and nonmilitary applications. In a
multi-sensor system, the information derived from different
sources is usually imperfect, i.e., imprecise, uncertain, or
even conflicting. To handle this case, uncertainty theories
such as probability theory, evidence theory, fuzzy set
theory, and possibility theory have been proposed. Among
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these theories, evidence theory has been widely applied
in multi-sensor data fusion because of its flexibility in
managing uncertainty [14, 27–29, 34–36]. Traditionally,
information sources in the fusion systems are regarded
equally reliable and most attention is paid to uncertainty
modeling and fusion methods. However, the performance
of the fusion system highly depends on the sensor
performance (e.g., accuracy, work efficiency, and the ability
to understand the dynamic working environment) and
the capability to estimate the reliability of each sensor
for each input. Information provided by sensors does
not have the same degree of reliability. This may be
caused by many factors specific to sensors. For instance,
measurements can differ from one sensor to another in terms
of completeness, precision, and certainty. Additionally, the
working environment can also affect the sensor reliability,
since some of them could be better adapted to the conditions
encountered in the considered environment than others.

Therefore, the information to be fused should be
modified according to the reliability of their sources, which
reflects the ability of each source to provide a correct
assessment of the given problem. The effects of information
provided by more reliable sources should be strengthened,
while the effects of information coming from less reliable

(2018) 48:3950–3962

Published online: 7 May 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1188-0&domain=pdf
http://orcid.org/0000-0003-0962-0671
mailto: yafei_song@163.com
mailto: afeu_wang@163.com
mailto: jingwei_zhukgd@163.com
mailto: wendyanpaopao@163.com


sources should be weakened. Thus, sensor reliabilities must
be assessed before information fusion.

This leaves us with the question of how to determine the
reliability of evidence sources. When the prior information
is available, the reliability of sensor can be evaluated by
training or optimization. Elouedi et al. [8] have proposed a
method of assessing the sensor reliability in a classification
problem based on the transferable belief model (TBM), an
extension of evidence theory. In this method, the sensor
reliability is assessed by minimizing the mean square error
between the discounted sensor readings and the actual
values of data.

Guo et al. [10] extended Elouedi’s work in two aspects.
On one hand, they developed a new evaluation method
to improve Elouedi’s method and called it as the static
evaluation method. On the other hand, they treated the
evaluation task as a two-stage training process, namely,
supervised (or static) and unsupervised (or dynamic)
evaluation, respectively, and then proposed to combine
them. This leads to a deeper insight into the issue of
sensor reliability evaluation. The first one is what they
have called the static supervised evaluation method. A static
discounting factor assigned to a sensor is based on the
comparison between its original readings and the actual
values of data. Information content contained in the actual
values of each target is extracted to determine its influence
on the evaluation. This method also permits the evaluation
of the reliability of the fusion result. The second one is
the dynamic evaluation method, which can be used to
dynamically evaluate the evidence reliability by adaptive
learning and regulation in real-time situations. The dynamic
reliability is related to the contexts of sensor acquisitions
and sensor dynamic performance.

But the crucial problem is how to access the dynamic
reliability of each sensor when there is no prior information.
As interpreted by Guo et al. in [10], the evidential distance
measure, conflict measure, and other induced dissimilarity
measures are used to evaluate sensor reliability. Sensor
reliability is increased with the similarity degree between its
readings and other readings. This is called as the principle
of majority. By this principle, many reliability evaluation
methods have been proposed. For example, Schubert [19]
proposed a degree of falsity to evaluate the reliability
of evidence sources. Based on Jousselme’s [12] distance
measure, Klein and Colot [13] propose the degree of
dissent, which is evaluated by comparing a basic probability
assignment (BPA) to the average BBA in a set. The distance
between a BPA and the average BPA is applied to estimate
its reliability. Based on Jousselme’s distance measure and
Schubert’s idea, Yang et al. [31] defined a new disagreement
measure by borrowing ideas from the design of Schubert’s
degree of falsity to estimate the reliability of evidence
source. Liu et al. [15] noted that the distance represented the

difference between BPAs, whereas the conflict coefficient
revealed the divergence degree of the hypotheses that two
belief functions strongly support. These two aspects of
dissimilarity were complementary in a certain sense, and
their fusion could be used as the dissimilarity measure.
So they presented a new dissimilarity measure by fusing
distance and conflict measure based on Hamacher T-conorm
fusion rule. In the evaluation of reliability of a source,
both its dissimilarity with other sources and their reliability
factors were considered.

However, taking a closer examine on these methods,
we can find that they all boil down to the definition
of similarity or dissimilarity measure between BPAs.
We can also note that the supporting degree between
belief functions is regarded as identical to the similarity
degree between them. In fact, the supporting degree and
the similarity degree are two different concepts. The
similarity degree is used to measure the same characteristics
contained in two belief functions. Thus the similarity
measures are usually a symmetric concept. Given two
BPAs m1 and m2, the similarity measure Sim satisfied
Sim(m1, m2) =Sim(m2, m1). The supporting degree is quite
different to similarity degree, although it is related to
the similarity degree. The fact that m1 supports m2 does
not indicates m2 supports m1. The concept of supporting
degree is not mutual. For supporting degree measure Sup,
Sup(m1, m2) =Sup(m2, m1) does not always hold.

So the concept of supporting degree in evidence should
be further investigated to reveal its connection with
similarity/ distance measures. To answer this questing, we
will propose an asymmetric supporting degree measure
for BPAs. Moreover, when assessing sensor reliability,
it is necessary to take all uncertain information into
account. Thus, sensor reliability cannot be evaluated
comprehensively merely depending on evidence theory.
Taking inspirations from the relations between evidence
theory and intuitionistic fuzzy sets (IFSs) [22], we can
improve the method of evaluating sensor reliability in
the framework of evidence theory and IFSs. In this
paper, the concept of asymmetric supporting degree is
proposed. By transforming BPAs to intuitionistic fuzzy sets,
supporting degree between BPAs is calculated based on
intuitionistic fuzzy operations and similarity measure. Then
the relationship between dynamic reliability and supporting
degree is analyzed. The process of dynamic reliability
evaluation is proposed. Finally, the proposed dynamic
reliability evaluation is applied to evidence combination.
A new evidence combination rule is proposed based on
evidence discounting operation and Dempster’s rule.

The rest contents of this paper are arranged as follows.
In Section 2, we briefly recall the relevant foundation of
evidence theory. In Section 3, we present the evaluation
of the dynamic reliability based on supporting degree. To
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facilitate the construction of supporting degree, some basic
definitions on intuitionistic fuzzy sets together with the
relationship between BPAs and IFSs are discussed in this
section. A new method for data fusion is also proposed
based on sensors’ dynamic reliability. In Section 4,
numerical examples are applied to illustrate the performance
of our proposed methods. Application of the proposed
method in target recognition is presented in Section 5.
Conclusions of this paper are put forward in Section 6.

2 Evidence theory

2.1 Basic concepts

Dempster-Shafer evidence theory was modeled based on a
finite set consisting of mutually exclusive elements, called
the frame of discernment denoted by � [6]. The power set
of �, denoted by 2�, contains all possible unions of the
sets in � including � itself. Singleton sets in a frame of
discernment � is called atomic sets because they do not
contain nonempty subsets. The following terminologies are
central in the Dempster-Shafer theory.

Let � = {θ1, θ2, · · · , θn} be the frame of discernment. A
basic probability assignment (BPA) is a function m: 2� →
[0, 1], satisfying the two following conditions:

m(∅) = 0 (1)

∑

A⊆�

m(A) = 1 (2)

where ∅ denotes empty set, and A is any subset of �. Such
a function is also called belief structure. For each subset
A ⊆ �, the value taken by the BPA at A is called the basic
probability mass of A, denoted by m(A)

A subset A of � is called the focal element of a belief
structure m if m(A) > 0. The set of all focal elements is
expressed by F = {A|A ⊆ �, m(A) > 0}.

A Bayesian belief structure (BBS) on � is a belief
structure on � whose focal elements are atomic sets
(singletons) of �. A categorical belief structure is a
normalized belief structure defined as: m(A) = 1, ∀A ⊆ �

and m(B) = 0, ∀B ⊆ �, B �= A. A vacuous belief
structure on � is defined as: m(�) = 1and m(A) =
0, ∀A �= �.

Given a belief structure m on �, the belief function and
plausibility function which are in one-to-one correspon-
dence with m can be defined respectively as:

Bel(A) =
∑

B⊆A

m(B) (3)

P l(A) =
∑

B∩A�=∅
m(B) = 1 −

∑

B∩A=∅
m(B) (4)

Bel(A) represents all basic probability masses assigned
exactly to A and its smaller subsets, and P l(A)represents all
possible basic probability masses that could be assigned to
A and its smaller subsets. As such,Bel(A)and P l(A) can be
interpreted as the lower and upper bounds of probability to
which A is supported. So we can consider the belief degree
of A as an interval number BI (A) = [Bel(A), P l(A)].

Definition 2.1 [21] The pignistic transformation maps a
belief structure m to so called pignistic probability function.
The pignistic transformation of a belief structure m on � =
{θ1, θ2, · · · , θn} is given by

BetP (A) =
∑

B⊆�

|A ∩ B|
|B|

m(B)

1 − m(∅)
, ∀A ⊆ � (5)

where |A| is the cardinality of set A.
In particular, given m(∅) = 0and θ ∈ �, we have

BetP ({θ}) =
∑

θ∈B

m(B)

|B| , θ = θ1, . . . , θn, B ⊆ � (6)

We can get Bel(A) ≤ BetP (A) ≤ P l(A)effortlessly.

2.2 Combination of belief functions

Definition 2.2 [6] Given two belief structures m1and m2 on
�, the belief structure that results from the application of
Dempster’s combination rule, denoted as m1 
 m2, or m12

for short, is given by:

m12(A) =

⎧
⎪⎨

⎪⎩

∑
B∩C=A

m1(B)m2(C)

1− ∑
B∩C=∅

m1(B)m2(C)
, ∀A ⊆ �, A �= ∅

0 , A = ∅
(7)

When multiple independent sources of evidence are
available, the combined evidence can be obtained as:

m(A) =

⎧
⎪⎨

⎪⎩

∑
∩Ai=A

∏n
i=1 mi(Ai)

1− ∑
∩Ai=∅

∏n
i=1 mi(Ai)

, ∀A ⊆ �, A �= ∅

0 , A = ∅
(8)

Here, n is the number of evidence pieces in the process of
combination, i denotes the ith piece of evidence, mi(Ai)

is the BPA of hypothesis Ai supported by evidence i.
The value m(A) reflects the degree of combined support,
joint mass, from n mutually independent sources of
evidence corresponding to m1, m2, · · · , mn, respectively.
The quantity k defined in Section 2.3 is the amount of
conflict among n mutually independent pieces of evidence,
which is equal to the mass of the empty set after the
conjunctive combination and before the normalization step.
It represents contradictory evidence.

k =
∑

∩Ai=∅

∏n

i=1
mi(Ai) (9)
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The value k = 0 corresponds to the absence of conflicts
among the evidence from different sources, whereas k =
1 implies complete contradiction among the evidences.
Indeed k = 0, if and only if no empty set is created when
all evidences are combined, and k = 1 if and only if all the
sets resulting from this combination rule are empty sets. The
weight of partial conflict is

∏n
i=1 mi(Ai), with ∩Ai = ∅.

The global conflict k is then the sum of all partial conflicts.
Dempster’s rule, however, has an inherent problem.

When the pieces of evidence are completely contradictory,
i.e. k = 1, combination cannot be performed. When they
are highly conflicting, i.e. k → 1, the combination results
seldom agree with the actual situation, and are counter-
intuitive (see the example given by Zadeh [33]).

Example 2.1 Consider a situation in which we have two
belief structures m1 and m2 over the same frame of
discernment � = {θ1, θ2, θ3}. Let these two structures be as
follows:

m1 : m1({θ1}) = 0.9, m1({θ2}) = 0.1,

m2 : m2({θ2}) = 0.1, m2({θ3}) = 0.9.

Applying Dempster’s rule to these structures yields
m({θ1}) = m({θ3}) = 0, m({θ2}) = 1. We can see that
m1 and m2 have low support level to hypothesis θ2, but the
resulting structure has complete support to θ2. On the other
hand, m1 and m2 have high support level on hypotheses θ1
and θ3, respectively, but θ1 and θ3 are totally unbelievable in
the result. This appears to be counter-intuitive.

The reason for such counter-intuitive behavior is that
Dempster’s rule cannot handle highly conflicting evidence.
Such problems can be handled from two main points of
view. If the counter-intuitive behavior is believed to be
caused by unreliable evidence, then the evidence should
be discounted. However, if the counter-intuitive behavior
is attributed to the combination rule, improvements of the
combination rule, as done in several studies [15, 21, 31],
should then be made.

2.3 Evidence discounting

When a source of evidence is only partially reliable to
a known reliability degree λ ∈ [0, 1], a discounting
operation can be defined on the associated BPA [9]. The
most common discounting operation was first introduced by
Shafer in [20]. The discounting operation is given by
{

mλ(A) = λm(A), A ⊂ �

mλ(�) = 1 − λ + λm(�)
(10)

where λ represents the degree of reliability of the evidence.
If λ = 1 (i.e. the evidence is completely reliable), then the
BPA will remain unchanged. If λ = 0 (i.e. the evidence is
completely unreliable), then the BPA will become m(�) =

1, which means that the evidence provides no supports for
decision-making.

3 Evaluating the dynamic reliability of sensor

The static discounting factor of a sensor defined in the
previous section is obtained based on its application at
the evaluation stage and then can be regarded as its
prior reliability for subsequent applications. However, the
static evaluation does not take into account the change
of the sensor reliability in varying environments. Because
environmental noise, incremental effect, and opposite
disturbance may cause the sensors to degrade or fail, it
must be able to dynamically monitor and assess them in
multisensor fusion systems. Otherwise, the data with large
variation will affect the result devastatingly and decrease the
performance of the system. If worse, this may induce the
conflicting problem of evidence theory [7, 33]. The dynamic
discounting factors are one of the representative indices that
can express the dynamic performance of sensors.

In this section, we shall address this problem. The
discounting factor of a sensor is assessed for one target to
be classified and depends on the overall support degree for
the sensor afforded by the other sensors.

3.1 Evaluate dynamic reliability based on support
degree

A. Consider BPA in the view of IFS Since Atanassov’s
intuitionistic fuzzy set can be considered as a generation of
Zadeh’s fuzzy set, we first give the definition of Zadeh’s
fuzzy set, followed by brief description on basic concepts of
IFSs.

Definition 3.1 [32] Let X = {x1, x2, · · · , xn} be a universe
of discourse, then a fuzzy set A in X is defined as follows:

A = {〈x, μA(x)〉|x ∈ X} (11)

where μA(x) : X → [0, 1] is the membership degree.

Definition 3.2 [1] An Atanassov’s intuitionistic fuzzy set A
in X can be written as:

A = {〈x, μA(x), vA(x)〉|x ∈ X} (12)

where μA(x) : X → [0, 1] and vA(x) : X →
[0, 1] are membership degree and non-membership degree,
respectively, with the condition:

0 ≤ μA(x) + vA(x) ≤ 1 (13)

πA(x)determined by the following expression:

πA(x) = 1 − μA(x) − vA(x) (14)
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is called the hesitancy degree of the element x ∈ X to the
set A, and πA(x) ∈ [0, 1], ∀x ∈ X.

πA(x) is also called the intuitionistic index of x to A.
Greater πA(x)indicates more vagueness on x. Obviously,
when πA(x) = 0, ∀x ∈ X, an IFS degenerates to Zadeh’s
fuzzy set.

It is worth noting that besides Definition 3.2 there are
other possible representations of IFSs proposed in the
literature [3, 5]. Atanassov and Gargov [3] proposed to
use an interval representation [μA(x), 1 − vA(x)] of IFS
A in X instead of pair 〈μA(x), vA(x)〉. This approach is
equivalent to the interval valued fuzzy sets interpretation
of IFS, where μA(x) and 1 − vA(x) represent the lower
bound and upper bound of membership degree, respectively.
Obviously, [μA(x), 1 − vA(x)] is a valid interval, since
μA(x) ≤ 1 − vA(x) always holds for μA(x) + vA(x) ≤ 1.

In the sequel, IFSs(X) denotes the set of all IFSs in X.
If |X| = 1, i.e., there is only one element x in X, the IFS A

in X usually is denoted by A = 〈μA, vA〉 for short, which is
also called an intuitionistic fuzzy value (IFV).

In the IFS theory, an IFS 〈μA(x), vA(x)〉 has some
physical interpretations. For example, if 〈μA(x), vA(x)〉 =
〈0.2, 0.3〉, then the degree of indeterminacy πA(x) can be
easily determined as 0.5. These can be interpreted as “the
degree that element x belongs to A is 0.2, the degree that
element x does not belong to A is 0.3, and the degree that
element x belongs indeterminately to A is 0.5”. In a voting
model, they can be interpreted as “the vote for resolution
is two in favor and three against, with five abstentions”. In
addition, for a fuzzy set B in X, since vB(x) = 1 − μB(x),
the indeterminacy degree of x to B can be expressed as
πB(x) = 1 − μB(x) − (1 − μB(x)) = 0. The fuzzy set is
thus a particular case of the IFS.

Definition 3.3 [2] For A ∈ IFSs(X) and B ∈ IFSs(X),
some relations between them are defined as:

(R1) A ⊆ B iff ∀x ∈ XμA(x) ≤ μB(x), vA(x) ≥ vB(x);
(R2) A = B iff ∀x ∈ XμA(x) = μB(x), vA(x) = vB(x);
(R3) AC = {〈x, vA(x), μA(x)〉|x ∈ X}, where AC is the

complement of A.

Definition 3.4 [2] Let A = {〈x, μA(x), vA(x)〉|x ∈ X},
B = {〈x, μB(x), vB(x)〉|x ∈ X} be two IFSs in the X, then
the following operations can be defined:

A ∩ B = {〈x,min(μA(x), μB(x)),max(vA(x), vB(x))〉|x ∈ X},
A ∪ B = {〈x,max(μA(x), μB(x)),min(vA(x), vB(x))〉|x ∈ X},
A⊕B = {〈x,μA(x)+μB(x)−μA(x)·μB(x), vA(x)·vB(x)〉|x ∈ X},
A⊗B = {〈x,μA(x) ·μB(x), vA(x)+vB(x)−vA(x) ·vB(x)〉|x ∈ X},
γ · A = {〈x, 1 − (1 − μA(x))γ , (γA(x))γ 〉|x ∈ X},
Aγ = {〈x, (μA(x))γ , 1 − (1 − vA(x))γ 〉|x ∈ X}.

In the framework of evidence theory, the reading of each
sensor can be expressed by a BPA. As discussed earlier, in
evidence theory, [Bel(θ), P l(θ)] is the confidence interval
which describes the uncertainty about θ . It can be used
to define the lower and upper probability bounds of the
imprecise probability of θ . Here, Bel(θ) is the lower
probability, and P l(θ) is the upper probability. Thus, the
probability P(θ) lies in an interval [Bel(θ), P l(θ)]. If we
can consider m as an IFS A in � = {θ1, θ2, · · · , θn}, Bel(θ)

can be taken as the membership degree to which θ belongs
to A, while 1 − P l(θ) is the non-membership degree of
θ . Based on such analysis, a BPA m on the discernment
frame � = {θ1, θ2, · · · , θn} can be transformed to an IFS
A on � = {θ1, θ2, · · · , θn}. The corresponding IFS can be
expressed as:
A = {〈θ, μA(θ), vA(θ)〉|θ ∈ �}

= {〈θ1, Bel(θ1), 1 − P l(θ1)〉, · · · , 〈θn, Bel(θn), 1 − P l(θn)〉}
(15)

The relation between BPA in evidence theory and IFS can
be interpreted by the application of pattern identification.
Suppose that the discernment frame is � = {θ1, θ2, θ3}, i.e.,
� = {θ1, θ2, θ3} is the set of possible classes of unknown
object o. The reading of a sensor S expressed by BPA m

indicates that the sensor identifies the object as an IFS A,
where

A = {〈θ1, Bel(θ1), 1 − P l(θ1)〉, 〈θ2, Bel(θ2),

1 − P l(θ2)〉, 〈θ3, Bel(θ3), 1 − P l(θ3)〉}
Specially, if the sensor identify the object as a singleton
subset of �, taking {θ1} as an example, the BPA can be
written as:

m({θ1}) = 1, m({θ2}) = 0, m({θ3}) = 0.

Then the corresponding IFS is A =
{〈θ1, 1, 0〉, 〈θ2, 0, 1〉, 〈θ3, 0, 1〉}, which is identical to the
set {θ1}.

If the object is totally unknown to the sensor, i.e., the
sensor cannot provide any information about the object, the
BPA m is m(�) = 0. Thus, we have:

Bel(θ1) = Bel(θ2) = Bel(θ3) = 0,

P l(θ1) = P l(θ2) = P l(θ3) = 1.

So the IFS can be written as A =
{〈θ1, 0, 0〉, 〈θ2, 0, 0〉, 〈θ3, 0, 0〉}. This indicates that the sen-
sor identifies the object as the full set �, which coincides
with the sensor’s total ignorance on the object.

Above analysis can easily be adapted to other domains
of multi-sensor data fusion, the underlying schema being
quite general. Hence, each BPA derived from the readings
of a sensor can be transformed to an IFS defined over the
discernment frame.
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B. Supporting degree between BPAs The concept of sup-
porting degree between BPAs has been proposed in some
modified evidence combination rules [7, 15]. Supporting
degree is usually considered as a symmetric a measurement
related to similarity and distance between BPAs. Hence,
taking Sup as the supporting degree between two BPAs
m1 and m2, we have Sup(m1, m2) =Sup(m2, m1). This
demonstrates that the supporting degree between two BPAs
is mutually identical to each other. Suppose that Sim and
Dis are similarity measure and distance measure between
BPAs, respectively, the following relations have been widely
accepted:

Sup(m1, m2) ∝ Sim(m1, m2),

Sup(m1, m2) ∝ 1 − Dis(m1, m2).

In other words, high similarity degree and low distance
degree between two BPAs both indicate high supporting
degree between them. Thus, supporting degree is usually
considered equivalent to similarity degree for BPAs.

Taking a close examination on these metrics, we can note
that the similarity degree describes the degree of similarity
between two objects. It reflects the distance between them.
If two objects are close to each other, we can say the
similarity degree to them is high. Nevertheless, the concept
of supporting degree cannot be a symmetric measurement
between two objects. Object o1 may support o2 in a great
degree, but this does not mean that o2 should support o1
in the same degree. The supporting degree of o1 to o2 is
determined by the similarity between o1 and the intersection
of them,denoted aso1 ∩ o2. That is to say, o1 agrees with
o1 ∩ o2, so o1 supports o2. Such sense can be extended to
the supporting degree between BPAs easily.

For two BPAs m1 and m2, the supporting degree
Sup satisfies the following property: Sup(m1, m2) ∝
Sim(m1, m1 ∩ m2). Moreover, the relation Sup(m1, m2) �=
Sup(m2, m1) holds for most cases. For clarity, we can take
the similarity degree between m1 and the intersection m1 ∩
m2 as the degree of m1 supporting m2, i.e., Sup(m1, m2) =
Sim(m1, m1 ∩ m2). Similarly, we have Sup(m2, m1) =
Sim(m2, m1 ∩ m2).

Considering the relation between BPA and IFS, we can
calculate the supporting degree of BPAs in the framework
of IFS, which will bring much convenience in defining
the intersection operation on BPAs. Hence, the supporting
degree Sup(m1, m2) can be calculated by the supporting
degree Sup(A1, A2), where A1 and A2 are IFSs derived
from m1 and m2 respectively. So we have:

Sup(m1, m2)=Sup(A1, A2)=Sim(A1, A1 ∩ A2) (16)

Recent years, many methods have been proposed to define
similarity measures for IFSs [4, 23]. When calculating the
supporting degree, we use the similarity measure for IFSs

based on Euclidian distance, which has been proposed in
[24]. It is defined as following:

LetA = {〈x, μA(x), vA(x)〉|x ∈ X} and B =
{〈x, μB(x), vB(x)〉|x ∈ X}be two IFSs in X =
{x1, x2, · · · , xn}. The similarity degree between A and B

can be expressed by:

SE(A,B) = 1 − 1

n

∑n

i=1

√
(μA(xi) − μB(xi))2 + (vA(xi) − vB(xi))2

2

(17)

It has been proved that SE(A, B) satisfies all desired
properties of similarity measure between IFSs as shown in
[23].

Based on above analysis, we can construct the supporting
degree for two BPAs m1 and m2 by the following steps:

Step 1. By (3) and 4, get the belief functions and plausi-
bility functions of singleton subsets corresponding
to m1 and m2.

Step 2. By (15), get two IFSs A1 and A2 according to m1

and m2.
Step 3. According Definition 3.4, get the intersection of

A1 and A2, denoted by A1 ∩ A2.
Step 4. Following (17), calculate the similarity degrees

SE(A1, A1 ∩ A2) and SE(A2, A1 ∩ A2).

Finally, we get the degree to which m1 supports m2 is
Sup(m1, m2) = SE(A1, A1 ∩ A2), the degree of m2

supporting m1 is Sup(m2, m1) = SE(A2, A1 ∩ A2).
Considering the properties of SE(A, B), we can get

m1 = m2 ⇒ Sup(m1, m2) = Sup(m2, m1) = 1.

C. Dynamic reliability of sensors Suppose the number of
sensors isN . The BPA provided by each sensor ismN . After
all supporting degrees between BPAs are obtained, we can
construct a supporting degree matrix (SDM). The SDM is
expressed as:

SDM =

⎛

⎜⎜⎜⎝

Sup(m1, m1) Sup(m1,m2) · · · Sup(m1,mN)

Sup(m2, m1) Sup(m2,m2) · · · Sup(m2,mN)

...
...

...
Sup(mN,m1) Sup(mN, m2) · · · Sup(mN, mN)

⎞

⎟⎟⎟⎠

(18)

We can note that the elements in column j represent the
degree to which mj is supported by other BPAs. Thus, the
total supporting degree of mj getting from all other BPAs
can be defined as:

T otal Sup(mj ) =
N∑

i = 1
i �= j

Sup(mi, mj ) (19)

Generally, the larger the support degree for one sensor, the
more reliable the sensor. Otherwise, the sensor is regarded
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as less reliable. More formally, as suggested by Yager [30],
the reliability associated with a sensor is a function of
the sensor’s compatibility with the others. Intuitively, the
relative reliability of each sensor can be defined as the
relative total support degree of BPA provided by it. So we
have:

R′(Sj ) = T otal Sup(mj )

N∑
j=1

T otal Sup(mj )

(20)

For N sensors, one sensor with the highest relative
reliability is regarded as the primary sensor and its dynamic
reliability factor is equal to 1. So the absolute dynamic
reliability of sensor Si (i = 1, 2, · · · , N) can be obtained
as:

R(Si) = R′(Si)

max
j=1,2,··· ,N

{R′(Sj )} (21)

Comparing (20) and (21), we can get the absolute dynamic
reliability of sensor Si (i = 1, 2, · · · , N) as following:

R(Si) = T otal Sup(mi)

max
j=1,2,··· ,N

{T otal Sup(mj )} (22)

3.1.1 A newmethod for data fusion

Once the dynamic reliability factors of all sensors are
obtained, the problem of how to incorporate them into
the fusion process may arise. Some approaches have been
proposed for this purpose in the information fusion literature
[18]. For example, substitute the dynamic reliability factors
into the discounting rule and then combine the discounted
belief functions by the Dempster’s combination rule. So
we can apply the dynamic reliability factors together
with evidence discounting operation to fuse uncertain
information from multiple sensors. Given N sensors S1,
S2, · · · , SN , with uncertain outputs, the process of combing
uncertain information from all sensors can be listed as
following.

Step 1. Uncertain data modeling with BPA.
In real applications, the information or data

can be any style, so the first step of information
processing in the frame of the Dempster–Shafer
evidence theory mainly focuses on modeling
uncertain information with BPAs evidence theory.
The uncertain outputs of sensors S1, S2, · · · , SN

are expressed as BPAs m1, m2, · · · , mN .
Step 2. Calculate the supporting degree of BPA mk

(i) By (3) and (4), get the belief functions and
plausibility functions of singleton subsets
corresponding to each BPA mi , i =
1, 2, · · · , N .

(ii) By (15), get IFSs corresponding to each
BPA.

(iii) According Definition 3.4, get the intersec-
tion of Ak and Aj , denoted by Ak ∩ Ai ,
i = 1, 2, · · · , N .

(iv) Following (17), calculate the similarity
degrees SE(Ai, Ak ∩ Ai), i = 1, 2, · · · , N .

(v) Finally, we get the degree of mi supports mk

is Sup(mi, mk) = SE(Ai, Ak ∩ Ai).

Step 3. Calculate the dynamic reliability of each sensor.
According to the supporting degree of each

BPA from all other BPAs, we can construct the
support degree matrix as (18). Then the dynamic
reliability of each sensor can be obtained based on
(19) and (22).

Step 4. Modify original BPAs form all sensors.
Based on the evidence discounting operation

shown in (10), we modify the original BPAs m1,
m2, · · · ,mN . The discounted BPAs are denoted by
mR

1 , mR
2 , · · · , mR

N .
Step 5. Data fusion by Dempster’s combination rule.

Combine the discounted BPAs
mR

1 , mR
2 , · · · , mR

N by Dempster’s combination
rule shown in (8).

For clarity, we present above five steps included in the
procedure for fusing uncertain data from multiple sensors in
the flow chart shown in Fig. 1.

Uncertain data modeling with BPA.

Calculate the supporting degree of BPA mk.

Calculate the dynamic reliability of each sensor.

Modify original BPAs form all sensors.

Data fusion by Dempster’s combination rule.

Fig. 1 The flow chart of sensor data fusion based on asymmetric
supporting degree

Y. Song et al.3956



4 Numerical examples and discussion

In this section, we will apply our proposed dynamic
reliability evaluation method and evidence combination rule
to the application of identification fusion to illustrate their
performances.

First, a numerical example is proposed to show the
implementation of sensor’s dynamic reliability evaluation
method and its application in evidence combination.

Example 4.1 In a target recognition system based on multi-
sensor, three sensors S1, S2, and S3 are employed to classify
the identification of sea targets. Three possible types of
targets are denoted as θ1, θ2, and θ3. So the discernment
frame � can be written as {θ1, θ2, θ3}. The sensor readings
on the classes are expressed by the BBAs detailed as
following:
m1({θ1}) = 0.6,m1({θ2}) = 0.1,m1({θ3}) = 0.2,m1(�) = 0.1

m2({θ1}) = 0.2,m2({θ2}) = 0.5,m2({θ3}) = 0.1,m2(�) = 0.2

m3({θ1}) = 0.4,m3({θ2}) = 0.1,m3({θ3}) = 0.2,m3({�}) = 0.3

Three intuitionistic fuzzy sets in �= {θ1, θ2, θ3} generated
by these BPAs can be expressed as following:

A1 = {〈θ1, 0.6, 0.3〉, 〈θ2, 0.1, 0.8〉, 〈θ3, 0.2, 0.7〉}
A2 = {〈θ1, 0.2, 0.6〉, 〈θ2, 0.5, 0.3〉, 〈θ3, 0.1, 0.7〉}
A3 = {〈θ1, 0.4, 0.3〉, 〈θ2, 0.1, 0.6〉, 〈θ3, 0.2, 0.5〉}
The supporting degree matrix (SDM) for three BPAs is:

SDM =
⎛

⎝
1 SE(A1, A1 ∩ A2) SE(A1, A1 ∩ A3)

SE(A2, A2 ∩ A1) 1 SE(A2, A2 ∩ A3)

SE(A3, A3 ∩ A1) SE(A3, A3 ∩ A2) 1

⎞

⎠

Based on the intersection operation on IFS and the
definition of similarity SE , we can get the SDM as:

SDM =
⎛

⎝
1 0.8586 0.9529

0.8491 1 0.8821
0.9057 0.8623 1

⎞

⎠

Based on (19), the total supporting degree obtained by each
BPA can be calculated:

T otal Sup(m1) = 1.7548,

T otal Sup(m2) = 1.7209,

T otal Sup(m1) = 1.8350.

Then we can get the relative reliability factor of each sensor
by Eq. (20):

R′(S1) = 0.3304, R′(S2) = 0.3240, R′(S3) = 0.3455.

Finally the absolute dynamic reliability of each sensor can
be obtained according to (21):

R(S1) = 0.9563, R(S2) = 0.9378, R(S3) = 1.

Based on the dynamic reliability factor, the original
BPAs can be modified by the discounting operation. The
discounted BPAs are:

mR
1 ({θ1}) = 0.574, mR

1 ({θ2}) = 0.096, mR
1 ({θ3})

= 0.191, mR
1 (�) = 0.139

mR
2 ({θ1}) = 0.187, mR

2 ({θ2}) = 0.469, mR
2 ({θ3}) = 0.094, mR

2 (�) = 0.250

mR
3 ({θ1}) = 0.4, mR

3 ({θ2}) = 0.1, mR
3 ({θ3}) = 0.2, mR

3 (�) = 0.3

Combine these modified BPAs by Dempster’s rule, we can
get the result as:
m({θ1}) = 0.646,m({θ2}) = 0.178,m({θ3}) = 0.144,m(�) = 0.032

So we can get a comprehensive recognition on the
identification of the sea target. As shown in the fusion result,
the target is identified as θ1 based on the readings proposed
by three sensors.

It is demonstrated that the proposed approach can
provides a new alternative to combine uncertain sources
of evidence with different reliability without a priori
knowledge on the sources. In this example, we note that
the information m2 proposed by sensor S2 is quite different
from others. The proposed method can be well adapted
for the fusion of highly conflicting sources of information
for decision making support. The sources which are highly
conflicting with the majority of other sources will be
automatically assigned with a low reliability factor thanks
to the new supporting degree measure in order to decrease
their bad influence in the fusion process.

Another illustrative example adopted in [15] will be
presented to show the performance of our new approach
with respect to other methods.

Example 4.2 In a multi-sensor information fusion system,
a set of five sensors (S1, S2, S3, S4, S5) is applied for sea
target identification. They provide five normalized BPAs
with imprecise focal elements over the frame of discernment
� = {θ1, θ2, θ3} as given in Table 1.

Table 1 shows that the BPAs m1, m2, m4 and m5

assign most of their belief to θ1, but m3 oppositely
commits its largest mass of belief to θ2. Therefore m3 is

Table 1 Five BPAs to be combined

m1 m2 m3 m4 m5

{θ1} 0.8 0.4 0 0.3 0.45

{θ2} 0.1 0.2 0.95 0.2 0.1

{θ3} 0 0.1 0.05 0.25 0

{θ1, θ2} 0 0.3 0 0.2 0

{θ2, θ3} 0 0 0 0 0.15

� 0.1 0 0 0.05 0.3
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considered as the least reliable or unimportant source based
on the aforementioned underlying principle, and it can be
considered as a noisy source (outlier).

By our proposed dynamic reliability evaluation method
based on supporting degree, we can get the absolute
dynamic reliability factors for five sensors as following.

R(S1) = 0.8125, R(S2) = 1, R(S3) = 0.7535,

R(S4) = 0.7854, R(S5) = 0.8631.

We can see that the dynamic reliability degree of S3 is
the lowest in five sensors. This coincides with our intuitive
analysis that the information provided by S3 may be a noise
source.

Based on evidence discounting operation and Dempster’s
combination rule, we can get the fusion results as:

m({θ1}) = 0.5760, m({θ2}) = 0.4090,
m({θ3}) = 0.0065, m({θ1,θ2}) = 0.0084, m(�) = 0.0001.

The fusion result shows that the target is identified as θ1.
Since the dynamic reliability of S3 is very low, the influence
of its readings on the final result is very limited.

Table 2 shows the fusion results obtained with the
different methods. From Table 2, we see that the Classical
Dempster’s rule (without discounting process) concludes
that the hypothesis θ1 is very unlikely to happen whereas θ2
is almost sure to happen. Such result is unreasonable since
the majority sources assign most of their belief to θ1, but
only one source distributes its largest mass of belief to θ2.

Such unexpected behavior shows that DS rule is risky to
use to combine sources of evidence in a high conflicting
situation.

Once reliability factor is applied as discounting factor,
m3 becomes strongly discounted because of its largest
dissimilarity with the other sources. When evidential
distance dJ and dissimilarity measure DismP are used to
generate reliability factors, sensor S3 is assigned to a very
low reliability degree. So the information provided by S3
has little influence on the final fusion result. This caused
great information loss. In fact, if only three sensors S1,
S2, and S3 are considered, we cannot decide that m3 is
outlier. So it may be an arbitrary choice to discount m3 in
such great degree. We need more information to determine
the reliability factor of S3. In such sense, the methods
proposed in [7] and [15] may bring great risk in sequential
fusion process.

The final result of our proposed method indicates that
θ1 has a higher mass of belief than θ2 (as expected)
after the fusion of the five sources, even if θ2 has got a
bigger mass than θ1 after some intermediate steps of the
sequential fusion process. We see that the mass assigned to
θ2 increases when S3 participates the fusion. But them({θ2})
decreases gradually with the addition of S4 and S5. If we
considered five sensors sequentially, the fusion results in
each step are more reasonable and cautious. This is caused
by the nature of our proposed method. The new supporting
degree is defined based on the distance measure between

Table 2 Combination results of different evidence bodies

m2
1 m3

1 m4
1 m5

1

Classical Dempster’s rule m({θ1})=0.8451 m({θ1})=0 m({θ1} )=0 m({θ1})=0

m({θ2})=0.0986 m({θ2})=0.9948 m({θ2} )=0.9965 m({θ2} )=0.9971

m({θ3})=0.0140 m({θ3})=0.0052 m({θ3})=0.0035 m({θ3})=0.0029

m({θ1, θ2})=0.0423

dJ & DS [7] m({θ1})=0.7659 m({θ1})=0.6239 m({θ1})=0.6858 m({θ1})=0.7528

m({θ2})=0.1166 m({θ2})=0.2791 m({θ2})=0.2645 m({θ2})=0.2217

m({θ3})=0.0294 m({θ3})=0.0252 m({θ3})=0.0146 m({θ3})=0.0096

m({θ1, θ2})=0.0881 m({θ1, θ2})=0.0718 m({θ1, θ2} )=0.0351 m({θ1, θ2})=0.0159

Liu’s method in [15] m({θ1})=0.7503 m({θ1})=0.7157 m({θ1} )=0.7670 m({θ1})=0.8254

m({θ2})=0.1196 m({θ2})=0.1598 m({θ2})=0.11655 m({θ2})=0.1424

m({θ3})=0.0319 m({θ3})=0.0308 m({θ3})=0.0194 m({θ3})=0.0120

m({θ1, θ2})=0.0957 m({θ1, θ2})=0.0913 m({θ1, θ2} )=0.0477 m({θ1, θ2})=0.0198

m(�) =0.0025 m(�) =0.0024 m(�) =0.0004 m({θ2, θ3})=0.0002

m(�) =0.0002

Proposed method m({θ1})=0.8446 m({θ1})=0.3729 m({θ1} )=0.4585 m({θ1})=0.5760

m({θ2})=0.0986 m({θ2})=0.5898 m({θ2} )=0.5174 m({θ2} )=0.4090

m({θ3})=0.0139 m({θ3})=0.0118 m({θ3})=0.0083 m({θ3})=0.0065

m({θ1, θ2})=0.0418 m({θ1, θ2})=0.0255 m({θ1, θ2} )=0.0158 m({θ1, θ2})=0.0084

m(�) =0.0011 m(�) =0.0001
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IFS, which is smaller than the evidential distance dJ and
dissimilarity measure DismP. So the dynamic reliability
factor of unreliable sensors is greater than those generated
by dJ and DismP. Such new method can provide interesting
results and valuable help for temporal information fusion.

5 Application in target recognition

In this section, we apply our proposed method for
fata fusion in target recognition to further show its
rationality. Target recognition based on information fusion
has become a successful application of evidence theory
receiving considerable attention in both military and civilian
areas [16, 17, 26]. In target recognition, due to the
limitation of sensors and interference from environments,
the information derived from different sensors is usually
imperfect. Hence, the target cannot be identified by single
sensor. It is necessary to fuse information coming from
multiple sensors to achieve better results. Due to its
flexibility in combination and ease of use by the decision
maker, evidence theory has been widely applied in target
recognition based on multi-sensor data fusion.

5.1 Problem description

Suppose that one unknown aerial target is detected by
a radar. Three possible types of targets are Airplane,
Helicopter, and Rocket denoted as A, Hand R, respectively.
So in the framework of evidence theory, discernment frame
� can be written as {AHR}. To identify the class of
this target, three sensors S1S2 and S3 are applied to track
and recognize it continuously. These three sensors output
identification information at three time nodes t1, t2 and t3.
The results of sensor reports in each time node modelled as
BPAs are resented in Table 3.

Table 3 Data for target identification modelled as BPAs

t1 t2 t3

S1 m({A})=0.3666 m({H })=0.8176 m({H })=0.6229

m({H })=0.4563 m({R})=0.0003 m(�) =0.3771

m({A, H })=0.1185 m({A, H })=0.1553

m(�) =0.0586 m(�) =0.0268

S2 m({A})=0.2793 m({H })=0.5658 m({H })=0.7660

m({H })=0.4151 m({R})=0.0009 m(�) =0. 2340

m({A, H })=0.2652 m({A, H })=0.0646

m(�) =0.0404 m(�) =0.3687

S3 m({A})=0.2897 m({H })=0.2403 m({H })=0.8598

m({H })=0.4331 m({R})=0.0004 m(�) =0.1402

m({A, H })=0.2470 m({A, H })=0.0141

m(�) =0.0302 m(�) =0.7452

Table 4 Modified BPAs after evidence discounting

t1 t2 t3

S1 m′({A})=0.3639 m′({H })=0.7114 m′({H })=0.6229

m′({H })=0.4529 m′({R})=0.0003 m′(�) =0.3771

m′({A, H })=0.1176 m′({A, H })=0.1351

m′(�) =0.0656 m′(�) =0.1532

S2 m′({A})=0.2790 m′({H })=0.5619 m′({H })=0.7660

m′({H })=0.4147 m′({R})=0.0009 m′(�) =0.2340

m′({A, H })=0.2649 m′({A, H })=0.0642

m′(�) =0.0414 m′(�) =0.3731

S3 m′({A})=0.2897 m′({H })=0.2403 m′({H })=0.8300

m′({H })=0.4331 m′({R})=0.0004 m′(�) =0.1700

m′({A, H })=0.2470 m′({A, H })=0.0141

m(�) =0.0302 m′(�) =0.7452

5.2 Data fusion based the proposedmethod

Based on the proposed asymmetric supporting degree, we
can get the Supporting Degree Matrix at each time node as
following:

SDMt1 =
⎛

⎝
1 0.9654 0.9697

0.9697 1 0.9909
0.9764 0.9933 1

⎞

⎠ ,

SDMt2 =
⎛

⎝
1 0.9407 0.8639

0.8603 1 0.9232
0.6946 0.8342 1

⎞

⎠ ,

SDMt3 =
⎛

⎝
1 0.9325 0.8883

0.9663 1 0.9558
0.9442 0.9779 1

⎞

⎠ .

Then we can calculated the dynamic reliability of all sensors
at each time node according to (19) and Section 3.1.1. The
dynamic reliability of each sensor is obtained as:

w
t1
S1

= 0.9926, wt1
S2

= 0.9990, wt1
S3

= 1;

w
t2
S1

= 0.8701, wt2
S2

= 0.9931, wt2
S3

= 1; w
t3
S1

= 1, wt3
S2

= 1, wt3
S3

= 0.9653.

Modify the original BPAs by evidence discounting oper-
ation, we can get the modified BPAs as listed in Table 4.

Table 5 Fusion results at all time nodes

t1 t2 t3

m({A})=0.3375 m({H })=0.8998 m({H })=0.9850

m({H })=0.6308 m({R})=0.0002 m(�) =0.0150

m({A, H })=0.0315 m({A, H })=0.0581

m(�) =0.0002 m(�) =0.0419
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Table 6 Fusion results
obtained by other methods t1 t2 t3

The method in [11] m({A})=0.3384 m({H })=0.8861 m({H })=0.9621

m({H })=0.5904 m({R})=0.0002 m(�) =0.0371

m({A, H })=0.0651 m({A, H })=0.0582

m(�) =0.0061 m(�) =0.0555

The method in [25] m({A})=0.3318 m({H })=0.8891 m({H })=0.9784

m({H })=0.6332 m({R})=0.0003 m(�) =0.0216

m({A,H })=0.0349 m({A, H })=0.0427

m(�) =0.0001 m(�) =0.0679

At each time node, we fuse the information provided by
all sensors by Dempster’s combination. We can thus get the
fusion results in three time nodes as listed in Table 5.

5.3 Discussions

From the fusion results presented in Table 5, we can
note that the combination of three sensors’ reports in all
time nodes illustrate that the unknown aerial target is a
Helicopter. It is also shown that from time node t1 to t3,
in the final results, the basic probability assigned to {H }is
increasing. This indicates that in the process of continuous
recognition, the reliability of decision making increases
with the collection of latest information. Such phenomenon
coincides with intuitive analysis on target recognition.

For comparison, Table 6 shows the results obtained by
those methods developed in [11, 25]. We can note that
the fusion results obtained by our proposed method are
consistent with those results by other methods. Moreover,
our proposed method assigns more support on {H } in the
fusion results at all time nodes.

This comparative results demonstrate the feasibility and
validity of our propose method for data fusion. Since the
dynamic reliability of each sensor is evaluated based on the
developed asymmetric supporting degree between BPAs,
more uncertain information can be hold in the fusion. Thus
the uncertain information form sensors’ report cam be well
preprocessed based on the dynamic reliability and evidence
discounting operation. These features of our proposed data
fusion method lead to the reasonability and reliability of
final decision making.

6 Conclusions

In this paper, a new dynamic reliability evaluation method
for sensors is proposed based on supporting degree
measure between BPAs in evidence theory. The supporting
degree measure is defined based on the relationship
between belief function and intuitionistic fuzzy sets.
The proposed asymmetric supporting degree is related

to the similarity degree between original BPAs and the
intersection of them. The dynamic reliability of one sensor
is monotone increasing with the supporting degree its
readings obtained from other sensors’ readings. Then
the dynamic reliability factors are applied into evidence
combination based on evidence discounting operation and
Dempster’s rule. We have shown through simple examples
that the proposed dynamic reliability evaluation method can
assigned a reasonable reliability factor to sensors which
providing conflicting information. Moreover, numerical
examples demonstrate that the combination rule based on
dynamic reliability can reduce the influence of conflicting
information on the final fusion result. Due to the definition
of supporting degree and intuitionistic fuzzy similarity
measure, the proposed combination rule is more cautions
when dealing with conflicting information. More reasonable
and effective definition of supporting degree in evidence
theory is left for future investigations.
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