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Abstract
In this paper, the interval-valued intuitionistic fuzzy sets (IVIFSs) are studied from the viewpoint of the decision makers’
preference. Firstly, two series of principles are proposed to guide the ranking of interval-valued intuitionistic fuzzy numbers
(IVIFNs), and two kinds of illustrative generalized score functions on IVIFSs are proposed according to the newly proposed
principles. Secondly, two kinds of generalized score functions on IVIFSs are proposed based on decision-makers’ preference.
The two generalized score functions are both of two parameters, which represent the decision makers’ attitudinal characters
on the classical score values and the classical accuracy values on IVIFNs, respectively. Thirdly, two kinds of generalized
score functions on IVIFSs, which are suitable for ranking IVIFNs when there is no information about the importance weights
of the classical score values and accuracy values on IVIFNs, are proposed based on integral. Fourthly, three kinds of multi-
criteria decision-making (MCDM) methods in interval-valued intuitionistic fuzzy setting are proposed. Finally, an example
shows that when a novel generalized score function on IVIFSs is proposed, its suitable application environments should also
be pointed out.

Keywords Interval-valued intuitionistic fuzzy sets · Generalized score function · Integral function ·
Preference parameters · Multi-criteria decision making

1 Introduction

The concept of intuitionistic fuzzy sets(IFSs), a generaliza-
tion of the concept of fuzzy sets, was first introduced by
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[1]. In IFSs, the relationship between an element and a set
is described by two numbers, i.e., the membership degree
and the non-membership degree of the element to the set,
respectively. Thereafter, [2] proposed the notion of interval-
valued intuitionistic fuzzy sets (IVIFSs) as an extension
of IFSs. In IVIFSs, the membership degree and the non-
membership degree of an element to a set are given as
interval numbers.

For more than twenty years, the IVIFSs have been
studied from multiple perspectives, such as entropy theory,
distance theory, score functions, and accuracy functions. For
more details on this issue please see [6, 14, 15, 18], etc.
Multiple criteria decision making (MCDM) is one of the
processes for selecting the optimal alternative from all the
feasible alternatives according to some criteria or attributes.
When the theories of IFSs or IVIFSs are applied to MCDM,
the most important topic worthy of attention is how to
compare and rank the IFSs or IVIFSs. Many scholars have
paid great attention to this issue. [4] suggested a score
function of vague values. Later, [8] defined an accuracy
function of vague values. Similar to the aforementioned
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studies, [19] introduced a score function and an accuracy
function on IFSs. Furthermore, by using both of them,
they recommended a well-known order relation to rank
intuitionistic fuzzy numbers (IFNs), and offered a series of
measures to indicate the similarity degree between IFNs.
Besides, the properties of IFNs are also studied broadly
from geometric perspective. For example, [22] proposed
a hybrid arithmetic to rank IFNs. It is noteworthy that
this order relation is very prospective and outstanding.
However, the importance of the score values of IFNs is
much more prominent than the accuracy values in this
order relation, which leads to relatively strict conditions of
application. In the past ten years, some new score functions
and accuracy functions have been propounded to rank the
IFNs or the interval-valued intuitionistic fuzzy numbers
(IVIFNs), where the proposed score functions and accuracy
functions are not combined any more, they work alone.
For more details on this issue please see [12, 16, 17, 20,
26]. Later, [24] and [23] indicated that there are some
difficulties in the proposed score functions or accuracy
functions for ranking the IFNs or IVIFNs. Much more
recently, [9] provided some optimum techniques to balance
between group consensus and individual independence. [7]
first developed an intuitionistic fuzzy Bayesian network
to obtain the practical attribute weights under uncertain
environment in information fusion and dynamic decision
making process. The aforementioned studies have enriched
the research system on IFSs, which laid a solid foundation
for this study.

In general, the essence of generalized score value on
an IFS is the “quality” of the membership degree of an
element to the given set. From the viewpoint of utility,
two factors need to be considered on the comparison
between the “qualities” of different membership degrees on
IFNs or IVIFNs. One factor is the classical score values,
and the other one is the classical accuracy values. The
bigger the classical score value of an IVIFN (IFN) is, the
greater its utility; the bigger the classical accuracy value
of an IVIFN (IFN) is, the greater its utility. Therefore, the
coordination of the two factors is worthy of consideration.
From the standpoint of probability theory, there are infinite
possibilities to combine the classical score value and
accuracy value of an IVIFN (IFN). All the existing score
functions or accuracy functions are the moment estimation
functions of the relationship between the two factors.
Therefore, they can only be used in certain environments.

Hong and Choi [8] once indicated that “the relation
between the classical score and accuracy functions on IFSs
(the original text is ‘vague sets’, which is interlinked with
IFSs in essence) is similar to the relation between mean and
variance in statistics”. However, the functions, proposed to
rank the IVIFSs respectively, are called accuracy function
or score function optionally. For uniformity in this study,

the functions used to rank IVIFSs solely are termed as
“generalized score function”. Meanwhile, [3] proposed a
model which demonstrates the influence driven evolution of
experts’ opinions and its convergence properties. Referring
to the decision making thoughts proposed by [8] and [3],
the comparison between IVIFNs is conducted based on
the attitudinal characters of decision-makers in this study.
Furthermore, to reduce the risk of errors in the comparing
process on IVIFNs (IFNs), this study uses the integral
theory to aggregate the infinite possibilities combining the
classical score and accuracy values of an IVIFN (IFN).

The rest of this paper is organized as follows. In
Section 2, the definitions of IFSs and IVIFSs, as well as
the concepts of the classical score function and accuracy
function of IFSs and IVIFSs are introduced. In Section 3,
two kinds of principles are suggested to guide the ranking of
IVIFNs; then, according to the newly proposed principles,
two novel generalized score functions on IVIFSs are
proposed; subsequently, two kinds of generalized score
functions on IVIFSs are proposed based on preference
information of decision-makers; thereafter, two kinds of
generalized score functions on IVIFSs are proposed based
on integral. In Section 4, three kinds of MCDM methods in
intuitionistic fuzzy setting are offered. Section 5 provides
an example to demonstrate the effectiveness of the proposed
methods. Section 6 ends this study with some important
conclusions.

2 Preliminaries

In this section, the concepts of IFSs and IVIFSs, the
classical score and accuracy functions are reviewed.
Primarily, the concepts of IFSs and IVIFSs are introduced
as follows.

Definition 1 [1]. Let X be a non-empty set. An IFS A

in X is denoted as A = {〈x, μA(x), νA(x)〉 | x ∈ X},
where μA(x) : X → [0, 1], νA(x) : X → [0, 1] with
the condition 0 ≤ μA(x) + νA(x) ≤ 1 for any x ∈ X.
Here, μA(x) and νA(x) denote the membership degree and
the non-membership degree of x to A, respectively. For
any x ∈ X, the hesitancy degree of x to A is denoted as
πA(x) = 1 − μA(x) − νA(x); the complementary set of A

is defined as Ac = {〈x, μA(x), νA(x)〉 | x ∈ X}.
For convenience, [16] denoted the intuitionistic fuzzy

numbers (IFNs) as A = 〈μ, ν〉.

Definition 2 [2]. Let D[0, 1] be the set of all closed sub-
intervals of the interval [0, 1] and X(�= �) be a given set.
An IVIFS A in the universe of discourse X is defined as
A = {〈x, μA(x), νA(x)〉 | x ∈ X}, where μA(x) : X →
D[0, 1], νA(x) : X → D[0, 1] with the condition 0 ≤
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sup(μA(x)) + sup(νA(x)) ≤ 1 for any x ∈ X. The
intervals μA(x) and νA(x) represent the membership degree
and non-membership degree of the element x to the set
A, respectively. Denote the lower and upper end points as
μAL(x), μAU(x), νAL(x), and νAU(x), respectively, i.e.,

A = {〈x, [μAL(x), μAU(x)], [νAL(x), νAU (x)]〉 | x ∈ X} ,

(1)

where 0 ≤ μAU(x) + νAU(x) ≤ 1, 0 ≤ μAL(x) and
0 ≤ νAL(x).

For any x ∈ X, the interval intuitionistic index of x to A

is denoted as

πA(x) = [πAL(x), πAU(x)] = [1 − μAU(x)

−νAU(x), 1 − μAL(x) − νAL(x)]. (2)

The complementary set Ac of an IVIFS A is defined as

Ac = {〈x, [νAL(x), νAU (x)], [μAL(x), μAU(x)]〉 | x ∈ X} .
(3)

Xu and Yager [19] called the pair (μA(x), νA(x)) as
an IVIFN, and simplified it as α̃ = ([a, b], [c, d]),where
[a, b] ⊂ [0, 1], [c, d] ⊂ [0, 1], b + d ≤ 1. Thereafter, [19]
proposed the classical score and accuracy functions on IFNs
as follows.

Definition 3 [19] Let α = (μ, ν) be an IFN, then the
classical score function on α is defined as S(α) = μ − ν.

Definition 4 [19] Let α = (μ, ν) be an IFN, then the
classical accuracy function on α is defined asH(α) = μ+ν.

By using the classical score and accuracy functions, [16]
proposed a well-known approach to rank IFNs as follows.

Definition 5 [16] Let αi = (μi, νi)(i = 1, 2) be two IFNs,
and let S(αi) andH(αi) be the score values and the accuracy
values of αi(i = 1, 2), respectively. Then the following
conditions hold:

(i) if S(α1) > S(α2), thenα1 	 α2;
(ii) if S(α1) = S(α2), then,

(1) if H(α1) > H(α2), thenα1 	 α2;
(2) if H(α1) = H(α2), thenα1 = α2;
(3) if H(α1) < H(α2), thenα1 ≺ α2.

The most significant contributions of Definition 5 is that
it gives a procedure to compare different IFNs. Furthermore,
the following conclusions are obtained under interval-
valued intuitionistic fuzzy environments.

Definition 6 [17] Let α̃ = ([a, b], [c, d]) be an IVIFN,
then the score function of α̃ is defined as Sxu(̃α) = 1

2 (a +

b − c − d), and the accuracy function of α̃ is defined as
Hxu(̃α) = 1

2 (a + b + c + d).

3Main results

3.1 Problem analysis

In this subsection, the IVIFNs are studied through data
analysis. Take an IVIFN α̃ = ([a, b], [c, d]) for example,
at present, there are many kinds of generalized score
functions or accuracy functions on α̃. For example, [12,
16, 17, 20] and [26] proposed some kinds of them.
Since the differences between different IVIFNs mainly
depend on two parameters. One parameter is Sxu(̃α), which
represents the closeness between the IVIFN α̃ and the
fuzzy concept “excellence”; the other parameter is Hxu(̃α),
which represents the credibility of the IVIFN α̃. It is
difficult to find a sole function to rank all the IVIFNs
without self-contradictory in some cases. For example,
when comparing two IVIFNs α̃1 = ([a1, b1], [c1, d1]) and
α2 = ([a2, b2], [c2, d2]), we should compare not only
the difference between Sxu(̃α1) and Sxu(̃α2), but also the
difference between Hxu(̃α1) and Hxu(̃α2). In the comparing
process, how important is Sxu(·), and how important is
Hxu(·)? Is Sxu(·) more or less important than Hxu(·)?
Practically, the importance degrees of Sxu(·) and Hxu(·) are
relative rather than absolute. Different decision-makers have
different viewpoints on them, and any certain viewpoint
on them is only suitable for comparing the IVIFNs in
certain decision making circumstances. Therefore, when a
novel generalized score or accuracy function on IVIFSs
is proposed, its application scope should also be pointed
out.

Frequently, fuzziness problems lack the illustrating
information that leads us to suitable generalized score
functions or accuracy functions. Therefore, it is of great
interest to propose the fundamental principles to evaluate
the effectiveness of these generalized score or accuracy
functions. In the following subsection, some principles are
introduced on the basis of practice. Furthermore, under
the guidance of these fundamental principles, two kinds
of illustrative generalized score functions on IVIFSs are
proposed.

3.2 Applicable conditions of generalized score
functions on IVIFSs

In this subsection, the applicable conditions of generalized
score functions on IVIFSs are proposed through two theo-
rems. Thereafter, two specific generalized score functions
on IVIFS which satisfy the aforementioned two theorems
are introduced.
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Theorem 1 Let α̃i = ([ai, bi], [ci, di])(i = 1, 2) be two
IVIFNs, and let˜S(·) be the generalized score function which
is proposed to rank IVIFNs by itself. Then˜S(·) should satisfy
the following properties:

(i) if (a1−d1)−(b2−c2) > 0, (a1+c1)−(b2+d2) > 0,
then, ˜S(̃α1) > ˜S(̃α2);

(ii) if (b1−c1)−(a2−d2) < 0, (b1+d1)−(a2+c2) < 0,
then, ˜S(̃α1) < ˜S(̃α2);

(iii) if˜S(̃α1) > ˜S(̃α2), then, ˜S(˜αc
1) < ˜S(˜αc

2);
(iv) ˜S(̃αi) ∈ [0, 1], for any i = 1, 2;
(v) ˜S (([0, 0], [1, 1])) = 0, ˜S (([1, 1], [0, 0])) = 1.

Analogously, for i = 1, 2, when ai = bi , and ci = di , we
have the following theorem.

Theorem 2 Let αi = (μi, νi)(i = 1, 2) be two IFNs, and
let S(·) be the generalized score function which is proposed
to rank IFNs by itself. Then S(·) should satisfy the following
properties:

(i) if (μ1−ν1)−(μ2−ν2) > 0, (μ1+ν1)−(μ2+ν2) > 0,
then, S(α1) > S(α2);

(ii) if (μ1−ν1)−(μ2−ν2) < 0, (μ1+ν1)−(μ2+ν2) < 0,
then, S(α1) < S(α2);

(iii) if S(α1) > S(α2), then, S(αc
1) < S(αc

2).
(iv) S(αi) ∈ [0, 1], for any i = 1, 2;
(v) S ((0, 1)) = 0, S ((1, 0)) = 1.

It is noteworthy that Theorem 1 and 2 are consistent
with Definition 5. However, Definition 5 is a kind of
method to compare IVIFSs. Different from Definition 5,
Theorem 1 and 2 are mainly used to evaluate the generalized
score functions which rely on one parameter. Meanwhile,
Theorem 1 and 2 can not be used to compare IVIFSs directly
in many cases, since they only work under very specific
conditions. For example, when comparing two IVIFNs α̃1

and α̃2 by any generalized score function, the condition (i)

in Thm. 1 means that if the classical score value of α̃1 is
larger than that of α̃2, and the classical accuracy value of α̃1

is larger than that of α̃2 hold at the same time, ˜S(̃α1) should
be prior to ˜S(̃α2).

To illustrate Theorem 1 and 2 more clearly, two kinds of
illustrative novel generalized score functions are introduced
as follows.

Definition 7 Let α̃ = ([a, b], [c, d]) be an IVIFN. Then,
two generalized score functions F1(·) and F2(·) on IVIFNs
are proposed as

F1(α̃) = 1

2

[

s(α̃) ·
√

abs

(

(a−c)+(b−d)

2

)

· (a+c)+(b+d)

2
+1

]

,

(4)

F2(α̃) = 1

2

{

s(α̃)

2
·
[

abs

(

(a−c)+(b−d)

2

)

+ (a+c)+(b+d)

2

]

+1

}

,

(5)

where s(α̃) = sgn

[

(a − c) + (b − d)

2

]

; sgn(·) represents
the sign function; abs(·) represents the absolute value
function. Obviously, 0 ≤ F1(·), F2(·) ≤ 1.

Obviously, F1(·) and F2(·) satisfy the five properties of
Theorem 1 or Theorem 2. Besides, though F1(·) and F2(·)
consider the classical score and accuracy values of IVIFSs
without distinction, the score values of F1(·) and F2(·) on
the same given IVIFN are usually different. To illustrate
the effectiveness of the score functions F1(·) and F2(·), an
example is introduced.

Case 1 Assume that there are two IVIFNs, where

α̃1 = ([a1, b1], [c1, d1]) = ([0.65, 0.75], [0.15, 0.20]),
α̃2 = ([a2, b2], [c2, d2]) = ([0.45, 0.50], [0.10, 0.15]),
please compare them.

On one hand, by calculation, it is obtained that

(a1 − d1) − (b2 − c2) = 0.45 − 0.40 = 0.05 > 0,

(a1 + c1) − (b2 + d2) = 0.80 − 0.60 = 0.20 > 0.

Therefore, according to the property (i) in Theorem 1,
their ranking is as α̃1 	 α̃1.

On the other hand, by using (4), it is obtained that
F1(α̃1) = 0.839, F1(α̃2) = 0.729. Similarly, by using
(5), it is obtained that F2(α̃1) = 0.850, F2(α̃2) = 0.738.
Therefore, it holds that F1(α1) > F1(α2), F2(α1) > F2(α2).
As a result, it is concluded that α̃1 	 α̃2, which satisfies the
property (i) of Theorem 1. Meanwhile, by using (4), it is
obtained that F1(α̃

c
1) = 0.161, F1(α̃

c
2) = 0.271. Similarly,

by using (5), it is obtained that F2(α̃
c
1) = 0.150, F2(α̃

c
2) =

0.263. Therefore, it holds that F1(α
c
2) > F1(α

c
1). As a result,

it is concluded that ˜αc
2 	 ˜αc

1, which satisfies the property
(iii) of Theorem 1.

3.3 Two kinds of generalized score functions
on IVIFSs based on preference information
of decision-makers

Similar to F1(·) and F2(·), there are many generalized
score functions which were proposed to compare IVIFSs.
Since the differences between different IVIFNs mainly
depend on two parameters, the classical score value, and
the classical accuracy value, it is considered that any given
generalized score function on IVIFSs reflects a certain
relationship between the classical score function and the
classical accuracy function. Therefore, in order to serve
different types of decision makers targetedly, two kinds of
generalized score functions on IVIFSs are suggested based
on preference information of decision-makers. The first
kind of generalized score function on IVIFSs is based on
geometric weighted operators; while the second one is based
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on arithmetic weighted operator. Besides, these two kinds
of generalized score functions are of two parameters. More
details are as follows.

Definition 8 Let α̃ = ([a, b], [c, d]) be an IVIFN. A novel
generalized weighted geometric average score function
F3(·) on IVIFNs is defined as

F3(α̃) = 1

2

{

s(α̃) ·
[

abs

(

(a − c) + (b − d)

2

)]t

·
[

(a + c) + (b + d)

2

]1−t

+ 1

}

, (6)

where s(α̃) = sgn

[

(a − c) + (b − d)

2

]

, t ∈ [0, 1].

Meanwhile, a novel generalized weighted arithmetic
average score function with parameters is proposed as
follows.

Definition 9 Let α̃ = ([a, b], [c, d]) be an IVIFN, a novel
generalized weighted arithmetic average score function
F4(·) on IVIFNs is defined as

F4(α̃) = 1

2

{

s(α̃) ·
[

t ∗ abs

(

(a − c) + (b − d)

2

)

+ (1 − t) ∗ (a + c) + (b + d)

2

]

+ 1

}

, (7)

where s(α̃) = sgn

[

(a − c) + (b − d)

2

]

, t ∈ [0, 1].

To illustrate the effectiveness of the generalized score
functions F3(·) and F4(·), an example is introduced.

Case 2 Assume that there are two IVIFNs, where

α̃3 = ([a3, b3], [c3, d3]) = ([0.15, 0.20], [0.05, 0.15]),
α̃4 = ([a4, b4], [c4, d4]) = ([0.40, 0.45], [0.35, 0.40]),
please compare them.

By (6), they get that F3(α̃3) = 0.5 ∗ (0.075t ∗ 0.2751−t +
1), F3(α̃4) = 0.5 ∗ (0.050t ∗ 0.8001−t + 1). It is proved that
when 0 ≤ t < 0.724, they hold that F2(α3) < F2(α4), while
when 0.724 < t ≤ 1, they hold that F2(α3) > F2(α4).

By (7), they get that F4(α̃3) = 0.5 ∗ (1.275 − 0.2t),
F4(α̃4) = 0.5 ∗ (1.8 − 0.75t). It is proved that when 0 ≤
t < 0.954, they hold that F4(α3) < F4(α4), while when
0.954 < t ≤ 1, they hold that F4(α3) > F4(α4).

This case shows that the generalized score functions
F3(·) and F4(·) have their own characteristics. Besides,
there are some common properties between these two
functions: (i) t represents the decision makers’ attitudinal
character on the classical score values of IVIFNs, where
the bigger the parameter t , the larger the influence of

the classical score values of IVIFNs on them; (ii) 1 − t

represents the decision makers’ attitudinal character on the
classical accuracy values of IVIFNs, where the bigger the
parameter 1 − t , the larger the influence of the classical
accuracy values of IVIFNs on them.

3.4 Two kinds of generalized score functions
on IVIFSs based on integral

In the following, two kinds of generalized score functions
on IVIFSs are proposed based on integral. When there is
no information about the relationship between the classical
score function and the classical accuracy function, these
generalized score functions are available.

Definition 10 Let ˜A = ([a, b], [c, d]) be an IVIFN. Then,
two kinds of generalized score functions on IVIFNs are
proposed as

F5(˜A) = 1

2

(

1+
∫ 1

0
s(α̃) ·

[

abs

(

(a−c)+(b−d)

2

)]t

·
[

(a + c) + (b + d)

2

]1−t

dt

)

, (8)

F6(˜A) = 1

2

(

1+
∫ 1

0
s(α̃) ·

[

t · abs

(

(a−c)+(b−d)

2

)

+ (1−t) · (a+c)+(b+d)

2

]

dt

)

, (9)

where s(α̃) = sgn

[

(a − c) + (b − d)

2

]

.

3.5 Supplement explanations

(1) The relationships between F1(·) and F3(·), and between
F2(·) and F4(·) are summarized as follows.

Proposition 1 Let α̃ = ([a, b], [c, d]) be an IVIFN. When
t = 0.5, the generalized score function F3(·) on α̃ is reduced
to the generalized score function F1(·), i.e., F3(α̃) |t=0.5=
F1(α̃); the generalized score function F4(·) on α̃ is reduced
to the generalized score function F2(·), i.e., F4(α̃) |t=0.5=
F2(α̃).

(2) The relationships between F3(·) and Sxu(·), and
between F4(·) and Sxu(·) are summarized as follows.

Proposition 2 Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 =
([a2, b2], [c2, d2]) be two IVIFNs. When t = 1 and
Sxu(α1) �= Sxu(α2), it is obtained that

[Sxu(α̃1) − Sxu(α̃2)] · [F3(α̃1) − F3(α̃2)] > 0, (10)

[Sxu(α̃1) − Sxu(α̃2)] · [F4(α̃1) − F4(α̃2)] > 0; (11)
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when t = 1 and Sxu(α̃1) = Sxu(α̃2), it is obtained that
F3(α̃1) = F3(α̃2), and F4(α̃1) = F4(α̃2); when t = 1,
a1 = b1 = 1, c1 = d1 = 0, it is obtained that F3(α̃1) =
F4(α̃1) = 1; when t = 1, a1 = b1 = 0, c1 = d1 = 1, it is
obtained that F3(α̃1) = F4(α̃1) = 0;.

(3) The relationships between F3(·) and Hxu(·), and
between F4(·) and Hxu(·) are summarized as follows.

Proposition 3 Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 =
([a2, b2], [c2, d2]) be two IVIFNs. When t = 0 and
Hxu(α̃1) �= Hxu(α̃2), it is obtained that

[Hxu(α̃1) − Hxu(α̃2)] · [F3(α̃1) − F3(α̃2)] > 0, (12)

[Hxu(α̃1) − Hxu(α̃2)] · [F4(α̃1) − F4(α̃2)] > 0; (13)

when t = 0, s(α̃1) = s(α̃2), and Hxu(α̃1) = Hxu(α̃2), it
is obtained that F3(α̃1) = F3(α̃2), F4(α̃1) = F4(α̃2); when
t = 0, s(α̃1) = s(α̃2) = 1, a1 + c1 = 1, b1 + d1 = 1,
it is obtained that F3(α̃1) = F4(α̃1) = 1; when t = 0,
s(α̃1) = s(α̃2) = −1, a1 + c1 = 1, b1 + d1 = 1, it is
obtained that F3(α̃1) = F4(α̃1) = 0.

(4) The relationships between F3(·) and F4(·) are
summarized as follows.

Proposition 4 Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 =
([a2, b2], [c2, d2]) be two IVIFNs. For any given t ∈ [0, 1],
it doesn’t always hold that

[F3(α1) − F3(α2)] · [F4(α1) − F4(α2)] > 0. (14)

(5) There are some important special cases on F5(·) and
F6(·) as follows.

Proposition 5 Let α̃ = ([a, b], [c, d]) be an IVIFN. When
a = b = 1, c = d = 0, it is obtained that F5(̃α) =
F6(̃α) = 1; when a = b = 0, c = d = 1, it is obtained that
F5(̃α) = F6(̃α) = 0.

Studying the aforementioned propositions, it shows that
F1(·), F2(·), F3(·), F4(·), F5(·) and F6(·) are all suitable to
be used as generalized score functions.

(6) The relationships between the newly proposed
generalized score functions are shown in Fig. 1.

4 Three kinds of MCDMmethods on IVIFSs

At present, the intuitionistic fuzzy sets are widely used to
solve MCDM problems (more details please see [11, 21,
25], etc). In this paper, the studied MCDM problem in
interval-valued intuitionistic fuzzy setting is introduced as
follows.

Let A = {A1, A2, · · · , Am} be a discrete set of
alternatives, C = {C1, C2, · · · , Cn} be a set of decision
making criteria. Let W = {w1, w2, · · · , wn} be the weight
vector of the criteria, where wj ∈ [0, 1],

n
∑

j=1
wj = 1, j =

1, 2, · · · , n. Let Ỹ = (α̃ij )m×n = ([aij , bij ], [cij , dij ])m×n

be an interval-valued intuitionistic fuzzy decision matrix,
where [aij , bij ] indicates the degree that the alternative Ai

satisfies the criterion Cj , whereas [cij , dij ] indicates the
degree that the alternative Ai does not satisfy the criterion
Cj . Besides, [aij , bij ] ⊂ [0, 1], [cij , dij ] ⊂ [0, 1], bij +
dij ≤ 1, i = 1, 2, · · · , m, j = 1, 2, · · · , n. And then, for
any i = 1, 2, · · · , m, the characteristic of the alternative Ai

is expressed by an IVIFS: ˜Ai = {〈Cj , [aij , bij ], [cij , dij ]〉 |
Cj ∈ C}. Under the above conditions, how to rank the
alternatives, and how to select the optimal alternative? To

Fig. 1 The relationships between the newly proposed generalized score functions
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solve this problem, three kinds of MCDM methods are
proposed.

(1) By using the generalized score function F1(·) or F2(·),
a series of novel MCDM methods are proposed as
follows.

Step 1 Calculate the generalized score values of all
the elements of the matrix Ỹ = (α̃ij )m×n by
(4) (or (5)), and denote the results as Ỹ1 =
(F1(α̃ij ))m×n (or Ỹ2 = (F2(α̃ij ))m×n).

Step 2 For any j = 1, 2, · · · , n, by using the
thoughts of Shannon entropy method [25], the
weight value for the attributeCj is calculated,
and the weight vector for C is denoted as
W = (w1, w2, · · · , wn), where

wj =

m
∑

i=1

√

1
2 [(1−πα̃ij L)2+(1−πα̃ij U )2]

n
∑

j=1

m
∑

i=1

√

1
2 [(1−πα̃ij L)2+(1−πα̃ij U )2]

, j ∈{1, 2, · · · , n}.

(15)

Step 3 Calculate the comprehensive attribute value
of each alternative. For any i = 1, 2, · · · , m,
denote the comprehensive attribute value of
Ai as Zi , where Zi = ∑n

j=1 wj · F1(α̃ij ) (or
Zi = ∑n

j=1 wj · F2(α̃ij ))).
Step 4 Rank all the alternatives and select the

optimal alternative A∗ by comparing the
comprehensive attribute values Z1, Z2, · · · ,
Zm.

(2) By using the generalized score functions F3(·) or
F4(·), a series of novel MCDM methods are proposed
as follows.

Step 1 Determine the parameter t by decision
makers according to the given decision
making environments.

Step 2 Calculate the generalized score values of all
the elements of the matrix Ỹ = (α̃ij )m×n by
(6) (or (7)), and denote the results as Ỹ3 =
(F3(α̃ij ))m×n (or Ỹ4 = (F4(α̃ij ))m×n).

Step 3 For any j = 1, 2, · · · , n, by (15),
the weight values for all the attributes
Cj (j = 1, 2, · · · , n) are calculated, and the
weight vector for C is denoted as W =
(w1, w2, · · · , wn).

Step 4 Calculate the comprehensive attribute value
of each alternative. For any i = 1, 2, · · · , m,
denote the comprehensive attribute value of
Ai as Z′

i , where Z′
i = ∑n

j=1 wj · F3(α̃ij ) (or
Z′

i = ∑n
j=1 wj · F4(α̃ij )).

Step 5 By comparing the values Z′
1, Z

′
2, · · · , Z′

m,
the optimal alternative A∗′ is obtained.

(3) By using the generalized score functions F5(·) or
F6(·), a series of novel MCDM methods are proposed
as follows.

Step 1 Calculate the generalized score values of all
the elements of the matrix Ỹ = (α̃ij )m×n by
(8) (or (9)), and denote the results as Ỹ5 =
(F5(α̃ij ))m×n (or Ỹ6 = (F6(α̃ij ))m×n).

Step 2 For any j = 1, 2, · · · , n, by (15),
the weight values for all the attribute
Cj (j = 1, 2, · · · , n) are calculated, and the
weight vector for C is denoted as W =
(w1, w2, · · · , wn).

Step 3 Calculate the comprehensive attribute value
of each alternative. For any i = 1, 2, · · · , m,
denote the comprehensive attribute value of
Ai as Z′′

i , where Z′′
i = ∑n

j=1 wj ·F5(α̃ij ) (or
Z′′

i = ∑n
j=1 wj · F6(α̃ij )).

Step 4 By comparing the values Z′′
1 , Z

′′
2 , · · · , Z′′

m,
the optimal alternative A∗′′ is obtained.

In the next section, an example is introduced to illustrate the
effectiveness of the proposed generalized score functions
and the proposed MCDM methods.

5 Supplier selection example

Since supply chains depend on the time compression,
flexible response and unit cost reduction, suppliers play an
important role in the whole supply chain. Suppliers are also
critical in providing essential components and resources for
goods in today’s globalization supply chain networks. The
number of components comprising a finished product may
be small or immense as in aircraft manufacturing and other
complex products. Even in the case of simpler products,
such as bread, all the ingredients of it may travel across
the globe as inputs into production processes. Suppliers are
also decision-makers and they compete with one another
to provide components to downstream manufacturing firms.
Thus, the optimized performance will be elusive without
building a good relationship with a reliable supplier,
establishing a system to evaluate performance and offer
improvements on cost reduction, which will have a
significant impact on the whole supply chain.

Up to now, many researchers have paid attentions to sup-
plier selection problem. Among the studies, some aim to
enhance the competitiveness or to decrease the costs in sup-
ply chain from suppliers. For example, [13] studied the
model for decreasing the costs in supply chain. This model
reveals the importance of suppliers in the supply chain
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management, particularly the role of alternative suppliers,
and tries to compensate the weakness of the supply chain.
Considering supplier selection is an important issue in sup-
ply chain management, [5] proposed a series of AHP meth-
ods based on a novel effective and feasible representation
of uncertain informations, which extend the classical AHP
method. Meanwhile, [10] proposed an integrated approach
of fuzzy multi attribute utility theory and multi-objective
programming for rating and selecting the best green suppli-
ers. However, the aforementioned studies did not consider
the supplier selection problem in a framework which is
composed of positive and negative factors. With that in con-
sideration, this study applies IFSs to solve supplier selection
problem.

Assuming that a manufacturing company is searching
for the best global supplier for one of its most critical
parts used in assembling process, the attributes which are
considered in the selection process are: f1, overall cost
of the product; f2, quality of the product; f3, service
performance of supplier; f4, supplier’s profile; and f5, risk
factor. Here, f1 and f5 are cost type attributes, whereas
f2, f3,and f4 are benefit type attributes. The alternative
set is A = {A1, A2, A3, A4}. A decision maker group
is formed to evaluate the characteristics of each potential
global supplier with respect to each attribute on the fuzzy
concept “excellence”. By aggregating the decision making
results of each decision maker, a matrix Ỹ = (ỹij )4×5 is
obtained as

f1 f2 f3

Y =
A1

A2

A3

A4

⎛

⎜

⎜

⎝

〈[0.482, 0.627], [0.177, 0.301]〉 〈[0.300, 0.451], [0.354, 0.481]〉 〈[0.626, 0.726], [0.126, 0.226]〉
〈[0.349, 0.475], [0.355, 0.503]〉 〈[0.131, 0.314], [0.292, 0.506]〉 〈[0.324, 0.424], [0.403, 0.503]〉
〈[0.358, 0.506], [0.300, 0.427]〉 〈[0.626, 0.775], [0.100, 0.225]〉 〈[0.554, 0.776], [0.100, 0.224]〉
〈[0.300, 0.427], [0.358, 0.506]〉 〈[0.100, 0.225], [0.626, 0.775]〉 〈[0.100, 0.224], [0.554, 0.776]〉

f4 f5

〈[0.500, 0.625], [0.100, 0.275]〉 〈[0.158, 0.356], [0.381, 0.552]〉
〈[0.174, 0.299], [0.557, 0.679]〉 〈[0.626, 0.751], [0.126, 0.226]〉
〈[0.427, 0.605], [0.227, 0.327]〉 〈[0.525, 0.650], [0.201, 0.326]〉
〈[0.227, 0.327], [0.427, 0.605]〉 〈[0.201, 0.326], [0.525, 0.650]〉

⎞

⎟

⎟

⎠

.

By using the generalized score function F3(·), F4(·), F5(·),
or F6(·), the given problem is solved, specific details are as
follows.

Step 1 Since there is no information about the attitudinal
characters of the decision-makers on the classical

score functions and the accuracy functions on
IVIFSs, the parameter t is dealt with as a variable,
and t ∈ [0, 1].

Step 2 By using (6), (7), (8), and (10), the matrix Ỹ =
(ỹij )4×5 is calculated, respectively. The calculation
results are as follows.

Y3,t =
f1 f2 f3

⎛

⎜

⎜

⎝

F3,t (〈[0.482, 0.627], [0.177, 0.301]〉) F3,t (〈[0.300, 0.451], [0.354, 0.481]〉) F3,t (〈[0.626, 0.726], [0.126, 0.226]〉)
F3,t (〈[0.349, 0.475], [0.355, 0.503]〉) F3,t (〈[0.131, 0.314], [0.292, 0.506]〉) F3,t (〈[0.324, 0.424], [0.403, 0.503]〉)
F3,t (〈[0.358, 0.506], [0.300, 0.427]〉) F3,t (〈[0.626, 0.775], [0.100, 0.225]〉) F3,t (〈[0.554, 0.776], [0.100, 0.224]〉)
F3,t (〈[0.300, 0.427], [0.358, 0.506]〉) F3,t (〈[0.100, 0.225], [0.626, 0.775]〉) F3,t (〈[0.100, 0.224], [0.554, 0.776]〉)

f4 f5

F3,t (〈[0.500, 0.625], [0.100, 0.275]〉) F3,t (〈[0.158, 0.356], [0.381, 0.552]〉)
F3,t (〈[0.174, 0.299], [0.557, 0.679]〉) F3,t (〈[0.626, 0.751], [0.126, 0.226]〉)
F3,t (〈[0.427, 0.605], [0.227, 0.327]〉) F3,t (〈[0.525, 0.650], [0.201, 0.326]〉)
F3,t (〈[0.227, 0.327], [0.427, 0.605]〉) F3,t (〈[0.201, 0.326], [0.525, 0.650]〉)

⎞

⎟

⎟

⎠

,
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Y4,t =
f1 f2 f3

⎛

⎜

⎜

⎝

F4,t (〈[0.482, 0.627], [0.177, 0.301]〉) F4,t (〈[0.300, 0.451], [0.354, 0.481]〉) F4,t (〈[0.626, 0.726], [0.126, 0.226]〉)
F4,t (〈[0.349, 0.475], [0.355, 0.503]〉) F4,t (〈[0.131, 0.314], [0.292, 0.506]〉) F4,t (〈[0.324, 0.424], [0.403, 0.503]〉)
F4,t (〈[0.358, 0.506], [0.300, 0.427]〉) F4,t (〈[0.626, 0.775], [0.100, 0.225]〉) F4,t (〈[0.554, 0.776], [0.100, 0.224]〉)
F4,t (〈[0.300, 0.427], [0.358, 0.506]〉) F4,t (〈[0.100, 0.225], [0.626, 0.775]〉) F4,t (〈[0.100, 0.224], [0.554, 0.776]〉)

f4 f5

F4,t (〈[0.500, 0.625], [0.100, 0.275]〉) F4,t (〈[0.158, 0.356], [0.381, 0.552]〉)
F4,t (〈[0.174, 0.299], [0.557, 0.679]〉) F4,t (〈[0.626, 0.751], [0.126, 0.226]〉)
F4,t (〈[0.427, 0.605], [0.227, 0.327]〉) F4,t (〈[0.525, 0.650], [0.201, 0.326]〉)
F4,t (〈[0.227, 0.327], [0.427, 0.605]〉) F4,t (〈[0.201, 0.326], [0.525, 0.650]〉)

⎞

⎟

⎟

⎠

,

Y5 =

⎛

⎜

⎜

⎝

0.7594 0.3722 0.8302 0.7705 0.7077
0.3944 0.3230 0.3408 0.2065 0.8369
0.6487 0.8439 0.8258 0.7310 0.7729
0.3514 0.1562 0.1742 0.2691 0.2272

⎞

⎟

⎟

⎠

,

Y6 =

⎛

⎜

⎜

⎝

0.7753 0.2913 0.8380 0.7813 0.7335
0.2855 0.3003 0.2735 0.1908 0.8445
0.7163 0.8503 0.8325 0.7580 0.7938
0.2838 0.1498 0.2123 0.2420 0.2063

⎞

⎟

⎟

⎠

.

Step 3 By using (15), the attribute weight vector corre-
sponding to each attribute is obtained as

W = (0.199, 0.195, 0.206, 0.197, 0.203).

Step 4 The comprehensive attribute values of the four
alternatives are calculated, and the results are
obtained as

ZF3(A1, t) = 1

2
〈0.199 × (1 + 0.32t × 0.791−t ) + 0.195 × (1 − 0.04t × 0.791−t ) + 0.206 × (1 + 0.50t × 0.851−t )

+0.197 × (1 + 0.38t × 0.751−t ) + 0.203 × (1 + 0.21t × 0.721−t )〉,
ZF3(A2, t) = 1

2
〈0.199 × (1 − 0.02t × 0.841−t ) + 0.195 × (1 − 0.18t × 0.621−t ) + 0.206 × (1 − 0.08t × 0.831−t )

+0.197 × (1 − 0.38t × 0.861−t ) + 0.203 × (1 + 0.51t × 0.871−t )〉,
ZF3(A3, t) = 1

2
〈0.199 × (1 + 0.07t × 0.801−t ) + 0.195 × (1 + 0.54t × 0.861−t ) + 0.206 × (1 + 0.50t × 0.831−t )

+0.197 × (1 + 0.24t × 0.791−t ) + 0.203 × (1 + 0.32t × 0.851−t )〉,
ZF3(A4, t) = 1

2
〈0.199 × (1 − 0.07t × 0.801−t ) + 0.195 × (1 − 0.54t × 0.861−t ) + 0.206 × (1 − 0.50t × 0.831−t )

+0.197 × (1 − 0.24t × 0.791−t ) + 0.203 × (1 − 0.32t × 0.851−t )〉.
ZF4(A1, t) = 0.7361 − 0.0999 × t,

ZF4(A2, t) = 0.2751 + 0.2135 × t,

ZF4(A3, t) = 0.9130 − 0.2457 × t,

ZF4(A4, t) = 0.0870 + 0.1005 × t,
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Fig. 2 The comprehensive attribute values calculated by F3(·) and F4(·)

where t ∈ [0, 1]. For convenience, the sketch maps
of them are shown in Fig. 2.

As shown in Fig. 2, the results are consistent on the
whole that the optimal alternative is A3, and the ranking
is Z(A3) 	 Z(A1) 	 Z(A2) 	 Z(A4). Meanwhile,
by using the generalized score function F5(·) and F6(·),
the given problem can be solved as ZF5(A1) = 0.6901,
ZF5(A2) = 0.4223, ZF5(A3) = 0.7646, ZF5(A4) =
0.2354, and ZF6(A1) = 0.6865, ZF6(A2) = 0.3808,
ZF6(A3) = 0.7903, ZF6(A4) = 0.2189, respectively. Then,
it gets Z(A3) 	 Z(A1) 	 Z(A2) 	 Z(A4), and the optimal
alternative is also A3.

It is interesting that the aforementioned comparing
results are consistent on the whole that A3 is the optimal
alternative. This phenomenon has a certain component and
an accidental component. Specifically, the ranking result
obtained by F5(·) is determined by that obtained by F3(·)
while the ranking result obtained by F6(·) is determined by
that obtained by F4(·). Meanwhile, it is a coincidence that
the ranking results obtained by F3(·) and F4(·) are the same
in this example. Though there are some common properties
on F3(·) and F4(·), they have their own characteristics.
In essence, F3(·) is a kind of exponential function, while
F4(·) is a kind of linear function. Therefore, F3(·) is
more sensitive to extreme large or small classical score or
accuracy values than F4(·), which could lead to inconsistent
comparing results obtained by F3(·) and F4(·) in some
cases.

Besides, this study has studied the problem using the
method proposed by [4], and the calculation results are
obtained as Z(A1) = 0.139, Z(A2) = 0.533, Z(A3) =
0.298, and Z(A4) = 0.355. Obviously, it gets Z(A2) 	

Z(A4) 	 Z(A3) 	 Z(A1), and the optimal alternative as
A2.

By comparing the novel score functions and score func-
tions proposed by [4], it is found that the internal mecha-
nism of them is different. In particular, by using operations
of fetching maximum or minimum, and operations of union
and intersection, the techniques proposed in [4] put empha-
sis on extreme large or small decision making values. On
the whole, [4] is more suitable to deal with acute prob-
lems. In contrast, the novel generalized score functions
proposed in this study emphasize the subjective attitude of
the decision-makers. Usually, different decision viewpoints
bring different decision results. Therefore, decision makers
should choose suitable decision making methods according
to their different decision making problem.

6 Conclusion

Since any given generalized score function is only suitable
for comparing the IVIFNs in certain circumstances, the
IVIFS is studied from the viewpoint of the types of decision-
makers in this study. According to the illustrative examples,
some conclusions are shown as follows.

(i) Two series of principles are proposed to evaluate
generalized score functions on IVIFNs. Furthermore,
according to the newly proposed principles, two novel
generalized score functions on IVIFSs are suggested.
However, Theorem 1 and 2 are only periodical results.
As the internal mechanism of IVIFSs is exposed
further, more theorems would be proposed in the
future.
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(ii) Two kinds of generalized score functions on IVIFSs
are proposed based on preference information of
decision-makers. Both of the two kinds of general-
ized score functions are of two parameters, which
represent the decision makers’ attitudinal characters
on the classical score function and the classical accu-
racy function on IVIFNs, respectively. Thereafter,
two kinds of generalized score functions, which are
suitable for ranking the IVIFNs when there is no
information about the relationship between the clas-
sical score values and the classical accuracy values
on IVIFNs, are suggested based on integral. For the
next step, the parameters in F3(·) F4(·)would be stud-
ied in details. Moreover, the comparing methods on
generalized score functions would be studied as well.

(iii) Three kinds of MCDM methods in intuitionistic
fuzzy setting are proposed, and the effectiveness
of these methods is illustrated by an example. The
example shows that any given generalized score
function is only suitable for comparing the IVIFNs
in certain circumstances, and when there is little
comparing information on IVIFNs, the integral-based
generalized score functions can be used to reduce the
risk of errors. For the next step, more applications
of the novel generalized score functions would be
carried on in the port management and shipping
optimization fields.
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