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Abstract

Congestive heart failure (CHF) is a chronic heart condition associated with debilitating symptoms that result in increased
mortality, morbidity, healthcare expenditure and decreased quality of life. Electrocardiogram (ECG) is a noninvasive and
simple diagnostic method that may demonstrate detectable changes in CHF. However, manual diagnosis of ECG signal is
often subject to errors due to the small amplitude and duration of the ECG signals, and in isolation, is neither sensitive nor
specific for CHF diagnosis. An automated computer-aided system may enhance the diagnostic objectivity and reliability of
ECG signals in CHF. We present an 11-layer deep convolutional neural network (CNN) model for CHF diagnosis herein.
This proposed CNN model requires minimum pre-processing of ECG signals, and no engineered features or classification
are required. Four different sets of data (A, B, C and D) were used to train and test the proposed CNN model. Out of the
four sets, Set B attained the highest accuracy of 98.97%, specificity and sensitivity of 99.01% and 98.87% respectively. The
proposed CNN model can be put into practice and serve as a diagnostic aid for cardiologists by providing more objective

and faster interpretation of ECG signals.

Keywords Congestive heart failure - Convolutional neural network - Electrocardiogram signals - PhysioBank

1 Introduction

Congestive heart failure (CHF) is a pathophysiological
syndrome where there is abnormal filling and/or emptying
of the left heart chamber [1]. It is caused by structural and/or
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functional derangements due to - and can also be considered
the final stage of - diverse heart diseases. The prevalence
and incidence of CHF are increasing, with approximately 26
million adults diagnosed with CHF worldwide in 2014 [2].
It is a major contributor to global mortality and morbidity,
as well as an important factor for loss of quality life
years and increased healthcare expenditure. This is because
of the debilitating symptoms such as breathlessness and
fatigue experienced by sufferers of CHF. Consequently,
these patients experience a decline in their quality of life as
they are increasingly unable to carry out physical and social
activities [3]. It is also noted that CHF predominantly affects
the elderly (age >64 years) [4]. Therefore, there is a need
for early detection of CHF in the ageing population, which
is a problem many countries in the world are facing right
now. In addition, CHF contributes to increased care and
economic burden on patients’ families with around 40% of
them having to struggle with their daily routine [3]. An early
detection will allow institution of preventative measures
and treatment that may alter the course of the disease and
impede the progression of CHF among the elderly.

Figure 1 shows the comparison of a healthy and a CHF
heart with impaired pump function. In the healthy heart,
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Fig. 1 Illustration of a healthy
heart and one with heart failure

there is good stroke volume (blood flow volume ejected per
heart beat) and oxygen-rich blood is pumped to the body
from the left ventricle. However, in a common type of CHF
with impaired pump function, stroke volume drops and the
heart is unable to efficiently pump oxygen-rich blood to the
rest of the body. The heart is remodeled from the underlying
disease process, becoming enlarged with stiff muscle walls
as it is being stretched to hold more oxygen-rich blood to
pump to the body. The weakened pumping capacity results
in easy fatiguability. It also causes blood and fluid to back
up into the lungs and the body, resulting in breathlessness
and generalized swelling, respectively [5].

The diagnosis of CHF is a clinical one, requiring a con-
glomerate of symptoms and signs, as well as corroborative
evidence from investigative tests. The electrocardiogram
(ECQG) is a noninvasive test commonly used by the health-
care professionals to record the heart activities of patients.
Although the ECG signals are altered in CHF, the changes
are non-specific and by themselves, are insensitive and not
specific for diagnosis of CHF when using standard man-
ual analytic methods. Typically, the recorded ECG signals
are visually examined by cardiologists for the detection of
any abnormalities present in the signals. However, visual
assessment of different ECG readings recorded from var-
ious patients is time-consuming. Further, manual interpre-
tation of the ECG signals may be subject to inter-observer
variability.

Normal Heart failure

Oxygen-rich Reduced

([ blood pumped volume
to the body flow
Left Dilated
ventricle ventricle
Septum

2 Related work

Many different traditional machine learning techniques
have been employed to surmount the inadequacies of
manual analysis of ECG signals in CHF (refer to
Table 10). Traditional machine learning technique refers to
an algorithm which has pre-processing, feature extraction
and selection, and classification processes. The selection
of distinctive features between normal and CHF signals
is difficult and involves a lot of time and effort. Also,
the robustness of the features extracted from the signals
is dependent upon the quality of data. Pre-processing of
the signals such as noise removal and R-peak detection are
required in order to extract the most significant features for
classification. To avoid the pitfalls of traditional machine
learning, we propose deep learning in this work in order to
optimize the performance of an automated CHF diagnosis
system. Deep learning is a form of machine learning approach
where the network learns and picks up distinct characteristics
automatically based on the input ECG signals [6].
Convolutional neural network (CNN) is one of the forms
of deep learning which has been widely employed in
speech and image recognition [7] and is receiving plenty
of attention in the medical field [7]. Recently, researchers
are using CNN models to develop computer-aided diagnosis
system to diagnose diverse medical conditions [8—17]. The
authors have employed CNN models in the detection of

Table 1 The details of ECG
signals obtained from various

databases

Database Diagnosis Number of ECG records Subject(s) (age)
BIDMC Congestive heart failure CHF 15 ellmen(22to71)

e 4 women (54 to 63)

(NYHA class 3-4)
MIT-BIH Normal sinus thythm Normal 18 e 5 men (26 to 45)

e 13 women ( 20 to 50)
Fantasia Normal 40 e 20 young (21 to 34)

o 20 elderly (68 to 85)
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Table 2 The total ECG

segments used in each data set Type (Database)

Number of 2 seconds ECG segments

Unbalanced/Full set Balanced set

A B C D
Normal (NSRDB) 70308 - 30,000 -
Normal (Fantasia) - 110,000 - 30,000
CHF (BIDMC) 30,000 30,000 30,000 30,000

various heart diseases such as identifying arrhythmias with
2-seconds and 5-seconds ECG segments [13], diagnosing
myocardial infarction ECG beats with and without noise
removal [14], distinguishing coronary artery disease ECG
signals from normal ECG signals with 2-seconds and
5-seconds signals [15], classifying 5 different types of
heartbeats with ECG beats [16], and lastly, the detection
of shockable and non-shockable 2-seconds ECG ventricular
arrhythmias [17]. These published works have demonstrated
relatively good performance with minimum pre-processing
and no feature extraction or selection. Lately, Tan et al. [18]
designed a long-short term memory (LSTM) with CNN to
diagnose coronary artery disease. Their network achieved
a high diagnostic accuracy of 99.85%. But, as compared
to the LSTM network, CNN has faster computational time
and is less complex. Hence, this paper uses a deep CNN
model (11-layers) to study the automatic classification of
ECG signals into normal and CHF classes.

3 Materials used

The ECG signals used in this work were obtained
from public databases (PhysioBank) namely the Beth
Israel Deaconess Medical Centre (BIDMC) Congestive
Heart Failure Database, Fantasia Database, and MIT-BIH
Normal Sinus Rhythm Database (NSRDB) [19]. Table 1
summarizes the details of the ECG data collected from each
database.

Normal (Fantasia)

Normalized amplitude Normalized amplitude
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oy

Normal (NSRDB)

The severity of CHF symptoms is graded based on the
New York Heart Association (NYHA) scale [20]:

Class 1:  mild with no limitation of physical activity;

Class 2:  mild with slight limitation of physical activity;

Class 3: moderate with marked limitation of physical
activity; and

Class 4:  severe with total limitation of physical activity.

The CHF ECG data used in this work are in Class 3 and
Class 4 categories.

A total of four datasets (Set A, Set B, Set C, and Set D)
are used in this work. Both Sets A and B consist of full
ECG data (unbalanced), while Sets C and D have balanced
number of ECG data (see Table 2). 30,000 normal ECG data
are randomly selected from the full set for Sets C and D.

Figure 2 shows typical normal and CHF ECG segments
obtained from the public databases.

4 Methodology
4.1 Pre-processing

The Fantasia and BIDMC ECG databases are sampled at 250
Hz frequency whereas the MIT-BIH Normal Sinus database
(NSRDB) is sampled at 128 Hz frequency. Therefore, the
signals obtained from NSRDB are up sampled to 250
Hz. This ensures that the frequency of ECG signals is

Congestive Heart Failure (BIDMC)

Normalized amplitude
3
2
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Fig.2 A typical normal (Fantasia and NSRDB) and CHF ECG segments
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Table 3 The structure of the

CNN model for Sets A to D Layers Type No. of output neurons Filter size for each output feature map Stride
0-1 convolution 496 x 5 5 1
1-2 max-pooling 248x%x 5 2 2
2-3 convolution 244 x 5 5 1
34 max-pooling 122 x5 2 2
4-5 convolution 120 x 10 3 1
5-6 max-pooling 60 x 10 2 2
6-7 convolution 58 x 10 3 1
7-8 max-pooling 29 x 10 2 2
8-9 fully connected 40 - -
9-10 fully connected 20 - -
10-11 fully connected 2 - -

standardized. Then, the ECG records were segmented into 2
seconds ECGs (without performing R-peak detection). Each
ECG signal (2 seconds) is 500 samples in length.

Also, each ECG signal is regularized with Z score normaliza-
tion, standard deviation of 1, and zero mean before inputting
into the network.

4.2 CNN architecture

The details of the proposed CNN model are tabulated in
Table 3 and the graphical representation of the architecture
can be seen in Fig. 3. The number of layers and the tuning
parameters are varied by a brute force method until the
optimum diagnostic performance is achieved. Hence, the
proposed model consists of 4 convolutions, 4 max-pooling,
and 3 fully-connected layers. The stride (the amount by
which the filter shifts) is set at 1 and 2 for convolution and
max-pooling respectively in this work. These layers make
up the fundamental structure of CNN whereby convolution
picks up distinctive features from the input ECG signal. The
max-pooling operation reduces the dimensions of feature
maps and at the same time retain important and significant
features of the input ECG signal. The max-pooling is
performed after every convolution operation in this work.
Lastly, the fully-connected layer is intended to connect the
neurons in the previous layers into a two-class (normal or
CHF) probability distribution.

Layer O (input layer) is convolved with a size 5 kernel
(filter) to produce the first layer. Then, a max-pooling
operation (kernel 2) is administered on layer 1 (496 x
5) to form layer 2 (248 x 5). After which, in layer
2, a convolution is performed with a filter (size 5) to
construct layer 3. Then, a max-pooling is once again
applied to decrease the number of output neurons. Again, a
convolution is performed in layer 4 (122 x 5) with a kernel
size 3 to form layer 5. Then, a max-pooling is performed to
decrease the number of neurons from 120 x 10 to 60 x 10
(layer 6). Another round of convolution with kernel size 3 is

applied followed by one last max-pooling operation to form
layer 8 with 29 x 10 neurons. Layer 8 is fully-connected
to 40 output neurons in layer 9 and fully-connected to 20
neurons in layer 10. Lastly, layer 10 is fully-connected to
the final layer (layer 11) with 2 outputs which represent the
two classification classes (normal and CHF).

4.3 Training and testing of CNN model

Xavier initialization is used to initialize the model weights
[21]. A backpropagation [22] with a batch size of 10
is used to update the CNN model in this study. The
network loss is evaluated using the cross-entropy function.
The parameters used to train the proposed CNN structure
in order to yield the maximum diagnostic performance
are lambda (L1 regularization) = 0.2, learning rate =
3x10~* and momentum = 0.3. These parameters help to
impede overfitting of the data (regularization), assist in
data convergent (learning rate), and adjust the speed of the
learning (momentum) [23].

Furthermore, leaky rectifier linear unit (LeakyRelu) [24]
shown in (1) is employed as activation function for layers 1,
3,5,7,9, and 10 whereas layer 11 implemented the SoftMax
function as seen in (2).

X forx >0
Fx { 0.01x forx =<0 M
= fori=1...j )
= — i=1,...
Z{ex.f /

Where f(x) represents the function, P; is the probability
distribution over the total possible classes, andj denotes the
total number of classes.

Stratified ten-fold cross-validation strategy [25] is
performed in this work. The ECG segments of four sets are
divided into ten parts. Nine parts are used to train the model
whilst the remaining part is used to test the model. Each
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Fig.3 The architecture of the proposed CNN model

divided part contains approximately the same target class 5 Results
percentage as the entire dataset. Ten iterations are conducted

in this work. The average of the ten iterations for the four =~ Two Intel Xeon 2.40 GHz (E5620) processor and a 24 GB
sets are tabulated in Table 9. RAM are used to train the proposed network without the
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Table 4 Training time to complete an epoch

Dataset Average training time per epoch (seconds)
A 2736.537

B 3285.140

C 954.842

D 951.944

implementation of a graphics processing unit (GPU). Table 4
shows the average time needed to train an epoch for each
dataset. 60 epochs are run in this study to develop the model.

The confusion matrix for sets A to D are shown in
Tables 5, 6, 7 and 8 respectively. Table 9 shows the overall
average performance to classify normal and CHF classes
with our proposed CNN model. The proposed CNN model
achieved the highest accuracy of 98.97%, sensitivity of
98.87%, and specificity of 99.01% for Set B.

In Set A, 95.75% of the normal ECG segments are
correctly classified in the normal class and 96.52% of CHF
signals are correctly classified in the CHF class. Only 4.25%
and 3.48% of the ECG signals are incorrectly categorized
as CHF and normal class respectively. Also, in Set B, a
very small percentage of approximately 0.99% normal ECG
signals are incorrectly grouped as CHF class, and 1.13% of
CHF ECG signals are misclassified into the normal class.

Likewise, 5.88% of normal ECG signals are wrongly
classified to CHF class in Set C. Also, the misclassification
rate of CHF ECG signals is about 5.32%. Set D attained
better classification results than Set C with 1.84% of CHF
ECG signals and 1.50% of normal ECG signals wrongly
classified into normal and CHF classes, respectively.

6 Discussion

Based on Table 9, it can be noted that Set B and Set D
achieved better performance as compared to Set A and Set
C. In addition, it can also be observed that the full set (Set
A and Set B) yielded better performance as compared to

the balanced set (Set C and Set D). This might be because
more variations in the large number of ECG signals (see
Table 2) in the full set ensure more diversity learning during
training and hence helped to achieve better results than in
the balanced set. Also, the quality of the ECG signals may
affect the overall diagnostic performance. Out of the four
sets, Set B is reported to achieve the highest diagnostic
accuracy of 98.97%.

Table 10 discusses the different algorithms developed for
the automated detection of CHF with ECG signals obtained
from PhysioBank. The different techniques recorded in
Table 10 yielded high diagnostic performance. Most of
the works listed in Table 10 performed denoising and R-
peak detection in the pre-processing step. But, our proposed
CNN model does not require any processing of the ECG
data. Further, the majority of the ECG signals are either
segmented into an ECG beat or into different segments of
ECG signals. However, in this work, the ECG signals used
are shorter in duration.

Although the proposed CNN model did not obtain
100.00% accuracy in the classification of normal and CHF
ECG signals, this study is the first to implement a CNN
model to classify ECG signals into normal and CHF classes.
Unlike our proposed algorithm, the works in Table 10
adopted the conventional machine learning techniques.
Hence, the novelty of this work is the development of an 11-
layer deep CNN model for the detection of CHF ECG signals.

In this work, we have developed the deep learning
model using short durations (2-seconds) of ECG signals
to diagnose the CHF. Such deep learning model can also
be implemented using HRV signals and echocardiographic
images to identify CHF automatically. The authors have
developed automated diagnostic system using heart rate
variability (HRV) signals [26, 27] and echocardiographic
images [28] to detect CHF. Hence, the authors intend to
design a CNN model to automatically diagnose CHF using
HRYV signals or echocardiogram images.

Also, this two-class (normal and CHF) diagnostic strati-
fication can potentially be extended to four classes. Acharya
et al. [29] and Fujita et al. [30] developed an algorithm

Table 5 Confusion matrix for the unbalanced data set - NSRDB/BIDMC (Set A)

Predicted
Normal CHF Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)
Original Normal 67,323 2,985 95.98 98.47 95.75 96.52
CHF 1,045 28,955 95.98 90.65 96.52 95.75

“PPV — Positive Predictive Value
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Table 6 Confusion matrix for the unbalanced data set - Fantasia/BIDMC (Set B)

Predicted
Normal CHF Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)
Original Normal 79,206 794 98.97 99.57 99.01 98.87
CHF 340 29,660 98.97 97.39 98.87 99.01
Table 7 Confusion matrix for the balanced data set - NSRDB/BIDMC (Set C)
Predicted
Normal CHF Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)
Original Normal 28,235 1,765 94.40 94.65 94.12 94.68
CHF 1,597 28,403 94.40 94.15 94.68 94.12
Table 8 Confusion matrix for the balanced data set - Fantasia/BIDMC (Set D)
Predicted
Normal CHF Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)
Original Normal 29,447 553 98.33 98.49 98.16 98.50
CHF 451 29,549 98.33 98.16 98.50 98.16
Table 9 Summary of classification results for different datasets
Dataset TP TN FP FN Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)
Full A 28,955 67,323 2,985 1,045 95.98 90.65 96.52 95.75
B 29,660 79,206 794 340 98.97 97.39 98.87 99.01
Balanced C 28,403 28,235 1,765 1,597 94.40 94.15 94.68 94.12
D 29,549 29,447 553 451 98.33 98.16 98.50 98.16

“TP — True Positive, TN — True Negative, FP — False Positive, FN — False Negative, PPV — Positive Predictive Value

@ Springer
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Table 10 Selected studies of an automated CHF detection system using ECG data obtained from PhysioBank
Author Year Number of ECG data Techniques Performance
Normal and CHF classes
Kamath [31] 2012 Set A and Set B (14-seconds ECG segment) Set A and Set B
CHF + Normal: 6,912 o Filtered high-frequency noise Acc — 100.00%
(BIDMC, NSRDB, Fantasia) e Sequential spectrum Sen — 100.00%
e Approximate entropy Spec — 100.00%
Orhan [32] 2013 CHEF: 3,000 (ECG beat) Acc -99.33%
Normal: 3,600 e Denoising Sen —99.36%
(BIDMC, NSRDB) e Equal frequency in amplitude Spec — 99.30%
and equal width in time dis-
cretization
e Linear regression
Masetic et al. [33] 2013 CHF: 1,500 (ECG beat) Acc —99.86%
Normal: 1,300 e Autoregressive burg Sen —99.77%
(BIDMC, MIT-BIH Arrhythmia e C4.5 decision tree Spec —99.93%
database)
Kamath [34] 2015 Set A (20-seconds ECG segment) Set A
CHF: 3,510 e Detrended fluctuation analysis Acc —98.20%
Normal: 3,510 Sen — 98.40%
(BIDMC, NSRDB) Spec — 98.00%
Set B Set B
CHF: 3,510 Acc —79.20%
Normal: 3,510 Sen —71.50%
(BIDMC, Fantasia) Spec — 87.80%
Masetic et al. [35] 2016 Set A (2.5-seconds ECG segment) Set A and Set B
CHF: 1,500 e Pre-processed ECG segments Acc —100.00%
Normal: 1,300 o Autoregressive burg
(BIDMC, MIT-BIH Arrhythmia e Random forest classifier
database)
Set B:
CHF: 171
Normal: 1,300
(PTB diagnostic database, MIT-
BIH Arrhythmia database)
Sudarshan et al. [36] 2017 Set A (2-seconds ECG segment) Set A
CHF: 25,328 e Denoising and baseline removal Acc —98.42%
Normal: 59,624 Sen — 97.04%

(BIDMC, NSRDB)
Set B

CHF: 25,328
Normal: 57,099
(BIDMC, Fantasia)
Set C

CHF: 25,328
Normal: 25,328
(BIDMC, NSRDB)
Set D

CHF: 25,328
Normal: 25328
(BIDMC, Fantasia)

e Dual tree complex wavelet transform

o KNN classifier

Spec —99.01%
Set B

Acc —99.87%
Sen — 99.69%
Spec —99.95%
Set C

Acc —97.94%
Sen — 98.19%
Spec — 97.69%
Set D

Acc —99.86%
Sen — 99.78%
Spec — 99.94%
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Table 10  (continued)

Author Year Number of ECG data Techniques Performance
Normal, MI, CHF, and CAD classes
Acharya et al. [29] 2017 CAD: 41,545 (ECG beat) Acc —99.55%
CHF: 89,237 e Denoising and baseline removal Sen —99.93%
MI: 40,182 Spec — 99.24%
Normal: 10,546 e Contourlet transform
(St. Petersburg Institute of Cardi- e Particle swarm optimization
ology Technics 12-lead Arrhyth-
mia database, PTB diagnostic
ECG database, BIDMC)
e KNN classifier
Fujita et al. [30] 2017 CAD: 41,545 (ECG beat) Acc —97.98%
CHF: 89,237 e Denoising and baseline removal Sen —99.61%
MI: 40,182 Spec — 94.84%
Normal: 10,546 e Wavelet packet decomposition
(St. Petersburg Institute of Cardi- o ReliefF
ology Technics 12-lead Arrhyth-
mia database, PTB diagnostic
ECG database, BIDMC)
o KNN classifier
Present work 2017 Set A (2-seconds ECG segment) Set A
CHF: 30,000 e 11-layer deep CNN Acc —95.98%
Normal: 70,308 Sen —96.52%
(NSRDB, BIDMC) Spec — 95.75%
Set B Set B
CHEF: 30,000 Acc —98.97%
Normal: 110,000 Sen — 98.87%
(Fantasia, BIDMC) Spec —99.01%
Set C Set C
CHF: 30,000 Acc —94.40%
Normal: 30,000 Sen —94.68%
(NSRDB, BIDMC) Spec — 94.12%
Set D Set D
CHEF: 30,000 Acc —98.33%
Normal: 30,000 Sen — 98.50%

(Fantasia, BIDMC)

Spec — 98.16%

Acc — Accuracy, Sen — Sensitivity, Spec — Specificity

to diagnose normal, CHF, myocardial infarction (MI), and
coronary artery disease (CAD). Both works demonstrated
high diagnostic performance (see Table 10). Moreover, our
group has already performed automated diagnosis of CAD
[15] and MI [14] with an 11-layer deep CNN model respec-
tively. We have also detected automatically non-ectopic,
supraventricular ectopic, ventricular ectopic, fusion, and
unknown ECG beats using CNN [16]. In future, the authors
intend to develop a CNN model to detect the MI, CHF,
CAD, and normal (four-class) ECG signals.
The advantages of the proposed CNN model are:

e 11-layer deep CNN model is proposed.

@ Springer

Denoising is not required.
R-peak detection is not required.
Hand-crafted features are not required.

The limitations of the proposed CNN model are:

e Requires big data to achieve the optimum performance.

® Requires extensive computational power for training the model.

Nevertheless, running the proposed model with a graphics
processing unit (GPU) will accelerate the time taken to
train the model and reduces the processing power needed
for training. In addition, the performance will increase if
there are more diverse ECG signals used to train the CNN
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model. Hence, the advantages outweigh the drawbacks of
this proposed deep CNN model.

7 Conclusion

Unlike the conventional machine learning techniques,
this study implemented an 11-layer deep CNN model
to automatically diagnose CHF using ECG signals. The
proposed model is fully-automatic and R-peak detection is
not required. Also, four different sets of data obtained from
PhysioBank were used to train and test the CNN model.
Set B obtained the highest performance using our proposed
model with an accuracy, specificity and sensitivity of
98.97%, 99.01% and 98.87% respectively. Nevertheless, the
diagnostic ability of the suggested model can be enhanced
using huge ECG database belonging to different stages
of CHEF. It is anticipated such CNN models can also be
developed to detect different cardiac diseases like dilated,
ischemic, and hypertrophic cardiomyopathy. Once the CNN
model is well-trained, it can be introduced in the healthcare
industries as an adjunct tool to assist cardiologists in providing
quick and reliable second opinions on the diagnosis.
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