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Abstract
There are many diverse fields and applications such as data mining, engineering, operations research, economics, and
science can be formulated as multi-objective optimization problems. In this paper, we describe and propose a novel and
a useful multi-objective artificial algae algorithm (MO-AAA) to solve multi-objective engineering design problems. Our
proposed algorithm, (MO-AAA), is based on the search technique of artificial algae algorithm(AAA) algorithm. MO-ADA
applies the elitist non-dominated sorting and crowding distance approach to preserve the diversity among the optimal set
of solutions and obtains various non-domination levels, respectively. Also, we evaluate the effectiveness of the proposed
algorithm by applying it on different multi-objective benchmark problems (20 challenging benchmark problems from CEC
2009 for unconstrained and constrained multi-objective optimization problems) and engineering design benchmark problems
with distinctive features. Finally, our results show that MO-AAA efficiently generates the Pareto front and is easy to
implement, promising and competitive compared to other state-of-the-art algorithms considered in this work.

Keywords Multi-objective optimization · Artificial algae algorithm · Multi-objective engineering design problems · Pareto
optimal solutions

1 Introduction

One of the critical research areas in optimization is multi-
objective optimization problems (MOOPs), because MOOPs
have a wide diverse of applications such as data mining
[8], economic and finance issues [43, 54, 82], utility theory,
game theory, linear production theory and economics
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[31], preferences in MOPs [13], airline operations [22],
scheduling problems [45, 55, 86], portfolio optimization
[23], combinational problems [10, 24, 25, 37], portfolio
optimization [22], engineering problems [5, 14, 32,
49], manpower planning [77], reservoir management [2],
automatic cell planning problems [48], radiation therapy
[38], jury selection [75], can be formulated as MOOPs. We
refer the interested reader to further applications in survey
articles [69, 97], and other books [21, 29, 52].

There is more than one objective function in MOOPs.
These objective functions need to be optimized simulta-
neously. It turns out solving MOOPs is a challenging job
because the objective functions are conflicting, and the solu-
tion set acquired from solving MOOPs has the following
characteristic: no solution is subaltern to the other solutions,
and each solution is a trade-off of the objectives. This set is
known as the Pareto-optimal set. Normally, in most of the
applications mentioned above, the number of solutions in
the Pareto-optimal set grows exponentially with the problem
size. Therefore, MOOPs are NP-hard problems.

Therefore, it might be expensive concerning the compu-
tational point of view to use traditional methods to solve
MOOPs. Among the drawbacks of using the traditional
techniques are the following: they require differentiability
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of objective functions and/or constraints; computing the
Jacobian and/or Hessian is expensive; they need a good
initial point; they are not efficient when the underlying
problems are discontinuous and/or discrete in the search
space and stuck at a sub-optimal solution; and the objective
functions and/or constraints might be non-smooth.

It is appealing to many researchers to develop effective
techniques and algorithms to solve MOOPs so that these
algorithms overcome the drawbacks of the traditional meth-
ods. Among of these efficient algorithms are evolutionary
algorithms (EAs). It is shown [98] that EAs can search for
the Pareto optimal solutions of MOOPs that are too difficult
to be solved by the traditional methods within a reasonable
computation time.

In the past decades, many biologically and nature inspired
algorithms have been proposed and established to solve
MOOPs, such as multi-objective genetic algorithm (MOGA)
[30], Niche Pareto genetic algorithm (NPGA) [35], non-
dominated sorting genetic algorithm (NSGA) [79], NSGA-
II (an elitist based non-dominated sorting genetic algo-
rithm – an improved version of NSGA) [19], strength
Pareto evolutionary algorithm (SPEA) [99], SPEA2 (an
improved version of SPEA) in [101], Pareto-archived
evolutionary strategy (PAES) [42], Pareto envelope-based
selection algorithm (PESA and PESA-II) in [15], multi-
objective particle swarm optimization (MOPSO) [11] and
an improved version of MOPSO in [16], a multi-objective
evolutionary algorithm based on decomposition (MOEA/D)
in [95] and its improved versions described in detail in
[97], indicator-based evolutionary algorithm (IBEA) [100],
multi-objective evolutionary algorithm based on decom-
position (MOEA/D) [95], archived multi-objective sim-
ulated annealing (AMOSA) [9], and preference-inspired
co-evolutionary algorithm (PICEA) [85]. Also, swarm intel-
ligence based search algorithms for multi-objective opti-
mization [1, 4, 6, 7, 11, 12, 33, 36, 50, 56, 58, 65, 81, 84,
89, 94] have also been developed and applied to a variety
of MOOPs. Lately, several more developed multi-objective
algorithms [62, 90, 92] based on the search techniques other
than the ones used in genetic algorithm or EAs and particle
swarm optimization [41] have also shown a great potential
in obtaining the Pareto front closest to the true Pareto front.

Nature-based meta-heuristics have caught the attention of
various researchers due of its capability to solve problems
which are multi-dimensional, multi-modal, combinatorial
or large search space problems. The concept of nature
based meta-heuristic was suggested by Holland in 1975 [34]
with the introduction of genetic algorithm (GA), after that
many population based effective algorithms were developed
in next three decades like ant colony optimization (ACO)
[20], artificial immune algorithm (AIA) [28], differential
evolution (DE) [80], bacteria foraging algorithm (BFA)
[61], shuffled frog leap (SFL) [27] and particle swarm

optimization (PSO) [41]. These algorithms were applied
to various engineering, scientific and management real-
life problems. The effectiveness of such algorithms has
motivated researchers further to develop new algorithms
based on the principle of nature. The development of nature-
based algorithms was remarkable since 2005, and many
new algorithms were developed after that period. It is
difficult to mention all, but few such algorithm can include;
The invasive weed optimization (IWO) [51], artificial
bee colony (ABC) [39], biogeography-based optimization
(BBO) [78], gravitational search algorithm (GSA) [68], gray
wolf optimization (GWO) [53], firefly algorithm (FA) [87],
cuckoo search (CS) algorithm [91], bat algorithm (BA)
[88], grenade explosion method (GEM) [3], charged system
search (CSS) [40], teaching-learning based optimization
(TLBO) [66, 67]. The animal migration optimization
(AMO) [47], water cycle algorithm (WCA) [26], runner
root algorithm (RRA) (Merrikh-Bayat, 2015), mine blast
algorithm (MBA) [71], heat transfer search (HTS) [63],
lightning search algorithm (LSA) [76], lion optimization
algorithm (LOA) [93], Heat transfer search [63], passing
vehicle search (PVS) [72] and many more. Many of these
algorithms have proven their ability for the applications on
real-life applications. Many of these algorithms have their
effective multi-objective versions like GA [12, 17], PSO
[69, 84], ABC [4, 58, 94], ACO [6, 86], AIA [7, 33], GSA
[54], BBO [36, 70], IWA [57], FFA [90], CSA [92], BA [89]
and TLBO [43, 62, 63].

In addition to the above listed algorithms, artificial algae
algorithm (AAA) is also an effective and recently devel-
oped algorithm for the single objective optimization [83]
which works on the the living behavior of the microalgae.
So far, multi-objective version for AAA is not developed
and investigated. The basic search mechanism of AAA and
its effectiveness for the single objective optimization can
be used as a motivation to develop its multi-objective ver-
sion and to check its efficacy for challenging optimization
problems. So, this paper is mainly focused on developing
a useful technique by using multi-objective optimization
method along with artificial algae algorithm(AAA). This
proposed method will be denoted as MO-AAA method.
AAA is an effective meta-heuristic developed in 2015 [83].
This technique has proved its effectiveness and robust-
ness regarding accuracy, computational efforts, and conver-
gence. Later in this paper it is shown that the MO-AAA
is capable of generating non-dominated solutions and true
Pareto front (PF). The first contribution of this paper is
to introduce a new concept of multi-objective AAA algo-
rithm. Second contribution is to show the correctness of
MO-AAA method for the engineering design problems.
The proposed method is investigated on different multi-
objective benchmark problems (20 challenging benchmark
problems from CEC 2009 for unconstrained and constrained
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multi-objective optimization problems) and engineering
design problems. These benchmark problems offer chal-
lenges to multi-objective optimization algorithms. We have
compared our proposed method with about nearly 16
(recently developed) other algorithms for unconstrained
problems and 9 (recently developed) algorithms for con-
strained problems. The proposed approach is compared with
the other well-known multi-objective optimization algo-
rithms.

The organization of the paper is as follows: Section 2
describes the definitions of multi-objective optimization
problems and Pareto efficiency or optimality. Section 3
presents the artificial algae algorithm(AAA) algorithm in
details. Section 4 covers the proposed algorithm, MO-AAA
algorithm. Section 5 investigates the performance of MO-
AAA on various benchmark problems followed by Section 5
which gives the performance of MO-AAA on different
engineering design problems. Finally, Section 6 concludes
some final comments and future work.

2Multi-objective optimization problem

In this paper, we assume that all objective functions are
of the minimization type. It is known that minimization
type for objective functions can be transformed into
a maximization type by multiplying negative one. A
minimization multi-objective decision problem (multi-
objective optimization problem) with n objectives is defined
as follows [10, 44, 52]:

Given a k -dimensional decision variable vector �x =
{x1, x2, . . . xk} in the solution space S, find a vector �x∗ that
minimizes a given set of n objective functions

f

(−→
x∗

)
=

{
f1

(−→
x∗

)
, f2

(−→
x∗

)
. . . fn

(−→
x∗

)}
. The

solution space S is generally confined by a series of
constraints, such as gi (�x) ≤ 0, i = 1, 2, . . . I ,
hj (�x) = 0, j = 1, 2, . . . J, and bounds on the decision
variables (�x)l ≤ �x ≤ (�x)u . The objective space is defined
as F = { �f = (f1, f2, . . . fn) : fi = fi (�x) , ∀�x ∈ S, i =
1, 2, . . . n}.

In various real-life problems, objective functions under
consideration conflict with each other. Thus, minimizing x

for a single objective usually is not suitable for the other
objective functions. Therefore, we aim a multi-objective
solution that simultaneously optimizes each objective
function which is an impossible task. A reasonable solution
to a multi-objective problem is to examine a set of solutions
so that each solution in the set satisfies the objective
functions at an acceptable level without being dominated by
any other solutions. If all objective functions are minimized,
a feasible solution x is said to dominate another feasible
solution y (x � y), if and only if, fi (x) ≤ fi(y), for

i = 1, 2, . . . , n and fj (x) < fj (y) for least one objective
function j . A solution is said to be Pareto optimal if it is
not dominated by any other solution in the solution space.
A Pareto optimal solution cannot be improved concerning
any objective without deteriorating least one other objective.
The set of all feasible non-dominated solutions in S is
referred to as the Pareto optimal set, and for a given Pareto
optimal set, the corresponding objective function values
in the objective space are called the Pareto front. For
many problems, the number of Pareto optimal solutions is
enormous (perhaps infinite).

Our aim in a multi-objective optimization algorithm is to
find solutions in the Pareto optimal set. Nonetheless, finding
the entire Pareto optimal set, for many multi-objective
problems, is practically impossible due to the large size
of the problems. Therefore, a practical approach to multi-
objective optimization is to examine a set of solutions (the
best-known Pareto set) that represent the Pareto optimal set
as well as possible.

3 Artificial Algae Algorithm (AAA)

The AAA algorithm, proposed by [83], is based on the
living behavior of the microalgae. Artificial algae update
each solution in the feasible region by idealizing the char-
acteristics of algae. Based on the natural behavior of algae,
the AAA consists of three basic parts, namely, evolution-
ary process, adaption process and helical movement. In the
AAA, each population member is called algal colony. In the
evolutionary process, if the algal colony receives enough
light in sufficient nutrient conditions, it grows and repro-
duces itself to generate new algae cells in time. On the
other side, the algal colony does not receive enough sur-
vival light for short duration and dies eventually. Based on
this concept, algal colony provides good solution to grow
more and replicate by the smallest algal colony dying in
the evolutionary process. So, the evolution process requires
the size of algal colony (G), here in algorithm G is the fit-
ness value of the objective function. In adaption process,
an insufficient grown algal colony tries to resemble itself to
the biggest algal colony in the environment. This process is
taken care of the algorithm in the form of starvation. The
initial starvation value is zero for each artificial algae, and it
increases with time, so the artificial algae having the highest
starvation level are adapted based on the value of adaption
parameter Ap which is constant on the interval [0,1]. Algae
generally swim and try to stay close to the water surface to
have adequate light for the survival. They swim helically in
the liquid to restrict gravity and drag force of the liquid. In
AAA, the gravity restricting movement is taken as 0, and
viscous drag is considered in the form of shear force, which
is proportional to the size of algal cell. It is in the spherical
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shape therefore frictional surface becomes the surface of the
hemisphere.

τ (xi) = 2π

(
3

√
3Gi

4π

)2

(1)

Where τ (xi) is the friction surface.
For one-dimensional problem algal colony moves in

a single direction, for two-dimensional problem algal
movement is sinusoidal and for three or more-dimensional
problem algae follow the helical movement.

The step-wise implementation of basic AAA is explained
as below:

Step-1: Set algorithm parameters shear force (�), loss of
energy (e), energy (E) and adaption parameter (Ap), and
define number of design variable (DV) and maximum
number of generation.

Define function for the optimization

Minimize f(X), Subject to X = {x1, x2,. . . xDV }.
Step-2: Initialize a population of algae colonies and

evaluate the algae size (Gi) for each algal colony and
calculate friction surface τi.

Step-3: Set starvation=true and update the solution
by using the following condition Till E(xi)>0 and
starvation= true.

Choose j from the population and three dimensions of
j randomly for helical movement k, l, and m.
Update the solution by using helical movement

equation between xi and xj :

xt+1
ik = xt

ik +
(
xt
jk − xt

ik

)
(� − τi) cosα

xt+1
il = xt

il +
(
xt
j l − xt

il

)
(� − τi) sinβ

xt+1
im = xt

im +
(
xt
jm − xt

im

)
(� − τi) p

α, β are random angles in the range [0,2π ], and p is a
random number in the range [-1,1].
Calculate energy loss as E (xi) = E (xi) − (e/2).
Check if new solution is better than the update solution

and set starvation=false else again reduce energy E(xi)

if still E(xi)>0 and starvation= true then increase the
adaption parameter (Ap) and set xi = xs .

Step-4: Evaluate the size (G) of population and
choose one dimension for reproduction r and replace
x worst tr = x best tr .

Step-5: Generate any random number (rand) and check if
rand<Ap than the update starving solution (xs) by using
the following equation:

xt+1
s = xt

s + rand
(
x best t − xt

s

)
Step-6: Repeat the procedure till the termination criteria

are attained.

As seen from the above procedure, AAA is a population-
based method, and it follows the concept of the living
behavior of the microalgae to update its solution. Genetic
Algorithm (GA) is the basic nature-based algorithm, and
most of the recent algorithms can be algorithmically linked
to it to understand different algorithm better and richer
[18, 59]. Such algorithmic linking can provide appropriate
direction to modify the existing algorithms and can be
useful to even predict the effect of specific modifications to
an algorithm. It can be understood that basic GA follows
recombination and mutation process to update the solution.
AAA also follows the recombination operator that involves
two parent solutions, one being the serial parent as per the
sequence of the population and the other parent is randomly
chosen from the population. Mutation in AAA is performed
on the worst solution from the population by replacing
any one dimension directly from the best solution in that
generation. AAA follows an elite-preservation operation in
which new solutions are directly compared with the current
ones, and the best one is preserved. Also, AAA does not
change all the dimensions in the current solution to get the
new one; rather it only updates three dimensions at a time to
have perturbation phenomenon for updating a solution.

4Multi-Objective Artificial Algae Algorithm
(MO-AAA)

We introduce elitist non-dominated sorting method and
diversity preserving crowding distance approach of NSGA-
II in the proposed MO-AAA algorithm for sorting of
the population in different non-domination levels with
computed crowded distance. We describe an elitist non-
dominated sorting for obtaining different non-domination
levels, and then we explain the crowding distance approach
to preserve the diversity among the optimal set of solutions.

Firstly, for each solution obtained from the basic AAA
algorithm or from initially generated random population
Po, all the objectives from the objective vector F are
evaluated. Also, a domination count np is defined as the
number of solutions dominating the solution p. Sp is a
set of solutions dominated by solution p and calculated.
Secondly, all the solutions p are assigned a domination
count zero and are put in first non-dominated level also
known as Pareto Front (PF), and their non-domination rank(
NDRp

)
is set to 1. Thirdly, for each solution p with

np = 0, each member q of the set Sp is visited, and its
domination count nq is reduced by one. While reducing nq

count if it falls to zero the corresponding solution q is put
in second non-domination level, and NDRq is set to 2. The
procedure is repeated for each member of the second non-
domination level to obtain the third non-domination level,
and subsequently, the procedure should be repeated until
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the whole population is sorted into different non-domination
levels.

In crowding distance approach for maintaining diversity
among the obtained solutions firstly the population is sorted
according to value of each objective function in ascending
order. An infinite crowding distance is then assigned to the
boundary solutions, i =1 and i = l, of each objective.
Here l is the total number of solutions in a particular non-
dominated set. The boundary solutions are the minimum
(i =1) and maximum (i = l) function values. Except
the boundary solutions all the other solutions of the sorted
population (i =2 to l-1) for each objective j (j =1,2,. . . ,m)
are assigned the the crowding distance (di

j ) as:

di
j = f i+1

j − f i−1
j

fmax
j − fmin

j

In above equation, the right-hand side term is the difference
in values of objective function j for two neighboring
solutions (i+1 and i-1) of solution i. Once all the solutions
in the sorted population of a particular non-dominated set
are assigned the crowding distance then each solution i

is assigned two entities, non-domination rank NDRi and
crowding distance CDi . A crowded comparison operator
(≺n) is used as follows to compare two solutions (i and
j) as follows i ≺n j , if (NDRi < NDRj ) or
((NDRi = NDRj) and (CDi > CDj)). This is, between
two solutions, the one with the lower non-domination
rank is preferred and if both the solutions have same
non-domination rank, then one with the higher crowding
distance is preferred.

It can be observed from the previous section that AAA
algorithm cannot be directly used for the multi-objective
optimization. It requires critical modifications to be done
in the basic AAA to make it suitable for multi-objective
optimization because multi-objective optimization consists
of a set of solutions (Pareto solutions) rather than a single
optimum solution. All the Pareto solutions are equally
important with respect to the objective functions. Hence,
it is difficult to identify or indicate any solutions as the
best solution (x best ) or the worst solution (x worst ). It
is also difficult to measure a quantity like f(X’ ) <f(X),
where X′and X being the new solution and the existing
solution, respectively. The reason for the above challenge
is due to the involvement of more than one objective in
the multi-objective problems. So, modifications are done in
the basic AAA algorithm to make it adaptive for the multi-
objective optimization problems. To compare the updated
solution with the existing solution, we have used the concept
of rank and the crowding distance. The updated solution
is considered better if it possesses better rank compared
to the existing solution. It may happen that the rank of
both existing and the updated solution remain same. In that

case the solution with better distance value is considered
superior solution. The solution with the better rank and
the distance value is considered as the best solution from
the population i.e x best and by using the same concept
the solution with inferior rank and distance value will be
considered as x worst. So, it can be observed that the
modification is done by not losing the concept of basic
AAA algorithm. However, the mathematical expressions
for updating the solution remain unaltered as that of basic
AAA algorithm. It can also be noted that the updated
solution may fly away from the boundary and it is required
to set back within the boundary conditions. Padhye et al.
[60] has presented different concepts to handle boundary
violation. MO-AAA uses set on boundary approach to
handle boundary violations. In this approach, if the updated
solution is less than the lower limit, it is set as the lower
limit value and if the updated solution is more than the upper
limit, it is set as the upper limit value.

The procedure of the proposed MO-AAA algorithm has
been shown in Algorithm-1. Firstly, initialize parameters
such as population size

(
Npop

)
, termination criteria, and

the maximum number of generation
(
Ngen

)
to run the

algorithm. Secondly, a random parent population Po in
feasible region S is generated and each objective function of
the objective vector F for Po is evaluated. Next, elitist based
non-dominated sorting and crowding distance computation
as explained in earlier section is applied on Po. Thirdly,
AAA algorithm is employed to create the new population
Pj , which is then merged onto Po to form the merged
population Pi . This Pi is sorted based on elitism non-
domination, and based on the computed values of NDR
and CD. The best Npop solutions are updated to form
a new parent population. This process is repeated till the
maximum number of generations (iterations) are reached.
It should be noted that the same algorithm can also be
used with the termination criteria based on the number
of function evaluations. Since non-dominated sorting and
crowding distance assignment of MO-AAA are adopted
from NSGA-II, the computational complexity of MO-AAA
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Table 1 Controlling parameter for MO-AAA

Parameter Value

Shear force (�) 2

Loss of energy (e) 0.3

Energy (E) 1

Adaption parameter (Ap), 0.5

is also same as NSGA-II which is O
(
m

(
Npop

)2), where
m is the total number of objective functions and Npop is the
population size.

5 Numerical experimentation

This section presents the numerical experimentation and
performance evaluation of MO-AAA for classical multi-
objective benchmark problems, challenging benchmark
problems of CEC 2009 and engineering design benchmark
problems. The results of MO-AAA are compared with
other efficient as well as recently developed multi-objective
optimization algorithms. The controlling parameters for
MO-AAA are given in Table 1.

5.1 Benchmark problems-1

We carry out our numerical experiments on various classical
benchmark multi-objective problems in this subsection. We
consider classical and well-established benchmark multi-
objective functions such as SCH, ZDT1, ZDT2, ZDT3, and
LZ [46, 74, 98], which have distinct characteristics. For
example, SCH is a one-dimensional problem with a convex
Pareto front. ZDT1 has convex Pareto front, whereas ZDT2
has non-convex Pareto front. The Pareto front of ZDT3 has
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the discontinuous Pareto front. The objective functions in
LZ function are multi-modal, and they add an additional
challenge for the algorithm to find the true Pareto front. In
this work, the performance of the algorithms is measured
by Generational Distance (GD), Spacing (S) or Spread (�)

[17]. We calculate GD between the true Pareto front (PF t)

and the obtained Pareto front (PFO). GD indicates the
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3768 M. A. Tawhid, V. Savsani

-2

-1

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1

True PF

500 Generations

100 Generations

50 Generations

1 Generation

Fig. 4 Convergence ability and Pareto front for ZDT3 function

average distance between the obtained Pareto front and the
true Pareto front. GD is defined as:

GD =
(∑k

p=1 (di)
)

k

Where, di =
(

n∑
i=1

(
PFO

i,p − PF t
i,p

)2)1/2
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Fig. 5 Convergence ability and Pareto front for LZ function

Table 2 Results (GD) for benchmark multi-objective problems

SCH ZDT1 ZDT2 ZDT3 LZ

VEGA 6.98E-02 3.79E-02 2.37E-03 3.29E-01 1.47E-03

NSGA-II 5.73E-03 3.33E-02 7.24E-02 1.14E-01 2.77E-02

MODE 9.32E-04 5.80E-03 5.50E-03 2.15E-02 3.19E-03

DEMO 1.79E-04 1.08E-03 7.55E-04 1.18E-03 1.40E-03

Bees 1.25E-02 2.40E-02 1.69E-02 1.91E-01 1.88E-02

SPEA 5.17E-03 1.78E-03 1.34E-03 4.75E-02 1.92E-03

MO-AAA 5.63E-05 3.29E-05 1.89E-05 1.54E-03 1.98E-03

Where, k is the number of Pareto solutions, n is the number
of objective functions, PFoi,p indicates the pth obtained

Pareto solution for the ith objective and PF t
i,p indicates the

nearest point on true Pareto front from PFo
i,p. Spacing is

defined as the following:

S = 1

k − 1

k∑
p=2

(
Dp − D̄

)2

Where, Di is the absolute difference between the two
consecutive solutions in the obtained Pareto front (PFo). It
is defined as:

Dp =
n∑
i

∣∣∣PFo
i,(p−1) − PFo

i,p

∣∣∣

D̄ is the average of all Dp.
Spacing(S) specifies the spread of the obtained Pareto

front. It gives the standard deviation of Dg . The small value
of S indicates the uniform spacing of the obtained Pareto
solutions. Spread is defined as:

� =
∑n

j=1d
ex
j + ∑k

p=2

∣∣dp − d̄
∣∣∑n

j=1d
ex
j + (k − 1)d̄

Where, dp is the Euclidian distance between two consec-
utive points of the obtained Pareto front and dex

j is the
Euclidian distance between the obtained Pareto front and
the true Pareto front. d̄ is the average of dp. Spread checks
the condition for the obtained Pareto front to cover the true
Pareto front. The smaller value of � indicates better spread
for the obtained Pareto front with uniform distribution.

Table 3 Results (�) for the multi-objective benchmark problems

ZDT1 ZDT2 ZDT3

NSGA-II(RC) 0.3903 0.4307 0.7385

NSGA-II(BC) 0.4632 0.4351 0.5756

SPEA 0.7301 0.6781 0.6657

PAES 1.2297 1.1659 0.78992

MO-AAA 0.2547 0.3245 0.4326



A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design... 3769

Table 4 Results (mean IGD) for unconstrained multi-objective benchmark problems of CEC 2009

A* UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 UF10

1 3.91E-03 6.72E-03 7.62E-02 3.56E-02 4.13E-02 4.82E-02 6.42E-03 5.98E-02 2.00E-01 5.12E-01

2 8.79E-03 7.84E-03 6.93E-02 7.01E-02 9.79E-02 5.53E-02 6.80E-02 9.93E-02 1.64E-01 1.79E-01

3 4.35E-03 6.79E-03 7.42E-03 6.39E-02 1.81E-01 5.87E-03 4.44E-03 5.84E-02 7.90E-02 4.74E-01

4 6.46E-03 6.15E-03 5.31E-02 2.36E-02 1.49E-02 5.92E-02 4.08E-02 1.13E-01 1.14E-01 1.53E-01

5 1.04E-02 6.79E-03 3.34E-02 4.27E-02 3.15E-01 6.67E-02 1.03E-02 6.84E-02 4.90E-02 3.22E-01

6 6.18E-03 4.84E-03 5.12E-02 5.80E-02 7.78E-02 6.54E-02 5.57E-02 6.73E-02 6.15E-02 1.95E-01

7 7.85E-03 1.23E-02 1.50E-02 4.35E-02 1.62E-01 1.76E-01 7.30E-03 8.24E-02 9.39E-02 4.47E-01

8 6.20E-03 6.40E-03 4.29E-02 4.76E-02 1.79E+00 5.56E-01 7.60E-03 2.45E-01 1.88E-01 5.65E-01

9 5.34E-03 1.20E-02 1.06E-01 2.65E-02 3.93E-02 2.51E-01 2.52E-02 2.49E-01 8.25E-02 4.33E-01

10 7.70E-02 2.83E-02 9.35E-02 3.39E-02 1.67E-01 1.26E-01 2.42E-02 2.16E-01 1.41E-01 3.70E-01

11 2.99E-02 2.28E-02 5.49E-02 5.85E-02 2.47E-01 8.71E-02 2.23E-02 2.38E-01 2.93E-01 4.11E-01

12 3.59E-02 1.62E-02 7.00E-02 4.06E-02 9.41E-02 1.29E-01 5.71E-02 1.71E-01 1.89E-01 3.24E-01

13 8.56E-02 3.06E-02 2.71E-01 4.62E-02 1.69E-01 7.34E-02 3.35E-02 1.92E-01 2.32E-01 6.28E-01

14 1.22E-02 8.10E-03 1.03E-01 5.13E-02 4.30E-01 1.92E-01 5.85E-02 9.45E-02 9.83E-02 7.43E-01

15 5.96E-02 1.89E-02 9.90E-02 4.27E-02 2.25E-01 1.03E-01 1.97E-02 4.23E-01 3.42E-01 3.62E-01

16 1.15E-02 1.24E-02 1.06E-01 5.84E-02 5.66E-01 3.10E-01 2.13E-02 8.63E-02 7.19E-02 8.45E-01

17 5.79E-03 7.84E-03 6.93E-02 3.59E-02 3.79E-02 5.53E-02 2.14E-02 9.93E-02 1.17E-01 1.79E-01

*A-Algorithms: 1-Multi-objective moth flame optimization (NS-MFO), 2-Multi-objective Teaching Learning Based Optimization (MO-
TLBO), 3-(Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), 4-Multiple Trajectory Search (MTS), 5-Dynamical
Multi-objective Evolutionary Algorithm with Decomposition Technique (DMOEADD), 6-Multi-objective ABC (MOABC), 7-Multi-objective
Evolutionary Algorithm Based on Determined Weight and Sub-regional Search (Liu Li Algorithm), 8-MOEA/D with Guided Mutation and
Priority Update (MOEADGM), 9-Generalized Differential Evolution 3 (GDE3), 10-Differential Evolution with Self-Adaptation and Local
Search for Constrained Multi-objective Optimization Algorithm (DECMOSA-SQP), 11-Clustering Multi-objective Evolutionary Algorithm
(ClusteringMOEA), 12-Archive-basedMicro Genetic Algorithm (AMGA), 13-Orthogonal Multi-objective Evolutionary Algorithm (OMOEA-II),
14-Multi-objective Self-adaptive Differential Evolution Algorithm with Objective-wise Learning Strategies (OW-MOSaDE), 15-Multi-objective
Evolutionary Programming (MOEP) using fuzzy rank-sum with diversified selection, 16-Non-dominated Genetic Algorithm with Local Search
(NSGAIILS), 17-Multi-objective Biogeography Based Optimization with ACO (MO-BBO ACO)

Table 5 Results (mean IGD) for constrained multi-objective benchmark problems of CEC 2009

A* CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10

1 6.82E-02 3.92E-03 4.25E-02 2.83E-03 6.23E-02 4.01E-02 2.88E-02 3.11E-02 7.62E-02 9.99E-02

2 2.49E-02 1.20E-02 9.80E-02 8.68E-03 7.64E-02 1.64E-02 3.33E-02 2.98E-01 8.10E-02 3.01E-01

3 1.13E-02 2.10E-03 5.63E-02 6.99E-03 1.58E-02 1.50E-02 1.91E-02 4.75E-02 1.43E-01 1.62E-01

4 8.50E-04 4.20E-03 1.83E-01 1.42E-02 1.10E-01 1.39E-02 1.04E-01 6.07E-02 5.05E-02 1.97E-01

5 1.92E-02 2.68E-02 1.04E-01 1.11E-02 2.08E-02 1.62E-02 2.47E-02 1.09E+00 8.51E-02 1.38E-01

6 1.08E-02 8.00E-03 5.13E-01 7.07E-02 5.45E-01 2.07E-01 5.36E-01 4.06E-01 1.52E-01 3.14E-01

7 1.08E-01 9.46E-02 1.00E+06 1.53E-01 4.13E-01 1.48E-01 2.60E-01 1.76E-01 1.27E-01 5.07E-01

8 2.94E-02 1.60E-02 1.28E-01 7.99E-03 6.80E-02 6.20E-02 4.17E-02 1.39E-01 1.15E-01 4.92E-01

9 6.92E-03 1.18E-02 2.40E-01 1.58E-02 1.84E-01 2.01E-02 2.33E-01 1.11E-01 1.06E-01 3.59E-01

*A-Algorithms: 1-Multi-objective Moth Flame Optimization (NS-MFO), 2-Multi-objective Teaching Learning Based Optimization (MO-TLBO),
3-Dynamical Multi-objective Evolutionary Algorithm with Decomposition Technique (DMOEADD), 4- Multi-objective Evolutionary Algorithm
Based on determined weight and sub-regional search (Liu Li Algorithm), 5- Multiple Trajectory Search (MTS), 6- MOEA/D with Guided
Mutation and Priority Update (MOEADGM), 7- Differential Evolution with Self-adaptation and Local Search for Constrained Multi-objective
Optimization Algorithm (DECMOSA-SQP), 8- Generalized Differential Evolution 3 (GDE3), 9-Non-dominated Genetic Algorithm with Local
Search (NSGAIILS)
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Fig. 6 Comparison of multi-objective optimization algorithms for unconstrained functions based on Friedman rank test

For the numerical experimentation, the population size
is set equal to the Pareto solutions required in PF, and
maximum numbers of generations are set as 500 for ZDT1,
ZDT2, ZDT3 and SCH functions. For LZ function, the
number of generations is set as 1000 to maintain the
uniformity of experimental setup with the published results.
For all the problems, the number of Pareto Solutions (k)

is considered as 200. The Pareto front for SCH, ZDT1,
ZDT2, ZDT3, and LZ are shown in Figs. 1, 2, 3, 4 and 5,
respectively. Figures 2 to 5 also show the convergence
ability of MO-AAA for ZDT1, ZDT2, ZDT3, and LZ, relies
on various types of multi-objective problems. The result
presents the graphical presentation of the Pareto front at
1st, 50th, 100th and final generations. All the figures show
the true Pareto front and the obtained Pareto front. It can
be noted from the results that for all the functions, MO-
AAA is capable of approximating the true Pareto front. It
can also be observed from the convergence figures that MO-
AAA can converge to an optimum solution for the multi-
objective functions..The rate of convergence is more in first
100 generations, and the solutions try to get near Pareto

solutions within that range. However, with the increase
in the computation, solutions try to achieve true Pareto
front. The effectiveness of the results is checked by the
above-mentioned performances measures. The results for
the GD for all the functions are summarized in Table 2,
where the results are compared with the state-of-the-art
multi-objective algorithms such as NSGA-2, SPEA, VEGA,
MODE, DEMO, and MO-Bees. The results except MO-
AAA are reproduced from Yang, 2013 and Yang and Deb,
2013. The results summarized in Table 2 are the average
result obtained in 25 independent runs. It can also be
observed from the results that for SCH function, MO-AAA
has produced better GD then all the rest of the algorithms.
For ZDT1, ZDT2, MO-AAA is better compared to all the
algorithms. For ZDT3 it is only inferior to DEMO. For
LZ, MO-AAA is inferior to MODE and SPEA. It can be
summarized that MO-AAA is capable of finding true Pareto
solutions for the problems with convex, non-convex and
discrete Pareto front. The results are also compared based on
the spread (�) with the other multi-objective optimization
algorithms such as NSGA-II (real coded), NSGA-II (binary

Fig. 7 Comparison of
multi-objective optimization
algorithms for constrained
functions based on Friedman
rank test
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coded), SPEA and PAES. The result for the � is shown in
Table 3. It can be noted from the results that MO-AAA has
shown better � for ZDT1, ZDT2, and ZDT3.

5.2 Benchmark problems-2

Several challenging benchmark functions are provided by
Congress on Evolutionary Computation (CEC) for test-
ing performance parameters of multi-objective optimization
algorithms. Benchmark functions for multi-objective opti-
mization are provided in CEC 2009 [96]. The effectiveness
of MO-AAA algorithm is evaluated by investigating on
20 well-defined benchmark functions of CEC 2009. Out
of all these 20 benchmark problems, ten functions are
multi-objective unconstrained problems (UF1-UF10), and
the remaining 10 are multi-objective constrained functions
(CF1-CF10). The detailed mathematical formulations of the
considered test functions are given in [96]. The performance
of the algorithms is evaluated by inverted generational
distance (IGD) measure. The value of IGD indicates the dis-
tance of the approximate Pareto front from the true Pareto
front. A low value of IGD indicates that the obtained Pareto
front is closely approached to the true Pareto front. To cal-
culate IGD, assume P ∗ be a set of uniformly distributed
points along the true Pareto front in the objective space. Let
Abe a set of points representing obtained Pareto front. Then
the average distance from P ∗ to A is known as IGD and
describe as follows:

IGD
(
A, P ∗) =

∑
ν ∈P ∗ d (ν, A)

|P ∗|
Where, d(υ, A) is the minimum Euclidian distance between
υand the other points in A. If |P ∗|is large enough to
represent the Pareto front very well, both diversity and
convergence of the approximated set A could be measured
using IGD (A, P ∗). An optimization algorithm will try to
minimize the value of IGD (A, P ∗) measure. To obtain
smaller values of this measure, the approximated set A

must be very close to the true Pareto front and cannot
miss any part of the whole Pareto front. To maintain
the consistence in the comparison of the competitive
algorithms, a common platform is provided in [96]. The
total number of function evaluations is set as 3.0E05, and
population size is set as 50. The comparison is based
on the average value of IGD obtained in 30 independent
runs. The result of MO-AAA is compared with 16 other
well-known algorithms for unconstrained problems. These
algorithms are derived from other optimization methods
such as genetic algorithm, differential evolutions, artificial
bee colony technique, biogeography-based optimization or
teaching learning-based optimization techniques. In Table 4,
the results of average IGD are listed based on 30 runs
for ten unconstrained multi-objective benchmark problems

2L 

L 

L 

F 

F 

2F 

 

 
Fig. 8 Four bar truss problem

(UF1-UF10). In Table 5, the results of MO-AAA for
constrained benchmark problems are compared with eight
other algorithms, and the results of average IGD are listed.
All the results except MO-AAA are rewritten from [4,
64, 73] for the comparison purpose. Friedman rank test is
performed to get an idea about the performance rank of
the algorithms for unconstrained and constrained problems
separately based on average IGD. Variations of Normalized
Friedman rank value for unconstrained problems are shown
in Fig. 6 and for constrained problems are shown in Fig. 7.
It can be observed from the results that for unconstrained
multi-objective problems MO-AAA has ranked 3rd among
17 algorithms and it can considered competitive with
MOEAD, MTS, MOABC, and MO BBO-ACO considering
the range above 90%. MO-AAA has secured 2nd rank
among nine algorithms for constrained problems, and it is
comparable with DMOEADD within the top 90% range.

5.3 Engineering design benchmark problems

In this subsection, MO-AAA is experimented on six differ-
ent multi-objective engineering design problems which are
widely used in the research to investigate the multi-objective

Table 6 Result (S) for the four-bar truss problem

Algorithms S

Mean SD

NSGA-II 2.3635 0.2551

MOPSO 2.5303 0.2275

Micro-GA 8.2742 16.8311

PAES 3.2314 5.9555

MOWCA 2.5816 0.0298

MO-AAA 2.3861 0.2314
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Fig. 9 Pareto front for the
four-bar truss problem
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optimization algorithms. All the considered problems pos-
sess different characteristics. The algorithms parameters for
the MO-AAA are same as that for the benchmark problems
considered in the previous subsection. All the engineering
problems experiment with a population size of 100 (solu-
tions required in the Pareto front) and 500 iterations. For
all the problems, 100 Pareto solutions are generated, and
the results mentioned in this work are the average result
obtained in the 30 runs to maintain the same experimental
settings with [71].

5.3.1 Four bar truss problem

The aim of this problem is to minimize volume and
displacement of joints simultaneously. Area of each link
is considered as design variables. This problem is an

Fig. 10 Gear train

unconstrained problem with all the continuous design
variables. The system is shown in Fig. 8.

The problem can be stated as below

Minimize : f1 (x) = L
(
2x1 + √

2x2 + √
x3 + x4

)

Minimize : f 2(x) =
(

F
L

E

) (
2

x2
+ 2

√
2

x2
− 2

√
2

x3
+ 2

x4

)

Where,

F = 10, E = 2e5, L = 200

1 ≤ x1, x4 ≤ 3,
√
2 ≤ x2, x3 ≤ 3.

This problem has a convex Pareto front in the objective
space. The extreme point found for this problem is
(1174.200, 0.0341) and (1727.739, 0.00276). As the
mathematical expression for the exact Pareto front is not
available for this problem in the literature, the performance
is checked based on the value of spacing (S) due to
its availability in the literature for different algorithms.
The value of S for MO-AAA along with different
algorithms such as NSGA-II, MOPSO, Micro-GA, PAES,
and MOWCA [71] are given in Table 6. It can be observed
from the results that MO-AAA has produced better or nearly
same spacing compared to all the algorithms. The obtained

Table 7 Result (extreme Pareto solutions) for the gear train problem

Algorithms Objective function

f1 f2

NSGA-II f1 → min 1.83e-8 37

f2 → min 5.01e-1 13

MOWCA f1 → min 4.5e-9 43

f2 → min 7.32e-1 12

MO-AAA f1 → min 9.92e-10 47

f2 → min 7.32e-1 12
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Fig. 11 Pareto front for gear
train problem
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Pareto front is presented in Fig. 9, which justifies the results
presented in the Table 5. The obtained Pareto front matches
well with the available Pareto front in the literature [71].

5.3.2 Gear train problem

The purpose of this problem is to minimize the maximum
size of any one of the gear simultaneously with the
minimization of the gear ratio error with reference gear
ratio of 1/6.931. All the design variables considered in
this example can only take integer values as they represent
the number of teeth on each gear. Hence, this problem is
a min-max problem with discrete design variables, which
offers additional challenges to an optimization algorithm.
The system is shown in Fig. 10.

The problem can be stated as:

Minimize f 1(x) =
((

1

6.931

)
−

(
x1x2

x3x4

))2

Minimize f 2(x) = max ([x1x2x3x4])

Fig. 12 Exploded view for the multi-plate disk brake

Where, 12 ≤ x1x2x3x4 ≤ 60.
The performance measures such as GD, S, and � are

not available for the gear train problems. So, the results are
compared based on the extreme Pareto solutions available in
the literature. The results are compared with NSGA-II and
MOWCA. The results are summarized in Table 7.

It can be observed from the results that the extreme
Pareto solutions obtained by MO-AAA is (9.92e-10,47)
and (7.32e-1, 12). These extreme solutions are better than
NSGA-II and MOWCA for both the conditions. This
problem has a discrete Pareto front, and it is shown in
Fig. 11, obtained by MO-AAA.

5.3.3 Multi-plate disk brake design

Multi-plate disk brake finds its applications in airplanes, to
apply effective braking while landing. The exploded view of
the multi-pate disk brake is shown in Fig. 12. The purpose of
the problem is to simultaneously minimize the mass of the
brake and the stopping time. There are four design variables
for the inner radius, outer radius, the engaging force (applied
force) and the number of friction surfaces (number of
friction plates). Out of these four design variables, the
number of friction surfaces can only take a discrete integer
values which make it a mixed-integer problem. This is also

Table 8 Result (�) for the disk brake problem

Algorithm �

Mean SD

NSGA-II 0.79717 0.06608

paε − ODEMO 0.8401 0.20085

MOWCA 0.46041 0.10961

MO-AAA 0.25824 0.0342
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Fig. 13 Pareto front for disk
brake problem
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a constrained optimization problem for which five different
restrictions are introduced for the distance between the radii
of the friction plates, length of the brake, pressure sustained
by the plates, the maximum limitation for the temperature
generated and the braking torque. The problem can be stated
as follows:

Minimize f 1(x) = 4.9e − 5
(
x2
2 − x2

1

)
(x4 − 1)

Minimize f 2(x) = (9.82e6)
x2
2 − x2

1

x3x4
(
x3
2 − x3

1

)
g1 = 20 + x1 − x2

g2 = 2.5 (x4 + 1) − 30

g3 = x3

3.14
(
x2
2 − x2

1

)2 − 0.4

g4 = 2.22e − 3x3
x3
2 − x3

1(
x2
2 − x2

1

)2 − 1

g5 = 900 −
(
2.66e − 2x3x4

(
x3
3 − x3

1

)
x2
2 − x2

1

)

∀g ≤ 0

55 ≤ x1 ≤ 80, 75 ≤ x2 ≤ 110, 1000 ≤ x3 ≤ 3000, 2 ≤
x4 ≤ 20, x4 ∈ I .

The extreme Pareto solutions obtained are (0.12740
16.6549) and (2.7915, 2.07204). The results are compared
for the value of spacing (�). The results are shown in
Table 8, where the performance of MO-AAA is compared
with NSGA-II, paε − ODEMO and MOWCA. It can be
noted from the results that MO-AAA has produced better
�compared to NSGA-II, paε − ODEMO, and MOWCA.
The Pareto front obtained by using MO-AAAis is shown in
Fig. 13, which is either same or better than the Pareto front
given in [71]. It is useful for the designer to note that the
Pareto solutions become nearly stagnant for f1 at f1 ∼= 0.2
and for f2 at f2 ∼= 1.75.

5.3.4 Speed reducer problem

The aim of this problem is to simultaneously optimize the
weight of the gear assembly and the transverse deflection
of the shaft. The assembly of the speed reducer is shown in
Fig. 14. The problem is subjected to different constraints on
bending stress of the gear teeth, surfaces stress, transverse

Fig. 14 Speed reducer
Shaft-1 Shaft-2 Bearings Gears 
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Table 9 Result (S) for speed reducer problem

Algorithms S

Mean SD

NSGA-II 2.765 3.534

Micro-GA 47.80 32.80

PAES 16.20 4.268

MOWCA 16.68 2.697

MO-AAA 18.2234 3.432

deflections of the shafts and stresses in the shafts. The
design variables are the face width, module of teeth, number
of teeth in the pinion, length of the first shaft between
bearings, length of the second shaft between bearings and
the diameter of the first and second shafts, respectively.
All the variables are indicated in the Fig. 14. The third
variable is an integer, the rest of them are continuous. So,
this problem can be classified as a mixed-integer problem.

The problem can be stated as follows:

Minimize f1 = 0.7854x1x
2
2(3.3333x

2
3 + 14.9334x3

−43.0934) − 1.508x1(x
2
6 + x2

7)

+7.4777(x3
6 + x3

7)

+0.7854(x4x
2
6 + x5x

2
7)

Minimize f2 =

√(
745 x4

x2x3

)2 + 1.69e7

0.1 ∗ x3
6

g1 = −(27/(x1x
2
2x3) − 1)

g2 = −(397.5/(x1x
2
2x

3
3) − 1)

g3 = −
(
1.93

x3
4

x2x3x
4
6

− 1

)

Fig. 16 Welded beam
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⎛
⎜⎜⎝

√(
745 x5
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)2 + 157.5e6
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⎞
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g7 = −
(
x2 ∗ x3
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− 1
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(
5 ∗ x2

x1
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(

x1

12 ∗ x2
− 1

)

Fig. 15 Pareto front for speed
reducer problem
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Table 10 Results (�) for welded beam problem

Algorithm �

Mean SD

NSGA-II 0.8898 0.1197

paε − ODEMO 0.5860 0.0436

MOWCA 0.2247 0.0928

MO-AAA 0.2349 0.1023

g10 = −
(
1.5 ∗ x6 + 1.9

x4
− 1

)

g11 = −
(
1.1 ∗ x7 + 1.9

x5
− 1

)

∀g1 ≥ 0

2.6≤x1≤3.6, 0.7≤x2≤0.8, 17≤x3≤28, 7.3≤x4x5≤8.3,

2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5

The extreme Pareto solutions obtained by MO-AAA are
(3001.592,1091.24) and (5904.21, 694.728). The results
are compared based on the Spacing (S) with the other
algorithms such as NSGA-II, Micro-GA, PAES and
MOWCA [71]. The results are presented in the Table 9.

It can be observed from the results that, the Spacing
of NSGA-II better compared to all the algorithms, but the
extreme points of the Pareto front obtained by NSGA-II are
inferior compared to other algorithms. Also, the value of S
is inferior for MO-AAA to the other algorithms. The Pareto
front is given in Fig. 15. It is useful for the designer to note
that the Pareto solutions become nearly stagnant for f2 at
f2 ∼= 697.

5.3.5 Welded beam design

The purpose of this problem is to minimize the cost
simultaneously with the end deflection. The problem is
subjected to the constraints on shear stress, bending stress,

weld length, and the buckling load. The four different design
variables are the height and the length of the welded joint
and thickness and the width of the beam. All the design
variables are continuous. The schematic diagram is shown
in Fig. 16, where all the variables are shown clearly. The
value of objective functions differs much in its values and so
such problems are difficult to solve with the weighted sum
method. The problem can be stated as:

Minimize f1 = 1.10471x2
1x2 + 0.04811x3x4 (14 + x2)

Minimize f2 = del

g1 = − (tau − taumax)

g2 = − (sig − sigmax)

g3 = − (x1 − x4) g4 = − (P − pc)

Where

pc =

⎛
⎜⎜⎝
4.013 ∗ E

(√
x23x64
36

)

L2

⎞
⎟⎟⎠

(
1 −

(( x3

2L

) √
E

4G

))

del = 4PL3

Ex3
3x4

sig = 6PL

x4x
2
3

J = 2 ∗
(

√
2x1x2

((
x2
2

12

)
+

(
x1 + x3

2

)2
))

R =
√√√√

(
x2
2

4

)
+

(
x1 + x3

2

)2

M1 = P ∗
(
L + x2

2

)

tau2 = M1R

J

Fig. 17 Pareto front for welded
beam problem
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tau1 = P√
2x1x2

tau =
√

tau12 + 2 ∗ tau1 ∗ tau2 ∗ x2

2 ∗ R
+ tau22

∀g ≥ 0

P =6000, L=14, E=30e6,G=12e6, taumax =13600, sigmax =30000,

delmax = 0.25

0.125 ≤ x1x4 ≤ 5, 0.1 ≤ x2x3 ≤ 10.

The extreme Pareto solutions obtained by MO-AAA are
(1.800, 0.0243) and (35.552, 0.000449). This problem is
compared with the other techniques such as NSGA-II,
paε − ODEMO, and MOWCA [71]. The results are
compared based on �, and the mean values along with the
calculated standard deviation are summarized in Table 10.
It can be observed from the results that MO-AAA possesses
better spreading compared to the other algorithms and
nearly same to that of MOWCA. The Pareto front obtained
by MO-AAA is shown in Fig. 17, where it justifies the
results.

5.3.6 Spring design problem

The purpose of this problem is to minimize stress and
volume simultaneously. The constraints are imposed on the
minimum deflection, shear stress, surge frequency, limits
on outside diameter and on design variables. The design
variables are the wire diameter (d), the mean coil diameter
(D), and the number of active coils (N). The schematic
view of the spring is shown in Fig. 18. This problem is
special because all the design variables possess different
characteristics. The number of turns can only take integer
values whereas the diameter of the wire is standardized, and
it has to be selected from the set of available diameters.
The mean coil diameter can be considered as a continuous
variable. So, this problem is the mixed-integer-discrete
problem. The problem can be stated as follows:

Minimize f 1(x) =
(
0.253.142x2

2x3 (x1 + 2)
)

Table 11 Result (extreme Pareto solutions) for spring problem

Algorithms f1 f2

NSGA-II f1 → min 2.690 187053

f2 → min 24.189 61949

MOWCA f1 → min 2.668 188448

f2 → min 26.93 58752

MO-AAA f1 → min 2.6972 187552.9

f2 → min 26.35 57904

Minimize f 2 (x) = 8KP max

x3

3.14x3
2

g1 = 1.05x2 (x1 + 2) + Pmax

k
− lmax

g2 = dmin − x2

g3 = x2 + x3 − Dmax

g4 = 3 − C

g5 = delp − delpm

g6 = delw − Pmax − P

k

g7 = 8KPmax
x3

3.14x3
2

− S

g8 =
(
0.253.142x2

2x3 (x1 + 2)
)

− Vmax

Where

P = 300

D max = 3

V max = 30

P max = 1000

delw = 1.25

l max = 14

delpm = 6

dmin = 0.2

S = 189000

G = 11500000

C = x3

x2

Fig. 18 Spring
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Fig. 19 Pareto front for spring
problem
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∀g ≤ 0

1 ≤x1≤ 32, 1 ≤ x3≤ 30, x1∈I

x2∈ [0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132, 0.014,
0.015, 0.0162, 0.0173, 0.018, 0.020, 0.023, 0.025, 0.028,
0.032, 0.035, 0.041, 0.047, 0.054, 0.063, 0.072, 0.080,
0.092, 0.105, 0.120, 0.135, 0.148, 0.162, 0.177, 0.192,
0.207, 0.225, 0.244,0.263, 0.283, 0.307, 0.331, 0.362,
0.394, 0.4375, 0.5].

This value for GD, S or � is not available in the literature
for this problem, so the results are compared with the
extreme Pareto solutions. The extreme Pareto solutions are
compared with NSGA-II and MOWCA. The results are
presented in the Table 11. It can be observed from the
results that the extreme points obtained by MO-AAA are
nearly same compared to NSGA-II and MOWCA [71]. The
Pareto front is shown in Fig. 19, which justifies the results.
The Pareto front of this problem is discontinuous and of
overlapping nature. This occurs because each discrete value
for d possesses the certain portion of the Pareto front, which
can be observed from the Pareto front for different discrete
values of d.

6 Conclusions and future work

In this work, we suggest a new multi-objective version
for artificial algae algorithm (AAA) algorithm, called MO-
AAA. We test the proposed algorithm on various numerical

benchmark problems with different characteristics of the
Pareto front. Also, we apply MO-AAA on different multi-
objective benchmark problems (20 challenging benchmark
problems from CEC 2009 for unconstrained and constrained
multi-objective optimization problems) and engineering
design problems and calculate its performances based on
generational distance, spacing and spreading.

These benchmark problems offer challenges to multi-
objective optimization algorithms. We have compared our
proposed method with about nearly 16 (recently developed)
other algorithms for unconstrained problems and 9 (newly
developed) algorithms for constrained problems.

Moreover, we compare the proposed algorithm with a
different multi-objective version of GA, PSO, DE, Bees, and
WCA. Our results show that the proposed method is better
or as par with the existing algorithms. This work motivates
us to do and investigates various directions of research as
the followings:

• Apply MO-AAA on solving an economic load dispatch
problem with incommensurable objectives, multi-
objective flow shop scheduling problems, and analysis
of Pareto improvement models in electricity markets.

• Modify MO-AAA so that we can solve multiple-
objective optimization problems and large-scale multi-
objective optimization problems.

• Study some theory analysis for the MO-AAA algo-
rithm, such as, convergence analysis, and complexity.
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