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Abstract
A hybrid population-based metaheuristic, Hybrid Canonical Differential Evolutionary Particle Swarm Optimization (hC-
DEEPSO), is applied to solve Security Constrained Optimal Power Flow (SCOPF) problems. Despite the inherent difficulties
of tackling these real-world problems, they must be solved several times a day taking into account operation and security
conditions. A combination of the C-DEEPSO metaheuristic coupled with a multipoint search operator is proposed to better
exploit the search space in the vicinity of the best solution found so far by the current population in the first stages of the
search process. A simple diversity mechanism is also applied to avoid premature convergence and to escape from local
optima. A experimental design is devised to fine-tune the parameters of the proposed algorithm for each instance of the
SCOPF problem. The effectiveness of the proposed hC-DEEPSO is tested on the IEEE 57-bus, IEEE 118-bus and IEEE
300-bus standard systems. The numerical results obtained by hC-DEEPSO are compared with other evolutionary methods
reported in the literature to prove the potential and capability of the proposed hC-DEEPSO for solving the SCOPF at
acceptable economical and technical levels.

Keywords Evolutionary optimization methods · Optimal power flow · Hybrid algorithms · hC-DEEPSO algorithm ·
Fining tunining parameters · Statistical inference

1 Introduction

The increasing demand for electric power is one of the main
challenges being faced by many countries in the World.
Among other goals, electric companies aim at supplying
power to consumers at a minimal operational cost. In
general, this optimization problem known as Optimal Power
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Flow (OPF) seeks to optimize the overall operation cost of
generating and transmitting electric power subject to system
constraints and control limits. Many other goals can also
be considered in this problem, such as the minimization of
modifications in controls, minimization of the active power
losses, minimization of power not supplied when load has
to be curtailed, or even the minimization of the greenhouse
gas emissions, just to name a few [1]. Thus, the software
module in Energy Management Systems to solve the OPF
problem plays an important role, as the whole operation of
the power system must be optimized for each time interval.

OPF can be defined as a mono-objective problem dealing
with the aggregation of two or more objective functions, or
a multiobjective one trying to optimize each goal separately
and simultaneously [2]. Traditionally, the control variables
are the active power production and the voltage set point
of generating units, the positions of transformer taps and
the states of shunt compensator’s (reactors and capacitors).
The equality constraints stem from the power flow equations
and are associated with Kirchhoff’s current and voltage
laws. Operational limits, such as the active and reactive
power boundaries of generators, the bus voltage magnitude
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and the apparent power flow in the lines are modeled
as inequality constraints. Additional security criteria can
be included in the OPF problem, such that the operation
of the system is kept within predefined security margins
even when unplanned outages occur [3]. Usually, OPF is
considered as an extremely difficult optimization problem
to solve due to its highly dimensionality, non-linearity,
combinatorial, non-convex and multimodal nature [1–3].

The OPF problem was modeled and solved for the first
time by Carpertier [4] using deterministic techniques. The
some common deterministic techniques used to solve this
problem are Linear Programming, Quadratic Programming,
Gradient Method, Interior Point Methods, to name a few
[1, 2, 5]. Some examples of nondeterministic techniques
are Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO) and Differential
Evolution (DE) [6–13]. Table 1 describes in a simple
manner the main advantages and disadvantages of the most
important techniques.

Apart from supplying electric power at minimal opera-
tion cost, utilities must comply with high levels of safety
and quality. To ensure adequate continuity and security of
supply, the operator might want that the inequality con-
strains are not violated in case of equipment outage (gen-
erators, transformers, lines, etc.). When contingencies of
equipment are included in the optimization model, the

problem is known as Security Constrained Optimal Power
Flow (SCOPF) [3]. Several research works handling the
SCOPF problem can be found in literature, namely, method-
ologies that use GA, PSO, ANN, Linear Programming and
some hybrid approaches [14–20].

Hybrid optimization techniques have been recently pro-
posed to solve this problem. Hybrid methods can be defined
as a combination of deterministic and nondeterministic
techniques to solve a particular problem. In many cases,
hybrid methods have proven to be more efficient and lead to
faster convergence to the optimal solution than methods that
optimize solely individual components [2]. Hybrid methods
applied to solve the OPF problem are based on the com-
bination of techniques such as GA and PSO, DE as well
as PSO, ANN with GA, Interior Point and PSO, Newton
Method, PSO and Artificial Bee Colony (ABC), PSO and
others [21–30].

Hybrid methods are becoming reliable and effective tech-
niques to solve real-world and complex optimization problems
with remarkable performance. For instance, a PSO inspired
multi-elitist ABC algorithm named PS-MEABC is proposed
in [30] for real-parameter optimization. The optimal coordi-
nation of directional overcurrent relays in meshed networks
using a hybrid PSO-DE approach is detailed in [31]. The
economic dispatch problem of generating units is solved in
[32] once again using a hybrid technique based on PSO andDE.

Table 1 Summary of solution methods for OPF problems based on [1, 2]

Methods Main principle Advantages Disadvantages

Gradient or Dommel-Tinney Usage of the gradient of the
Lagrangian function to direct the
search toward the optimal
solution

Does not require the calculation
of second derivatives, making the
method simpler

Slow convergence; Difficulties in
handling inequality constraints

Interior points Start from a point in the
“interior” of the search space and
transform the inequality constraints
into equality constraints through
slack variables in order to build
the Lagrangian function by adding
all restrictions

Faster than conventional Linear
programming methods; efficient
and robust on solving linear
and nonlinear problems

Easily handles inequality
constraints; sensitive to initial
conditions; sometimes requires
linearization

Linear programming Usage of linear or piecewise linear
cost functions and DC power flow
instead of AC power flow, which
provides a linear relationship
between injections and line flows

Convergence is guaranteed; fast
convergence; less computational
effort; Easily handles inequality
constraints

Inaccuracy due to linearization of
cost functions and nonlinear
constraints

Quadratic programing Usage of a quadratic objective
function; all constraints are linear

Does not require linearization of
cost functions

Inaccuracy due to linearization of
nonlinear constraints

Newton-Raphson Application of a second order
Taylor series expansion, using the
Hessian and gradient matrices to
build an approximation of
quadratic function

Fast convergence when it is close to
optimum value; Flexible
formulation (Different
applications for the problem
OPF); efficient and robust

Computationally heavy; highly
sensitive to initial conditions;
difficulty of enforcing inequality
constraints

Metaheuristics Genetic algorithms, Particle Swarm
Optimization, Evolutionary
Programming, Ant Colony
optimization

No linearization is required; Allows
for the use of non-continuous
functions, not convex and not
differentiable; easy implementation

The solution obtained is not
guaranteed to be optimal and high
time to obtain solutions
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This paper proposes a new hybrid approach, the so called
Hybrid Canonical Differential Evolutionary Particle Swarm
Optimization (hC-DEEPSO), which combines C-DEEPSO
[18] coupled with a multipoint search operator called Spiral
Search (SLS) to solve the SCOPF problem. The usage of
this search operator aims to better exploit the search space
in the vicinity of the best solution found so far by the
current population in the first stages of the search process. In
addition, a simple diversity mechanism is applied to balance
between exploration and exploitation. That mechanism is
able to avoid premature convergence and to escape from
local optima.

The algorithm is tested on three test systems well-
known in literature - IEEE 57 bus, IEEE 118 bus and
IEEE 300 bus systems - with two different objective
functions: the minimization of active power losses in the
transmission network and the minimization of total cost of
electricity production for the expected operation scenario.
In both scenarios, several unplanned outages of equipment
are taken into account, requiring the system operation to
be kept within pre-defined margins even in contingency
scenarios.

This section has introduced the OPF problem and
its SCOPF variation as well as the current state-of-art
methods for solving these problems. The remainder of
the paper is organized as follows: Section 1.1 deals with
the modeling of the SCOPF problems; Section 2 presents
the hybrid algorithm hC-DEEPSO, the problem-specific
search operator SLS and the diversity mechanism; Section 3
discusses the experiments and the results obtained; finally,
Section 4 concludes the work.

1.1 Problem formulation

The original OPF problem is a mixed-integer non-linear
optimization problem. That formulation does not guarantee
that operation of the network remains in a secure state
after a sudden equipment outage. Therefore, an improved
formulation has been proposed: the SCOPF. This model
ensures that the power can be successfully transferred from
generators to loads not only under the expected network
topology, but also for some unplanned outage caused by
sudden loss of sections of the network, such as transmission
lines, distribution branches and/or transformers. Therefore,
SCOPF problem has a considerable larger number of
constraints than OPF problem.

This paper addresses the SCOPF problem considering
two different objective functions: the minimization of total
operation cost, which is known as Optimal Active Reactive
Power Dispatch (OARPD) problem, and the minimization
of total active power losses in the transmission network,
known as Optimal Reactive Power Dispatch (ORPD)
problem. These two objective functions can be expressed

as non-linear functions: the OARPD version is a quadratic
function of the generators active power output in $/h while
the ORPD version is quadratic function of the bus voltage
magnitudes and of the cosine of the difference between
bus voltage angles. Note that the active power production
of the power plants in the ORPD problem is an input
parameter and not a decision variable: the only active power
production to be optimized is that corresponding to the
generator in the slack bus.

Both optimization problems can be formulated using
three types of variables - the control or decision variables,
the state variables and the parameters - as follows:

– Control: active power and voltage magnitude for the
generators; tap status of transformers; switching state of
capacitors; power electronic controls and phase position
of transformer taps (when available);

– State: voltage magnitude and angle for all busses;
– Parameters: network topology, resistance, reactance,

shunt conductance and susceptance of transmission
lines and transformers, susceptance of shunt capacitors,
physical limits of the control variables, reactive
power limits of generators, apparent power limits of
transmission lines and transformers, slack bus, and set
of N-1 contingency scenarios.

SCOPF problem includes security constraints, namely
the N-1 criteria, to uphold the inequality constraints
even in case of failure of a single component. The two
objective functions, which are represented in (1) as minC

in $/h and Ploss in MW , are solved for the expected
scenario of operation, whereas the constraints are met not
only in the case of that scenario but also for all the
contingency scenarios. Note that these two problems are
solved separately using a mono-objective approach.

minC =
∑NG

i=1
ai + bi × Pgi + ci × Pg2

i ,

minPloss =
∑NL

K=1
GK [U2

i +U2
j −2|Ui ||Uj | cos(δi −δj )],

s.t. :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi =Pgi − P li =∑NB
j=1UiUj

[
Gij cos(δi − δj )+Bij sin(δi − δj )

]
,

∀i ∈ NB,∀s ∈ NS;
Qi = Qgi − Qli =∑NB

j=1UiUj

[
Gij sin(δi − δj ) + Bij cos(δi −δj )

]
,

∀i ∈ NB,∀s ∈ NS;
Ui � Ui � Ui, ∀i ∈ NB,∀s ∈ NS;∣∣∣∣
Sij

Sji

∣∣∣∣
� Sij , ∀i ∈ NC, ∀s ∈ NS;
� Sij , ∀i ∈ NC, ∀s ∈ NS;

Pgi � Pgi � Pi, ∀i ∈ NG, ∀s ∈ NS;
Qgi � Qgi � Qi, ∀i ∈ NG, ∀s ∈ NS;
ti � ti � ti , ∀i ∈ NOLT C, ti ∈ ∀s ∈ NS;
0 � qi � 1, ∀i ∈ NSHUNT, qi ∈ Z,∀s ∈ NS,

(1)
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in which Pgi (MW) is the active power generation. The
reactive power generation is represented by Qgi (MVar), P l

(MW) is the active power load, Ql (MVar) is the reactive
power load, U (kV) is the voltage magnitude, δ (degrees)
is the voltage angle, Sij (MVA) is the apparent power flow
injection at the sending end of the transmission circuit con-
necting bus i to bus j whereas Sij (MVA) is the apparent
power flow injection at the receiving end of the same circuit.

The variable t is the tap setting position of the OLTC
(On-Load Tap Changer), q is a binary variable that
represents the state of the capacitor/reactor banks, a

($/h), b ($/MWh) and c ($/MWh2) are cost coefficients,
Y = G + jB is the bus admittance matrix, NG is
the number of generators, NB is the number of busses,
NC is the number of circuits in the network, NOLT C

is the number of OLT C transformers, NSHUNT is the
number of capacitor/reactor banks and NS is the number
of scenarios that represent the expected operation scenario

and contingency states. Note that all constraints must be
satisfied for all scenarios.

In this research work, the active power production at PV
busses, the voltage magnitude at REF and PV busses, the
OLTC tap setting position and the state of the capacitor
banks were modeled as hard constraints, i.e. the limits
of these variables were not allowed to be violated. The
algorithm proposed in this paper is a metaheuristic devised
for continuous search spaces, a simple rounding procedure
was used to convert real variables into integer ones.

Soft constraints, i.e. the constraints that were modeled
as penalties to two functions presented in (1), consist of
the active power production of the REF bus, the voltage
magnitude at PQ busses, the apparent power flow through
branches, and the reactive power generation at REF and
PV busses. The deviations from the limits were computed
in per-unit system. The adopted penalty function fp is
described in (2):

fp = [1 1 1 1]

⎡

⎢⎢⎢⎣

max(0, PgREF − PgREF )2 + max(0, PgREF − PgREF )2

∑NBPQ

i=1 [max(0, Ui − Ui) + max(0, Ui)]2∑NC
i=1[max(0, |Sij | − Sij ) + max(0, |Sji | − Sij )]2

∑NBREf +PU

i=1 [max(0, Qi − Qi) + max(0, Qi − Qi)]2

⎤

⎥⎥⎥⎦ . (2)

The fitness functions used for the individuals computed
by our algorithm depend on the penalty function selected
and are defined as minC and Ploss respectively,

f it = C + 1 × 107 × fp, (3)

f it = Ploss + 1 × 107 × fp, (4)

in which fp represents the penalty function.

2 hC-DEEPSOwith spiral search

Evolutionary algorithms (EAs), popular algorithms in
optimization research community, are methods that mimic
the processes of Darwinian evolution. In practice, simple
EAs are usually outperformed by hybrid EAs when
solving complex optimization problems. The concept of
hybridization refers to combine EAs with local search
algorithms or to combine features of different optimization
techniques to produce a more powerful algorithm. In this
context, the combination of Differential Evolution (DE) and
Particle Swarm Optimization (PSO) represents a promising
way to create superior optimizers [33].

While being similar in terms of basic algorithm features
and manipulating a population of candidate solutions, PSO
and DE differ in terms of population sampling approach.
Sampling in PSO is based on individual cognition and social

collaboration while sampling in DE relies on differential
mutation and crossover [33]. The hybrid algorithm, C-
DEEPSO [18], creates a vector of differences inspired by
the mutation operator of DE and introduces that vector
in the movement equation of PSO. Moreover, C-DEEPSO
addresses the binomial recombination operator observed on
canonical DE.

This metaheuristic constitutes an enhancement over
Differential Evolutionary Particle Swarm Optimization
(DEEPSO) [17] and can be viewed as an evolutionary
algorithm with recombination rules borrowed from PSO
or a swarm optimization method with selection and
self-adaptiveness properties inherent from DE algorithm.
Table 2 describes the main parameters of the C-DEEPSO
algorithm.

C-DEEPSO is based on the concept of biological
evolution, in which a population of solutions evolves and
gradually improves over time according to the adaptation of
its individuals to the environment. Selection, recombination
and mutation operators are applied to create new solutions.
Recombination in C-DEEPSO is governed by the so called
Movement Rule, which in DEEPSO is given by (5) and (6):

Xt = Xt−1 + Vt , (5)

Vt = w∗
i × Vt−1 + w∗

m × (Xr − Xt−1)

+ w∗
c × C × (X∗

gb − Xt−1), (6)
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Table 2 Parameters in C-DEEPSO

Parameter Description

t is the current generation;

X is the current solution;

Xgb is the best solution found so far;

V is the velocity of solution;

F is disturbance rate;

∗ indicates a parameter is subjected to the

mutation process;

st is a specific strategy by DE algorithm;

C is a diagonal matrix of random

variables sampled at each iteration

(with probability P of communication);

wI , wA, wC are weights on the inertia, memory and

communication in C-DEEPSO, respectively.

in which Xr is an individual different from Xt−1 that can
be obtained according to one of the following four options
[34]:

1. Sg: sampled from all individuals in current generation;
2. Pb: sampled from a Memory B of the best individual

found so far;
3. Sg-rnd: sampled as an uniform recombination from the

individuals of the current generation, and;
4. Pb-rnd: sampled as an uniform recombination within

Memory B.

Typically, the mutation of a generic weight w of an
individual follows a simple additive rule as described by (7),

w∗ = w + τ × N(0, 1), (7)

in which τ is the mutation rate that must be set by the user.
N(0, 1) is a number sampled from the standard Gaussian
Distribution.

Note that the mutated weight must not become negative
nor greater than 1. Moreover, not only the weights presented
in (5) are mutated but also Xgb. This attracting position
is slightly moved in the search space using a Gaussian
Distribution to prevent the population from being trapped in
a given region of the search space. This is especially evident
in those cases when the cooperation term becomes more
dominating than the other terms. Mutation of Xgb, which is
carried out for every particle, is performed according to the
following equation:

X∗
gb = Xgb[1 + τ × N(0, 1)]. (8)

An analysis of the Movement Rule shows that DEEPSO
is best described as a metaheuristic stemming from swarm
intelligence with selection and self-adaptation abilities
rather than from the canonical DE algorithm (see [35]). For

the sake of clarity, the traditional DE mutation operator is
shown in (9):

vt,i = xt,r1 + F(xt,r2 − xt,r3); r1, r2, r3 ∈ {1, . . . , N}, (9)
in which parameters xt,r1, xt,r2 and xt,r3 are different
solutions randomly obtained from the population and F is a
number that belongs to the interval [0, 2], aiming to control
the amplification of differential variation. It is easy to see
that three vectors are used in the DE mutation process of
(9), while in DEEPSO movement rule, only two vectors are
required, represented by Xr and Xt−1, which are used in
(6). On the other hand, C-DEEPSO uses the original DE
mutation operator, as described by (9).

The distinguishing feature of C-DEEPSO is to use
instead of a memory term, as in the classic PSO, a
more general term, called assimilation term. This term is
sensitive to macro-gradients, that lead to improvements in
the fitness function. To obtain the assimilation term, C-
DEEPSO relies on a collective memory instead of multiple
and independent memories, corresponding to the search
experience of each individual. This memory, called Memory
B, contains not only the position of the individual but also
its fitness. A new way to generate Xr is proposed to ensure
a better assimilation of the search space. This new strategy,
named SgPb-rnd , is a combination of Sg-rnd and Pb-rnd

strategies. In this case, when using SgPb-rnd , an uniform
recombination from the solutions in Memory B and in the
current population is used to obtain Xr . TheMovement Rule
for C-DEEPSO is described by (10) as:

Vt =w∗
I Vt−1+w∗

A(Xst −Xt−1) + w∗
CC(X∗

gb−Xt−1). (10)

The superscript * in (10) indicates that the corresponding
parameter/quantity undergoes evolution under a mutation
process. The strategy st used in this paper is current-to-best
[36], which can be expressed by means of (11),

Xst = Xr + F(Xbest − Xr) + F(Xr1 − Xr2). (11)

In (10) and (11), t denotes the current generation, X the
current position or solution. Moreover, Xgb is the best
solution ever found by the population, V is the velocity of
the individual, and C represents a n × n diagonal matrix
of Bernoulli random variables that is sampled in every
iteration. A communication rate, P , is applied to generate
matrix C. The variables wI , wA and wC are weights on the
inertia, assimilation and communication terms, respectively.
The terms Xr1 and Xr2 are randomly sampled solutions.
After the calculation of Xst , the corresponding solution
is evaluated. If the fitness of Xst is better than that of
Xr , then Xst receives the value of Xr . This operation is
similar to the crossover operator in DE algorithm (see
[35]). The superscript ∗ indicates that the corresponding
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parameter/quantity undergoes evolution under a mutation
process. Figure 1 shows a planar (2D) representation of
the Movement Rule, with focus on the different iterations
between solutions (inertia, cooperation and assimilation).
Algorithm 1 describes a pseudo-code for C-DEEPSO.

Fig. 1 Illustration of the movement equation for C-DEEPSO, showing
similarity with PSO, however not having a memory term as attractor

2.1 Themultipoint search operator and the diversity
mechanism

Some real-world optimization problems present a high
number of variables to optimize and, in this case, the
domain search increases exponentially with the dimension
size. Algorithms for solving these types of problems need
to be carefully designed and more efficient than the
ones applied to low dimensional problems. Due to the
high dimensionality of SCOPF problems, the evolutionary
algorithm will benefit from a inclusion of a multipoint
search operator. The proposed search operator is inspired
by the Spiral Optimization Algorithm (SOA) [37]. SOA is
based on multipoint search for n dimensions applied to the
solution of problems that have continuous characteristics,
based on an analogy of the spiral shape natural phenomena.
The basic idea is to explore the search space using
logarithmic spiral shape, which can be observed in nature,
such as in shells, some flowers, formation of cyclones and
even galaxies [38]. The logarithmic spiral trajectory model,
centered at x∗ ∈ Rn, starting with an arbitrary point, is given
by:

x(k+1) = rM(θ) · x(k) − (rM(θ) − In) · x∗, (12)

in which the rotation angle θ belongs to the range [0, 2π ]
around the origin in each k. The radius r , 0 < r < 1 is a
convergence rate of the distance between the current point
and the origin, for each k. In is the n-dimensional identity
matrix and M(θ) is the rotation matrix.

A general rotation in the n-dimensional space can be seen
as the rotation of an axis i in direction to an axis j . The
plane described by axis i and j is the rotation plane and the
general matrix for main rotation, M(n)

i,j (θi,j ), is given by,

M
(n)
i,j (θi,j )=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

cos(θi,j ) · · · − sin(θi,j )
...

. . .
...

sin(θi,j ) · · · cos(θi,j )

. . .
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)

in which all blank elements are equal to zero.
It is worthwhile to observe that M

(n)
i,j (θi,j ) is almost an

identity matrix except in the intersection of columns i and j
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with rows i and j , meaning that only the coordinates i and
j will change after a M

(n)
i,j (θi,j ) rotation. This is consistent

with the bi-dimensional and three-dimensional cases. Since

there are

(
n

2

)
main planes in a n-dimensional space, this

corresponds to the number of possible main rotations in that
space. The rotation matrix in the n-dimensional space is
obtained by the composition of all (n(n − 1)/2) existing
combinations [39]. Therefore, Mn(θ) can be defined by
(14), in which n is the number of dimensions:

M(n)(θ) =
∏

i<j

M
(n)
i,j (θi,j ). (14)

The n-dimensional logarithmic spiral model is given by,

x(k+1) = rM(n)(θ) · x(k) − (rM(n)(θ) − In) · x∗, (15)

in which the rotation angle θ belongs to the range [0, 2π ]
around the origin in each k. The radius r , 0 < r < 1
is a convergence rate of the distance between the current
point and the origin, for each k. In is the n-dimensional
identity matrix and the M(θ) is the rotation matrix. In a 3-
dimensional space, Fig. 2 shows the trajectory of 50 points
starting at x0 = (10, 10, 10) and using (15).

It is important to notice that the choice of the number of
points used to build the spiral, the radius and angle of the
rotation matrix affect the shape of the logarithmic spiral.
Four different spirals are shown in Fig. 3. Each spiral is
constructed using the parameters given in Table 3.

Therefore, for coupling the idea inspired on SOA as a
local search operator inside C-DEEPSO, some definitions
must be given:

– Given an occurrence rate (γ ), the new local search
operator will be run every generation, until a specified
generation Ngl ;

– Radius and angle are randomly chosen and the number
of points to be used to construct the spiral is given by
the user;

– The number of generated points is directly related to the
initialization parameters used in SOA. For convenience,
the number of points generated will be the same as the
population started in C-DEEPSO;

– The center point of the logarithmic spiral is Xbest since
the main idea of the local search operator is to widen the
search around a promising space region. Preliminary
experiments were conducted using different point as
center point of the logarithm spiral and the results
showed that using Xbest as the center point the
multipont search is more effective;

– An additive inverse logarithmic spiral is introduced
with respect to Xbest , to intensify the exploration of
possible individuals close to Xbest ;

In this new approach, a sampled set of individuals, totally
randomized of logarithmic spirals is generated, allowing
to name this new local search operator as Spiral Local
Search (SLS). For purposes of illustration of a spiral and

Fig. 2 Examples of logarithmic
spiral trajectories using (12).
Different values of convergence
rate r produce distinct spiral
shape behaviors. a trajectory
using r = 0.95; θ = π/4 and b
trajectory using r = 0.90;
θ = π/4. The right-hand side
column shows a rotated version
of the corresponding spiral
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Fig. 3 Examples of logarithmic
spiral trajectories using (12).
Different values of convergence
rate r produce distinct spiral
shape behaviors. a trajectory
using r = 0.95, θ = π/4 and
popsize = 25, b r = 0.95,
θ = π/4 and popsize = 50, c
r = 0.80, θ = π/4,
popsize = 25 and d r = 0.95,
θ = π/7 and popsize = 25

its additive inverse used in SLS operator, Fig. 4 shows two
spirals starting at points x0+ = (10, 10, 10) and x0− =
(−10,−10, −10).

The procedure of SLS operator corresponds to the
generation of spiral samples starting at Xbest . A population
sampled by the obtained spiral is evaluated on the original
objective function and the individual who has lowest
objective function value is named XSLS . The SLS operator
is elitist, meaning that the worst individual, Xworst , in
the current population of C-DEEPSO, is replaced by
XSLS .

The proposed search operator helps C-DEEPSO algo-
rithm to find a local optimum in the first generations of
the search. Not only the usual selection pressure pushes C-
DEEPSO to focus more and more on already discovered
better regions, but also does the search operator in-depth. As
a result, population diversity declines and premature conver-
gence may occur. Although premature convergence is not
caused by the diversity loss, maintaining a certain degree
of diversity is widely believed to help to avoid entrapment
in non-optimal solutions. Having that in mind, a simple

Table 3 Illustration parameters

(a) r = 0.95 θ = π/4 popsize = 25

(b) r = 0.95 θ = π/4 popsize = 50

(c) r = 0.80 θ = π/4 popsize = 25

(d) r = 0.95 θ = π/7 popsize = 25 Fig. 4 An example of reverse spiral additive, in a 3-dimensional space,
starting at x0+ = (10, 10, 10) and x0− = (−10,−10, −10)

diversity mechanism is proposed. This diversity mecha-
nism uses a distance-to-best measure to alternate between
exploration and exploitation. The distance to an average-
point, Xd , among the population individuals and Xbest , is
obtained:

Xd = 1

NP

NP∑

i=1

√√√√√
N∑

j=1

(xij − xbest )2, (16)

in which NP is the population size and N is the problem
dimension. New individuals Xd+ = X + Xd and Xd− =
X − Xd are generated and, then, evaluated on the original
objective function. The best NP individuals are then
selected for the next generation. Algorithm 2 presents the
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pseudo-code of the search algorithm, SLS, and the diversity
mechanism proposed in this work.

According to [40], it is now well established that pure
population-based algorithms are not well suited to refine-
ment of complex combinatorial spaces and that hybridiza-
tion with other techniques can significantly improve search
efficiency. In this way, the proposed algorithm unites differ-
ent concepts of evolutionary optimization in order to be a
viable approach to solve real world problems. The proposed
algorithm, the C-DEEPSO coupled with the search opera-
tor and diversity mechanism, is called Hybrid Canonical
Differential Evolutionary Particle Swarm Optimization
(hC-DEESPO).

3 Simulation results and discussion

In this section, the performance of hC-DEEPSO for solving
SCOPF problems is evaluated on IEEE Test Beds. The three
IEEE test systems in the ORPD and OARPD are presented
and discussed. The experimental setup is divided into the
following case studies:

1. to verify the performance of hC-DEEPSO in the
preliminary experiment using benchmark functions by

literature to compare our algorithm with the canonical
PSO and DE methods.

2. to validate the effect of the canonical DE mutation
operator in and the multipoint search operator insertion
in the hC-DEEPSO algorithm are analyzed;

3. a parameter fine-tuning for the hC-DEEPSO, regarding
the mutation and communication rates, is conducted;
and

4. a statistical comparison of the results obtained by hC-
DEEPSO, in its best parameters, with three benchmark
algorithms available in the literature - DEEPSO, ICDE
and MVMO - is performed.

3.1 Preliminar experiment

A preliminary experiment using two benchmark functions
of literature - Rastringin and Rosenbrock - was realized. The
goal for this experiment was to verify the results obtained in
hC-DEEPSO in a comparison with the results of canonical
PSO and DE algorithms presented in [41]. The initialization
parameters that hC-DEEPSO used was: Mutation rate 0.5
and Communication rate 0.9. The number of total fitness
values was set at 1 × 105. For each dimension (30, 50, 100)
the algorithms tested using the population size (30, 50, 100)
respectively and was tested 30 times. The (17) and (18)
shows the benchmark functions:

– Rastringin function - Multimodal - Goal = 0,

f (x) =
D∑

i=1

[
x2
i − 10cos(2πxi) + 10

]
. (17)

– Rosenbrock function - Unimodal - Goal = 0,

f (x) =
D−1∑

i=1

[
100(x2

i − xi+1)
2 + (xi − 1)2

]
. (18)

Table 4 shows the results of the PSO, DE and hC-
DEEPSO algorithms. The results showed that hC-DEEPSO
obtained a good performance in relationship to canonical
DE and PSO algorithms in to solve the Rastringin and
Rosenbrock functions in different dimensions. Thus, it
is possible show that hC-DEEPSO is able to overcome
the results of the base algorithms used for its design in
continuous problems.

3.2 IEEE test systems - case studies

Three well-known IEEE test systems - 57 bus, 118 bus and
300 bus - for ORPD and OARPD problems are presented.
The IEEE 57 bus test and the IEEE 118 bus test represent
a portion of the American Electric Power System, in the
Midwestern US, as it was in the early 1960’s. The IEEE 300
bus test was developed, in 1993, by the IEEE Test System
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Table 4 Mean and standard values for PSO, DE and hC-DEEPSO on
Rastringin and Rosenbrock functions in 30, 50 and 100 dimensions

Rastringin Rosenbrock

Algorithm Mean Std Mean Std

D = 30

PSO 37.81 7.45 81.27 41.21

DE 2.53 5.19 31.13 17.12

hC-DEEPSO 0.00 0.00 15.99 1.90

D = 50

PSO 75.30 19.55 174.22 113.63

DE 41.47 8.80 50.33 16.85

hC-DEEPSO 0.00 0.00 38.90 2.54

D = 100

PSO 186.04 4.93 250.68 24.64

DE 261.19 1.64 91.23 3.82

hC-DEEPSO 0.00 0.00 89.60 1.90

Task force. Figure 5 shows a single-line diagram of each
system. IEEE 57 bus system has 25 optimization variables
in ORPD, comprising 7 continuous variables associated to
generator voltage set-points, 15 discrete variables associated
to stepwise adjustable on-load transformer tap positions,
and 3 binary variables associated to switchable shunt
compensation devices. On the other hand, the number
of optimization variables in OARPD is 31, in which the
extra 6 continuous variables correspond to the active power
production of generators. In both problems, in addition to
the expected operation scenario, two contingency scenarios
are considered (N-1 criterion) corresponding to the outage
of branches 8 and 50. The number of constraints is 178
for non-contingency conditions, and 177 for each N-1
condition.

IEEE 118 bus system has 77 optimization variables
in ORPD, comprising 54 continuous variables associated
to generator bus voltage set-points, 9 discrete variables
associated to stepwise adjustable on-load transformer tap
positions, and 14 binary variables associated to switchable
shunt compensation devices. The difference between ORPD
and OARPD is the additional number of control variables
(total of 130) that represent the active power production
of generators. In both problems, considered contingency
scenarios result from outages in branches 21, 50, 16, and 48
were considered. The number of constraints is 492 for non-
contingency conditions, and 491 for each N-1 condition.

Finally, IEEE 300 bus system has 145 variables in ORPD,
comprising 69 continuous variables associated to generator
bus voltage set-points, 62 discrete variables associated to
stepwise adjustable on-load transformers and 14 binary
variables associated to switchable shunt compensation
devices. The total number of control variables in the
OARPD problem is 213. Table 5 presents a summary of
all characteristics for each system. In both problems, three
contingency scenarios are considered as a result of outages
at branches 187, 176, and 213. The number of constraints is
651 for non-contingency conditions, and 950 for each N-1
condition.

3.3 Study on efficacy of hybrid C-DEEPSO

The difference between DEEPSO and C-DEEPSO lies in
the usage of the canonical DE mutation operator inside the
Movement Rule. Despite the good performance of DEEPSO
when applied to SCOPF problem, the efficacy of hC-
DEEPSO needs to be assessed. For that, it is necessary to
investigate the benefits of the inclusion of the canonical DE
operator when applied to the SCOPF problems. Moreover,
the performance of the Multipoint Search insertion must
be analyzed. For assessing the performance of DEEPSO,

Fig. 5 Diagram systems by IEEE 57, 118 and 300 bus. Please refer to [42] for more details and clear diagrams illustrating these systems
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Table 5 Summary of characteristics presented by IEEE 57, 118 and
300 bus systems. The number of additional security constraints is
indicated between brackets (index - 1:ORDP and 2:OARDP)

571 572 1181 1182 3001 3002

Continuous 7 13 54 107 69 137

Variables

Discreet 15 15 9 9 62 62

Variables

Binary 3 3 14 14 14 14

Variables

Dimension 25 31 77 130 145 213

Constraints 178 178 492 492 651 651

+ (354) + (354) + (1473) + (1473) + (1900) + (1900)

C-DEEPSO and hC-DEEPSO when applied to SCOPF
problems, an experiment using the IEEE 57 bus system
was conducted. To have a fair comparison, all initialization
parameters were the same: NP = 60; MB = 6; γ = 0.5;
Ngl = 20; Mutation = 0.6; Communication = 0.2;
Maximum number of function evaluations = 5 × 103.
Each algorithm was executed 31 times. Figure 6 presents
the mean convergence line for DEEPSO, C-DEEPSO and
hC-DEEPSO throughout the 5 × 103 function evaluations.

Analyzing Fig. 6, it is possible to perceive that hC-
DEESPO is the first algorithm to converge followed by C-
DEEPSO. The magnified area shows the mean value of each
algorithm obtained in a specific range of function evaluation
counter. The obtained mean value for hC-DEEPSO was

25.91 MW while the obtained mean values of C-DEEPSO
and DEEPSO were 4456 MW and 927.6 MW, respectively.
The fact indicates the multipoint search operator, SLS
operator, plays an important role in the convergence velocity
when compared. Figure 7 illustrates the experimental results
(corresponding to the total operation cost) of the 31
runs using boxplots for the three algorithms. The Fig. 7
shows that hC-DEEPSO performed better as compared to
DEEPSO and C-DEEPSO.

This behavior can be statistically assessed via an ANOVA
followed by a Tukey test. The p-value, calculated using a
5% significance level, was 6.19 × 10−13. Figure 8 shows
the Tuckey test results. The result indicates the hC-DEEPSO
presents a lower mean value of the total operation cost when
compared to C-DEEPSO and DEEPSO and C-DEEPSO
presents a lower mean value of the total operation cost when
compared to DEEPSO. In this way, it is possible to state
that the usage of the canonical DE mutation operator and
the multipoint search operator enhances the performance
of the algorithm when applied to IEEE 57 bus system.
The main idea behind the multipoint search operator is to
sample the search space more effectively, exploring some
neighbors of the best solution. In large scale optimization
problem context, such as SCOPF problems, a more effective
search space sampling is a key feature to overcome the
dimensionality curse when designing powerful algorithms.

3.4 Parameter fine-tuning

To determine the optimum value of mutation rate and com-
munication probability, the Response Surface Methodology

Fig. 6 Mean convergence line for the IEEE 57 bus system/ORDP. The x-axis represents the function evaluations and the y-axis the mean value of
the objective function over the 31 runs
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Fig. 7 Comparison of hC-DEEPSO, C-DEEPSO and DEEPSO - IEEE
57 bus system/ORDP

has been chosen as the experimental setup to perform the
fine-tuning of the parameters. This methodology is a col-
lection of mathematical and statistical techniques that are
useful for modeling and analysis in applications in which
the output variable is influenced by many variables and the
goal is to optimize that output variable [43]. Using a specific
design of experiments, the goal is to optimize the response
(output variable) of the hC-DEEPSO algorithm which, in
this work, is influenced by two input variables, the mutation
rate and the communication probability.

Making some changes on mutation rate and communica-
tion probability, it is possible to identify the corresponding
changes in the output response. In this case, each output
response corresponds to each objective function regarding
minimization of total system losses and total cost of pro-
duction. Each objective function f then is a function of
mutation (τ ) and communication (P ) levels. The response

Fig. 8 Tucky Test for each algorithm using IEEE 57 bus system/ORDP

expected by the function f (τ, P ) can be represented graph-
ically in the three-dimensional space and is called the
response surface. The goal is to find the best parameter
values, τ and P , that minimize each objective function.

To construct an approximation model that captures the
interaction between those input variables, τ and P , a
factorial experiment is necessary [43]. In simple words, in
a factorial experiment the input variables are varied at the
same time instead of one at a time. The lower and the
upper bounds for mutation and communication rates are
empirically set to [0.2, 0.9]. Each input variable is defined at
only the upper and down level bounds at each discretization
of the predefined range. In total, hC-DEEPSO is run 1984
times for each test problem.

Using the input variable values and the corresponding
value for each objective function and test scenario in
SCOPF, a second-order model for the response surface
can be fitted. All executions were performed on a small
Cent-OS Cluster composed by 32 Intel Xeon E5-1650
3.5GHz cores and 32GB of RAM memory. The other
initialization parameters, empirically chosen, are shown in
Table 6. Figure 9 shows the response surfaces, and their
corresponding contour plots, obtained using the mean and
best objective function values found on ORDP problem -
IEEE 57 bus system.

It can be observed that the best set of parameters obtained
for mutation and communication is [τ, P ] = [0.6, 0.2] with
a mean value of total active power loss equal to 24.7286
MW . Furthermore, using the response surface generated via
the best objective function values, the best set of parameters
is [τ, P ] = [0.4, 0.3], resulting in a total active power loss
of 24.606 MW . Similarly, hC-DEEPSO is used to solve
OARDP problems, whose objective is to minimize the total
cost of energy production. Figure 10 shows the response
surfaces, and their corresponding contour plots, obtained
using the mean and best objective function values found on
OARDP problem for the IEEE 57 bus system scenario.

In OARPD problem, it can be observed that the best set
of parameters obtained for mutation and communication is
[τ, P ] = [0.9, 0.7] with an mean value of total cost of
energy production equal to 41691.5 $/h. Using the response
surface generated via the best objective function values, the

Table 6 Initialization parameters

IEEE bus systems

Parameters 571 572 1181 1182 3001 3002
NP 60 80 80 140 150 200

MB 6 8 8 14 15 20

Ngl 10 10 10 10 10 10

γ 0.5 0.5 0.5 0.5 0.5 0.5

MaxFitEval 5 × 103 1 × 105 3 × 105
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Fig. 9 Response surfaces, and their corresponding contour plots, obtained using the mean and best objective function values of IEEE 57 Bus
System in ORPD problem

best set of parameters is [τ, P ] = [0.3, 0.3], resulting in a
total cost of energy production of 41686.9 $/h.

Same methodology was applied to IEEE 118 bus system
and IEEE 300 bus system using ORDP and OARDP
problems. In all cases, the response surfaces and this
corresponding contour plots were generated using the mean
and the best objective function values. Similar response
surfaces were obtained and the best configuration is
[τ, P ] = [0.9, 0.4] for a mean result of 117.9 MW

regarding the total active power losses and, when using the
best objective function values, [τ, P ] = [0.6, 0.4] resulting
in a total active power losses equal to 117.4 MW .

For OARDP within IEEE 118 bus system scenario and
using the mean objective function values, the best parameter
configuration is [τ, P ] = [0.7, 0.2] resulting in 135560.03
$/h of a total cost of energy production. Using the best
objective function values, the best parameter configuration
is [τ, P ] = [0.7, 0.2] resulting in 722160.00 $/h of total
cost of energy production. The best set of parameters
obtained for mutation and communication is [τ, P ] =
[0.8, 0.3] with an mean value of total active power losses
equal to 394.048 MW . Furthermore, using the response

surface generated via the best objective function values, the
best set of parameters is [τ, P ] = [0.9, 0.6], resulting in a
total active power loss of 387.09 MW .

The obtained results in factorial experiment show
that hC-DEEPSO algorithm performs best when the
mutation rate used is greater than 0.5 in all cases and
that the communication rate was always lower than the
communication rate. It can be concluded that the DE
mutation operator incorporated the motion equation of hC-
DEEPSO produced a beneficial effect to the algorithm.
In addition, it is conclusive that the global optimum
information at each iteration is not an effective measure
since the communication rates were always less than 0.5
(except for IEEE 57 bus system - OARPD).

3.5 Performance analysis

After having the best parameter configuration, τ and P ,
for hC-DEEPSO to solve ORDP and OARDP problems
in the considered test scenarios, it is necessary to
evaluate its performance comparing with some state-of-
the-art algorithms. For this task, three different algorithms,
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Fig. 10 Response surfaces, and their corresponding contour plots, obtained using the mean and best objective function values of IEEE 57 Bus
System in OARPD problem

DEEPSO [17], MVMO [19] and ICDE [44] in their best
overfit initialization parameters, chosen. These algorithms
were used to solve SCOPF problems and were extracted
from Competition on Application of Modern Heuristic
optimization algorithms for solving optimal power flow
problems [42]. The competition represents an initiative
for development of power system optimization test beds,
providing some comparative analysis, in the field of
heuristic optimization. Preliminary tests proved that all test
cases are solvable however finding feasible solutions has
proven to be a hard-to-solve task.

Although MVMO was not a participant algorithm, it
was used to produce reference results for comparisons. It
is worthwhile to notice that DEEPSO was the winner of
the 2014 Competition. The other algorithms participating
on that competition have not been considered in this
comparison, because they violated the restrictions of the
given problem and given their inferior performance. It
is important to highlight that some algorithms in the
competition are tailor-made while others utilize specialized
mechanism to handle the continuous and discrete variables.

In the experimental setting, the SCOPF problems were
treated as black-box task which should be solved for the

test cases. Final results for each optimization test bed over
31 independent runs were used in the statistical test to
assess the algorithm performance. The only stopping criteria
is the completion of the maximum number of function
evaluations: in the IEEE 57 bus system, the maximum
number of function evaluation is set to 50,000, in IEEE
118 bus system it is set to 100,000 and, in the IEEE 300
bus system, the maximum number of function evaluations
is set to 300,000. All the algorithms extracted from the
competition have been fine-tuned. So, the best parameters
for mutation rate and communication probability obtained
in each test case were used in hC-DEEPSO. Table 7 shows
the results of the three algorithms used to solve SCOPF
problems [42] and results for hC-DEEPSO.

The mean values and standard deviation, for all the runs,
are shown and, since it is a minimization problem, lower
mean values are preferable over the higher ones. The best
mean and standard deviation values are marked in boldface.
In a very raw analysis, the hC-DEEPSO shows better results
than the DEEPSO and ICDE algorithms, when compared
in terms of mean values in all the three test scenarios for
the ORDP problem. The same can be seen for OARDP
problem, except in IEEE 118 bus system scenario. In this
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Table 7 Mean and standard values for hC-DEEPSO, DEEPSO, ICDE
and MVMO on ORDP and OARDP problems using the three test
scenarios

ORDP (MW ) OARDP ($/h)

Algorithm Mean Std Mean Std

IEEE 57 bus

hC-DEEPSO 24.7286 0.1064 41691.4521 2.804

DEEPSO 25.5725 0.4125 41697.58 7.9393

ICDE 25.0414 0.42956 41739.81 27.6884

MVMO 24.8172 0.12504 41707.6893 10.5581

IEEE 118 bus

hC-DEEPSO 117.9541 0.3048 135560.03 320

DEEPSO 119.2799 1.7131 135890.716 221.991

ICDE 128.3549 2.4535 154234.873 12324.2502

MVMO 117.862 0.42379 135050.21 27.5014

IEE 300 bus

hC-DEEPSO 394.0480 3.8037 722160.00 533.3307

DEEPSO 414.6239 42.0460 724041.13 2669.9100

ICDE 8669.8730 15255.7100 740013.64 6205.4528

MVMO 394.1294 8.2219 722323.24 869.3588

case, MVMO has a better mean value when compared to
hC-DEEPSO.

For assessing the statistical significance of the results,
it is necessary to perform an statistical inference on the
difference between each pair of mean values. A T-test [43]
can be performed to compare more effectively the obtained
results. Such test can be used if one wants to compare results
of population samples on a “two by two” basis. The null
hypothesis adopted in this work is the equality of means, so
the experiment is designed to detect whether this hypothesis
is rejected or not using a significance value α = 5%. If the
null hypothesis is reject, a post hoc comparison can be done
to determine which one is the best algorithm. Tables 8 and 9
show the results of the T-test, using the P-Value calculated,
and the results after the post hoc comparison for ORDP
and OARDP problems, respectively. Blank values mean that
the post hoc comparison is not able to detect any statistical
difference between the algorithms.

Analyzing ORDP problem results, T-test indicated that,
with 95% of confidence, hC-DEEPSO shows better results
compared to DEEPSO, ICDE and MVMO in IEEE 57
bus system. For IEEE 118 bus system and IEEE 300 bus
system scenarios, hC-DEEPSO is better than DEEPSO and
ICDE. However, the statistical test is not able to detect any
difference between hC-DEEPSO and MVMO. Examining
OARDP problem results, the T-test indicated that, with 95%
of confidence, hC-DEEPSO shows better results compared
to DEEPSO, ICDE and MVMO in IEEE 57 bus system. For

Table 8 Comparing results using T-test and a post hoc comparison in
ORDP problems

ORDP

P-value Action Winner

IEEE 57 bus

hC-DEEPSO × DEEPSO 4.44E-16 Reject hC-DEEPSO

hC-DEEPSO × ICDE 2.18E-04 Reject hC-DEEPSO

hC-DEEPSO × MVMO 3.87E-04 Reject hC-DEEPSO

IEEE 118 bus

hC-DEEPSO × DEEPSO 2.77E-05 Reject hC-DEEPSO

hC-DEEPSO × ICDE 00E+00 Reject hC-DEEPSO

hC-DEEPSO × MVMO 0.329 Not reject –

IEEE 300 bus

hC-DEEPSO × DEEPSO 8.67E-03 Reject hC-DEEPSO

hC-DEEPSO × ICDE 3.70E-03 Reject hC-DEEPSO

hC-DEEPSO × MVMO 0.960 Not reject –

IEEE 118 bus system and IEEE 300 bus system scenarios,
hC-DEEPSO is better than DEEPSO and ICDE. However,
MVMO is better than hC-DEEPSO in IEEE 118 bus system
and the statistical test is not able to detect any difference
between hC-DEEPSO and MVMO in IEEE 300 bus system.

The experimental results showed that the proposed hC-
DEEPSO was able of controlling the operation of large
power systems successfully, as an economical solution for
optimizing the fuel generation cost and power losses and
voltage profile. In particular, if we make a future projection
of the economy for the dispatch in the IEEE 300 bus system,
it is possible to observe an economy of approximately $1.4

Table 9 Comparing results using T-test and a post hoc comparison in
OARDP problems

OARDP

P-value Action Winner

IEEE 57 bus

hC-DEEPSO × DEEPSO 1.23E-03 Reject hC-DEEPSO

hC-DEEPSO × ICDE 1.58E-13 Reject hC-DEEPSO

hC-DEEPSO × MVMO 1.22E-10 Reject hC-DEEPSO

IEEE 118 bus

hC-DEEPSO × DEEPSO 1.55E-11 Reject hC-DEEPSO

hC-DEEPSO × ICDE 8.94E-12 Reject hC-DEEPSO

hC-DEEPSO × MVMO 1.85E-12 Reject MVMO

IEEE 300 bus

hC-DEEPSO × DEEPSO 2.92E-04 Reject hC-DEEPSO

hC-DEEPSO × ICDE 00E+00 Reject hC-DEEPSO

hC-DEEPSO × MVMO 0.3764 Not reject –
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million using hc-DEEPSO instead of MVMO for the period
of one year. The proposed hC-DEEPSO demonstrated the
effectiveness comparable or better than those presented
by state-of-the-art algorithms of the literature. The hC-
DEEPSO has complied with all restrictions imposed by the
problems if it shows a safe approach to the operation.

4 Conclusion

The competitive structure of modern energy available
resources present new changes and challenges to future
electrical energy production in the World. Following this,
new techniques are being developed for optimization of
the operation in large scale networks. In this paper, a
hybridization of DE and PSO coupled with a specialized
search operator was presented for solving non-linear, highly
constrained, mixed-integer, multimodal Optimal Power
Flow problems. To ensure adequate continuity and security
of the energy supply, some contingencies of equipment
are included in the model in order to preserve the
inequality constraints in case of any equipment outage. In
this case, the problem is known as Security Constrained
Optimal Power Flow problem. The proposed hC-DEEPSO,
a hybrid metaheuristic that incorporates distinct features
of DE and PSO, is applied to solve SCOPF problems,
ORPD and OARPD. Due to a large number of constraints
and contingencies in SCOPF problems, the mathematical
solution to these problems can become hard to find and
finding a feasible solution is a very hard task. To overcome
the inherent difficulties of these problems, a multipoint
search operator is proposed, aiming to find a local optimum
in the beginning of the search and, to maintain a certain
degree of diversity, a simple diversity mechanism is also
applied. The proposed multipoint search operator, in order
to carry out an in-depth investigation from the best
individual in the population, guarantees hC-DEEPSO to
achieve a better performance than its original version.

The effectiveness of the proposed algorithm was inves-
tigated through a comparative study using the algorithm
version without the canonical DE mutation operator and
the multipoint search operator. Using a test case, the pro-
posed hC-DEEPSO has been proven to be more efficient
when compared with the previous version. A parameter
fine-tunning procedure for hC-DEEPSO was also carried
out using the Response Surface procedure and, using the
optimal parameters, hC-DEEPSO was tested against three
different algorithms, DEEPSO, ICDE nd MVMO, to solve
SCOPF problems using three test scenarios. Experimental
results showed that hC-DEEPSO obtained results competi-
tive with those present in the literature. According to statis-
tical comparison, the results for IEEE 57 bus system showed
that, with 95% confidence level, hC-DEEPSO proven to be

better than ICDE, DEEPSO and MVMO algorithms in all
test cases. In ORDP problem, for IEEE 118 bus system
and IEEE 300 bus system scenarios, hC-DEEPSO was bet-
ter than DEEPSO and ICDE. However, the statistical test
was not able to detect any difference between hC-DEEPSO
and MVMO in both scenarios. In OARDP problem, for
IEEE 118 bus system and IEEE 300 bus system scenarios,
hC-DEEPSO was better than DEEPSO and ICDE. How-
ever, MVMO was better than hC-DEEPSO in IEEE 118 bus
system and the statistical test was not able to detect any
difference between hC-DEEPSO and MVMO in IEEE 300
bus system. Therefore, hC-DEEPSO is a relevant hypothe-
sis tested in this research as a method of good performance
and suitable to be used to solve problems of this nature.
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