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Abstract
In this paper, we propose a differential evolution (DE) algorithm variant with a combination of multiple mutation strategies
based on roulette wheel selection, which we call MMRDE. We first propose a new, reflection-based mutation operation
inspired by the reflection operations in the Nelder–Mead method. We design an experiment to compare its performance
with seven mutation strategies, and we prove its effectiveness at balancing exploration and exploitation of DE. Although our
reflection-based mutation strategy can balance exploration and exploitation of DE, it is still prone to premature convergence
or evolutionary stagnation when solving complex multimodal optimization problems. Therefore, we add two basic strategies
to help maintain population diversity and increase the robustness. We use roulette wheel selection to arrange mutation
strategies based on their success rates for each individual. MMRDE is tested with some improved DE variants based
on 28 benchmark functions for real-parameter optimization that have been recommended by the Institute of Electrical
and Electronics Engineers CEC2013 special session. Experimental results indicate that the proposed algorithm shows its
effectiveness at cooperative work with multiple strategies. It can obtain a good balance between exploration and exploitation.
The proposed algorithm can guide the search for a global optimal solution with quick convergence compared with other
improved DE variants.

Keywords Differential evolution · Nelder–mead method · New mutation operation · Roulette wheel selection · Multiple
mutation strategies · Global optimization

1 Introduction

The differential evolution (DE) algorithm proposed by Price
and Storn [1] is a simple but powerful implementation of
stochastic search techniques. It has the advantages of simple
principles, few controlled parameters, and strong robustness
[1–3] for real-valued parameter optimization. Population-
based optimization algorithms, including DE, tend to suffer
from long computational times because of their evolutionary
stochastic nature. This crucial drawback sometimes limits
their applications to problems with few or no real-time
constraints. Despite this drawback, the DE algorithm has
a strong real-number domain-search capability, and the
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improved DE algorithm is still an important research field
whose purpose is to adapt to more complex optimization
problems and achieve high-quality solutions.

DE mainly has three control parameters, population
size NP, scaling factor F , and crossover rate CR, and
many mutation strategies have been proposed. [5, 9, 16,
24] Some mutation strategies are more suitable for global
convergence, [34] some are more effective in the local
search, [7] and some are more suitable when solving
rotated problems. [4] Control parameters of the classical
DE are fixed, and a single mutation strategy is used.
The performance of DE may vary greatly for different
optimization problems using the same control parameters
and single offspring generation strategy. [34] However, for
a given optimization problem, the most suitable control
parameters and the proper mutation strategy may not be
the same at different stages of evolution. [34] There are
many large-scale optimization problems in the real world.
For some problems, we may have to spend a large amount
of time to determine the best strategy and tuning parameters
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[5, 6] to obtain better performance. A DE with outstanding
performance is required to achieve a global optimum
without considering the characteristics of the problem.

Much attention has been focused on methods to auto-
matically tune parameters and to develop an excellent
mutation strategy or ensemble of mutation strategies. This
focus has resulted in many improved DE variants, such as
SaDE [7] (ensemble of two mutation strategies and self-
adapted parameters), jDE [8] (self-adaptive tuning parame-
ters), JADE [9] (to develop an excellent mutation strategy
and self-adapted parameters), EPSDE [10] (ensemble of
mutation strategies and parameters), CODE [11] (compo-
sition of mutation strategies with their own parameters),
SHADE [12] (self-adapted parameters), HSDE [13] (hybrid
of two mutation strategies), GADE [14] (greedy adapted
parameters), MPEDE [15] (ensemble of multiple mutation
strategies), and DE/Alopex/1 [16] (to develop an excellent
mutation strategy).

The Nelder–Mead method is a traditional direct algo-
rithm for unconstrained nonlinear optimization problems. It
has excellent local search capability, but it has strong depen-
dence on the initial solution and it falls easily into a local
minimum. Reflection, expansion, contraction, and shrink-
ing are its primary operations. In this paper, inspired by the
reflection operations in the Nelder–Mead method, we pro-
pose a new, reflection-based mutation operation. For each
individual to be mutated, we randomly select four individ-
uals from the current population, calculate the weighted
center of the three individuals with better fitness based on
their object function values, and use the difference vector
of the best and worst individuals as the perturbation vector.
We use the center we have calculated as the target individ-
ual, thus completing a mutation operation. We compare the
reflection-based strategy and seven other mutation strate-
gies in an experiment to prove that the proposed mutation
strategy has good exploration and exploitation capability.

Although the reflection-based strategy can balance
exploration and exploitation better than other basic mutation
strategies, it is still a greedy mutation strategy and is
prone to premature convergence when solving complex
multimodal optimization problems. We add two basic
strategies to generate perturbation vectors to maintain
population diversity and to increase robustness. We use
a roulette wheel selection strategy to arrange mutation
strategies based on their success rates for each individual.
We call this variant DE with multiple mutation strategies
based on roulette wheel selection (MMRDE). We used 28
benchmark functions to test the performance of MMRDE
with some improved DE variants. Experimental results
indicate that the proposed algorithm can balance between
exploration and exploitation well. The algorithm shows the
effectiveness of three mutation strategies in cooperative
work. It can guide the search for a global optimal solution

with fast convergence compared with other improved DE
variants.

This paper has six sections. Section 2 discusses relevant
works. Section 3 explains the traditional DE algorithm. We
introduce the details of our proposed MMRDE in Section 4.
Section 5 discusses the experimental study to test the
new reflection-based mutation strategy with other mutation
strategies and compares the performance of MMRDE to
some improved DE variants. We provide our conclusions in
Section 6.

2 Relevant works

The DE algorithm is an excellent evolutionary algorithm
(EA) that is simple, has few controlled parameters, and
is robust. DE, however, is prone to suffer from premature
convergence, evolution stagnation, and long computational
times. The performance of DE strongly depends on the
setting of control parameters and/or the mutation strategy
used.

DE mainly uses the three control parameters NP, F ,
and CR. NP is used to deal with the problem of different
dimensionalities, and F has greater influence on the
convergence speed of DE. [7] The choice of F is more
flexible. Storn et al. [1] said that a value of F in [0.5, 1]
is reasonable, a value less than 0.4 or more than 1.0 can
sometimes be effective, and a value of 0.6 or 0.5 is often a
good choice. As discussed in the literature, [17] an initialF
value of 0.9 is recommended. According to Qin et al., [7]
a value of F generated randomly in the range (0, 1] is
usually preferred. CR mainly affects the adaptability of DE
to solve complex problems. A proper value of CRmay result
in good performance in some learning strategies, and the
wrong choice may lead to deterioration in the performance
of any learning strategy. A good CR parameter value usually
falls in a small range, and the algorithm always performs
well on a complex problem. As discussed in the literature,
[1] a large CR can accelerate the convergence rate, an
initial value of 0.1 is a good choice, and setting CR to
0.9 or 1.0 can accelerate convergence. Price and Storn [18]
proposed setting CR in the range (0, 0.2) for separable
problems, and (0.9, 0.1) for multimodal problems. In the
previously noted research, we see different conclusions
for the tuning of control parameters, but we know that
the proper parameters will vary according to the type of
problem. Adaptively controlling the parameters within the
entire evolution process can enhance the performance of
DE. [19]

The control parameter settings of DE can presently be
classified into the three categories of deterministic, adap-
tive, and self-adaptive parameter control. [20] Lampinen
[21] proposed a fuzzy adaptive DE in which the values



3614 W. Qian, et al.

of F and CR are dynamically adapted based on fuzzy
logic controllers. Brest et al. [8] proposed a self-adapting
control parameter scheme (jDE), which may be the first
in a category of literature discussing self-adapting control
parameters. Ghosh et al. [22] presented an improved DE
(FiADE) algorithm with tuning control parameters based on
individual object function values. Leon et al. [14] proposed
an adapting DE (GADE) that performs a greedy search to
adjust the control parameters. Zhang et al. [9] proposed a
self-adaptive control parameter adjustment scheme (JADE)
in which F and CR are generated randomly according to
Cauchy and normal distributions, respectively.

The chosen mutation strategy has a profound effect
on the performance of DE. [23] The idea of designing
a new mutation strategy [24] or introducing a technique
that automatically selects the classical mutation strategy is
used to improve DE performance. A new mutation strategy,
DE/current-to-pbest, with an optional external archive
proposed by Zhang et al., [9] is a variant of DE/current-
to-best. DE/current-to-pbest/1 randomly chooses p% of
the population’s best individuals instead of the best
individual, as in DE/current-to-best/1. A novel mutation
strategy called DE/current-to-gr best/1 [25] is a variant of
DE/current-to-best/1 proposed for the binomial crossover
of DE. DE/current-to-gr best/1 randomly chooses q% of
the population as a group and uses the best solutions of
the group to perturb the target vector. An improved DE
variant named IDE [26] proposes a new triangular mutation
strategy to balance global exploration and exploitation of
DE. This strategy uses three randomly chosen vectors to
form a convex combination vector, which is used as the base
vector of the mutation strategy. This triangular mutation
strategy uses the difference between the best and worst
individuals among the three randomly selected vectors as
the disturbance vector. This triangular mutation strategy
combines with the basic mutation strategy (DE/rand/1/bin)
through a nonlinear decreasing probability. Wang et al.
[27] proposed an improved DE variant (IMSaDE) by
using an improved mutation strategy that incorporated an
elite archive strategy and parameter-adaptation strategy
in the basic mutation strategy DE/rand/2. Using different
offspring individual generation patterns in an optimization
loop can improve the quality of subsequent offspring
individuals. Moreover, the optimal individual’s relevant
information can be passed to the rest of the individuals,
which may involve different variation strategies. So, it
can also improve the performance of the next generation.
The use of different mutation strategies [28] can provide
a balance between exploration and exploitation. This also
reduces stagnation and premature convergence in DE. Two
DE variants with adaptive strategy selection were proposed
by Gong et al. [29] to autonomously select the most suitable
strategy. Yi et al. [13] proposed an improved DE variant

with a hybrid mutation strategy and self-adapting control
parameters. The hybrid mutation strategy uses two types of
mutation operators and autonomously selects the mutation
operators for each individual. Leon et al. [16] proposed
a novel mutation strategy called DE/Alopex/1, which
calculates the probabilities of move directions based on the
fitness value between two individuals, while the movement
direction of other mutation strategies is independent of the
fitness of selected individuals.

3 The basic DE

DE has proven to be an efficient and effective global
algorithm for real-code optimization, and it has been
shown to outperform the genetic algorithm. DE is similar
to other intelligent optimization algorithms (e.g., genetic
algorithms). It also randomly generates a population of NP
feasible solutions PG = {X1,G, X2,G, . . . , XNP,G}. Any
one feasible solution is based on constraint-optimization
decision variables in the equation. We call it an individual

Xi,G =
(
x1
i,G, x2

i,G, . . . , xD
i,G

)
, i = 1, 2, . . . , NP , where

G denotes the number of generations and D is the
number of individual dimensions. Each dimension of the
individual is determined randomly and uniformly in the
range [Xmin, Xmax], where Xmin = (

x1
min, x

2
min, . . . , x

D
min

)
and Xmax = (

x1
max, x

2
max, . . . , x

D
max

)
. Such a series of

random individuals constitute the initial population, which
can be expressed as

x
j
i = x

j

min + rand (0, 1) ∗
(
x

j
max − x

j

min

)
,

(1)

where rand(0,1) denotes a real number that is determined
randomly and uniformly between 0 and 1.

3.1 Mutation

DE utilizes the difference vector of parents as its basic
variance components. Each difference vector is obtained
by subtraction between two different individuals from the
parent. The mutation vector is obtained by the addition
of the scaled difference vector and different individuals.
The DE operator is usually represented by DE/x/y/z, where
x represents the perturbed vector (also called the base
vector), y represents the number of differential vectors,
and z represents the crossover operator. The classical DE
algorithm uses DE/rand/1 to generate the mutant vectors,

Vi,G = Xa,G + F × (
Xb,G − Xc,G

)
, a �= b �= c �= i, (2)

where Xa,G, Xb,G, and Xc,G are chosen from the current
population, and Xi,g is the target individual. Xa,G, Xb,G,
and Xc,G are three random individuals. F is a real and
constant factor to scale the difference vector.
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Some other mutation strategies are used in the literature,
as shown in Table 1.

Xbest,G represents the vector with the best fitness value
at generationG. Xa,G, Xb,G, Xc,G, Xd,G, and Xe,G are five
individuals randomly chosen from the current population.
Xi,G is the target vector.

3.2 Crossover operation

To improve the diversity of the population, DE introduces
the crossover operation so that at least one component of the
vector comes from the variation vector. The details are as
follows:

Ui,G+1 =
{

V
j
i,G, if

(
randj (0, 1) ≤ CR

)
or (j =jrand)

X
j
i,G, otherwise

,

i = 1, 2, . . . , NP ; j = 1, 2, . . . , D, (3)

where rand j (0,1)∈[0,1] is the j th evaluation of a uniform
random generator number, CR is a user-specified crossover
probability in the range [0,1], and the index jrand refers
to a randomly chosen dimension, which is used to ensure
that the trail vector Ui,G+1 gets at least one element

from Vi,G =
{

Ui,G+1, if f
(
Ui,G+1

)
< f

(
Xi,G

)
Xi,G, otherwise

, i =
1, 2, . . . , NP . This cross-operation, called a binomial
uniform crossover, is widely used in the literature. When the
binomial uniform crossover is used, the strategies in Table 1
are named DE/rand/1/bin, DE/best/1/bin, DE/current-to-
best/1/bin, DE/best/2/bin, DE/rand/2/bin, andDE/current-
to-rand/1/bin, respectively.

3.3 Selection operation

Good selection strategies can significantly improve the
convergence performance of the algorithm. DE uses a
greedy selection strategy. The individual generated through
mutation and crossover operations is compared with its
parent individual. The better-performing individual is

selected as one of the next generation of individuals in a
population, as follows:

Xi,G+1 =
{

Ui,G+1, if f
(
Ui,G+1

)
< f

(
Xi,G

)
Xi,G, otherwise

,

i = 1, 2, . . . , NP. (4)

A series of mutations, crossovers, and selection operations
can produce the same number of new individuals com-
prising the next-generation population. Then, the previous
generation population continues the operation until termina-
tion conditions are reached. The termination conditions are
usually met when the maximum number of iterations or the
optimal solution of the relative equations is reached.

4 DE withmultiple mutation strategies
based on roulette wheel selection

In this section, we will introduce the details of the MMRDE
algorithm. First, we propose a new reflection-based
mutation operation inspired by the reflection operations in
the Nelder–Mead method.

4.1 Reflection-basedmutation

The Nelder–Mead method is a traditional direct algorithm
for unconstrained nonlinear optimization problems. The
method first constructs a simplex, which is a polyhedron
containing n+ 1 vertices for n-dimensional optimization.
After calculating the object function of each vertex, we
determine the best point, the reciprocal second-worst
point, and the worst point. Through reflection, expansion,
contraction, and shrink operations, a better solution can be
found and obtain a new simplex by instead of the worst
point with the better solution, then an approximate global
optimal solution can be obtained after many iterations. The
Nelder–Mead method is simple and easy to implement. It
has excellent local search capability and does not require
the function to be derivable, so it has a wide range
of applications. It has strong dependence on the initial
solution, however, and easily falls into a local minimum.

Table 1 Expressions of the
mutation strategy Strategy Name Expression

1 DE/rand/1 Vi,G = Xa,G + F × (
Xb,G − Xc,G

)

2 DE/best/1 Vi,G = Xbest,G + F × (
Xa,G − Xb,G

)

3 DE/current-to-best/1 Vi,G = Xi,G + F × (
Xbest,G − Xi,G + Xa,G − Xb,G

)

4 DE/best/2 Vi,G = Xbest,G + F × (
Xa,G − Xb,G + Xc,G − Xd,G

)

5 DE/rand/2 Vi,G = Xa,G + F × (
Xb,G − Xc,G + Xd,G − Xe,G

)

6 DE/current-to-rand/1 Vi,G = Xi,G + F × (
Xc,G − Xi,G + Xa,G − Xb,G

)
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The search direction of reflection and expansion operations
is consistent. The expansion operation is performed on
the premise that the reflected point is best so far. The
contraction operation is performed when the reflected
point is worse than the reciprocal second-worst point.
Compression operations are performed when both reflection
and contraction operations are unable to search for a better
solution than the reciprocal second-worst point, and their
main function is to compress the search space.

After a certain generation of a DE algorithm, the
population individual shows the tendency to gather near
the optimal solution. [30, 31] Therefore, the whole
DE algorithm’s optimization process is similar to the
compression operation in the Nelder–Mead method. The
reflected point is generated with the worst point reflected
through the centroid of the remaining n points after
removing the worst point.

Motivated by this operation, we designed what we call
a reflection-based mutation strategy, which is similar to
the reflection operations in the Nelder–Mead method for
the DE algorithm. We randomly select four individuals
from the current population. We sort them from good to
bad according to their object function values, f (Xa,G) <

f (Xb,G) < f (Xc,G) < f (Xd,G). Then, the center Xo,G

of the first three individuals is generated according to their
function values. The trial vectors are generated with the
worst point reflected through the best individual. The details
are as follows:

Vi,G = Xo,G + F
(
Xa,G − Xd,G

)
, and (5)

Xo,G = w1Xa,G + w2Xb,G + w3Xc,G

w1 = f (Xa,G)
f (Xa,G)+f (Xb,G)+f (Xc,G)

w2 = f (Xb,G)
f (Xa,G)+f (Xb,G)+f (Xc,G)

w2 = f (Xc,G)
f (Xa,G)+f (Xb,G)+f (Xc,G)

, (6)

where w1, w2, and w3 are the respective weights for Xa,G,
Xb,G, and Xc,G; and F is a mutation scaling factor.

The Nelder–Mead method has excellent local search
capability. But it has strong dependence on the initial solu-
tion and easily falls into a local minimum. Nelder–Mead
approximates the optimum solution of a problem with n

variables when the object function is continuous and uni-
modal in the search space. The method, however, is prone
to becoming trapped in a basin of attraction of locally
optimal solutions and to converge prematurely when solv-
ing multimodal optimization problems. The lack of diver-
sity is an important reason for premature convergence of
the algorithm. Population diversity and the convergence
rate often can be antagonistic. Because the Nelder–Mead
method uses all the points except the worst point to
calculate the center point and uses a determined evolu-
tionary direction, it can easily lose diversity and converge

prematurely. Our reflection-based mutation strategy uses
four random individuals, which are a small part of the popu-
lation when solving high-dimensional problems, to perform
mutation operations. When considering the solution of low-
dimensional problems when the population is not large, four
individuals are not a small number relative to the population,
so we allow for the existence of duplicates of these four indi-
viduals, but there are at least two individuals. Therefore, this
mutation operation can balance exploration and exploita-
tion. Its performance will be confirmed in Section 5.2.

4.2 Assistedmutation strategies

The reflection-based mutation strategy is a greedy strategy.
Although this mutation operation can balance exploration
and exploitation better than other basic mutation strategies,
it is still prone to premature convergence when solving
complex multimodal optimization problems. To make it
more suitable for solving as many optimization problems as
possible, we must increase the robustness of the algorithm.
We add two basic strategies to generate perturbation vectors
to maintain population diversity. The characteristics of these
two mutation strategies are described below:

1. DE/rand/1/bin: DE/rand/1 is a widely used basic
mutation strategy for random searches that is always
used together with a binomial crossover. [15, 32, 33]
It has strong exploration ability and can effectively
maintain the diversity of populations. DE/rand/1 is
suitable for solving multimodal optimization problems.
It converges more slowly, however, when solving single
modal problems. [34]

2. DE/current-to-rand/1 without crossover: This mutation
strategy uses information of a random individual in the
current population to guide the mutation of the current
individual. This mutation operation is applied without
crossover. It is especially suitable for solving rotation
problems because it is rotation-invariant. [11, 15, 35]

4.3 Selection of mutation strategies

Like the original DE algorithm, only one population is
used in our algorithm. Therefore, we face the problem of
how to arrange the mutation strategy for each individual.
In this study, we use a roulette wheel selection strategy
[36–38] to arrange mutation strategies for each individual.
Roulette strategies are based on the success rate of each
strategy, which is the ratio of the number of better offspring
individuals generated by one mutation strategy to the total
number of individuals using that strategy.

In the initial generation, all mutation strategies have
equal success rates. This ensures that each mutation strategy
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can be used by almost the same number of individuals. As
evolution proceeds, some variation strategies may not be
appropriate for the evolution of the current generation, so
their success rates will be recalculated. The success rate of
mutation strategy k (srk) is calculated as follows:

srk =
NP∑
i=1

sci,k

/
Nk , sci,k =

{
1 if f

(
Ui,k,G

)
<f

(
Xi,k,G

)
0 otherwise

,

(7)

where Nk is the total number of individuals assigned muta-
tion strategy k; srk refers to the success rate of mutation
strategy k (it is a real value and varies between 0 and 1);
NP is a population size; Ui,k,G indicates an individual with
an index of i that uses mutation strategy k; and sci,k is
an indicator that denotes whether individual Ui,k,G gener-
ates better offspringXi,k,G. The higher a mutation strategy’s
success rate, the greater the probability it is chosen. To
ensure that the algorithm does not lose some mutation
strategies during evolution, we set the same minimum value
of the success rate for all mutation strategies. We then
calculate the mutation strategy success rate to be below
the predetermined minimum, discard the calculated success
rate, and replace this rate with the predetermined minimum.
We set the minimum success rate of each mutation strategy
to 0.08. In addition, to ensure that the success rate of each
strategy can be fully calculated, we calculate the success
rate every 10 generations.

4.4 Parameter self-adaptive adjustment mechanism

The parameter self-adaptive adjustment mechanism allows
an individual to use a scaling factor and crossover factor
to generate new individuals, greatly improving convergence
performance. The parameter adaptive regulation method
we adopt is based on Tanabe et al., [12] which in turn
is based on JADE. [9] Two history memories, MF and
MCR , each with H entries, store the mean values of a
Cauchy and normal distribution, respectively. Fi and CRi

are scale and crossover factors, respectively, of individuals
from the current population. Fi and CRi are randomly
generated according to their respective distributions. The
variation factors and crossover factors of an individual are
self-adaptively generated as follows:

Fi = randci

(
MF,ri, 0.1

)
, and (8)

CRi = randni

(
MCR,ri, 0.1

)
, (9)

where MF,ri and MCR,ri are elements that are randomly
selected from MF and MCR , respectively. Both MF and
MCR are initialized to 0.5. To update MF and MCR

expediently, we introduce an index pos to remember the
update position, with pos initialized to 1. If pos > H ,

then pos = 1, and 1 is added to pos at the end of each
generation. Fi is truncated to 1 when Fi > 1; when Fi <

0, Fi is considered to have an invalid value and it must be
regenerated. If CRi < 0, then CRi is truncated to 0, and if
CRi > 1 then CRi is truncated to 1. MF,pos and MCR,pos

are recalculated at the end of each generation as follows:

MF,pos,G+1 =
{

meanWL (SF ) if �= ∅
MF,pos,G otherwise

, (10)

MCR,pos,G+1 =
{

meanWA (SCR) if �= ∅
MCR,pos,G otherwise

, (11)

meanWA (SCR) =
|SCR |∑
k=1

wk · SCR,k, (12)

meanWL (SF ) =
∑|SF |

k=1 wk · S2
F,k∑|SF |

k=1 wk · SF,k

, and (13)

wk = �fk∑|SCR |
k=1 �fk

, (14)

where SF and SCR are sets of all success mutation factors
and crossover factors, respectively. They inherit the Fi and
CRi of the successful individuals in each generation. That
is, if a trial vector Ui,G has a lower object value and then
takes this operator, then Fi → SF , CRi → SCR . A weight
strategy is introduced to control the generation of MF,i

andMCR,i . This operation effectively alleviates the obvious
bias of MCR,i to a small value during the evolution process,
according to Peng et al., [39] by introducing an array �f

to record the deviation of the old and new fitness values of
the successful individuals, that is, �f (k) = fold(k) −
fnew(k). The size of the array �f is equal to the number
of successful individuals in the current generation. To aid
in understanding the details of MMRDE, Fig. 1 displays its
framework.

5 Experimental Setup

This section shows all the experiments we performed for
this study. Our algorithms were coded using Fortran 90. The
compiler was Intel Visual FORTRAN Composer XE 2013
with VS2010. We ran the algorithms on a PC with 2.83 GHz
Intel(R) Core(TM)2 Quad CPU and 4GBRAMonWindows
7. A benchmark set was used to test the performance of the
proposed algorithm (MMRDE).

5.1 Introduction of the benchmark set

The benchmark set used in this study consists of 28
benchmark functions from the Institute of Electrical and
Electronics Engineers CEC2013 special session on real-
parameter optimization. A detailed description of the 28
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Fig. 1 The complete
pseudo-code of MMRDE

benchmark functions can be found in Liang et al. [40]
Overall, these 28 benchmark functions can be divided into
three classes:

1. Unimodal Functions: f1 ∼ f5
2. Basic Multimodal Functions: f6 ∼ f20
3. Composition Functions: f21 ∼ f28

Given theoretical thinking that the error values all
converge to 0, to avoid influence of the algorithm on
the accuracy of the program language, when the optimal
individual reached the precision (10−8), the algorithm was
deemed to converge, and it exited the calculation.

5.2 Performance test of DE/Reflection/1

5.3 Experimental settings

To demonstrate the performance of our reflection-based
strategy, we compare the performance of the algorithm
with reflection-based DE/Reflection/1 and with seven
other mutation strategies: DE/Alopex/1, [16] DE/rand/1,
DE/best/1, DE/current-to-best/1, DE/best/2, DE/rand/2, and
DE/current-to-rand/1. The dimensions of all functions are
set to 30.

To ensure fair comparisons, all mutation strategies are
combined with the binomial cross strategy, and all adopt
the same fixed control parameters: mutation factor F =

0.5, crossover rate CR = 0.5. The population size (NP)
of all variants is set to 100. The maximum function
evaluations number is max FES=30000*D Each algorithm
runs independently 30 times, and the average function value
(mean) and standard deviation (Std.) of results of these 30
runs are listed in Table 2. To clearly see the performance
of the algorithm in each test function, the best performing
algorithm results are set in bold. For comparison purposes,
the Wilcoxon signed-rank test for pairwise samples
is conducted between DE/Reflection/1 and seven other
variants. The symbols +, =, and −, respectively, indicate
that performance of DE/Reflection/1 is significantly better,
not significantly better or worse, or significantly worse
than other compared algorithms according to the Wilcoxon
signed-rank test at the α = 0.05 level. The three lines
at the bottom represent the count results of +, =,
and −.

5.4 Comparison of DE/Reflection/1 with other basic
DE variants

We can observe from Table 2 that DE/Reflection/1 has
the highest number of best results among all the variants,
accounting for 32.1% of the test functions. DE/Alopex/1
follows with 28.6%. DE/rand/2 has the worst overall
performance because it has the highest probability of
achieving the worst result, accounting for 64.3% of the
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Table 3 Comparison of DE/Reflection/1 with other variants

Unimodal functions Basic multimodal functions Composition functions

Better than Equal to Worse than Better than Equal to Worse than Better than Equal to Worse than

DE/Alopex/1 2 2 1 3 5 7 4 2 2

DE/rand/1 2 3 0 12 2 1 5 3 0

DE/best/1 1 2 2 6 3 6 5 2 1

DE/current-to-best/1 2 1 2 3 7 5 4 2 2

DE/best/2 3 2 0 11 3 1 6 2 0

DE/rand/2 4 1 0 13 2 0 6 2 0

DE/current-to-rand/1 3 1 1 5 6 4 6 1 1

functions. DE/Reflection/1 mostly achieves the best result
on composition functions, so it is more suitable for solving
this type of function. DE/Alopex/1 mostly gets the best
result on basic multimodal functions. DE/current-to-best/1
is more suitable for solving unimodal functions.

The bottom three lines of Table 2 represent the results of
pairwise comparisons between DE/1Reflection/1 and other
algorithms. DE/Reflection/1 is better at more functions
than other mutation strategies, in addition to DE/Alopex/1
and DE/current-to-best/1. DE/Reflection/1 achieves sim-
ilar performance to DE/Alopex/1 and DE/current-to-
best/1 Table 3 shows more detailed results. From this
we see that DE/Reflection/1 performs well for uni-
modal functions and only slightly worse than DE/best/1.
DE/Alopex/1 performs best when calculating basic mul-
timodal functions, and DE/Reflection/1 achieves similar
performance to DE/current-to-best/1 and is only worse than
DE/Alopex/1. DE/Reflection/1 performs best when solving
composition functions. With an average ranking of 3.29,
DE/Reflection/1was the second-best algorithm

In Table 4, the Wilcoxon test is applied to all functions.
DE/Reflection/1 is significantly better than DE/rand/1,
DE/best/2, and DE/rand/2. It, however, is not significantly
better or worse than DE/Alopex/1, DE/best/1, DE/current-
to-best/1, and DE/current-to-rand/1.

Table 4 The Wilcoxon test between MMRDE and other DE variants
using the results from all the functions (significance of 0.05)

R+ R− Asymptotic P-value Significant?

DE/Alopex/1 195.5 182.5 0.866446 No

DE/rand/1 302.5 75.5 0.006165 Yes

DE/best/1 233.5 172.5 0.480242 No

DE/current-to-best/1 198.0 180.0 0.819462 No

DE/best/2 371.5 34.5 0.000119 Yes

DE/rand/2 355.0 23.0 0.000063 Yes

DE/current-to-rand/1 277.0 129.0 0.089797 No

To compare the convergence speed of each mutation
strategy, we choose a set of results from 30 independent
runs to draw the convergence process curve. Figure 2 shows
the convergence curve of DE/Reflection/1 and other DE
variants on some functions from the benchmark set. From
this we see that the convergence speed of DE/Reflection/1
is one of the fastest among all the mutation strategies in
functions F1, F10, F24, and F25. In Fig. 2a, DE/Reflection/1
is seen to have good local search ability. In Fig. 2g and h, the
reflection-variation strategy seems to effectively maintain
the population diversity.

5.5 Performance test of MMRDE

5.6 Experimental settings

To compare the overall performance of the DE algorithm
with multiple mutation strategies based on roulette wheel
selection (MMRDE), we conducted direct and indirect
comparisons for all functions on the benchmark set. The
four DE variants SHADE, [12] CODE, [11] EPSDE, [10]
and JADE [9] are used to perform direct performance
comparisons with MMRDE. Their data come directly from
the literature [12] . We then compare the performance of
MMRDE, HSDE, JADE, and SHADE by our experiment.
All the algorithms we used for comparisons were coded
using Fortran 90. To establish a consistent test environment,
we coded the JADE and HSDE algorithms in FORTRAN
based on the literature [9, 13]. The SHADE code was
translated from the original C++ program (found in the
CEC Shared Documents1) to Fortran 90.

We did not specifically tune the parameters of other
algorithms for our experiment. To fairly compare the
performance of the algorithms, the population size of each
algorithm was set to 100 for all dimensions. Each algorithm
ran 30 times independently. The dimension of all 28 test

1http://www.ntu.edu.sg/home/EPNSugan/index files/CEC2013/
CEC2013.htm

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm
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(a) F1 (b) F2

(c) F4 (d) F10

(e) F11 (f) F14

(g) F24 (h) F25

Fig. 2 Comparison of the convergence speed of DE/Reflection/1 and other DE variants
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functions in the benchmark set was set to 30. The search
space was [−100,100] for all dimensions. The maximum
functions number was max FES=10000*D.

The average value (mean) and standard deviation (Std.)
of 30 independent calculation results for each function are
listed in Table 5 for indirect comparisons and in Table 6 for
self-comparisons. To clearly see which algorithm performs
best on each test function, the best outcomes among all
algorithms are shown in boldface. For comparison, the
Wilcoxon signed-rank test is conducted between the state-
of-the-art DE variants and MMRDE in Table 6 using
KEEL, [41] where +, =, and −, respectively, indicate that
performance of our algorithm is significantly better, not
significantly better or worse, or significantly worse than
other compared state-of-the-art DE algorithms according to
the Wilcoxon signed-rank test at the α = 0.05 level. The
three lines at the bottom of Table 6 represent the count
results of +, =, and −, and Table 7 shows more detailed

results. At the bottom of Table 6, the average ranks and
summation of relative errors between all algorithms are
shown.

5.7 Comparison of MMRDEwith other DE variants

Table 5 shows the experimental results of indirect compari-
son with other state-of-the-art DE variants when solving the
28 benchmark functions. The experimental results obtained
by running each state-of-the-art DE algorithm 30 times on
each function in the benchmark set are shown in Table 6.
From the results in Tables 5 and 6, we can summarize the
experimental results as follows.

1. Unimodal Functions f1 ∼ f5: MMRDE performs
better than HSDE and JADE, because MMRDE obtains
significantly better results in more functions. MMRDE
has similar performance to SHADE. All the competing

Table 5 Indirect comparison among SHADE, CoDE, EPSDE, JADE, and MMRDE for all functions in CEC2013

SHADE CoDE EPSDE JADE MMRDE

Mean± (Std.) Mean± (Std.) Mean± (Std.) Mean± (Std.) Mean± (Std.)

F1 0.00E+00±(0.00E+00) 0.00E+00±(0.00E+00) 0.00E+00±(0.00E+00) 0.00E+00± (0.00E+00) 0.00E+00±(0.00E+00)

F2 9.00E+03± (7.47E+03) 9.78E+04± (4.81E+04) 1.37E+06± (5.23E+06) 7.67E+03± (5.66E+03) 1.21E+05± (7.19E+04)

F3 4.02E+01±(2.13E+02) 1.08E+06± (3.03E+06) 1.75E+08± (5.39E+08) 4.71E+05± (2.35E+06) 1.55E+03± (6.31E+03)

F4 1.92E-04± (3.01E-04) 8.18E-02± (1.09E-01) 8.08E+03± (2.56E+04) 6.09E+03± (1.33E+04) 3.92E-04± (9.30E-04)

F5 0.00E+00± (0.00E+00) 0.00E+00±(0.00E+00) 0.00E+00±(0.00E+00) 0.00E+00± (0.00E+00) 0.00E+00±(0.00E+00)

F6 5.96E-01± (3.73E+00) 4.16E+00± (9.00E+00) 9.27E+00± (1.33E+00) 2.07E+00± (7.17E+00) 7.39E-01± (1.07E+00)

F7 4.60E+00± (5.39E+00) 9.32E+00± (6.34E+00) 5.88E+01± (4.29E+01) 3.16E+00± (4.13E+00) 1.96E+00±(1.89E+00)

F8 2.07E+01± (1.76E-01) 2.08E+01± (1.18E-01) 2.09E+01± (5.32E-02) 2.09E+01± (4.93E-02) 2.06E+01± (1.44E-01)

F9 2.75E+01± (1.77E+00) 1.45E+01±(2.90E+00) 3.50E+01± (4.21E+00) 2.65E+01± (1.96E+00) 1.68E+01± (4.99E+00)

F10 7.69E-02± (3.58E-02) 2.71E-02± (1.50E-02) 1.02E-01± (5.65E-02) 4.04E-02± (2.37E-02) 5.65E-02± (2.99E-02)

F11 0.00E+00±(0.00E+00) 0.00E+00±(0.00E+00) 1.95E-02± (1.39E-01) 0.00E+00±(0.00E+ 00) 0.00E+00± (0.00E+00)

F12 2.30E+01± (3.73E+00) 3.98E+01± (1.21E+01) 4.94E+01± (9.28E+00) 2.29E+01± (5.45E+00) 2.11E+01± (6.49E+00)

F13 5.03E+01± (1.34E+01) 8.04E+01± (2.74E+01) 7.68E+01± (1.72E+01) 4.67E+01± (1.37E+01) 5.08E+01±(2.06E+01)

F14 3.18E-02± (2.33E-02) 3.60E+00± (4.09E+00) 3.99E-01± (6.00E-01) 2.86E-02± (2.53E-02) 1.82E+00± (8.75E-01)

F15 3.22E+03±(2.64E+02) 3.36E+03± (5.31E+02) 6.75E+03±(7.60E+02) 3.24E+03± (3.17E+02) 3.26E+03± (6.54E+02)

F16 9.13E-01± (1.85E-01) 3.38E-01± (2.03E-01) 2.48E+00± (2.88E-01) 1.84E+00± (6.27E-01) 1.41E-01± (6.94E-02)

F17 3.04E+01±(3.83E-14) 3.04E+01± (1.17E-02) 3.04E+01±(2.51E-02) 3.04E+01± (1.95E-14) 3.04E+01±(2.09E-06)

F18 7.25E+01± (5.58E+00) 6.69E+01± (9.23E+00) 1.37E+02± (1.12E+01) 7.76E+01± (5.91E+00) 5.38E+01± (1.65E+01)

F19 1.36E+00± (1.20E-01) 1.61E+00± (3.58E-01) 1.84E+00± (2.00E-01) 1.44E+00± (8.71E-02) 1.74E+00± (4.98E-01)

F20 1.05E+01± (6.04E-01) 1.06E+01± (6.69E-01) 1.30E+01± (6.33E-01) 1.04E+01± (5.82E-01) 1.00E+01± (4.98E-01)

F21 3.09E+02± (5.65E+01) 3.02E+02±(9.02E+01) 3.05E+02± (8.06E+01) 3.04E+02± (6.68E+01) 3.05E+02± (8.02E+01)

F22 9.81E+01± (2.52E+01) 1.17E+02± (9.96E+00) 3.09E+02± (1.12E+02) 9.39E+01±(3.08E+01) 1.12E+02± (4.06E+00)

F23 3.51E+03± (4.11E+02) 3.56E+03± (6.12E+02) 6.74E+03± (8.20E+02) 3.36E+03± (4.01E+02) 3.12E+03± (5.58E+02)

F24 2.05E+02± (5.29E+00) 2.21E+02± (9.28E+00) 2.91E+02± (7.08E+00) 2.17E+02± (1.57E+01) 2.08E+02± (4.35E+00)

F25 2.59E+02± (1.96E+01) 2.57E+02± (6.55E+00) 2.99E+02± (3.29E+00) 2.74E+02± (1.06E+01) 2.48E+02± (6.16E+00)

F26 2.02E+02± (1.48E+01) 2.18E+02± (4.48E+01) 3.56E+02± (6.49E+01) 2.15E+02± (4.11E+01) 2.04E+02± (1.94E+01)

F27 3.88E+02± (1.09E+02) 6.20E+02± (1.01E+02) 1.21E+03± (7.42E+01) 6.70E+02± (2.40E+02) 3.54E+02± (2.41E+01)

F28 3.00E+02± (0.00E+00) 3.00E+02± (0.00E+00) 3.00E+02±(0.00E+00) 3.00E+02± (0.00E+00) 3.00E+02±(0.00E+00)
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Table 6 Comparison among HSDE, JADE, SHADE, and MMRDE for all functions in CEC2013

SHADE JADE HSDE MMRDE

Mean± (Std.) Mean± (Std.) Mean± (Std.) Mean± (Std.)

F1 0.00E+00±(0.00E+00) = 0.00E+00± (0.00E+00) = 0.00E+00± (0.00E+00) = 0.00E+00± (0.00E+00)
F2 1.88E+04± (1.36E+04) − 1.55E+04± (8.07E+03) − 3.60E+05± (2.14E+05) + 1.21E+05± (7.19E+04)
F3 8.23E+05± (2.01E+06) = 1.80E+06± (4.45E+06) + 2.34E+05± (1.18E+06) + 1.55E+03± (6.31E+03)
F4 2.29E-01± (2.21E-01) + 3.06E-01± (4.48E-01) + 1.25E+02± (5.08E+01) + 3.92E-04± (9.30E-04)
F5 0.00E+00± (0.00E+00) = 0.00E+00± (0.00E+00) = 0.00E+00± (0.00E+00) = 0.00E+00± (0.00E+00)
F6 2.25E-03± (8.27E-03) − 8.80E-01± (4.74E+00) − 3.16E+00± (6.29E+00) + 7.39E-01± (1.07E+00)
F7 2.75E+00± (1.95E+00) = 1.19E+01± (5.07E+00) + 7.83E+00± (9.81E+00) + 1.96E+00± (1.89E+00)
F8 2.07E+01± (1.37E-01) + 2.08E+01± (1.73E-01) + 2.09E+01± (6.29E-02) + 2.06E+01±(1.44E-01)
F9 2.72E+01± (3.57E+00) + 1.64E+01± (4.08E+00) = 3.30E+01± (1.61E+00) + 1.68E+01± (4.99E+00)
F10 8.12E-02± (3.89E-02) + 5.34E-02± (4.08E-02) = 1.67E-02± (9.05E-03) − 5.65E-02± (2.99E-02)
F11 0.00E+00± (0.00E+00) = 1.59E+01± (4.21E+00) + 1.79E+01± (1.64E+00) + 0.00E+00± (0.00E+00)
F12 2.22E+01± (5.25E+00) = 2.25E+01± (7.04E+00) = 1.33E+02± (1.42E+01) + 2.11E+01± (6.49E+00)
F13 4.83E+01± (1.14E+01) = 5.57E+01± (1.97E+01) = 1.52E+02± (1.16E+01) + 5.08E+01± (2.06E+01)
F14 2.45E-02± (2.21E-02) − 9.76E+02± (2.59E+02) + 1.54E+03± (1.50E+02) + 1.82E+00± (8.75E-01)
F15 3.21E +03± (3.22E+02) = 3.35E+03± (8.51E+02) = 6.76E+03± (3.12E+02) + 3.26E+03± (6.54E+02)
F16 9.74E-01± (5.31E-01) + 3.74E-01± (2.16E-01) + 2.39E+00± (3.31E-01) + 1.41E-01± (6.94E-02)
F17 3.04E+01± (1.42E-14) = 4.45E+01± (6.79E+00) + 6.16E+01± (2.54E+00) + 3.04E+01± (2.09E-06)
F18 7.09E+01± (5.29E+00) + 5.70E+01± (2.28E+01) = 2.01E+02± (8.99E+00) + 5.38E+01± (1.65E+01)
F19 1.52E+00± (4.34E-01) − 2.43E+00± (6.82E-01) = 5.40E+00± (3.59E-01) = 1.74E+00± (4.98E-01)
F20 1.02E+01± (4.34E-01) = 1.05E+01± (6.82E-01) + 1.22E+01± (3.59E-01) + 1.00E+01± (4.98E-01)
F21 2.81E+02± (5.17E+01) = 2.99E+02± (6.89E+01) = 3.08E+02± (9.18E+01) = 3.05E+02± (8.02E+01)
F22 1.01E+02±(1.92E+01) − 6.52E+02± (5.32E+02) + 1.96E+03± (2.91E+02) + 1.12E+02± (4.06E+00)
F23 3.62E+03± (3.94E+02) + 3.24E+03± (6.71E+02) = 6.59E+03± (3.70E+02) + 3.12E+03± (5.58E+02)
F24 2.06E+02± (4.10E+00) = 2.25E+02± (6.93E+00) + 2.68E+02± (1.82E+01) + 2.08E+02± (4.35E+00)
F25 2.50E+02± (5.51E+00) = 2.54E+02± (5.65E+00) + 2.57E+02± (1.55E+01) + 2.48E+02± (6.16E+00)
F26 2.11E+02± (3.29E+01) = 2.17E+02± (4.24E+01) = 2.30E+02± (6.69E+01) + 2.04E+02± (1.94E+01)
F27 3.52E+02± (3.07E+01) = 6.07E+02± (6.91E+01) + 1.09E+03± (8.57E+01) + 3.54E+02± (2.41E+01)
F28 3.00E+02± (0.00E+00) = 3.00E+02± (0.00E+00) = 3.00E+02± (0.00E+00) = 3.00E+02± (0.00E+00)
Average rank 1.93 2.70 3.63 1.75
Sum. rel. error 12.38 15.63 23.99 11.34
+ 7 13 22
= 16 13 5
− 5 2 1

Table 7 Comparison of MMRDE against the other DE variants

Unimodal functions Basic multimodal functions Composition functions

Better than Equal to Worse than Better than Equal to Worse than Better than Equal to Worse than

SHADE 1 3 1 5 7 3 1 6 1
JADE 2 2 1 7 7 1 4 4 0
HSDE 3 2 0 13 1 1 6 2 0

Table 8 The Wilcoxon text
between MMRDE and other
DE variants using the result
from all the functions
(significance of 0.05)

R+ R− Asymptotic P-value Significance?

SHADE 211.0 195.0 0.846523 No
JADE 324.5 53.5 0.001085 Yes
HSDE 373.5 4.5 0.000009 Yes
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(a) F1 (b) F2

(c) F4 (d) F10

(e) F11 (f) F14

(g) F24 (h) F25

Fig. 3 Comparison of the convergence speeds of HSDE, JADE, SHADE, and MMRDE
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Fig. 4 Success rate evolution of three mutation strategies
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algorithms can converge globally for functions f1 and
f5. MMRDE obtains significantly better results than
its competitors for f4. Based on the performance in
functions f1 ∼ f5, we can conclude that MMRDE has a
strong exploitation ability and achieves the performance
level of SHADE in unimodal functions.

2. Basic Multimodal Functions f6 ∼ f20: MMRDE
performs better than its peers. MMRDE clearly is the
best among all the algorithms for functions f7, f8, f12,
f16, f18, and f20. This shows that the method of using
a roulette wheel to choose a mutation strategy seems
effective. Our proposed mutation strategy works well
with rand/1 and current-to-rand/1. Overall, we see that
MMRDE has a strong ability to converge globally.

3. Composition Functions f21 ∼ f28: These hybrid
composition functions are made up of several different
types of functions and are difficult to optimize. Tables
5, 6, and 7 show that MMRDE achieves similar
performance to SHADE and performs better than JADE
and HSDE. Specifically, MMRDE obtains the best
solution on functions 23, 25, and 26. This shows that
MMRDE has a strong ability to solve composition
functions.

4. Table 8 shows the results of the application of
Wilcoxon’s test to all functions. MMRDE is signifi-
cantly better than JADE and HSDE, but it is not signif-
icantly better or worse than SHADE. Both the average
ranking and summation of relative errors of MMRDE
are the lowest, however, indicating that MMRDE per-
forms better overall than its competitors.

To intuitively reflect the convergence speed of MMRDE
relative to other algorithms, we choose a set of results
from 30 independent runs to draw the convergence-
process curve in eight representative test functions from
the benchmark set. These curves are shown in Fig. 3.
We see that SHADE has the fastest optimization speed
overall. MMRDE obviously converges faster than HSDE.
Figure 3c, e and f show that MMRDE seems to have a
proper convergence speed to strike a good balance between
exploration and exploitation.

5.8 Evolution of mutation strategies

It is interesting to find out which mutation strategies have
a higher success rate of generating excellent offspring. A
mutation strategy with higher success rates can be allocated
to more individuals using the roulette wheel selection
method. We select eight representative functions from
the benchmark set to represent the success rates of each
mutation strategy in different DE stages of one problem.
Figure 4 shows the success rate of each mutation strategy
and the changes in error value during the evolution.

From Fig. 4, we see that the reflection-based mutation
strategy and current-to-rand/1 have higher success rates
than mutation strategy rand/1, and they usually dominate
the evolutionary process. Mutation strategy rand/1 has less
impact on evolution. All strategies have a high success
rate in early evolution; however, as evolution proceeds,
the success rates of the three mutation strategies vary in
different functions. When solving simple problems (such
as F1), the success rate of each mutation strategy is high
and there is little change in the whole evolution process.
But, when a complex function is solved, the success rate
of each mutation strategy usually fluctuates greatly. It is
worth noting that we set a lower limit on the success rate so
that each mutation strategy will not become extinct in some
evolutionary stages that were unfavorable to them, and they
have the opportunity of dominant evolution at any stage of
evolution. Figure 4d, e, and f clearly show the effect of the
lower limit of success rate on evolution. The use of roulette
options for the three mutation strategies seems to mitigate
the process of evolutionary stagnation.

In general, the three strategies used in MMRDE work
well, and the algorithm achieves a better balance between
exploration and exploitation.

6 Conclusions

In this paper we propose a new mutation operation,
called reflection-based mutation, inspired by the reflection
operations in the Nelder-Mead method. For each individual
to be mutated, we randomly select four individuals from
the current population. We then calculate the weighted
center of three individuals with better fitness based on their
object function values, use the difference vector of the
best individual and the worst individual as the perturbation
vector, and use the center we have calculated as the
target individual, thus completing a mutation operation. We
compare DE/Reflection/1 and other mutation strategies in
an experiment and prove that the proposed mutation strategy
has good exploration and exploitation capability.

Although reflection-based mutation can better balance
exploration and exploitation than other compared mutation
strategies, it is still a greedy mutation strategy that is
prone to premature convergence when solving complex
multimodal optimization problems. We add two basic
strategies for a population to generate perturbation vectors
to maintain population diversity and increase robustness.
We use a roulette wheel selection strategy to arrange
mutation strategies based on their success rate for each
individual. This DE variant, with a combination of multiple
mutation strategies based on roulette wheel selection, is
named MMRDE. We use a benchmark set, including 28
functions for real-parameter optimization recommended
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by the Institute of Electrical and Electronics Engineers
CEC2013 special session, to test the performance of
MMRDE against some improved DE variants. Experimental
results indicate that the proposed algorithm can balance
between exploration and exploitation. The algorithm shows
the effectiveness of three mutation strategies in cooperative
work. The proposed algorithm shows it can guide the
search for a global optimal solution with fast convergence
compared with other improved DE variants.
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