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Abstract
In recent years, crowd counting in still images has attracted many research interests due to its applications in public safety.
However, it remains a challenging task for reasons of perspective and scale variations. In this paper, we propose an effective
Skip-connection Convolutional Neural Network (SCNN) for crowd counting to overcome the issue of scale variations.
The proposed SCNN architecture consists of several multi-scale units to extract multi-scale features. Each multi-scale unit
including three convolutional layers builds connections between the input and each convolutional layer. In addition, we
propose a scale-related training method to improve the accuracy and robustness of crowd counting. We evaluate our method
on three crowd counting benchmarks. Experimental results verify the efficiency of the proposed method, and it achieves
superior performance compared with other methods.

Keywords Crowd counting · Convolutional neural network · Multi-scale unit · Scale-related training method

1 Introduction

Crowd counting is a visual cognitive task which aims at
accurately estimating the number of people in a crowded
scene. It has become an important topic in the field of
computer vision due to various potential practical appli-
cations such as public safety management, crowd control
and video surveillance. However, existing crowd counting
methods are far from optimal owing to the following dif-
ficulties. The distribution of crowds across the scenes is
diverse. Crowding and occlusions among people are common
characteristics of the dense crowd scenes. In addition, scale
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variations of crowd scenes are of variety, as the camera
viewpoint transformation results in perspective effects. Due
to the presence of these complexities, crowd counting is still
challenging.

One key challenge to fix these complexities is large
scale variations due to perspective effects. To solve the
above issue, various crowd counting methods have been
put forward. Early methods [1] utilized hand-crafted
features and head detection failed in dense crowd scenes.
Recently, inspired by the success of CNNs on various
vision tasks, many multi-scale CNN architectures [2–4]
for crowd counting have achieved remarkable performance
improvements. These methods generally tackled the issue of
scale variations via multi-column networks to estimate the
density maps of still crowd images. However, a major limit
of multi-column networks is that each column with different
filter sizes only works for a single scale. Due to the large
memory consumption, multi-column networks usually have
two or three columns, which can only extract few multi-
scale features. In principle, multi-column networks cater
scale variations by increasing receptive fields of different
sizes in the network.

Considering the above observations, we aim at learning
a model to cope with large scale variations by increasing
the number of receptive fields of different sizes as much
as possible. Motivated by the work [5] for semantic
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segmentation, we propose a Skip-connection Convolutional
Neural Network to estimate the density maps of input
images. In their work, they built two skip-connections
from low layers to high layers, which fused three kinds
of scale features. Our SCNN cascades four multi-scale
units. Each multi-scale unit consists of three convolutional
layers and we build extra skip-connections from the
input of the multi-scale unit to each convolutional layer.
Compared with the multi-column network, the SCNN
consumes less memory and contains more receptive fields
of different sizes due to the reuse of low layer features. In
addition, the skip-connections on the entire network only
increase the same number of receptive field sizes as the
number of connections. However, the number of receptive
fields increases exponentially in our unit style network
architecture.

In order to accurately estimate the count of people in a
still image, we also provide a novel scale-related training
method that works as an auxiliary means to tackle the issue
of scale variations. Inspired by the multi-scale input network
[6], we use the input images of two scales during training.
The difference between our method and the multi-scale
input network is that the training images of each scale are
applied to train a model individually instead of training the
model with multi-scale images simultaneously. The training
images of large scale are used to train the model at first, and
then we fine-tuning the weight parameters with the images
of the original scale.

The contributions of this paper can be summarized as
follows:

1. We present a Skip-connection Convolutional Neural
Network for crowd counting in still images. Based on
the idea of increasing receptive fields of different sizes,
we first propose the multi-scale unit formed SCNN to
overcome scale variations and perspective. The multi-
scale unit builds connections between the input and
each layer of the multi-scale unit.

2. A scale-related training method is proposed to improve
overall counting performance. Different from tradi-
tional training methods, the images of the original size
are used to fine-tune the training result of large size
images.

3. We evaluate our network architecture on UCF CC 50
[1], ShanghaiTech [2], and compare with the state-of-
the-art technologies. The results confirm the effective-
ness of our method.

The remainder of this paper is organized as follows.
Section 2 surveys related works on crowd counting.
Section 3 introduces detailed SCNN architecture for crowd
counting and analyzes the receptive field size. Section 4
presents the descriptions of the proposed scale-related
training method. Section 5 presents the experimental results

and discussions. Section 6 concludes the paper and the
future work.

2 Related work

In this section, we mainly discuss the crowd counting meth-
ods proposed in the existing literature. We also introduce
several related works of the multi-scale convolutional neu-
ral network architecture, as we design the SCNN from the
viewpoint of extracting multi-scale features.

Crowd counting as a computer vision task has been tack-
led by a number of methods. These methods can be roughly
divided into three categories: detection-based counting,
regression-based counting and CNN-based counting.

Detection-based counting. Early methods of crowd
counting [7–11] generally adopted a visual object detec-
tor to scan individuals over frames of a video or still
images, and the result of counting is the sum of the
detected individuals. Many kinds of detectors have been
employed to detect individuals in an image. Lin et al. [7]
utilized the Haar wavelet transform to detect the feature
area of the head-like contour. In the literature [12], Li
proposed the head-shoulder detection with a foreground
segmentation framework. Wu and Nevatia [8] introduced
edgelet features to learn human body part detectors
with a boosting method, and improved the robust-
ness of individual overlaps. However, detection-based
counting is limited by occlusions between people in a
crowded scene. As the crowd becomes dense, detection
performance drops rapidly.

Regression-based counting. To overcome the bottle-
neck of detection-based methods in the dense crowds,
regression-based counting [13–17] is intended to estab-
lish a map between low-level features and the number of
people, instead of detecting individuals in a crowd scene.
These methods first extract features from a crowd region,
and then predict the crowd count by training a regression
model. Various features have been employed such as tex-
tures [14, 18] and edge information [17, 19]. Common
regression models include linear regression [20], piece-
wise linear regression [21], Bayesian regression [16, 19],
ridge regression [14] and Gaussian process regression
[13]. Regression-based counting is effective for tackling
the problem of occlusions, while it only gives the global
counts of people and ignores the crowd spatial distribu-
tion information. Lempitsky and Zisserman et al. [15] put
forward to estimate an image density map whose integral
over an image region gave the count of objects within
that region. The density map is employed by a vari-
ety of recent methods, as it describes the crowd spatial
distribution and is easy to calculate the count of people.
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CNN-based counting. Recently, CNN-based methods
have achieved great success in various vision tasks such
as object detection [22], classification [23] and seman-
tic segmentation [5]. Many CNN architectures [24–26]
have also been applied to crowd counting and improved
the counting accuracy. Zhang et al. [24] considered cross-
scene crowd counting and presented a CNN trained alter-
natively with two loss functions. However, their method
requires perspective maps during training and testing,
which is not accessible in the practical applications of
crowd counting. Several multi-task learning methods
[25–27] have been proposed, which developed auxiliary
tasks to improve the counting performance. These meth-
ods, however, fail to consider scale variations that are
commonly found in crowd images. Zhang et al. [2] pro-
posed a multi-column fully convolutional network (FCN)
to extract multi-scale features. The multi-column FCN
consists of three columns with different convolution ker-
nel sizes. Boominathan et al. [4] adopted a combination
of deep and shallow FCN to predict the density map
for a given crowd image. These multi-column methods
partially improve the issue of scale variations, but their
network architectures are of much complexity and only
extract few multi-scale features. In this work, we focus
on the issue of scale variations of crowd counting. We
develop a simple but effective multi-scale unit by taking
the input features combined with the output of the current
convolutional layer as the input of the next convolutional
layer. Our proposed single column SCNN is built by cas-
cading multi-scale units to recover rich scale information
from images.

Multi-scale CNN architecture. In recent years, various
methods demonstrate astonishing results in pixel-level
visual tasks. Among these models, one of the key
elements to success is the use of multi-scale features [28].
There are primarily three types of multi-scale network
architectures in the CNN: multi-column network [29],

skip-net [30, 31] and multi-scale input [32]. The multi-
column network is illustrated in Fig. 1a. Input data are
fed into multiple columns, and the output data of each
parallel column are concatenated as the final output. [2,
4] are typical multi-column network architectures for
crowd counting. As Fig. 1b illustrated, the skip-net builds
a connection between low-level features and high-level
output. Therefore, the features of different levels are
combined and fed into an output layer. One common
ground of these two structures is that multi-scale features
are obtained by increasing receptive fields of different
sizes. The illustration of multi-scale input is shown in
Fig. 1c. The input images are resized to several scales to
train a single network. The pyramid network is a widely
used example of multi-scale input [32].

In this work, the design of our SCNN is based on the idea
of skip-net. However, the most significant difference with
skip-net is that our architecture builds multiple connections
between the input and each layer of the multi-scale unit
rather than just one or two skip-connections between low
layers and high layers. The purpose of this design is to
increase more receptive fields of different sizes, further to
extract more multi-scale features.

3 Skip-connection CNN architecture
for crowd counting

As discussed in Section 1, existing convolutional architec-
tures deal with the issue of scale variations by using multi-
column CNN architectures which involve receptive fields
of different sizes. We think it is important to increase the
number of receptive fields of different sizes in the network
to reduce the influence of scale variations. Therefore, we
propose the SCNN architecture that consists of four multi-
scale units to estimate the density maps of input images. In

a b c

Fig. 1 Illustration of different multi-scale deep learning architecture: a multi-column network, b skip-net, c multi-scale input
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this section, we first introduce the density map which is the
regression result of our SCNN. Then the multi-scale unit
and the proposed SCNN are described in detail. Finally, we
analyze the receptive field sizes in the network and discuss
the principle that our SCNN involves more receptive fields
of different sizes.

3.1 Density map

The density map and the number of people are two common
outputs of the CNN for crowd counting in a still image.
Compared with the number of people, the density map
provides more information about the distribution of crowds.
The number of people over the entire input image can be
obtained by integrating the density map. The quality of
density maps in the training set is a major factor affecting
the performance of crowd counting, since the CNN is
trained to estimate the density map of a training image.
Following the previous work [15], we generate the ground
truth density map of a crowd image with labeled heads of
people in the training set. For a given labeled crowd image,
a head annotation at pixel xi can be formalized as a unit
impulse function δ(x − xi), where x represents the two-
dimensional image coordinates. Therefore, an image withN

heads can be represented as the following formula. Figure 2
displays a crowd image and its density map.

H(x) =
N∑

i=1

δ(x − xi) (1)

Convolve H(x) with a Gaussian kernel Gσ , we can
obtain the density map F(x) = H(x) ∗ Gσ (x). Zhang
et al. [2] proposed an adaptive Gaussian kernel Gσi

due
to perspective. The spread parameter σi of the adaptive
Gaussian kernel is determined based on the average distance
d̄i from the k nearest head annotation pixels to xi , instead of
a constant σ . The density map with the adaptive Gaussian
kernel can be calculated by formula (2), and empirically
β = 0.3.

F(x) =
N∑

i=1

δ(x − xi) ∗ Gσi
(x), σi = β × d̄i (2)

3.2 Skip-connection CNN architecture

It is common sense that the heads of people in the distance
are quite smaller than those located nearby in a still image.
The difference of head sizes caused by perspective leads
to different scales in crowd images. It is difficult to extract
multi-scale crowd features by CNNs with the receptive
field of a single size. Therefore, it is necessary to design
a CNN architecture with receptive fields of different sizes
to estimate density maps. Motivated by the skip-net, we
propose the SCNN which is mainly composed of several
multi-scale units to learn the map between input images and
corresponding density maps.

Multi-scale unit. Consider a feature map f0 as the input
of the multi-scale unit, and the output of the ith layer
is fi . We denote the non-linear transformation of the ith

layer as Ti(). For the traditional CNN architecture, the
output of the ith layer is the input of the (i + 1)th layer,
which can be described as follows: fi+1 = Ti+1(fi).
However, our multi-scale unit adds skip-connections
between input data and each convolutional layer.

As illustrated in Fig. 3, the multi-scale unit consists of
three convolutional layers and the architecture from the
input feature maps to the output can be formulated as

⎧
⎨

⎩

f1 = T1(f0)

f2 = T2([f0, f1])
f3 = T3([f0, f2])

(3)

where [f0, fi] denotes the concatenation of the feature
maps. In our multi-scale unit, the input of each
convolutional layer includes the input data of the multi-
scale unit and the output of the preceding layer except
the first convolutional layer. The feature maps of the last
convolutional layer are equally the output of the multi-
scale unit. Rectified linear unit (ReLU) is applied as the
activation function followed by each convolutional layer
[33]. Ti() is a composite function of convolution and
ReLU. Convolutional layers in each multi-scale unit of

Fig. 2 An input image and the
corresponding density map
obtained by convolving
Gaussian kernels
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Fig. 3 The architecture of the
proposed multi-scale unit

the proposed SCNN have the same size of kernels and
number of feature maps.

SCNN architecture. Figure 4 shows the overall archi-
tecture of the proposed SCNN. It contains three parts.
The first part is a traditional convolutional layer with
64 9 × 9 convolution kernels. The second part consists
of 4 multi-scale units, and each convolutional layer in a
multi-scale unit has the same size kernels. Each multi-
scale unit adds two skip-connections and covers three
kinds of scales. The number of receptive fields of differ-
ent sizes brings about a significant increase by cascading
multi-scale units in the SCNN. Convolutional layers in
the first two multi-scale units have 32 7 × 7 kernels.
The third multi-scale unit has 16 7 × 7 kernels for each
convolutional layer, and there are 16 5×5 kernels for con-
volutional layers of the last multi-scale unit. The last part
contains two convolutional layers, which aim at trans-
forming multi-scale features to the final density map.
The two convolutional layers have 128 and 1 kernels
of 1 × 1 respectively. Max pooling is applied for each
2×2 region after the first convolutional layer and the first
multi-scale unit respectively. ReLu is also used after each
convolutional layer except the last one of 1 × 1.

Our SCNN takes an arbitrary size crowd image as input
and outputs the corresponding density map. The spatial
resolution of the estimated density map is 1/4 of the input
crowd image due to the max pooling. Therefore, it is
necessary to down-sample the ground truth density maps
of the training images during the training stage. We choose
the Euclidean distance to assess the difference between the

estimated density map and the corresponding ground truth.
The loss function is formulated as follows:

L(�) = 1

2N

N∑

i=1

‖Fi − F(Xi; �)‖2 (4)

where L(�) denotes Euclidean loss. � represents the
weight parameters to be optimized in the network. N is the
number of training images, and Xi is the ith input image. Fi

and F(Xi; �) are the ith ground truth density map and the
estimated density map respectively. We use the stochastic
gradient descent (SGD) and backpropagation to minimize
the loss function.

3.3 Analysis of receptive field size

As mentioned above, increasing receptive fields of different
sizes in the network is an effective means to overcome the
issue of scale variations for still image crowd counting.
In the CNN architecture, the receptive fields of different
sizes are likely to capture characteristics of crowds at
different scales. Therefore, it is natural to use receptive
fields of multiple sizes in a CNN architecture to suppress
the perspective distortion and scale variations.

In [34], Google proposed their third version of the
Inception architecture. They presented that a 5 × 5
convolution can be replaced by two-layer 3×3 convolutions
with the same input size and output depth (as shown in
Fig. 5). So, we think that the convolutions with kernels of
different sizes in a traditional single column CNN can be
viewed as a receptive field of a single size. In [35], the

Fig. 4 The architecture of
Skip-connection Convolutional
Neural Network for crowd
counting. In each multi-scale
unit, the green and white cubes
are input and output feature
maps respectively. The blue
rectangle in the multi-scale unit
represents the convolutional
layer
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Fig. 5 Illustration of two 3 × 3 convolutional layers replacing a 5 × 5
convolutional layer

author provided the calculation formula of the receptive
field size as follows:

jn+1 = jn × s (5)

rn+1 = rn + (k − 1) × jn (6)

where rn is the receptive field size upto the nth layer. k

is the convolution kernel size of the current layer. s is
the convolution stride size. jn is the distance between two
adjacent features of the nth layer. The initial values of j0
and r0 are both 1. Receptive field sizes of CNNs can be
calculated by iterating (6).

Existing multi-column crowd counting methods extract
features of a scale from each column. Multi-column
networks usually consist of two or three columns, as too
many layers will lead to large memory consumption. As
a result, there are only two or three receptive fields of
different sizes in the network. Take MCNN [2] as an
example, it only contains three sizes of receptive fields in
three parallel columns and the receptive field sizes are 48,
34 and 20 respectively. However, our SCNN overcomes this
limitation by the reuse of low-level features. Each skip-
connection adds an extra receptive field without introducing
a CNN column. Considering our proposed multi-scale
unit, it is composed of three convolutional layers and the
input of the multi-scale unit combined with the output of
each convolutional layer works as the input of the next
convolutional layer. There are three sizes of receptive fields
in a multi-scale unit. Suppose the convolution kernel size

in the multi-scale unit is 7 × 7 which is used in our
SCNN. The calculation results of the receptive field sizes
are 19, 13 and 7. Our proposed SCNN architecture cascades
four multi-scale units. This design is more efficient than
skip-connections across the entire network (i.e. skip net).
Our unit style network architecture makes the number of
receptive field of different sizes increase exponentially.
For example, cascading two multi-scale units of different
convolution kernel sizes can produce nine sizes of receptive
fields. In our SCNN, the convolution kernel size of the first
three multi-scale units is 7×7, and another one is 5×5. Due
to the same convolution kernel size and repetition, there are
33 kinds of receptive field sizes in the SCNN. The largest
size of the receptive field in the SCNN is 240, and the
smallest size is 84.

The analysis of the receptive field size demonstrates
that our proposed SCNN contains more receptive fields
than the previous architectures. The gap between the
largest size of the receptive field and the smallest one is
quite large, and it is adapted to crowd scenes of diverse
scales. Compared with other multi-column architectures,
our proposed architecture can extract more multi-scale
features with fewer convolutions, and deepen the network.

4 Scale-related trainingmethod

In this section, we propose a novel scale-related training
method to improve the performance of complex scene
crowd counting. Our training method augments the training
set with two scales of training samples, and trains the
SCNN in two stages. As we know, the deep convolutional
neural network is a data-driven technology, which requires
a large amount of data to train the network parameters.
The amount of data directly influences the performance
of the network. However, existing crowd counting datasets
have only a few hundred images and they are not sufficient
for training the CNN. Therefore, the dataset augmentation
scheme is significant to increase the number of training
samples. Cropping patches with overlap from each training
image is a common training set augmentation technology.
However, Marsden et al. [36] found that the pixel-level
tasks can potentially overfit when the patches overlap. They
proposed a training set augmentation scheme to ensure there
is no redundancy.

Following their work, we propose the scale-related train-
ing method. The augmentation scheme without redundancy
may reduce training samples because of the limitation of
patches without overlap. In order to involve more scale
information in the training set and increase training samples,
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we employ the augmentation scheme without redundancy to
crop two scales of patches from each training image. Then
the training samples of the two scales are adopted to train the
CNN, individually. The method is described in detail below.
We first resize the spatial resolution of training images to 1.5
times of the original size and evenly crop each image into 9
patches without overlap. After screening out the patches that
have no people, all the remaining patches as well as their
horizontal flips constitute the first training set. Next, we
crop 4 patches from each training image of the original size,
and each patch is 1/4 size of the image. The patches together
with the horizontal flips are taken as the second training set.
During training, we first train a CNN with the first training
set. We then use the first trained weight parameters to ini-
tialize the CNN and fine-tune them with the second training
set.

The scale-related training method can improve the
counting performance. Distinct from the image pyramid
method, our proposed method trains CNNs in two stages
according to the sample scale instead of training with
multi-scale samples at the same time. The differences
overcome the redundancy and patches overlap which can
lead to overfit. We evaluate our training method on the
ShanghaiTech Part A and Part B training sets with our
SCNN. As shown in Table 1, our training method results in
improvements in crowd counting accuracy and robustness.

5 Experiments

We evaluate our SCNN on three crowd counting bench-
marks which belong to two datasets UCF CC 50 [1] and
ShanghaiTech [2]. The benchmarks are representative in
terms of scale, scene and congestion level. Compared with
the state-of-the-art methods, our model achieves competi-
tive performance on accuracy and robustness. All the exper-
iments are built on the CNN training framework named

Table 1 Performance comparison of different training methods on
ShanghaiTech dataset

Method Part A Part B

MAE MSE MAE MSE

Training with the first training set 113.4 192.7 22.4 37.7

Training with the second training set 101.3 159.6 17.2 27.7

The scale-related training method 90.8 134.1 16.8 27.4

Bold entries indicate the best MAE/MSE performance of all methods

Caffe [37]. NVIDIA GTX TITAN X GPU cards are also
used to accelerate the computation.

5.1 Evaluationmetric

Following the common evaluation metrics [24], we choose
the mean absolute error (MAE) and the mean squared
error (MSE) to evaluate the accuracy and robustness of
different methods. The MAE and MSE are formulated as
follows:

MAE = 1

N

N∑

i=1

|zi − ẑi | (7)

MSE =
√√√√ 1

N

N∑

i=1

(zi − ẑi )
2 (8)

where N is the number of images in the test set. zi and ẑi

are the actual number of people and the estimated number
of people in the ith test image, respectively.

5.2 ShanghaiTech dataset part A

ShanghaiTech dataset is the largest crowd counting dataset
known to date, which contains 1198 annotated images
for a total of 330,165 people. It is well-labeled by two-
dimensional coordinates of the centers of people heads
and consists of Part A and Part B. Part A contains 482
images of high congestion level (Max 3139 people), which
is collected from the Internet. There are 300 images in
the Part A training set and the remaining 182 images are
employed to test.

The scale-related training method discussed in Section 4
is employed to augment the training set and train the
network model. We choose the adaptive Gaussian kernel
to generate the density maps, since the images in Part A
are high density. We use the SGD to optimize the network
parameters with momentum of 0.9 and weight decay of
0.0005. The learning rate policy is set to step with the base
learning rate of 1e−6. All the parameters are initialized by
Gaussian weight initialization with a standard deviation of
0.01. Our method in action on an image of Part A test set is
shown in Fig. 6.

We compare our method with other 5 methods. Zhang
et al. [24] first used a multi-task CNN to estimate the
density map for crowd counting. A regression-based method
is further compared with ours, which extracts Local Binary
Pattern (LBP) features on the input images and predicts
the number of people with ridge regression (RR). MCNN
and MCNN based crowd count regression (MCNN-CCR)
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Fig. 6 The estimated density maps and ground truth density maps of our SCNN model on the ShanghaiTech test set

are proposed in [2]. We also compare our work with
a single column FCN with a non-redundant training set
augmentation scheme [36]. The performances of all the 5
methods on ShanghaiTech Part A are provided in Table 2.
The MAE and MSE of our method on Part A are better than
others.
5.3 ShanghaiTech dataset part B

ShanghaiTech dataset Part B is quite different from Part A.
Part B contains 716 images, of which 400 images are for
training and 316 images are for testing. The images of
Part B are medium congestion level (Max 578 people) and
taken from the busy streets of Shanghai. Scale variations of

Table 2 Performances of different methods on ShanghaiTech dataset
Part A

Method MAE MSE

Zhang et al. [24] 181.8 277.7

LBP+RR 303.2 371.0

MCNN-CCR 245.0 336.1

MCNN 110.2 173.2

Marsden et al. [36] 126.5 173.5

Our method 90.8 134.1

Bold entries indicate the best MAE/MSE performance of all methods

these images are vast and it is very suitable to evaluate the
performance of our method.

We also use the scale-related training method to augment
the training set and train the model. All the hyper parameters
for training and the network initialization parameters are the
same as the Part A. We choose the same spread in Gaussian
kernel to generate ground truth density maps instead of
the adaptive Gaussian kernel. The images in Part B are
relatively sparse and the distance of people in front of the
camera is far away. Therefore the adaptive Gaussian kernel
with one single β is difficult to describe the actual head
sizes.

Table 3 Performances of different methods on ShanghaiTech dataset
Part B

Method MAE MSE

Zhang et al. [24] 32.0 49.8

LBP+RR 59.1 81.7

MCNN-CCR 70.9 95.9

MCNN 26.4 41.3

Marsden et al. [36] 23.8 33.1

Our method 16.8 27.4

Bold entries indicate the best MAE/MSE performance of all methods
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Fig. 7 Comparison of ground truth count and estimation count for images on ShanghaiTech dataset: We evenly divide test images into 10 groups
according to increasing the number of people. Crowd count represents the average crowd number of images in each group

5 methods for evaluating Part A are also used to evaluate
Part B. Table 3 shows the performance of 6 methods
including ours on Part B and our method achieves state-
of-the-art performance. Figure 6 shows a test image in
Part B together with its estimated and ground truth density
maps.

Following the work of [2], we also evenly divide the test
images in Part A and Part B into 10 groups in ascending
order of the number of people, in order to further analyze
the performance of our method. We compare the actual
count and estimation count of each group and plot a line
chart as shown in Fig. 7. The fold lines of actual count and
estimation count are very close. The result demonstrates that
our method is of high accuracy and robust to large variation.
In the medium congestion level crowd scene, the estimation
count of our method is almost the same as the actual count.
It proves that our method is effective in overcoming scale
variations.

5.4 UCF CC 50 dataset

The UCF CC 50 dataset is a very challenging crowd
counting dataset due to high crowd density and less training
images. It only contains 50 images collected from the
Internet and the crowd in the image is extremely congested.
The crowd count of each image is between 94 and 4543
with an average of 1280 people per image. As the dataset
publishers have taken, we perform a 5-fold cross validation.
To augment the training set, we crop 4 patches from each

training image without overlap and each patch is 1/4 size of
the image. The adaptive Gaussian kernel is also used.

We compare our method with other 8 methods on the
UCF CC 50 dataset. The first three methods [1, 15, 38]
adopted the handcraft features and regression models to
estimate the people count of the input images. The last
five [2, 4, 24, 25, 39] are CNN-based methods with the
multi-scale network architecture. Table 4 illustrates that our
method achieves the best MAE and competitive MSE. The
experimental results prove that our method is still effective
for high crowd density. Figure 8 shows a test image in UCF
CC 50 together with its estimated and ground truth density
maps.

Table 4 Performances of different methods on UCF CC 50 dataset

Method MAE MSE

Rodriguez et al. [38] 655.7 697.8

Lempitsky et al. [15] 493.4 487.1

Idrees et al. [1] 419.5 541.6

Zhang et al. [24] 467.0 498.5

CrowdNet [4] 452.5 −
Hu et al. [25] 431.5 438.5

MCNN [2] 377.6 509.1

Zeng et al. [39] 363.7 468.4

Our method 346.6 477.5

Bold entries indicate the best MAE/MSE performance of all methods
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Fig. 8 The estimated density map and the ground truth density map of our SCNN model on the UCF CC 50 test set

6 Conclusion

In this paper, we proposed a Skip-connection Convolutional
Neural Network for still image crowd counting, which can
achieve high counting accuracy and robustness facing the
issues of scale variations and perspective. We evaluate our
model on three crowd counting benchmarks and our method
outperforms the state-of-the-art crowd counting methods. A
scale-related training method is also proposed suppressing
the influence of scale variations. The experimental results
demonstrate the effectiveness of our method. In the future
work, we will further study the CNN-based crowd counting
in the surveillance video which is close to industrial
applications.
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