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Abstract
Influence maximization, i.e. to maximize the influence spread in a social network by finding a group of influential nodes
as small as possible, has been studied widely in recent years. Many methods have been developed based on either explicit
Monte Carlo simulation or scoring systems, among which the former perform well yet are very time-consuming while the
latter ones are efficient but sensitive to different spreading models. In this paper, we propose a novel influence maximization
algorithm in social networks, named Reversed Node Ranking (RNR). It exploits the reversed rank information of a node
and the effects of its neighbours upon this node to estimate its influence power, and then iteratively selects the top node
as a seed node once the ranking reaches stable. Besides, we also present two optimization strategies to tackle the rich-club
phenomenon. Experiments on both Independent Cascade (IC) model and Weighted Cascade (WC) model show that our
proposed RNR method exhibits excellent performance and outperforms other state-of-the-arts. As a by-product, our work
also reveals that the IC model is more sensitive to the rich-club phenomenon than the WC model.

Keywords Influence maximization · Social network · Reversed rank · Spreading model

1 Introduction

Social networking services such as Twitter, Facebook and
WeChat provide convenient platforms where people can
interact with each other without being limited by time and
space. The people and their relationships built through these
platforms constitute various social networks, through which
a message can travel insanely wide and fast. The word-of-
mouth manner of social networks is found of great value
for viral marketing and social advertising. Compared to
the traditional ways, viral marketing is based on the trust
within individuals’ close social relationships like families,
relatives, friends and co-workers. Research has shown
that people tend to believe the information coming from
their close social circles far more than that from general
advertisement channels such as TV, newspapers and online
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ads[3]. A key and difficult point is to find the individuals
who can spread information efficiently to more of their
close circles. The problem of influence maximization is
hence raised, which aims to discover a small group of people
who can trigger the maximal number of the remaining to be
involved in information spreading.

In recent years, this emerging research branch has
obtained significant attention from both industry and
academia [18]. The problem was first studied by Domingos
and Richardson [7, 20] from an algorithmic perspective, and
has attracted much research interest ever since. Especially
in the recent decade, lots of algorithms have been proposed
which generally can be divided into two categories: the
methods based on explicit Monte-Carlo simulation results,
such as Greedy [10] and CELF [12], and those based on
a specific scoring system, like Degree and DegreeDiscount
[4]. The former ones can usually get better performance
with theoretical guarantee, while their high computational
burden often makes them inapplicable to large-scale
networks. The latter ones are efficient with respect to time,
while they are sensitive to different networks and spreading
models with unstable performance.

In this paper, we propose an influence maximization
algorithm named Reversed Node Ranking (RNR), which
finds influential seed nodes by exploiting the ranking
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information of a node to estimate its influence power. The
advantages of utilizing the ranking are generally two-fold.
First, the ranking of nodes contains global information
compared with most scores which are designed based on
local information. Second, the resolution of node ranking
is much higher than the degree-based centralities, which
means a lot of nodes share the same degree and meanwhile
each node has its unique rank. Besides, we exploit the
reversed node ranking as the weight for each node and
present two different optimization strategies.

To evaluate the performance of our proposed RNR
algorithm for influence maximization in social networks,
we use both Independent Cascade model (the IC model)
and Weighted Cascade model (the WC model) to measure
the influence spread of seed nodes selected by our method
and several other baselines including Degree, PageRank,
DegreeDiscount, ProbDegree, LIR and Greedy. Compared
with these baseline algorithms, our RNR algorithm always
gives better performance, even superior to the Greedy
algorithm under the IC model for some networks. Moreover,
we present two optimization strategies to tackle the rich-
club effect. As a by-product, we find that the IC model is
more sensitive to the rich-club effect than the WC model.

The remainder of this paper is organized as follows. In
Section 2, we present some core concepts concerning to
the influence maximization problem and elaborate on the
related literature. Section 3 describes our proposed method
in details. Section 4 presents the experimental results under
both the IC model and the WC model on real-world
networks. Final conclusions will be given in Section 5.

2 Preliminaries and related works

2.1 Notations and preliminaries

Social network A social network is denoted as G(V, E)

where V and E are the sets of nodes and edges respectively.
The number of nodes is usually denoted as either |V | or N ,
and the number of edges is usually denoted as either |E| or
M .

Independent cascade model Given a network G and a
constant p which is the spreading probability during the
whole spreading process, the IC model works as follows.
If at time t , v is active and its neighbour u is inactive, v

will try to infect u with the probability p. If this process
is successful, u will be active at time t + 1. However, no
matter it succeeds or not, v has only one chance to infect
u. Besides, if u has more than one neighbour, the order
of the neighbours that v will try to infect is arbitrary. The

spreading process starts from the initial seed nodes until no
new node can be activated.

Weighted cascade model The WC model works just the
same as the IC model, except for the spreading probability
that is somehow different. In the IC model, the spreading
probability that v can infect u (denoted by p(v, u)) is a
constant, while the p(v, u) in the WC model is defined as
1/d(u) where d(u) represents the degree of node u.

Influence spread Given a social network G, a set of seed
nodes S and a spreading model, the influence spread σ(S)

of the set S is the total number of both the seed nodes and
the nodes that have ever been activated during the whole
spreading process under the given spreading model.

Since the spreading is a stochastic process, the expected
value of σ(S) is usually obtained by performing a
considerably high number (typically 10,000) of Monte-
Carlo simulations.

Influence maximization Given a social network G and an
integer k, the influence maximization problem needs to find
k nodes (called seed nodes) such that the expected influence
spread of these nodes is maximal.

Rich-club effect The rich-club phenomenon is that the rich
nodes (i.e. a small number of nodes with large numbers
of links) tend to connect with each other [23]. For the
influence maximization problem, nodes with a higher
degree always have stronger influence power. Hence, if
picked only according to the influence power, many of the
seed nodes may connect with each other, which reduces the
influence spread since there will be much overlap within
their influence scope.

To evaluate an influence maximization algorithm, the
influence spread σ(S) is usually computed with S denoting
the node set containing k seed nodes output by the algorithm
[1, 4, 5, 10, 16]. Besides, the stability and scalability of
an algorithm is often checked by comparing its σ(S) with
that of other algorithms under different spreading models,
different network sizes and different k [4, 5, 10]. Obviously,
a greater value of σ(S) indicates the higher quality of
selected seed nodes and hence also better performance of
the algorithm [1, 10].

2.2 Related works

The Monte-Carlo simulation is to simulate the spreading
behaviour of each node throughout the network topology
under a given spreading model in order to estimate the
influence spread of a set of nodes. That is to say, the explicit
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influence spread of any given set can be evaluated if given
enough time. Kempe et al. [10] first proved the influence
maximization problem is NP hard. They also found the
problem is submodular, based on which they presented the
Greedy algorithm that can guarantee the influence spread to
be within (1− 1/e) of the optimal solution. However, when
adding a new seed to the current set, the Greedy algorithm
requires to find the node that brings the maximal gain to
the influence spread of the current set. This process costs a
huge amount of time since it needs to perform the Monte-
Carlo simulation on all possible combinations of the current
set and the remaining nodes. To overcome this drawback,
Leskovec et al. [12] presented the CELF algorithm which is
700 times faster than the Greedy algorithm. They exploited
the submodularity based on the simple idea that the marginal
gain of a node in the current iteration cannot be better than
that in the previous iterations. Moreover, Goyal et al. [9]
presented the CELF++ algorithm which further optimizes
the CELF algorithm but only brings limited improvements
[1]. Generally, this category of algorithms performs quite
well for influence spread in social networks as they always
choose high-quality seed nodes. But they are still too time-
consuming when compared to the algorithms based on the
scoring system. This is because the submodularity of the
influence maximization problem is not strictly guaranteed
unless influence spread is evaluated through a large number
ofMonte Carlo simulations [5], which will lead to expensive
computation.

The idea of the scoring system is to calculate a score
for each node according to specific rules and pick the node
with the highest score as the seed node iteratively. Some
rules may require to refresh the scores when a seed node
is picked out. A scoring system is usually designed based
on classical indicators such as Degree, Betweenness [8],
Closeness [2], and PageRank [17], etc. Among them, the
Degree takes the degree (i.e. number of neighours) as the
score for each node, and iteratively picks the node with
the highest degree as the seed node. The DegreeDiscount
algorithm [4], however, discounts a node’s score once a seed
node is picked out. Its performance is much better than the
Degree, but still inferior to that of the Greedy algorithm,
mainly because its scoring system is essentially only based
on the degree. Nguyen et al. [16] proposed the ProbDegree
algorithm which considers the propagation probabilities of
nodes in the network individually as well as the effects of
a node’s neighbours. It scores a node according to not only
its own degree but also the differences of its neighbours.
Besides, after a seed node is picked out, the scores of
its neighbours will be reset to zero to tackle the rich-
club phenomenon [6, 23]. Analogously, Wang et al. [22]
proposed the DegreePunishment algorithm which applies a

punishing strategy to the neighbours of the selected seed
nodes. The difference is that when discounting or punishing
the neighbours, the DegreePunishment exploits the degree
of the selected seed nodes. Liu et al. [13] proposed a fast
and efficient algorithm named LIR. Its key idea is to find the
nodes with locally maximal degree. First, the LIR filters out
the nodes with an LI value bigger than zero. Then, each node
is given a score equal to its own degree. Finally, seed nodes
are selected according to their scores. These scoring-system
based algorithms are much faster than those based on the
Monte-Carlo simulation results. However, most of them
have inferior performance to that of the Greedy algorithm.
In fact, Greedy algorithm usually achieves better influence
spread and is more stable on different networks or under
different spreading models.

The Monte-Carlo simulation methods can obtain the
actual marginal gain of influence spread for any node based
on an arbitrary seed set. Therefore, they can guarantee their
performance to be within (1 − 1/e) of the optimal solution.
Theoretically, the same seed nodes will be obtained with
these algorithms, but with different runtime which is still too
much after several improvements. Comparatively, under a
scoring system, all nodes will be scored according to certain
rules. Thus the scoring-system based algorithms are much
faster since they only need to score each node within one
or several formulas. However, the influence maximization
should be a global optimization problem while most scoring
systems are based on the degree that only reflects local
information. Besides, most scoring systems do not have a
good discrimination ability when many nodes with the same
degree sharing a same score for which however the topology
is always different. Moreover, a lot of scoring systems are
designed without taking into account the spreading model.
They often equate the IC model and the WC model and use
the same optimization strategy.

2.3 Illustration

Take the network in Fig.1 as an example, where we show
the limitations of some scoring-system based algorithms
and also the advantage of our algorithm. We compute the
scores of all the nodes with the Degree, the DegreeDiscount,

Fig. 1 A small network consisting of 8 nodes
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Table 1 Results of different
algorithms on the small
network in Fig. 1

Node ID Degree DD value ProbD value RNR value Influence

N1 3 3 6.204 15.010 3.773

N2 1 −1 2.602 6.738 2.740

N3 2 −2 4.136 8.272 3.130

N4 1 1 2.068 3.136 2.372

N5 3 −3 7.272 17.612 3.945

N6 2 -0.534 5.204 12.476 3.516

N7 3 3 6.204 14.011 3.708

N8 1 −1 2.602 5.204 2.686

the ProbDegree and our RNR algorithm. For comparison,
we perform the Monte-Carlo simulation for 100,000 times
to get the specific influence spread of each node. Detailed
results are shown in Table 1.

According to the influence value, the nodes should be
ranked in the following order: N5, N1, N7, N6, N3, N2,
N8, N4. It is clear that three nodes, namely N1, N5 and
N7, share the same max degree of this network. Thus it
will be hard to pick the first seed node with the Degree.
Normally, the node with the smallest ID number is picked
in this case. However, the influence power of these nodes
with the same score are actually different and picking
arbitrarily is obviously improper. The same problem also
arises for the DegreeDiscount. The score computed by the
DegreeDiscount (referred to as DD value in Table 1) has low
resolution. The DegreeDiscount first picks N1 as the seed
node (as N1 has a smaller Node ID compared to N5 and
N7), which results in iterative discount on the DD value of
N5. Thus the N5 has the lowest DD value at the end while it
actually is the strongest spreader. Although the ProbDegree
can pick the first seed node correctly, it still meets such
a node selecting problem in the selection of the second
seed node since the ProbD values of N1 and N7 are the
same. Since RNR exploits the node ranking wich has high
resolution, the RNR values of these nodes are different from
each other, with an order as N5, N1, N7, N6, N3, N2, N8,
N4. Besides, it is worth noting that the ranking acquired by
the RNR algorithm is the same as the ground truth.

3 Reversed Node Ranking (RNR)

3.1 Innovation

The degree is a parameter that is often used in the scoring
systems. A higher degree of a node often leads to stronger
influence power, but they are not completely linearly
dependent. Normally, a node with strong influence power
will bring more benefits to its neighbours. Or reversely, a
node will have stronger influence power if its neighbours

are more influential. Therefore, we propose a ranking-based
algorithm considering the following two aspects.

– If the degree of a node is higher, the node should have
stronger influence power.

– If the neighbours of a node are more influential, the
node should have stronger influence power.

As aforementioned, the resolution of ranking is much
higher than that of the degree-based centralities, so the
proposed algorithm utilizes the rank of the nodes to estimate
their influence power.

3.2 Primary algorithm

Based on the above consideration, the algorithm is designed
as follows.

Starting from a given ranking r , each node v will get
its own rank according to the r . Noted that r maps from
indices to nodes and rank maps from nodes to indices, i.e.,
for each positive integer i, r(i) indicates the node ranking
the ith in the array and rank(i) represents the rank of node
i. Thus, it is tenable that rank(r(i)) = i. Then, each node
will be given a weight equal to its reversed rank as described
in (1).

reversed rank(v) = N + 1 − rank(v) (1)

Exploiting the reversed rank of each node as described in (1)
brings three benefits. Firstly, it is easy to calculate with time
complexity of O(N). Secondly, it accords with the fact that
the node with a higher rank has stronger influence power.
Thirdly, due to the high resolution of the ranking, each node
has a unique weight.

Next, the algorithm calculates each node’s RNR value
according to (2).

RNR(v) = reversed rank(v)

+
∑

u∈neigh(v)

reversed rank(u) ∗ p(v, u) (2)

A node with a higher degree will have a higher RNR
value as its RNR value will be accumulated by more
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reversed rank(u). Also, the RNR value of a code will be
higher if reversed rank(u) of its neighbours is bigger. In
other words, more neighbours or bigger reversed ranking
of the neighbours will bring gains to the RNR value of the
centred node.

After the RNR value is calculated for all the nodes, the
algorithmwill rank the nodes to get a new ranking according
to their RNR values. Then, the RNR calculating process and
the node sorting process will be repeated until the ranking is
of no difference between two iterations. When the ranking
reaches stable, the algorithm picks the node with the highest
rank as a seed node and also deletes this node from the
network. The whole process will be repeated until it finds k

seed nodes in total.
The primary algorithm is summarized in Algorithm 1.

The input includes the network G, the number of seed nodes
k and an initial ranking r .

3.3 Advanced algorithms with optimization
strategies

The primary algorithm provides the basic framework
for selecting the seed nodes. However, the rich-club
phenomenon that selected seed nodes may be adjacent to
each other will make the influence scope highly overlapped
among the seed nodes. To deal with this issue, we present
two different optimization strategies.

– Once a seed node is chosen, delete its neighbours from
the network.

– When calculating the RNR value of node v, reduce a
neighbour’s contribution if the neighbour is adjacent to
some seed nodes.

The algorithm with the first optimization strategy is
named RNR ND (Neighbour Delete). After a node is chosen
as a seed node, the RNR ND deletes both the node and its
neighbours from the network. The whole process is formally
depicted in Algorithm 2.

The algorithm with the second optimization strategy is
named RNR NW (Neighbour Weaken). Instead of directly
deleting neighbours of the seed nodes from the network,
the RNR NW chooses to weaken the neighbours that are
adjacent to the seed nodes when calculating the RNR value.
The gain of the RNR value that a neighbour u would bring
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to the centred node should be reversed rank(u) ∗ p(v, u).
If the neighbour u is already adjacent to a certain number of
seed nodes (denoted as neigh seed(u)), the gain it brings
to the centred node will be reduced since it may have
already been activated by seed nodes with the probability
of 1 − ∏

w∈neigh seed(u)(1 − p(w, u)). Thus, the expected
gain it will bring to the centred node is reversed rank(u)∗
p(v, u)∗∏

w∈neigh seed(u)(1−p(w, u)). The whole process
of RNR NW is formally depicted in Algorithm 3.

The optimization strategy of RNR ND seems kind of so
brute that there will be no connections between all the seed
nodes. In contrast, the optimization strategy of RNR NW
is smoother as the nodes will be continuously weakened
during the whole process. The two strategies are targeted at
and thus suitable for different spreading models, which will
be exhibited in the following experiments.

3.4 Impact of initial ranking

Both RNR ND and RNR NW need the input of a network
G, the seed number k and an initial ranking r . G and k

are affirmatory under a given circumstance while r can be
variable. Thus, we are interested in the impact that different
initial rankings will make. To be exact, we intend to check
whether different initial rankings will affect the final results
of the algorithms. We explore this problem by running
both RNR ND and RNR NW with four initial rankings as
follows.

– Degree: The initial ranking is sorted in a descending
order by degree.

– PageRank: The initial ranking is sorted in a descending
order by the PageRank value.

– DegreeDiscount: The initial ranking is the result of the
DegreeDicount algorithm.

– Node ID: The initial ranking is the same as the node ID
of the network.

We get the first 50 seed nodes with different initial
rankings using RNR ND and RNR NW respectively.
Besides, we use the Jaccard index to measure the similarity
among the seed nodes obtained from the four different
initial rankings. The experiments are conducted on the
NetScience network [15].

As shown in Figs. 2 and 3, different initial rankings
barely make any difference to the RNR algorithm. Starting
from four different initial rankings, both RNR ND and
RNR NW get the same 50 seed nodes eventually. The
fluctuations of Figs. 2 and 3 are caused by the occasionally
opposite selection order (mostly occurring with the initial
ranking of Node ID) between two successive seed nodes. It
is the reason why the Jaccard coefficient decreases a little
bit and then goes back to 1 immediately.
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Fig. 2 Jaccard index between seed nodes with different initial rankings
using RNR ND

Therefore, we use the ranking of degree for the algorithm
as the degree is easier to calculate compared with PageRank
and DegreeDiscount and more stable compared to Node ID.

3.5 Time complexity analysis

To pick a seed node, the Algorithm 2 needs to run loops until
the ranking r is stable. Each loop containing the following
four steps.

– Lines 3-8, which requires O(N) to initialize the
reversed rank for each node.

– Lines 9-11, which requires O(〈d〉N ) to compute the
RNR value for all nodes.

– Lines 12, which requires O(NlogN) to sort the series.
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Fig. 3 Jaccard index between seed nodes with different initial rankings
using RNR NW
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– Lines 13, which requiresO(N) to compare whether two
series are the same.

In summary, it requires O(N +〈d〉N +NlogN) for each
loop. If it takes at most q loops for the ranking r to get
stable each time, the whole time complexity of Algorithm 2
is O(kq(N + 〈d〉N + NlogN)), which can be simplified to
O(kq(M+NlogN)) where M is the number of edges in the
network. The situation is roughly the same for Algorithm 3,
which means the time complexity is O(kq(M + NlogN))

for both RNR ND and RNR NW.

4 Experiment

4.1 Dataset

In this paper, we conduct experiments on five different
networks of the real world. (i) NetScience [15]: a
coauthorship network of scientists working on network
theory and experiment. (ii) Ca-GrQc [11]: a collaboration
network of Arxiv General Relativity. (iii) Gnutella08 [11,
21]: a Gnutella peer to peer network from August 8, 2002.
(iv) Ca-HepTh [11]: a collaboration network of Arxiv High
Energy Physics Theory. (v) WordNet [14]: a lexical network
of words. Detailed features of these networks are shown in
Table 2.

N and M are the numbers of nodes and edges of the
network respectively. 〈d〉 and dmax denote the average
degree and the max degree of the network. C is the
clustering coefficient that measures the degree to which
nodes in a graph tend to cluster together. pc is the spreading
threshold of the network, which is determined as the
position of the maximum of the susceptibility 〈s2〉/〈s〉2
(where 〈sn〉 is the nth moment of the outbreak size
distribution computed for random initial single spreaders)
[19].

4.2 Baseline algorithms

Experiments are performed with seven algorithms, six of
which are used as comparisons to our RNR algorithm. The
algorithms are listed below.

Table 2 Detailed features of five real-world networks

Networks N M 〈d〉 dmax C pc

NetScience 1589 2742 3.4512 34 0.6378 0.323

Ca-GrQc 5242 14496 5.5307 81 0.5296 0.091

Gnutella08 6301 20777 6.5948 97 0.0109 0.048

Ca-HepTh 9877 25998 5.2644 65 0.4714 0.072

WordNet 146005 656999 8.9997 1008 0.6021 0.020

RNR The algorithm proposed in this paper, which exploits
the ranking information with high resolution for influence
maximization. After several iterations, the RNR can obtain
the ranking containing global information. Besides, two
different optimization strategies (RNR ND and RNR NW)
are designed to avoid the rich-club effect. The time
complexity of the RNR is O(kq(M + NlogN)).

PageRank [17] A node importance sorting algorithm based
on the link relationships among nodes (referred to as PR
in the following text). The PR evaluates each node with a
score which also contains the global information, thus is
used for comparison. The time complexity of the PageRank
is O(q

′
M +kN) where q

′
is the number of iterations for the

algorithm to converge.

DegreeDiscount [4] A classic algorithm based on the nodes’
degree (referred to as DD in the following text). After
picking the node with the biggest degree, the DD will
discount the degree of its neighbours, which can avoid the
rich-club effect to a certain extent. The time complexity of
the DegreeDiscount is O(kN +〈d〉2), which is also claimed
to be O(klogN + M) if using Fibonacci heap [4].

ProbDegree[16] An algorithm taking into account the
degree of both a node itself and its neighbours (referred
to as ProbD in the following text). The ProbD scores a
node with the sum of the node’s degree and its neighbours’
degree multiplied by the spreading probability. The time
complexity of the ProbDegree is O(k〈d〉M).

LIR[13] A simple and fast algorithm. To avoid the rich-club
effect, the LIR directly picks the nodes with the locally
biggest degree as the seed nodes. The time complexity of
the LIR is O(M + kN

′
) where N

′
represents the number of

nodes with LI value being 0.

Greedy [10] (implemented with CELF optimization [12]) A
classic greedy algorithm based on the explicit Monte-Carlo
simulation. Theoretically, the Greedy can guarantee its
influence spread to be within about 63% of the optimal
solution with both stability and universality. Therefore, the
Greedy is usually used as a benchmark to measure the
performance of other algorithms. The time complexity of
the CELF is O(kMNR) where R represents the times of
repetitions needed for the Monte-Carlo simulations.

4.3 Experimental results

We implement the algorithms mentioned above on the five
networks to acquire their seed nodes. However, We do not
acquire the seed nodes of the Greedy under the WordNet
network because it is too time-consuming. We also run the
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Fig. 4 Influence spread of different algorithms under the IC model
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Fig. 5 Influence spread of different algorithms under the WC model
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Monte-Carlo simulation for 10,000 times under both IC and
WCmodel with their seed nodes. Detailed results are shown
as follows.

4.3.1 Influence spread

We run the Monte-Carlo simulation with the number of seed
nodes varying from 1 to 50. The results under the IC model
are shown in Fig. 4 and the results under the WC model are
shown in Fig. 5.

As shown in Fig. 4, the purple and red curves with
circles represent the influence spread of RNR ND and the
RNR NW respectively. Obviously, the influence spread of
RNR ND is generally bigger than the algorithms based on
the scoring system and even exceeds the Greedy (curve in
cyan) on Ca-GrQc network, Gnutella08 network and Ca-
HepTh network. As the DD and the LIR essentially score
a node based on its degree, they show similar performance
with the Degree when k is small. Although the PR scores
each node based on the global information, it still gives poor
performance under the IC model. The is because, in the PR,
each node shares its weight with its neighbours while the
spreading probability is a constant in the IC model, thus
nodes with a higher degree and a greater weight can not
bring greater gains to their neighbours. Besides, it is worth
noting that the performance of the RNR ND is obviously
better than the RNR NWunder the ICmodel. Once a node is
chosen as a seed node, the gain of influence spread brought
by picking its neighbours will be greatly reduced since the
spreading probability is the same between nodes. The results
show that the IC model is sensitive to the rich-club effect.

The case is somehow different under the WC model.
As shown in Fig. 5, the Greedy and the RNR NW are the
two best-performing algorithms in influence spread except
for the WordNet network under which the Degree performs
best. The influence spread of RNR NW and the Greedy
is similar on NetScience network and Ca-HepTh network
while the Greedy is slightly better than RNR NW on Ca-
GrQc network and Gnutella08 network w.r.t. the influence
spread. However, since the spreading probability in the
WC model accords with the weight assignment strategy of
the PR, the performance of PR is significantly promoted.
Moreover, opposite to the case under the IC model, the
performance of RNR NW is now much better than the
RNR ND, since under the WC model, the bigger the degree
of a node is, the less likely it will be spread. When two nodes
with a large degree are neighbours, the probability of their
spreading to each other is small, thus the rich-club effect
will also be weakened. Therefore, a node with a large degree
can still bring a considerable gain if picked as a seed node
even if its neighbours have already been picked. Compared
with the IC mode, the WC model is not that sensitive to the
rich-club effect.

It is revealed by the experiments that the IC model is
more sensitive to the rich-club effect than the WC model.
For the IC model, it is better to use the RNR ND since it
completely avoids the rich-club effect and ensures that seed
nodes will never be neighbours. For the WC model, it is
more appropriate to use the RNR NW which just weakens
the rich-club effect. Actually, the RNR ND under the WC
model will incorrectly delete some high degree nodes.

4.3.2 Spreading speed

Apart from the influence spread, we also consider the
spreading speed of the algorithms, which can be revealed by
the number of activated nodes at each time step during the
whole process. All the algorithms are tested with 50 seed
nodes.

As shown in Figs. 6 and 7, RNR ND (purple curve with
circles) and RNR NW (red curve with circles) achieve high
spreading speed respectively under the IC model and the
WC model, which reflects the efficiency of the proposed
RNR algorithm.

However, since the spreading probability is a constant for
the IC model, some degree-based algorithms which tend to
select the nodes with more neighbours may achieve a faster
speed at the beginning. But their speed will soon slow down
within just a few time steps. Besides, although the spreading
speed of RNR ND is not the most outstanding under the
IC model, it is always better than or at least equal to that
of Greedy which has the state-of-the-art performance. It
is shown that RNR ND is better considering the trade-off
between influence spread and spreading speed.

The spreading speed is more stable under the WC model
as Fig. 7 shows. It is obvious that RNR NW is, by and large,
better than other algorithms based on the scoring system
throughout the timeline on the five networks. Because the
influence spread of RNR NW is a little inferior to that of
Greedy, Greedy could always influence a bit more nodes in
each time step. So that RNR NW is a little worse than the
Greedy in spreading speed.

4.3.3 Relations among seed nodes

To explore the difference between the IC model and the WC
model, we investigate the relations among the seed nodes
of different algorithms. We figure out the number of edges
among the 50 seed nodes picked by these algorithms under
two spreading models. The results are shown in Fig. 8.

We do not show the results of the Degree in the figure
since there are a large number of relations, which makes
it hard to see clearly the figure. We also do not include
the results of the ProbD and the RNR ND since there is
always no relation owing to their optimization strategies.
Besides, We do not show the results under the WordNet
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Fig. 6 Spreading speed of different algorithms under the IC model
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Fig. 7 Spreading speed of different algorithms under the WC model
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Fig. 8 The relations among the seed nodes picked by different algorithms under two models

network since the standard (seed nodes of the Greedy) is
not available. The results of the PR and the LIR are the
same between two spreading models because their scoring
process has nothing to do with the spreading probability.
Compared with the IC model, more relations appear for the
DD under the WC model, for which the changing trend
is the same with the Greedy. As the Greedy always finds
the optimum for each step, the relations among the seed
nodes under the WC model should be more than those
under the IC model. This phenomenon agrees with our
previous observation that the IC model is more sensitive
to the rich-club effect than the WC model. Thus, there
should be fewer relations under the IC model to avoid
the rich-club effect. The seed nodes of RNR ND have no
relation among each other under the IC model and there
are a small number of relations among the seed nodes of
RNR NW under the WC model. Moreover, the numbers of
relations for RNR NW and the Greedy under the WCmodel
are relatively close. The different optimization strategies of
RNR exactly correspond to the features of two different
spreading models and thus give superior performance.

Table 3 Comparison of time complexity among different algorithms

Algorithm Time complexity

Degree O(kN)

Pagerank O(q
′
M + kN)

DegreeDiscount O(kN + 〈d〉2) or O(klogN + M)

ProbDegree O(k〈d〉M)

LIR O(M + kN
′
)

RNR ND & RNR NW O(kq(M + NlogN))

Greedy O(kMNR)

The experiments have shown that although the IC model
and the WC model are both cascade models, the same
strategy usually has different performance under the two
models. Therefore, when designing the influence maximiza-
tion algorithms, the IC model and the WC model should
be treated differently and different optimization strategies
should be considered according to the model’s features.

4.3.4 Comparison of time complexity

The time complexity of both our proposed algorithm and
baseline algorithms are summarized in Table 3. It is shown
that the Degree has the lowest time complexity but its
performance is not satisfactory in terms of influence spread.
The LIR is also lower in time complexity since it is very
simple and finds the nodes with locally maximal degree, but
it only brings limited improvement to the Degree. Since q

and q
′
which denote the number of iterations are usually

constant, the Pagerank and the DegreeDiscount (without
Fibonacci heap) are slightly better than the ProbDegree
and the RNR w.r.t. runtime. However, the performance of
the ProbDegree and the RNR is superior and more stable.
Particularly, the RNR achieves comparable performance in
both influence spread and spreading speed to that of the
Greedy with much less time cost.

5 Conclusion

In this paper, we propose an algorithm with two different
optimization strategies for the influence maximization,
which is named Reversed Node Ranking (RNR). Compared
to existing algorithms, the proposed RNR exploits the
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ranking information with high resolution to iteratively pick
the seed nodes. Besides, the reversed rank is used as the
weight for estimating the influence power. The reversed
rank accords with the fact that the node with a higher rank
has stronger influence power and is unique for each node.
To avoid the rich-club effect, two different optimization
strategies are presented. One ensures that there will be no
connections between seed nodes, and the other reduces
the gain that a neighbour brings to the centred node
if it is adjacent to some seed nodes. Experiments are
conducted under both the IC model and the WC model to
examine and compare the influence spread among different
algorithms. The results show that the proposed RNR
algorithm is superior to most of the algorithms and even
to the Greedy algorithm under the IC model. Furthermore,
the RNR algorithm reveals that the IC model and the WC
model need different optimization strategies due to their
different levels of sensitivity towards the rich-club effect.
We therefore suggest that different spreading models be
treated differently and algorithms be designed in accord
with the model’s features.

For future work, we will try to optimize our algorithm
to reduce its time cost, especially in the sorting part
which occupies most of the runtime. Moreover, we believe
our proposed iterative global ranking framework is of
generality for some scenarios in which global evaluations
are requested, and it can also be adapted in some re-ranking
applications. We will also try to exploit the gap between the
Greedy algorithm and the optimal solution to find out how
much room is left for improvement in this field.
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