
https://doi.org/10.1007/s10489-017-1135-5

Amultiobjective discrete bat algorithm for community detection
in dynamic networks

Xu Zhou1,2 · Xiaohui Zhao2 · Yanheng Liu3,4

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Some evolutionary based clustering approaches for community detection in dynamic networks need an input parameter to
control the preference degree of snapshot and temporal cost. To break the limitation of parameter selection and improve the
quality of detecting communities in dynamic network further, a multiobjective discrete bat algorithm (MDBA) is proposed to
detect community structure in dynamic networks in this paper. In the proposed algorithm, the bat location updating strategy
is designed in discrete form. In addition, turbulence operation and mutation strategy are presented to guarantee the diversity
of the population. The non-dominated sorting and crowding distance mechanism are used to keep good solutions during the
generation. The experimental results both on synthetic and real networks show that MDBA algorithm is competitive and
will get higher accuracy and lower error rate than the compared algorithms.

Keywords Community detection · Multiobjective bat algorithm · Swarm intelligence

1 Introduction

The nodes in complex network can reveal some regular struc-
ture features such as small world effect, while community
structure is another interesting property which is revealed
in the study of networks [1, 2]. In complex networks, com-
munities are groups of nodes with relatively denser edges
within groups than those between them [3]. Community
structure has been considered primarily in the context of
static networks, community detection is one of the most
popular topics in the field of network analysis, and it helps
to understand the potential social structure of users. How-
ever, complex systems are not static in reality. Entities and
their interactions can be created or disappeared resulting in
dynamic effects [4]. The dynamic nature of the network also
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makes it hard for traditional community detection algorithm
to deal with it. Understanding the formation and evolution
of communities is a long standing research topic, identi-
fying and detecting communities in the dynamic networks
not only has particular prominence but also has immediate
applications. Detecting community can be widely applied in
terrorist organization identification, protein function predic-
tion, public opinion analysis and other areas.

The dynamic community detection algorithm is more and
more concerned. In order to discover community structure in
dynamic networks, there are some ways to solve it by multi-
objective optimization method, properly speaking, these algo-
rithms still have room for improvement in accuracy. In this
paper, we focus on bio-inspired algorithm named bat algo-
rithm, it is a novel optimization method that models prey
hunting behaviors of bats. It has lower computational com-
plexity and fewer adjustable parameters. Though it has been
employed to detect community structure in static networks
[5, 6], a discrete bat algorithm is proposed for community
detection in dynamic networks here. The primary contribu-
tions of our algorithms are listed as follows (1) effective bat
location updating strategy is designed in discrete form (2)
mutate operator and turbulence operation are incorporated
to guarantee the diversity of the population. We conduct
experiments on both synthetic and real networks to evaluate
community detection algorithm. In all, the proposed algo-
rithm can get better accuracy and lower error rate than other
algorithms.
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The remainder of this paper is structured as follows. A brief
review of community detection in dynamic networks and intro-
duction of bat algorithm are shown in Section 2. In Section 3,
the proposed discrete algorithm is described in detail. Addi-
tionally, the experiments and their corresponding analysis
are shown in Section 4. In Section 5, conclusions and future
work are explained.

2 Related works and background knowledge

2.1 Related work

There are many literatures solving the problem of dynamic
community detection. The current method of finding commu-
nity changing over time can be divided into two categories.
One category of algorithms is to detect static commu-
nities on each snapshot independently, and to match the
communities detected with the communities found on the
previous one for each snapshot. These methods put com-
munity detection and evolutionary analysis separately [7,
8]. The results obtained by these methods will lead to
unexpected fluctuation. That is to say, for two similar net-
works with tiny modifications, the algorithm can provide
very different results. To overcome the instability of this
kind of approach, the other category takes a unified frame-
work to detect communities and analyze their evolutions, it
detects static communities on the first snapshot, and detects
communities on snapshot t+1 using network at t +1 and
communities at time t . In this line of research, Sun proposed
an incremental density-based clustering algorithm IncOrder
for detecting communities in dynamic networks [9]. It con-
structed a core-connected chain for dynamic network, and
the result is independent of the traversal order. Chakrabarti
first proposed a framework called temporal smoothness
to solve community detection in dynamic networks [10].
cost = α ×SC + (1−α)×T C. It requires maximizing the
accuracy of the clustering and minimizing the difference of
clustering from one time step to the successive one, a param-
eter used by the user to represent the weight of snapshot
cost(SC) and temporal cost(TC). Chi proposed an evolu-
tionary spectral clustering approach and this approach took
the graph cut as a metric for measuring community struc-
ture in the real blog network [11]. A dynamic community
detection algorithm based on the dynamic programming and
exhaustive searching proposed by Tantipathananandh [12],
it has a better performance on the synthetic datasets. Lin
proposed a framework for analyzing communities and evo-
lutions in dynamic networks (FacetNet) [13]. It employs the
nonnegative matrix factorization method, but it needs num-
ber of clusters in advance and it use a parameter controlling
the preference degree of the snapshot cost and temporal
cost.

To avoid a parameter controlling the preference degree
of the snapshot cost and temporal cost. With the devel-
opment of research methods, naturally, dynamic network
community detection can be modeled as a multiobjective
optimization problem to simultaneously the two conflict-
ing objectives of snapshot cost and temporal cost. The
first classic method using multiobjective optimization is
introduced by Pizzui, it is mainly based on multiobjective
genetic algorithm to optimize snapshot quality and temporal
quality simultaneously [14]. They adopted a multiobjective
genetic algorithm to optimize the two objectives Commu-
nity Score (CS) and NormalizedMutual Information (NMI).
It can get good results on small datasets. Zhou presented a
multiobjective Biogeography-based optimization algorithm
with decomposition (MBBOD) for community detection
in dynamic networks [15]. It designed new migration and
mutation operators in BBO algorithm. It automatically pro-
vides a solution representing the best trade-off between
the accuracy of the clustering obtained, and the devia-
tion from one time step to the successive. Ma proposed a
decomposition-based multiobjective community algorithm
to reveal community structure and its evolution in dynamic
networks [16]. It employed the framework of multiobjec-
tive evolutionary algorithm based on decomposition. The
experiment results are good. Gong proposed a commu-
nity detection algorithm in dynamic networks based on the
non-dominated neighbor immune algorithm [17], the exper-
imental results proved the effectiveness of this algorithm.
Pizzui proposed a novel method which optimizes two func-
tions simultaneously [18], it is realized under the framework
of NSGA-II [19]. Multiobjective evolutionary algorithms
existing basically adopt genetic algorithm with NSGA-II or
decomposition for solving community detection in dynamic
network, but other evolutionary algorithms should also be
well studied and it still has room to use other evolutionary
algorithm to improve the accuracy of detecting community
structures in dynamic networks.

2.2 Introduction of bat algorithm

The bat algorithm (BA) is a bioinspired metaheuristic based
on the echolocation system of bats. It is derived from
the principle of echolocation in bats during prey capture
and avoidance of obstacles [20, 21]. Yang designed the
algorithm based on the nature that bats emit ultrasonic
pulses to the surrounding environment with hunting and
navigation purposes. This ability aids the bats in finding
prey in the dark. Inspired by this characteristic of bats,
the optimal value searching process can be regarded as
the echolocation of bats. BA combines the advantages of
PSO and GA algorithm. BA exhibits excellent performance
in solving optimization problems. It has been successfully
used for optimization of job-shop scheduling problem
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[22], feature selection [23] and so on. A multiobjective
bat algorithm is shown for simplicity [24]. Yang used a
weighted sum to combine all objectives fk into a single
objective f = ∑K

k=1 wkfk . The pseudo code of the
multiobjective bat algorithm can be described in Table 1.

3 Description of the proposedmethod

A dynamic network is a series of network snapshots at two
or more time points. Dynamic community detection is the
procedure to find the community structure at every time step
in the continuous changed network along with time. The
definition of the dynamic community detection is described
as follows: Given a dynamic network with T time stepsG =
{G1, G2, ..., GT }. The network at time i can be modeled as
a graph Gi =< Vi, Ei > (1 ≤ i ≤ T ), where Vi is node set
and Ei is edge set. The final partition result of network with
T time steps is P = {P1, P2, ..., PT }, where Pi(1 ≤ i ≤ T )

is the partition result of a network Gi at time i, and it is
composed of m communities Pi = {C1, C2, ..., Cm}.

In this section, the proposed method MDBA for com-
munity detection in dynamic network is described. Firstly,
the framework of MDBA by integrating the non-dominated
sorting and the crowding distance method is elaborated.
Then two objective functions we adopt are introduced. Next
a bat location representation scheme is introduced. In the
end the bat location updating strategy is designed. In addi-
tion, turbulence operation and mutate operator are given to
guarantee the diversity of the population.

3.1 Framework of MDBA

The framework of MDBA by integrating the nondominated
sorting and the crowding distance method is put forward

Table 1 The pseudo code of the multiobjective bat algorithm

in this section. The specific framework of the algorithm is
shown in Algorithm 1. First, a hierarchical agglomeration
algorithm (CNM) [25] is used to get the community
partition result at the first time step. To be pointed, bat
algorithm has the advantages of simple structure, few
adjustable parameters, easy to understand and realize. To
make it available for solving dynamic community detection
problem, it is necessary to design a discrete version of
bat algorithm. From the second time step, a number of
bat population is created based on representation schema
which is introduced in Section 3.3, and then nondominated
solution are obtained after calculating the fitness of bats.
During the iterative procedure (line 7 to line 12), The new
population is generated according to Algorithm 2 which
is a discrete bat algorithm(DBA) with redefined location
updating rules. Next we will make use of crowding distance
and non-dominated mechanism to update the nondominated
solutions. At last, selecting the individual with the highest
modularity value in the Pareto optimal solutions at the end
of each generation, and outputting the network partition
at the current time step. Repeat the above-mentioned
operations until we get the community structure at every
time step.

Algorithm 1 Framework of MDBA

Input: A dynamic network

Output: Network partition at each time

1: Initialize the basic parameters of the algorithm: the size

of the population , the number of time steps , the

maximum number of generations

2: Get the partitioned result of

by adopting the CNM algorithm

3: for 2 do
4: Initialize a fixed number of bat according represen-

tation schema, 2

5: Calculate the fitness value

6: Find the current Pareto optimal solutions

7: Set 0

8: while do
9: Generate new bat population according to Al-

gorithm 2

10: Use non-dominated sorting and crowding distance

to select the top bats from all bats

and update Pareto optimal solutions

11: 1

12: end while
13: Choose an optimal bat

14: Decode the bat to get partition result at time step

15: 1

16: end for
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3.2 Objective functions

As stated in [10], a cost function in the framework
of temporal smoothness composed by two parts, one is
snapshot cost and the other one is temperal cost. Here
modularity (Q)is employed for snapshot cost to measure the
quality of current time and Normalized Mutual Information
(NMI) is employed for temporal cost to evaluate the
similarity between current time and previous time. The
modularity criterion is widely used in accessing the
goodness of the partition, the definition is written as follows
in (1):

Q = 1

2m

∑

ij

[

Aij − kikj

2m

]

δ(ci, cj ) (1)

where ki is the degree of node i, kikj /2m is the connected
probability between node i and node j , δ is Kronecker
function. Aij is adjacent matrix of graph, if there is an edge
between node i and node j , then Aij = 1, else Aij=0. ci

represents the community that node i belongs to. If ci =
cj then δ(ci, cj ) = 1, else δ(ci, cj ) = 0. Q is defined
as the difference between the fraction of edges inside the
community and the expected fraction of edges that would
be in the random graph with the same community division.
In general, Q value is between 0 and 1, and the value
approaching to 1 indicates a strong community structure.

The NMI criterion is used in measuring the similarity
between the true community structure and the detected
community structure [26]. Given two partitions A and
B of a network in communities, let C be the confusion
matrix whose element Cij is the number of nodes in the
i-th community of the partition A that are also in the j -
th community of the partition B. The normalized mutual
information of partition A and B is defined as shown in (2)

NMI = −2
∑cA

i=1

∑cB

i=1Cij log
(
CijN/Ci.C.j

)

∑cA

i=1 Ci. log (Ci./N) + ∑cB

j=1 C.j log
(
C.j /N

)

(2)

where cA is the number of groups in the partition A, cB is
the number of groups in the partition B, Ci. is the sum of the
elements of C in row i and C.j is the sum of the elements
of C in column j , and N is the number of nodes. If A = B,

the NMI value is 1. If partition A and B are completely
different,then the value of NMI is 0.

3.3 Bat location representation

It is noteworthy that the original bat algorithm has been
applied to solve continuous problems. But community
detection is a kind of discrete problem. Therefore, some
modification of the original bat algorithm is necessary in
order to prepare it for addressing community detection.
Firstly, it is necessary to construct a reasonable represen-
tation schema to represent the solutions. Each bat should
be encoded to represent a possible and feasible solution
in algorithm. Here we encode the bat based on locus-
based adjacency representation. Suppose each bat xt

i =(
xt
i1, x

t
i2, ..., x

t
id

)
consists of d dimensions, each value of the

j -th dimension xij is set to one node k randomly selected
from the neighbors of node j , nei(j), where nei(j) ={
k ∈ V,Ajk = 1

}
, it is interpreted as a link between node

j and k. The decoding phrase can be accomplished in lin-
ear time. The main advantage of this representation is the
number of cluster will be automatically determined during
decode phrase.

An example of encoding and decoding schema is shown
in Fig. 1. It is easy to implement and it guarantees the
feasibility of calculating the fitness value. Figure 1a is a
small network of 8 nodes, Fig. 1b is a feasible encoding
pattern. Figure 1c is the decoding structure corresponding to
Fig.1b, it partitions the network into two communities, one
community has 4 nodes and the other has 4 nodes.

3.4 Discrete bat algorithm

In the original bat algorithm, the main equation of updating
bat location based on velocity and frequency is shown in
(3)–(5),

fi = fmin + (fmax − fmin)β (3)

vt
i = vt−1

i +
(
xt−1
i − x∗

)
fi (4)

xt
i = xt−1

i + vt
i (5)

Fig. 1 Example of bat location encoding and decoding a a network of 8 nodes b encoding pattern c decoding result
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Where β is a random number, fmin is minimum frequency,
fmax is maximum frequency. Where vt

i is the new velocity,
vt−1
i is the previous velocity of the i-th bat, xt

i is the current
position of the i-th bat, xt−1

i is the previous position of the
i-th bat.

Next, since the location of bat is composed of an integer
vector, the mathematical updating rules in continuous bat
algorithm no longer fit the discrete situation. Therefore, we
redefine them because of the discrete nature of community
detection problem. First of all, a new velocity formula in
proposed in formula(6).

vt
i = vt−1

i +
(
xt−1
i ⊕ xbest

)
fi (6)

For discrete version of bat algorithm, we can not get the
difference by subtraction of current bat and current best bat
directly. It is necessary to propose a new velocity formula.
The velocity at step t designed is given in (6), where vt

i is
the new velocity of the i-th bat, vt−1

i is the previous velocity
of the i-th bat, xt−1

i is the current position of the i-th bat,
xbest is the current best position, fi is the current frequency,
⊕ is XOR. Here, we employ XOR operation to represent
the difference between the current bat and the current best
individual. In fact, bat will adjust its velocity by learning
from the current best. The learning process is actually a
comparison between the positions.

It is known that a new location of bat is based on velocity
and old bat location. Since f is continuous value and the bat
location is integer vectors in our approach, it is necessary to
transform the continuous velocity value obtained in (6) to
discrete value. In order to get the discrete values, we map vt

id

to the solution domain that is composed of 0 and 1 firstly as
shown in the (7–8). After using sigmoid function to map the
velocity, the new bat location formula could be calculated as
shown in (9). If the velocity of the d-th dimention of i-th bat
is equal to zero vt

id = 0 , the new value of d-th dimension
keeps the original one, else the new value is equal to the
value of the d-th dimension of the best bat. The value in
each dimension of the new bat location is effective, each
bat is safe enough to avoid the meaningless divisions of the
original network.

sig(vt
i ) = 1/(1 + exp(−vt

i )) (7)

vt
id =

{
0, if rand() < sig(vt

id )

1 otherwise
(8)

xt
id =

{
xt−1
id if vt

id = 0
xbest
d if vt

id = 1
(9)

The procedure of DBA is given in Algorithm 2. A new
bat population is obtained after Algorithm 2. First of
all, it is to initialize pulse rates, the loudness and pulse
frequency at each bat. Then it is to generate a new location

according to (7)–(9) defined. If a random number is larger
than pulse rates, a new position is generated according to
Algorithm 3, else a new position is generated based on
Algorithm 4, both Algorithm 3 and Algorithm 4 are designed
to keep the diversity of population and avoid algorithm into
local optimum at the same time. When some condition is
satisfied, we keep the new solution and reduce the value of
loudness.

Algorithm 2 The framework of DBA

Input: old population ,nondominated solutions

Output: new population

1: Define pulse frequency at 0 2

2: Initialize pulse rates and the loudness

3: for 1 in do
4: Randomly select a bat from as best

5: Generate a new solution by adjusting frequency and

updating velocities and solutions according to (7)–(9)

6: if then
7: Generate a new bat according Algorithm 3

8: else
9: Get a new bat according Algorithm 4

10: end if
11: if and dominates

12: Accept the new solution and 0.95

13: end if
14: end for

Algorithm 3 is a turbulence operation. It aims to improve
the quality of population to escape from local optima.
The specific implement step of Algorithm 3 is depicted
as follows. Firstly, to get label of each dimension of the
bat after decoding, and then to get a new value of each
dimension based on the strategy. The strategy includes three
steps (line 3 to line 5). It is mainly based on the guidelines
that if most neighbors belong to a cluster, theses neighbors
form a set, and to change the value of current dimension to
a neighbor from the set.

Algorithm 3 Turbulence operation

Input: bat 1

Output: new bat 2 after turbulence operator

1: decode bat 1 to get cluster label of each dimension, and

compute objective values

2: for each dimension of 1 do
3: find all neighbors of and record cluster label

of neighbors

4: find cluster that most neighbors belong to it, and the

most neighbors in cluster is recorded as set

5: select one neighbor randomly from set as new

dimension value of 1 2

6: end for
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Algorithm 4 is introduced to mutate the bat and the
procedure is to be depicted as follows. For each dimension
of the bat, to find the neighbor of each dimension
to form a set and select one neighbor randomly from
neighbor set when the condition is satisfied. Otherwise, the
dimension value keeps unchanged. Mutation strategy can
avoid algorithm into local optimum, it can keep the diversity
of population at the same time.

Algorithm 4 Mutation strategy

Input: bat 1

Output: new bat 2 after mutation operator

1: for each dimension 1 in do
2: if 0.2 then
3: //get the neighbor set of node

4: generate a value in that is different from current

value, then 2

5: else
6: 2 1

7: end if
8: end for

3.5 Computational complexity of MDBA

The time complexity of MDBA algorithm is analyzed. For
each iteration, the non-dominated sorting is O(k(2N)2)

and the crowding distance assignment is O(k(2N)log(2N)),
where N is number of population and k is the number of
objectives.Here, k is equal to 2. The complexity of fitness
computation consists of two parts. Modularity computation
needs O(m), where m is the number of edges, NMI
computation needss O(n), Supposing the total number of
iteration is I , then the time complexity of the algorithm is
O(IN2 ∗ (m + n)).

4 Experimental results and analysis

In this section, the experimentation performed in this study
is detailed. The results obtained by proposed algorithm
are shown and compared with the ones obtained by recent
algorithms including MDPSO, MBBOD and DYNMOGA.
MDPSO is based on particle swarm optimization algorithm.
We employ the main framework in [27], but take different
objectives to solve community detection in dynamic
networks. DYNMOGA is based on genetic algorithm,
MBBOD is a biogeograph based optimization algorithm.
All the experiments conducted have been performed on an
Intel core i5 computer with 2.3 GHz and a RAM of 4
G. Matlab has been used as the programming language.
The parameters setting are as follows after conducting a

series of experiments.The population size N is 100 and the
number of maximum generations gen is 20. The pulse rates
ri is 0.5. The loudness Ai is 0.8. To make the experiments
more accurate, every algorithm has been run 20 times. An
average result of the 20 independent runs is obtained and
compared. The criterions of evaluating the performance
of this algorithm are NMI and the error rate. The error
rate measures the distance between matrix G which stores
the real community partition and matrix Z which stores
the communities obtained by the algorithm. The specific
calculating method is shown in (10), where matrix Z has
n rows and k columns. Every node in n belongs to only
one community. In the same way, matrix G represents the
nodes in the network and the real community partitions of
the network.

Error =
∥
∥
∥ZZT − GGT

∥
∥
∥ (10)

The smaller the error rate value, the better the
performance of the algorithm. If the error rate is 0, then this
illustrates that the experimental results are the same with the
ground truth.

4.1 Synthetic datasets

Two different synthetic datasets are used for testing
algorithms. Synthetic dataset 1 (SYN1) is composed of 10
time steps. It consists of 128 nodes and 4 commnities at
each time step. The average degree of each node is 16
and each node connects to other z nodes in the network.
In order to reflect the dynamic of the network, from the
second time step, 3 members from each community are
randomly selected and put to the other 3 communities. At
the same time, the edges connected with these 3 nodes
are also randomly put into the other 3 communities. The
connecting possibility inside the community is higher than
the connecting possibility outside the community. The value
of parameter z depends on the fuzzy degree of the network.

The comparative average error value of four algorithms
on SYN1 is shown in Fig. 2. Figure 2a is the result for z = 3
and Fig. 2b is the result for z = 5. It is obviously seen that
MBBOD and MDPSO perform better than DYNMOGA at
most time steps. MDBA performs best because it nearly gets
zero error when z = 3 and z = 5.

Next, we use box plot to depict the distribution of error
values for four algorithms with z = 3 and z = 5 in order
to show the statistical decentralization of data at each time step.
As seen fromFigs. 3 and 4, it is worth noticing that even there
are some outliers at each time step for those algorithms, the
performance of MDBA is superior to other three algorithms,
mostly the error value it gets is zero, and the outliers of
MDBA is smaller than those of other algorithms.
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Fig. 2 Comparative average
error value of four algorithms on
SYN1 a z = 3 b z = 5

(a) (b)

(a) (b) (c) (d)

Fig. 3 Statistic value of error of four algorithm on Syn1 of z = 3 aMDBA b MBBOD cMDPSO d DYNMOGA

(a) (b) (c) (d)

Fig. 4 Statistic value of error of four algorithm on Syn1 of z = 5 aMDBA b MBBOD cMDPSO d DYNMOGA
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Fig. 5 Comparative average
NMI of four algorithms on
SYN1 a z = 3 b z = 5

(a) (b)

Figure 5 shows comparing result for the average NMI
obtained by four algorithms. Figure 5a is the result for z = 3
and Fig. 5b is the result for z = 5. It is easy to find that the
performance of MDBA is superior to DYNMOGA, MBBOD
and MDPSO. The results obtained by MBBOD,MDPSO
and DYNMOGA are similiar when z = 3, the average NMI
values of MDPSO is lower than DYNMOGA when z = 3
at some time steps. Furthermore, the NMI value of MDBA
is about 0.99 when z = 5, but the NMI value of other three
algorithms are between 0.96 and 0.98 when z = 5. It means
when z is large and the network is fuzzy, our algorithm can
discover the community structure more accurately.

In order to show the statistical decentralization of data
at each time step, the box plot depicting the distribution of
NMI values for four algorithms with z = 3 and z = 5 are
shown in Figs. 6 and 7 separately. From Fig. 6, it is seen that
MDBA performs best, it nearly gets the true partition results
at each time step. Figure 7 clearly shows that the NMI

value distribution of MDBA is more intensive than other
three algorithms, and outliers of MDBA get higher NMI
value at each time step than those of MBBOD, MDPSO and
DYNMOGA.

The difference between synthetic dataset 2 (SYN2) and
synthetic dataset 1 is that the number of communities in
the synthetic dataset 2 is changing over time. The synthetic
dataset 2 has 256 nodes at each time step, it includes 4
communities at the first time step, and each community
has 64 nodes. From second time step to fifth time step,
randomly select 8 nodes from each community, use these 8
nodes to construct a new community, and for the other time
steps, those 8 nodes return to their original communities.
In this way, the number of communities at ten timestamps
is 4,5,6,7,8,8,7,6,5,4. Moreover, the average degree of each
node in one cluster is equal to the half size of the cluster.
At each time step, 16 nodes are deleted arbitrarily, and then
16 new nodes are added randomly in order to guarantee the

(a) (b) (c) (d)

Fig. 6 Statistic value of NMI of four algorithm on Syn1 of z = 3 aMDBA b MBBOD cMDPSO d DYNMOGA
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(a) (b) (c) (d)

Fig. 7 Statistic value of NMI of four algorithm on Syn1 of z = 5 aMDBA b MBBOD cMDPSO d DYNMOGA

Fig. 8 Comparative average
NMI value of four algorithms on
SYN2 a z = 3 b z = 5

(a) (b)

(a) (b) (c) (d)

Fig. 9 Statistic value of NMI of four algorithm on SYN2 of z = 3 aMDBA bMBBOD c MDPSO d DYNMOGA
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number of nodes in the network is fixed. The meaning of
the parameter z in synthetic dataset 2 is the same as in
the synthetic dataset 1, the bigger the value of z becomes,
the more confusing the network structure is and the more
difficult to detect partitions of network. It simulate the
splitting and merging of communities.

We compare the algorithm proposed with DYNMOGA,
MBBOD and MDPSO in this paper. The comparative
average NMI value of four algorithms on SYN2 is presented
in Fig. 8. The accuracy at each time step when z = 3 is
almost approaching to 100% which is much higher than
MBBOD MDPSO and DYNMOGA algorithm. The NMI
value of DYNMOGA and MDPSO at time 5 and time 6 is
much lower than MDBA and MBBOD. When z = 5 the
values obtained by ours are above 0.99 which are still higher
than other algorithms. The values obtained by MDPSO
algorithm are between MBBOD and DYNMOGA. So we
can get the conclusion that the results on the average values
after 20 independent runs show that the partition results
obtained by our algorithm are very closely approaching the
real results. Generally speaking, MDBA could catch the
merging and splitting of communities.

Figures 9 and 10 show the box plot to illustrate the
distribution of the value of NMI on SYN2 datasets when
z = 3 and z = 5. From Fig. 9 it can be seen clearly that
the distribution of NMI values obtained by MDBA performs
best, it nearly gets the true partition results at each time step.
From Fig. 10 the distribution of MDBA is more intensive
than other three algorithms, the median, lower quartile,
upper quartile even though outliers of MDBA get higher
NMI value at each time step than those of MBBOD,MDPSO
and DYNMOGA. The outlier NMI value at some time steps

Fig. 11 Comparative average error value of four algorithms on football
dataset

obtained by MDBA is still higher than DYNMOGA and
MDPSO.

4.2 Real datasets

The Football dataset is the National Collegiate Athletic
Association (NCAA) Football Division 1–A games, it can
be downloaded in http://www.jhowell.net/cf/scores. The
nodes in the network represent the teams, and the edges
represent the regular season games between the two teams.
We select 119 teams with 12 conferences from 2005 to 2009
as the dynamic datasets over 5 time steps.

(a) (b) (c) (d)

Fig. 10 Statistic value of NMI of four algorithm on SYN2 of z = 5 a MDBA bMBBOD cMDPSO d DYNMOGA
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Fig. 12 Comparative average NMI value of four algorithms on football
dataset

Here, NMI is employed to evaluate the accuracy of algo-
rithms. Figure 11 shows the average error values of year
from 2006 to 2009 obtained by four algorithms. Comparing
with DYNMOGA, MDPSO and MBBOD algorithm, it is
obvious to realize that MDBA algorithm has lowest error.
The error of MBBOD is close to that of MDPSO. Figure 12
shows the average NMI values of year from 2006 to 2009
obtained by four algorithms. The accuracy at each time step
is almost approaching to 98% which is much higher than
other three algorithms.

Next, we visually the community partition with the best
NMI value. The best results(0.981) founded by MDBA in
2009 of 20 runs is shown in Fig. 13. It is drawn by using
Pajek software [28]. As shown in Fig. 13, MDBA can find
12 different communities. Almost all teams can be classified
into true communities to which they really belong. It can be
clearly seen that only two teams, Washington state and army,
are mistakenly divided to the conferences Independent and
MAC respectively. It is difficult to cluster the indepedent teams,

Fig. 13 Football partition result obtained by MDBA in 2009 year
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because the indepedent teams (black circle)have more games
with the teams in other communities than between them. Here
we cluster 2 of them andWashington state into a community.
In a word, this partition result is also acceptable.

5 Conclusion and future work

Community detection in dynamic networks is a promising
direction worth further investigation and expansion. In
order to improve the accuracy of the community detection,
a multiobjective discrete bat algorithm is proposed in
this paper. MDBA optimizes modularity and NMI as
two objective functions simultaneously. The bat location
updating strategy is redefined in discrete form. In addition,
turbulence operator and mutate operator is incorporated
to guarantee the diversity of the population. The non-
dominated sorting and crowding distance mechanism are
used to keep good solutions during the generation. A
comparison of simulation results reveals better solution
quality and computational efficiency of the proposed algo-
rithm. In future, wewill aim at designing newmethod to detect
overlapping community structures in dynamic networks.
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