
Applied Intelligence (2018) 48:1327–1343
https://doi.org/10.1007/s10489-017-1123-9

Mining constrained inter-sequence patterns: a novel approach
to cope with item constraints

Tuong Le1,2 · Anh Nguyen3 · Bao Huynh4,5 · Bay Vo6 ·Witold Pedrycz7,8,9

Published online: 9 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Data mining has become increasingly important in the Internet era. The problem of mining inter-sequence pattern is a sub-
task in data mining with several algorithms in the recent years. However, these algorithms only focus on the transitional
problem of mining frequent inter-sequence patterns and most frequent inter-sequence patterns are either redundant or
insignificant. As such, it can confuse end users during decision-making and can require too much system resources. This led
to the problem of mining inter-sequence patterns with item constraints, which addressed the problem when end-users only
concerned the patterns contained a number of specific items. In this paper, we propose two novel algorithms for it. First is the
ISP-IC (Inter-Sequence Pattern with Item Constraint mining) algorithm based on a theorem that quickly determines whether
an inter-sequence pattern satisfies the constraints. Then, we propose a way to improve the strategy of ISP-IC, which is then
applied to the iISP-IC algorithm to enhance the performance of the process. Finally, piISP-IC, a parallel version of iISP-IC,
will be presented. Experimental results show that piISP-IC algorithm outperforms the post-processing of the-state-of-the-art
method for mining inter-sequence patterns (EISP-Miner), ISP-IC, and iISP-IC algorithms in most of the cases.

Keywords Data mining · Pattern mining · Inter-sequence pattern mining · Constraint mining · Parallel mining

1 Introduction

With the rapid growth of the Internet, the volume of data
has become massive. Analyzing data to reveal knowledge
that can be applied to intelligent systems constitutes a
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challenging problem [3]. Therefore, data mining, the crucial
step for extracting knowledge, has been extensively studied.
There are many types of systems with numerous types
of data such as transaction databases, sequence databases,
and streaming databases. Then, many problems have been
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proposed such as pattern mining Yun and Ryu [35]; Salehi
et al. [21]; Saif-Ur-Rehman et al. [20]; Yun and Kim [37];
Ryang and Yun [38]; Kim and Yun [39]; Ryang et al. [40];
Kieu et al. [41]; Vo et al. [27] and its applications Liao and
Chen [13]; Scalmato et al. [22]; Wright et al. [30]; Lin et
al. [14], association rule mining, and classification. Mining
frequent sequential patterns, the sub-sequential patterns in a
sequence database that satisfy the given minimum support
threshold (minsup), which are used in recommendation
systems Salehi et al. [21], deep order-preserving sub-matrix
problem solutions Xue et al. [31], biological sequence
mining Liao and Chen [13] and smart health services
Jung and Chung [9]. Recently, Jeyabharathi andShanthi [8]
proposed a new technique for protein sequence database
mining with hybrid frequent pattern mining algorithm.
The proposed algorithm ensures the effective extraction
of frequent patterns with the optimization of resource
constraints. In the recent years, many algorithms for mining
frequent sequential patterns Ayres et al. [1]; Gouda et al.
[6]; Kaneiwa and Kudo [7]; Yen and Lee [32]; Lin et al.
[43, 44]; Pei et al. [19], sequential closed patterns Tran, Le
and Vo [23]; Zhang et al. [45], sequential rules Pham et al.
[18], closed weighted sequential patterns Yun et al. [33],
weighted approximate sequential pattern Yun et al. [34],
important sequential patterns Yun and Ryu [35], and high
utility-probability sequential patterns Zhang et al. [42] from
sequence databases have been proposed.

Besides, the problem of mining inter-transaction (closed)
patterns has been attracted a lot of attention with many
algorithms such as EH-Apriori and EA-Apriori Lu et al.
[16], FITI Tung et al. [24], ITP-Miner Lee andWang [12],
and ICMiner Lee et al. [11]. Although sequential patterns
and inter-transaction patterns include several itemsets across
several transactions, the ordered relationships among items
in a transaction are not considered. However, sequence
database usually exhibits an ordered relationship among
items (or itemsets) in a transaction. Therefore, inter-
sequence patternWang and Lee [28]; Vo et al. [25] and closed
inter-sequence patternWang et al. [29]; Le et al. [10] mining
are then proposed which are more general models than those
of sequential and inter-transaction pattern mining.

In essence, the end users usually consider a small number
of patterns that contain at least one item from a set of
given item constraints [2]. For example, when analyzing the
sequence data-bases of supermarkets, there are a lot of inter-
sequence patterns. However, at a time, managers only
concerned the patterns contained a number of specific items.
Therefore, the problem of mining inter-sequence patterns
with item constraints requires thorough studies. However,
this problem has not been previously considered. We
propose two novel algorithms for fast mining inter-sequence

patterns with item constraints. The main contributions of
this article are as follows. First, the problem of mining
inter-sequence patterns with item constraints is introduced.
Second, we develop a theorem to reduce the time of
determining whether a candidate sequence satisfies the
constraints. The ISP-IC (Inter-Sequence Pattern with Item
Constraint mining) algorithm based on the above theorem
for mining inter-sequence patterns with item constraints is
then proposed. Third, a lemma and the second algorithm,
named iISP-IC, are proposed. Then, we present a parallel
version of iISP-IC, named piISP-IC algorithm. Final,
experiments are conducted to show the effectiveness of
the piISP-IC in terms of mining time and memory usage
compared to the post-processing of the-state-of-the-art
method for mining inter-sequence patterns (EISP-Miner)
which is called by POST-EISP-Miner, ISP-IC, and iISP-IC
algorithms.

The paper is organized as follows. Section 2 presents the
related works. Then Section 3 summaries the basic concept
of inter-sequence patterns, DBV structure, and the problem
of patterns with constraints. Section 4 proposes three
algorithms for mining inter-sequence patterns with item
constraints attached with advanced examples. Section 5
presents the experimental results. The conclusions and
future works are given in Section 6.

2 Related works

Inter-sequence patterns demonstrate the anti-monotone
Apriori property (if any k−pattern is infrequent, then all
its (k+ 1)-super-patterns are infrequent) Wang and Lee
[28]. Based on this property, Wang and Lee proposed the
M-Apriori algorithm for mining inter-sequence patterns.
However, the large numbers of candidates and database
scans are the cause for decreasing the performance of this
algorithm. The authors proposed a two-phase-algorithm
named EISP-Miner (Enhanced Inter-Sequence Pattern
Miner) for finding a complete set of frequent inter-sequence
patterns. The first phase is to find 1-patterns and converts
the original sequences into a structure for each 1-pattern,
called a pattern-list which stores two pieces of information
including a frequent pattern and a list of locations. The
second phase uses an inter-sequence pattern tree (ISP-tree)
to enumerate all frequent inter-sequence patterns by joining
pattern-lists in a depth-first search manner. In 2012, Vo et al.
proposed DBV-ISP algorithm, an enhanced version of EISP-
Miner algorithm in which dynamic bit vector (DBV) is used
instead of pattern-list to improve the performance. However,
we cannot use these algorithms for mining inter-sequence
patterns with item constraints because they have to find
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all the inter-sequence patterns and then filter these patterns
to identify the patterns satisfying the item constraints.
Therefore, it is necessary to study an approach for mining
inter-sequence patterns with item constraints.

3 Basic concepts

3.1 Inter-sequence patternmining

Consider the set of items t = {u1, u2, u3,. . . , um} , where ui

is an item (1 ≤ i ≤ m). A sequence s = 〈t1, t2, t3,. . . , tn〉
is the set of ordered itemsets, where ti ⊆ t (1 ≤ i ≤ n) is
an itemset. A sequence database � = {s1, s2, s3,. . . , s|�|} ,
where |�| is the number of sequences in D and si (1 ≤ i ≤
|�|) is a tuple 〈DAT, Sequence〉, where DAT is the property
of si used to describe the contextual information. Table 1
shows an example sequence database (�Ex). This database
is used throughout the paper.

Let d1 and d2 be two DAT values associated with
sequences s1 and s2, respectively. Let d1 be the reference
point. [d2 - d1] is the span between s2 and s1. The sequence
s2 at domain attribute (DAT) d2 with respect to d1, denoted
by s2[d2 - d1], is called an e-sequence (extended sequence).
For example, with �Ex shown in Table 1, let the first
sequence be the reference point. Then, the e-sequence of the
second transaction is 〈C(ABC)A〉[1].

Let s[d] = 〈t1, t2, t3,. . . , tm〉[d] be a sequence where
ti is an itemset (1 ≤ i ≤ m) and [d] is the span of s.
The ti associated with [d] is defined as an extended itemset
(e-itemset), denoted by 〈ti〉[d]. If ti = (u1, u2, u3,. . . ,
un), where each ui is the items (1 ≤ i ≤ n), then the
ui associated with [d] is defined as an extended item (e-
item), denoted by (ui)[d]. For example, 〈C(ABC)A〉[1] has
3 e-itemsets (〈C〉[1], 〈(ABC)〉[1], and A[1]) and 3 e-items
((C)[1], (A)[1], and (B)[1]).

Table 1 Example sequence database (�Ex)

Dat Sequences

1 〈C(AB)〉
2 〈C(ABC)A〉
3 〈AD〉
4 〈ABD〉
5 〈AC〉
6 〈BCD〉
7 〈(AB)C〉

Table 2 Megasequences of �Ex with maxspan = 1

Dat Megasequences

1 〈C(AB)〉[0] 〈C(ABC)A〉[1]
2 〈C(ABC)A〉[0]〈AD〉[1]
3 〈AD〉[0] 〈ABD〉[1]
4 〈ABD〉[0] 〈AC〉[1]
5 〈AC〉[0]〈BCD〉[1]
6 〈BCD〉[0] 〈(AB)C〉[1]
7 〈(AB)C〉[0]

Given the set of k sequences 〈d1, s1〉, 〈d2, s2〉,. . . , 〈dk ,
sk〉 in �, � = s1[0] ∪ s2[d2– d1] ∪. . .∪sk[dk– d1] is called
a mega-sequence with k ≥ 1. In a mega-sequence, the span
between DAT of the first transaction and that of the last
transaction have to be less than or equal to maxspan (i.e.,
dk – d1 ≤ maxspan in �). For �Ex shown in Table 1, with
maxspan = 1 and Dat = 1 as the reference point, the list of
mega-sequences is shown in Table 2.

Consider the pattern β = (u1)[v1], (u2)[v2],. . . , (un)[vn],
where (ui)[vi] (1 ≤ i ≤ n) is an e-item (extended item).
The number of e-items in β is called the length of β and a
sequence with length k is denoted as a k-sequence. There
are three types of relationship between two e-items (ui)[vi]
and (ui+1)[vi+1] in β (1 ≤ i <n). (1) Itemset extension: if
vi = vi+1and (uiui+1) is an itemset, then (ui+1)[vi+1] is an
itemset extension (+I ) of (ui)[vi]. (2) Sequence extension:
if vi = vi+1and 〈uiui+1〉 is a sequence, then (ui+1)[vi+1] is
a sequence extension (+S) of (ui)[vi]. (3) Inter extension:
if vi<vi+1, then (ui+1)[vi+1] is an inter extension (+T ) of
(ui)[vi].

For example, in �Ex, 〈BCD〉[0] 〈(AB)C〉[1] is a 6-
sequence. (B)[0] is an itemset extension of (CD)[0]. (B)[0]
is an inter extension of (C)[1] and AB[1] is a sequence
extension of (C)[1]. In other words, (B)[0] +I (CD)[0] =
〈(BCD)〉[0], (AB)[0] +S (C)[0] = 〈(AB)C〉[0], and (B)[0]
+T (C)[1] = 〈B〉[0]〈C〉[1].

Given two sequences, s = 〈s1, s2,. . . , sn〉 and s′ =
〈s′
1, s′

2,. . . , s′
m〉 with n ≤ m, s is the sub-sequence of

s′ if and only if ∃n, j1, j2,. . . , jn such that (1) 1 ≤
j1<j2<. . .<jn ≤ m and (2) s1 ⊆ s′

j1 , s2 ⊆ s′
j2 ,

. . . , sn ⊆ s′
jn . For example, a sequence 〈A(BC)DF〉 is

the subsequence of 〈A(ABC)(AC)D(CF)〉, but it is not a
subsequence of 〈(ABC)(AC)D(CF)〉. Consider two patterns
α = s1[i1], s2[i2], . . . , sn[in] and β = s′

1[j1], s′
2[j2],. . . .,

s′
m[jm], with 1 ≤ n ≤ m. α is a subsequence of β if and only
if there exist n e-sequences denoted by s ′

k1[jk1], s′
k2[jk2],. . . ,
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s′
kn[jkn] in β, such that i1 = jk1 and s1 is a subsequence
of s′

k1; i2 = jk2 and s2 is a sub-sequence of s′
k2;. . . .;

in = jkn and sn is a sub-sequence of s′
kn. In this case, β

is a super-pattern of α. For example, both 〈D〉[0]〈BAC〉[3]
and 〈(AD)〉[0]〈(AC)C〉[1] are sub-sequences of 〈D(AD)〉[0]
〈B(AC)C〉[1]〈BACC〉[3].

Definition 1 Let a = (im)[x] and b = (in)[y] be 2 e-items.
a = b if and only if (im = in) ∧ (x = y) and a <b, if and
only if x <y or ((x = y) ∧ (im<in)).

For example, (C)[1] = (C)[1], (B)[1] <(A)[2], and
(A)[1] <(C)[1].

Definition 2 Let p be a pattern. Function subij (p) is
defined as (j -i+1) subset e-items of p from position i to
position j .

For example, sub1,4(〈(AD)〉[0]〈(AC)C〉[1]) = 〈(AD)〉[0]
〈(AC)〉[1] and sub5,5(〈(AD)〉[0] 〈(AC)C〉[1]) = (C)[1].

Definition 3 Let α = 〈u〉[0] and β = 〈v〉[0] be two
frequent 1-patterns. α is joinable to β in any instance. There
are three types of join operation: (1) itemset extension:
α ∪I β = {〈(uv)〉[0]} |{〈(uv)〉[0]} ; (2) sequence extension:
α ∪S β = {〈uv〉[0]} ; (3) inter extension: α ∪T β =
{〈u〉[0]〈v〉[x] |1 ≤ x ≤ maxspan} .

For example, let maxspan = 2, 〈A〉[0] ∪I 〈B〉[0]
= 〈(AB)〉[0]; 〈A〉[0] ∪S〈B〉[0] = 〈AB〉[0] and 〈A〉[0]
∪T 〈B〉[0] = {〈A〉[0]〈B〉[1], 〈A〉[0]〈B〉[2]} .

Definition 4 Let α and β be 2 frequent k-patterns, where
k >1, subk,k(α) = (u)[i], and subk,k(β) = (v)[j ]. α is
joinable to β if sub1,k−1(α) = sub1,k−1(β) and i ≤ j ,
which generates three types of join operations: (1) itemset
extension: α ∪I β = {α+I (v)[j ] |(i = j)∧ (u <v)} ; (2)
sequence extension: α ∪S β = {α ∪+S(v)[j ] |(i = j)} ; (3)
inter extension: α ∪T β = {α +T (v)[j ] |(i <j)} .

For example, 〈AB〉[0] ∪I 〈AC〉[0] = 〈A(BC)〉[0], 〈AB〉[0]
∪S 〈AC〉[0] = 〈ABC〉[0], and 〈AB〉[0] ∪T 〈A〉[0]〈C〉[2] =
〈AB〉[0]〈C〉[2].

3.2 DBV-PatternList data structure

DBV structure is based on the BitTable structure including
two elements. (1) Start position: the position of the first non-
zero byte in the bit vector; (2) Bit-vector: the list of bytes
after removing all zero bytes at the beginning. For example,
give a BitTable “000011”, the DBV is { Start: 5, Bit-vector:
“11”} .

Using DBV structure reduces the memory usage and
computational operations in the intersection between two-
bit vectors. Using a look-up table Vo et al. [26], the
algorithm traverses the DBV once to determine the support
of its pattern and therefore the complexity is O(n) where n

is the number of elements in its Bit-vector.
Based on the DBV concept, Vo et al. [26] proposed

the DBV-PatternList structure that combines DBV and
PatternList. The structure includes: (1) Sequence: storage
information of the sequence; (2) Block sequence: one DBV
and a list of transaction positions corresponding to each
sequence. For example, in �Ex, consider the structure of
sequence 〈A〉[0], where A appears at sequences 1, 2, 3, 4, 5,
and 7. DBV-PatternList of 〈A〉[0] is shown in Fig. 1.

In Fig. 1b, the structure of a DBV-PatternList contains a
number of block sequences. Each block sequence is placed
in a cell containing information regarding the position of
sequences that appear in the sequence database and the
position of the sequence in each transaction. For detail, A

appears at sequences 1, 2, 3, 4, 5, and 7, so, bit vector ofA is
11111010 and therefore, DBV of A is {15, 10} (note that we
use 4 bits for an integer). To find the appropriate extended
sequence based on the sequence extension operation, the
intersection operation has to be carried out on each block
sequence. In Fig. 1, PatternList of 〈A〉[0] requires 26 bytes,
whereas DBV-PatternList of 〈A〉[0] requires only 20 bytes.

3.3 Mining patterns with item constraints

Various strategies have been proposed for mining frequent
pattern with itemset constraints. There are three main
approaches including post-processing, pre-processing, and
constrained patterns filtering. Post-processing approaches
for mining patterns with item constraints firstly mine
patterns and then check them against the constraints Ng

Fig. 1 Structures of (a)
PatternList and (b)
DBV-PatternList of 〈A〉[0]

(b)(a)
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et al. [17]; Lin et al. [15]. Pre-processing approaches
firstly restrict the source dataset to records that contain the
constraints and then find patterns in the filtered dataset
Lin et al. [15]. Constrained patterns filtering approaches
integrate the constraints into the actual mining process to
generate only patterns that satisfy the constraints. CAP Ng
et al. [17] andMFS DoubleCons Duong et al. [4] algorithms
use this strategy for mining frequent patterns with item
constraints.

3.4 Problem statement

Given a sequence database �, the minimum support
(minsup), and a set of items χ = {u1, u2, . . . , uk} ,
the problem of mining inter-sequence patterns with item
constraints is to find all sequences α = s1[w1], s2[w2],. . . ,
sm[wm] such that ∃si[wi] ∈ α, ∃bj ∈ si[wi]: bj ∈ χ .

For example, let χ = {C} . Then, the sequence
〈C(AB)〉[0] 〈C(ABC)A〉[1] satisfies the constraints, whereas
the sequence 〈AD〉[0]〈A〉[1] does not.

4Mining inter-sequence patterns with item
constraints

4.1 ISP-IC algorithm

Theorem 1 If a sequence α satisfies constraint χ , then the
sequence γ , generated from α, also satisfies constraint χ .

Proof If α satisfies the constraint, it means that ∃si[wi] ∈ α,
∃bj ∈ si[wi]: bj ∈ χ . There are three cases to consider:

1. Itemset extension: There are two sub-cases. (i) If
itemset extension /∈ itemseti of α, then ∃itemseti in γ

that contains item bj ∈ χ . (ii) If itemset extension
∈ itemseti, then itemseti(α) ⊂ itemseti(γ ), and thus
∃bj ∈ itemseti(γ ) such that bj ∈ χ .

2. Itemset extension: itemseti is not changed. Therefore,
∃itemseti ∈ γ includes item bj such that bj ∈ χ .

3. Inter extension: Based on the inter extension defini-
tion, itemsets in the sequence just have their indices
changed, and therefore ∃itemseti contains item bj ∈ χ .

Based on Theorem 1, we propose the ISP-IC algorithm
for mining inter-sequence patterns with item constraints.
First, the ISP-IC algorithm finds all items (I1) that satisfy
the threshold. Then, the algorithm inserts p ∈ I1 into
the DBV-tree. ∀p ∈ I1 such that p ∈ χ , cs(p) = true.
Next, the algorithm calls Join 1-PatternList to combine
1-PatternLists. Finally, for each p ∈ DBV-Tree.root, the
algorithm calls the Join k-PatternList function to combine
p with other k-PatternLists that follow it. The details of the
ISP-IC algorithm are presented in Alg.1.
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4.2 An illustrative example

Consider �Ex, which includes 7 sequences with items
I ={A, B, C, D} , maxpan = 1, minsup = 25%, and χ =
{C} . DBV-PatternList of each item was shown in Table 3.

Table 3a shows the bit arrays for the items in �Ex. In this
example, assume that each block is encoded by 4 bits. In
�Ex, bit array of A is {1111, 1010} and bit vector of A is
{15, 10} . For each sequence, the position of each item in the
sequence is stored as in Table 3b.

Once the sequences have been encoded into binary form
and the positions in the sequence have become sequence
blocks (with each sequence block containing 4 bits), the
sequence database is transformed into a vertical format
database and DBV-PatternList structures are created, as
shown in Fig. 2. Note that index column the transaction
position and come from Table 3b.

Then, the branch of 〈A〉[0] with two levels is obtained.
The nodes on the second-level branch are then computed,
followed by those on the third-level branch, and so on, until
no extended sequences are found. Figure 3 shows a part of
a DBV-tree extended on branch 〈A〉[0]. Note that the node
〈C〉[0] (red node) is the constraint and the nodes 〈AC〉[0]
and 〈A〉[0]〈C〉[1] (gray node) are inserted into the results
without being checked whether they satisfy the constraint
because their parent C[0] satisfies the constraint.

4.3 iISP-IC algorithm

Lemma 1 Let α satisfy constraint χ then ∀β, following
sequences γI = α ∪I β, γS = α ∪S β, and γT = α ∪T β

also satisfy constraint χ .

Based on Lemma 1, we propose the iISP-IC algorithm.
For each p ∈ childnodes(DBV-Tree), if p satisfies χ, iISP-
IC calls the Join k-PatternList NoChecking function to
combine p with other k-PatternLists that follow it. Oth-
erwise, iISP-IC calls the Join k-PatternList Plus function.
The details of the iISP-IC algorithm are presented in Alg.2.
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In the example, suppose that χ = {A}, the red
node in Fig. 4. The iISP-IC algorithm calls the Join k-
PatternList NoChecking function to expand the node
〈A〉[0], as shown in Fig. 4. Based on Lemma 1, this function
does not check all its child nodes.

4.4 The complexity discussion

The complexity of sequential pattern mining algorithms is
based on the number of patterns in the search space, and the
cost of the operations for generating and processing each
itemset Fournier-Viger et al. [5].

Let t = {u1, u2, u3,. . . , um} is the set of items,
and let |t |denote its cardinality. We have to consider all
possible permutations of the items as the possible frequent
candidates. The subsequence search space is conceptually

infinite since it comprises all sequences in t . The dataset D

consists of bounded length sequences in practice. Let j be
the length of the longest sequence in the dataset D, we will
have to consider all candidate sequences of length up to j

in the worst case, which gives the following bound on the
size of the search space |t |1+ |t |2+ |t |3+. . .+ |t |j (O(|t |n))
since at level k there are |t |k possible subsequences of length
k.

However, the complexity of the proposed algorithms
depends on the number of sequences, the number of itemsets
in each sequence, and the constraints. Therefore, it is hard
to compute the time complexity in the average case.

4.5 piISP-IC: a parallel version of iISP-IC algorithm

In the parallel mining of ISPs, each branch of the search tree
can be regarded as a single task, which can be processed
independently to generate ISPs. An example is given in
Fig. 5 There are three tasks on level 1 of the task tree. Tasks
1 2, and 3 process branches ABand C respectively.

The interaction between cores in multi-core CPU’s can
be implemented by various mechanisms, affecting overall
CPU performance due to shared workloads between cores.
The most efficient way to allow on-chip interprocess
communication (IPC) is through the use of shared memory.
This is a very important feature for efficient hardware
utilization of multi-core systems. Shared memory IPC is
more efficient because data does not need to be copied from
one process memory space to another. Instead, a memory
space that is shared between the communicating processes
is created. By this way, IPC that uses shared memory avoids
many costly memory operations.

The task parallel formulation distributes the tasks among
the processors in the following way. First, the tree is
expanded using the data-parallel algorithm at level k+ 1,
with k >0. Then, the different nodes at level k are distributed
among the processors. Once this initial distribution is done,
each processor proceeds to generate the subtrees underneath
the nodes to which they have been assigned.

piISP-IC algorithm is generally based on iISP-IC
algorithm and add a parallel implementation of tasks instead

Table 3 Binary vectors of
BitTable and their
transformation into BitArray

(a) (b)

Item Bit array Bit vector Dat A B C

A 1111,1010 15,10 1 2 2 1

B 1101,0110 13,6 2 2, 3 2 1, 2

C 1100,1110 12,14 3 1

4 1 2

5 1 2

6 1 2

7 1 1 2
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Fig. 2 DBV-PatternList of A[0],
B[0] and C[0]

of threads. The advantage of piISP-IC is that each task is
assigned for searching a branch of the tree and is processed
independently. The advantages over using threads are as
follows. First, tasks require less memory than do threads.
Second, a thread runs on only one core, whereas a task
can run on multiple cores. Finally, threads require more
processing time than executing tasks because the operating
system needs to allocate data structures for threads, such
as initialization and destruction and must perform context
switching between threads.

The time complexity of sequential pattern mining
algorithms depends on the number of patterns in the
search space, and the cost of the operations for generating
and processing each itemset. In multi-core processors,
a key factor is task scheduling. With the widespread
use of multi-core processors, designing an effective task
scheduling strategy has been a hot issue. Currently, the time
complexity of task scheduling for multi-core processors
is considered as an NP (Non-Deterministic Polynomial)
problem and no optimal solutions exist. The existing
scheduling algorithms can only get the suboptimal solutions
based on solution approximated by heuristics. Heuristics are
generally considered as the most suitable method to find the
suboptimal solutions for NP problems.

5 Experimental studies

This section compares the mining time of POST-EISP-
Miner, ISP-IC, iISP-IC, and piISP-IC, to confirm the
effectiveness of the proposed methods. All the experiments
were performed on a PC with Intel Xeon Processor E5-
2680 v2 (25M Cache, 2.80 GHz, 20 threads) CPUs installed
with 768 GB of main memory and coded in C# in Visual
Studio 2015. Synthetic databases were generated using

the IBM synthetic data generator to mimic transactions
in a retail environment. The synthetic data generation
program used the following parameters: C was the average
number of itemsets per sequence, T was the average
number of items per itemset, S was the average number of
itemsets in maximal sequences, I was the average number
of items in maximal sequences, N was the number of
distinct items, and D was the number of sequences. Two
synthetic datasets (C6T5S4I4N1KD10K and T10I4D100K)
and BMSWebView2 which contains 77,512 sequences of
click-stream data, were used in the experiments. These
databases are available at http://1drv.ms/1EM0bqm.

5.1 Runtime

In Fig. 6, we compare the runtime of piISP-IC, iISP-
IC, ISP-IC and POST-EISP-Miner for C6T5S4I4N1KD10K
dataset with various settings. Figure 6A fixes maxspan =
1 and changes the threshold from 21 to 25 and we easily
found that the runtime of iISP-IC is less than that of ISP-IC
and nearly twice as that of piISP-IC, while POST-EISP-
Miner’s decreased a little. In a similar way, Fig. 6B fixes
maxspan = 2, Fig. 6C fixes maxspan = 3, Fig. 6D fixes
maxspan = 4 and Fig. 6E fixes maxspan = 5, piISP-
IC is always the best algorithm for C6T5S4I4N1KD10K
dataset. POST-EISP-Miner cannot perform with maxspan
= 5 with any threshold, takes a long time without results.
Next, in Fig. 6F, we fix threshold = 21, and change
maxspan from 1 to 5. piISP-IC is still better than iISP-
IC, ISP-IC, and POST-EISP-Miner algorithms. Especially,
when we decrease the threshold, the runtime of iISP-IC,
ISP-IC and POST-EISP-Miner significantly increase while
that of piISP-IC gradually increase. In general, piISP-IC
outperform iISP-IC, ISP-IC, and POST-EISP-Miner for this
dataset.

NULL

A [0] Start:1

15 {2,2 3,1,1}, 10 {1,1}

C [0] Start:1

12 {1,1 2}, 14 {2,2,2}

B [0] Start:1

13 {2,2,2}, 6 {1,1}

AC [0] Start:2

10 {2,2}

A [0] C [1] Start:1

2 {2}, 2 {2}

(AB) [0] Start:1

12 {2,2}, 2 {1}

A [0] B [1] Start:1

2 {2}, 8 {2}

i: Itemset extension

s: Sequence extension

t: Inter-sequence extension

s
tt

i

Fig. 3 DBV-tree extended on 〈A〉[0]

http://1drv.ms/1EM0bqm
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Fig. 4 DBV-tree extended on
〈A〉[0] using iISP-IC algorithm NULL 
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Figure 7 performs the same for T10I4D100K dataset.
We easy found that the runtimes of iISP-IC and ISP-IC
are nearly the same, POST-EISP-Miner is highest while the
runtime of piISP-IC is much better than that of iISP-IC,
ISP-IC, and POST-EISP-Miner. POST-EISP-Miner cannot
perform with minsup = 4 and maxspan = 5.

Figure 8 compares the runtime of piISP-IC, iISP-IC, ISP-
IC and POST-EISP-Miner for BMSWebView2 dataset with
various settings. Figure 8A fixes maxspan = 1, Fig. 8B
fixes maxspan = 2, Fig. 8C fixes maxspan = 3, Fig. 8D
fixes maxspan = 4 and Fig. 8E fixes maxspan = 5,
piISP-IC is always the best algorithm for mining inter-
sequence patterns with item constraints for BMSWebView2
dataset. Especially, with the smaller threshold, the time gaps

between the runtime of piISP-IC and those of iISP-IC, ISP-
IC and POST-EISP-Miner are larger. In Fig. 8F, we fix
threshold = 1, and changemaxspan from 1 to 5, the runtime
of piISP-IC is less than those of iISP-IC, ISP-IC, and
POST-EISP-Miner. Therefore, piISP-IC outperform iISP-
IC, ISP-IC, and POST-EISP-Miner for this dataset. In short,
through the above experiments, we can conclude that piISP-
IC outperform iISP-IC, ISP-IC, and POST-EISP-Miner for
mining inter-sequence patterns with item constraints.

5.2 Memory usage

Figure 9 reports the memory usage of piISP-IC, iISP-
IC, ISP-IC and POST-EISP-Miner for C6T5S4I4N1KD10K

A[0]

(AB)[0]

AA[0]

A[0]A[1]

AB[0] AC[0] (AC)[0]

A[0]B[1]

A[0]C[1]

B[0]

(BA)[0]

BA[0]

B[0]A[1]

BB[0] BC[0] (BC)[0]

B[0]B[1]

B[0]C[1]

C[0]

(CB)[0]

CA[0]

C[0]A[1]

CB[0] CC[0] (CA)[0]

C[0]B[1]

C[0]C[1]

{}

Task1 Task2 Task3

Fig. 5 Example of task tree
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dataset with various settings. Figure 9A fixes maxspan =
1, Fig. 9B fixes maxspan = 2, Fig. 9C fixes maxspan = 3,
Fig. 9D fixes maxspan = 4 and Fig. 9E fixes maxspan =
5, we found that the memory usage of POST-EISP-Miner
is the largest. However, the gap between the memory usage
of piISP-IC and those of iISP-IC and ISP-IC are insignif-
icant for C6T5S4I4N1KD10K dataset. Then, Fig. 8F,
which shows the memory usage of piISP-IC, iISP-IC, ISP-
IC and POST-EISP-Miner when we fix threshold = 21 and
change maxspan from 1 to 5, confirm that statement again.
POST-EISP-Miner cannot perform with maxspan =5 and

threshold = 21, the memory value with maxspan = 5 in
Fig. 9F is an example.

Figures 10-11 reports the memory usage of piISP-IC,
iISP-IC, ISP-IC and POST-EISP-Miner for T10I4D100K
and BMSWebView2. The results show that the memory
usages of these algorithms are nearly the same. Sum-
mary, although the memory usage of piISP-IC is largest
(compared to those of iISP-IC, ISP-IC, and POST-EISP-
Miner), the gap between the memory usage of piISP-IC
and those of iISP-IC, ISP-IC and POST-EISP-Miner are
insignificant.

Fig. 6 Mining time of piISP-IC,
iISP-IC, ISP-IC and
POST-EISP-Miner for
C6T5S4I4N1KD10K dataset
with 15 random item constraints
and A maxspan = 1; B maxspan
= 2; C maxspan = 3; D
maxspan = 4; E maxspan = 5;
F threshold = 21%
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Fig. 7 Mining time of piISP-IC,
iISP-IC, ISP-IC and POST-
EISP-Miner for T10I4D100K
dataset with 15 random item
constraints and A maxspan = 1;
B maxspan = 2; C maxspan =
3; D maxspan = 4; E maxspan
= 5; F threshold = 4%
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Fig. 8 Mining time of piISP-IC,
iISP-IC, ISP-IC and POST-
EISP-Miner for BMSWebView2
dataset with 15 random item
constraints and A maxspan = 1;
B maxspan = 2; C maxspan =
3; D maxspan = 4; E maxspan
= 5; D threshold = 1%
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Fig. 9 Memory usage of
piISP-IC, iISP-IC, ISP-IC and
POST-EISP-Miner for
C6T5S4I4N1KD10K dataset
with 15 random item constraints
and A maxspan = 1; B maxspan
= 2; C maxspan = 3; D
maxspan = 4; E maxspan = 5;
F threshold = 21% 0
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Fig. 10 Memory usage of
piISP-IC, iISP-IC, ISP-IC and
POST-EISP-Miner for
T10I4D100K dataset with 15
random item constraints and A
maxspan = 1; Bmaxspan = 2;C
maxspan = 3;Dmaxspan = 4; E
maxspan = 5; F threshold = 4%
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Fig. 11 Memory usage of
piISP-IC, iISP-IC, ISP-IC and
POST-EISP-Miner for
BMSWebView2 dataset with 15
random item constraints and A
maxspan = 1; Bmaxspan = 2;C
maxspan = 3;Dmaxspan = 4; E
maxspan = 5; F threshold = 1%
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6 Conclusions and future studies

This paper proposed three novel methods for mining inter-
sequence patterns with item constraints. Firstly, the problem
of mining inter-sequence patterns with item constraints
was presented. Secondly, a theorem was developed to
reduce mining time by fast determining whether an inter-
sequence pattern satisfies item constraints. Based on this
theorem, an efficient algorithm for mining inter-sequence
patterns with constraints (ISP-IC algorithm) was proposed.
Thirdly, a lemma was presented for improving the strategy
of ISP-IC. Based on this lemma, the iISP-IC algorithm
was proposed. Fourthly, we presented a parallel version
of iISP-IC named piISP-IC to improve the performance.

Finally, experiments were conducted to verify the proposed
approaches. Experimental results show that the piISP-IC
algorithm is better than the POST-EISP-Miner, ISP-IC and
iISP-IC algorithms.

This paper focused on item constraints. In the future,
we will study mining inter-sequence patterns with both
itemset and sequence constraints as well as the combination
of many constraints and closed inter-sequence patterns
with constraints (including item, itemset, and sequence
constraints).
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