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Abstract
In this paper, we propose a 3D non-rigid shape retrieval method based on canonical shape analysis. Our main idea is to
transform the problem of non-rigid shape retrieval into a rigid shape retrieval problem via the well-known multidimensional
scaling (MDS) approach and random walk on graphs. We first segment the non-rigid shape into local partitions based on
its salient features. Then, we calculate a local MDS problem for each partition, where the local commute time distance is
used as weighting function in order to preserve local shape details. Finally, we aggregate the set of local MDS problems as
a global constrained problem. The constraint is formulated using the biharmonic function between local salient features. In
contrast to MDS method, the proposed local MDS is computationally efficient, parameters free and gives isometry-invariant
forms with minimum features distortion. Due to these advantageous properties, the proposed method achieved good retrieval
accuracy on non-rigid shape benchmark datasets.

Keywords Non-rigid 3D shape deformations · 3D canonical forms · Multidimensional scaling · 3D non-rigid shape
retrieval · Intrinsic metrics on 3D shapes · Commute-time distance

1 Introduction

In the last few years, the recognition task of non-rigid 3D
objects, has become a significant challenge for modern
shape retrieval methods. Many algorithms are proposed
to overcome the challenge [1–4]. They are classified
mainly into algorithms based on local features, topological
structures, isometric-invariant global geometric properties,
direct shape matching, or canonical forms. In the last
category, the authors of [5–8] proposed to transform each
3D model into a pose-invariant canonical form. This
proposal allowed several rigid shape descriptors to perform
non-rigid shape retrieval. The use of Multidimensional
Scaling Method (MDS) is one of the most used methods
for generating 3D canonical forms. However, the main
challenge for this method remains the construction of
canonical forms with well-preserved features and with a low
time-complexity.
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This paper introduces a novel method for 3D non-rigid
object retrieval based on the MDS approach by considering
local shape features. Our main idea is to use the commute-
time distance criterion guide the embedding process in the
optimization stage. In fact, we use this intrinsic metric
to penalize the geodesic distance between two nodes and
increase the robustness of the proposed approach. To begin
with, we partition the global MDS problem into a set of sub-
problems and generate corresponding local 3D canonical
forms. More specifically, we are building on feature points
extracted from the target model to generate the set of local
patches. These patches are spatially related. To compute
their associated 3D canonical form, we solve a nonlinear
minimization problem. As spatial relationship constraints,
the biharmonic distance is a good choice that preserves
topological structure of the model in the embedding space.
Note that this solution reduces the high computational cost
of geodesic distance between each pair of vertices. An
evaluation of the quality of the obtained canonical forms has
been published in [9], are used two different measurements:
the compactness measure and the Haussdorf distance. Then,
the resulting 3D objects are used for 3D non-rigid object
retrieval using a view-based descriptor.

The rest of the paper is organized as follows: In Section 2,
we briefly present MDS-based techniques. In Section 3,
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we establish the mathematical background of the proposed
method. In Section 4, we detail our method for generating
the 3D canonical form. Finally, we report our experimental
results for the retrieval task in Section 5.

2 Canonical shape analysis

The multidimensional scaling is widely considered as an
efficient approach in the dimensionality-reduction area [10–
12]. The basic idea is to map data, described in initial feature
space, into a small-dimensional Euclidean space. The data
are embedded in such a way as to preserve, as much as
possible, the affinity between each pair of data points.

In the 3D domain, Elad and Kimmel [5] argued the use
of the MDS method to embed surface points of 3D non-
rigid shapes into a three-dimensional Euclidean space. In
this latter context, the dissimilarity is measured by geodesic
distances between all pairs of points in the shape. The
resulting representation is known as the canonical form for
a given 3D mesh. In fact, the authors proved that applying
MDS in 3D non-rigid shapes enables the calculation of
an isometric invariant representation while undoing its
deformations. Therefore, the canonical shape is treated as
a rigid shape instead of the non-rigid one, in the retrieval
task. This method has two main drawbacks: the high time
complexity and the features distortion of the shape.

To accelerate the MDS step, several approaches have
been proposed, such as spectral MDS [12] and Nystrom
MDS [13]. The cited approaches achieve the goal by
searching a low-rank approximation of the affinity matrix.
Whereas other methods, e.g. [14] and [15], focused on
speeding up the computing of the exact geodesic distances.

To improve the MDS approach, several authors proceed
by minimizing the feature shape distortion and enhancing
the resultant-canonical form quality. For instance, Lian
et al. [6] created a feature preserving canonical form, by
considering MDS embedding results as references, and then
they naturally deformed the original meshes against them.
Nevertheless, this method is sensitive to topological errors,
although it is quite robust against mesh segmentation. In
addition, the method suffers from a high computational time
due to the computation of geodesic distances between all
pairs of vertices. To circumvent this difficulty, meshes are
reduced so that they contain about 2000 vertices, before
applying the MDS embedding procedure. However, this
solution can affect the quality of the mesh as well as its local
features.

More recent methods avoided using the geodesic distance
as an intrinsic metric. Boscaini et al. [8] and Pickup
et al. [7] both used only a local distance between adjacent
shape vertices. Boscaini et al. [8] proposed to perform
the embedding using a physical model of electrostatic

repulsion. The method is fast but still distorts the local
shape details. Furthermore, Pickup et al. [7] maximized
the distance between pairs of detected feature points while
preserving the mesh’s edge lengths. The proposed method
results in less shape distortion, but occasionally fails to
completely stretch out the shape limbs. In addition, it is
not fully automatic, and requires manual-tuning of many
parameters. The authors of [16] proposed to perform the
unbending on the skeleton of the mesh and used this to guide
the deformation of the mesh itself. They successfully saved
computational time, and reduced distortion of local shape
details. However, this method is sensitive to topological
errors that may corrupt the mesh and it is designed to work
on objects which have a natural skeletal structure. Taking
a different direction, Rustamov [17] avoided the use of
geodesic distances and found a pose invariant representation
of the mesh based on the eigen decomposition of the
Laplace-Beltrami operator. The Global Point Signatures
(GPS) canonical forms are much faster to compute.
However, this method severely distorts local shape features.

In this context our idea is to accelerate the computation
step of the geodesic matrix by partitioning the mesh surface
into a set of local patches whose number is automatically
determined for each object. Then, we propose to calculate
the approximate geodesic distance between all pairs of
points in the same patch. The global affinity matrix is
then constructed by combining the set of all local geodesic
matrices. In order to model the relationship between them,
we impose a metric constraint. Our method differs from
those exposed in the above cited works with respect to the
preservation of local shape features. We propose to weight
the geodesic distance by a commute time metric to guide the
embedding. In fact, we rely on the robustness of this metric
to improve results and decrease the sensitivity of canonical
forms to topological noise.

3Mathematical background

In this section, we introduce some fundamental concepts
used in our method.

3.1 MDS and SMACOF algorithms

The Classical MDS method, proposed by Elad and Kimmel
[5] is based on a symmetric distance matrix DF which is
defined by

DF =

⎡
⎢⎢⎢⎢⎣

d2
F (Y1, Y1) . . . d2

F (Y1, YN)

. . . . .

. . . . .

. . . . .
d2
F (YN, Y1) . . . d2

F (YN, YN)

⎤
⎥⎥⎥⎥⎦

(1)
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with d2
F (Yi, Yj ) is the geodesic distance between the pair

of vertices Yi and Yj , computed using the fast marching
method [18] in the feature space. The inner product matrix
(i.e., the Gram matrix) GE is calculated in the embedded
Euclidean space by

GE = −1

2
JDF J (2)

where

J = 1

N
11T (3)

where 1 denotes the N-one vector. The Euclidean embed-
ding of these distances is then computed using the eigen-
decomposition of the Gram matrix GE . So, the classical
MDS minimizes the following energy function:

ES1(X) = ‖Q(� − �)QT ‖2 (4)

where ‖ • ‖ denotes the Frobenius norm of the squared
matrix elements, �m×m = diag(λ1, λ2, ..., λm) with the
eigenvalues of GE ordered so that λ1 ≥ λ2 ≥ ...λk ≥ 0,
Q denotes the matrix having as columns the corresponding
eigenvectors and m is the dimension of the embedded
Euclidean space. For a given point Yi on the mesh, its MDS
embedding Xi is calculated as

Xi = (λ
1
2
1 Q1(Yi), λ

1
2
2 Q2(Yi), λ

1
2
3 Q3(Yi)) (5)

where λ1, λ2 and λ3 are respectively the first three
eigenvectors and corresponding eigenvalues of GE .

The authors of [5] improved their results by suggesting
a standard optimization algorithm. The Least Squares
technique uses the SMACOF (Scaling by Maximizing a
Convex Function) algorithm [10] to minimize the following
stress function ES(X):

ES(X) = ΣN
i=1Σ

N
j=i+1ωi,j (dF (Yi, Yj )− dE(Xi, Xj ))

2 (6)

where N is the number of vertices, the wi,j ’s are weighting
coefficients, dF (Yi, Yj ) is the geodesic distance between
vertices Yi and Yj in the original mesh, and dE(Xi, Xj )

is the Euclidean distance between vertices Xi and Xj of
the resulting canonical mesh X. The algorithm iterates until
|ES(Xi) − ES(Xi+1)| is less than a user-defined threshold.
The overall complexity of the MDS algorithm is O(N2×
NumOfIterations).

In this paper, we adopt the Least Squares technique and
the SMACOF algorithm to compute the 3D canonical form.

3.2 Intrinsic distances on 3Dmesh

Several approaches were proposed to compute intrinsic
distances on 3D mesh. These approaches can be categorized
as primal or dual. For example, computing exact or
approximate geodesic distance is a primal approach because
it operates directly on the mesh surface. As geodesics have

a number of drawbacks (sensitive to noise and topology and
not globally shape-aware), dual distances overcome these
problems.

Spectral distances are the most popular dual distances.
They are based on relationships between a set of real-
function values for inferring distances. As examples of
distances, we cite the diffusion [19], commute time
[20], and biharmonic [21] distances. Unlike the geodesic
distance, the diffusion distance is related to heat diffusion on
the shape. It captures the average number of paths between
two points, in a fixed time, rather than a single path.

The diffusion distance is calculated based on the
Laplace-Beltrami operator and the heat equation, which is
defined as follows

(�X − ∂

∂t
)u = 0. (7)

The solution of (7) is called the heat kernel ht (x, y). It
provides the heat value at time t at point y ∈ X starting
from x ∈ X. The values of ht (x, y) can be interpreted as the
probability of reaching point y by means of a random walk
on X having length t and starting from point x. For compact
manifolds, the heat kernel can be calculated by means of the
eigenfunctions of the Laplace Beltrami operator [22] as

ht (x, y) = Σk
i=0e

−λi tφi(x)φi(y), (8)

where

�Xφi = λiφi . (9)

So, the diffusion distance is defined as

d2
X,t (x, y) = ‖ht (x, .) − ht (., y)‖2L2(X), (10)

and it can also be expressed as,

d2
X,t (x, y) = Σ∞

i=1e
−2λi t (φi(x) − φi(y))2. (11)

where the time parameter t is considered as a scale value.
This means that the variance of this parameter controls the
qualities of the features around a point x to all the other
points. As shown in Fig. 1, at small scales the diffusion
distance decreases fastly to reach zero, and highly local
shape features are observed from the point of view of
the red point. While for large values of t , the distance
decreases slowly to capture the global structure of the shape.
The setting of parameter t introduces the problem of scale
selection. To solve this problem, the diffusion distance is
integrated over all times. The new distance is called the
commute time distance, and is given by

dc2X(x, y) = 2
∫ ∞

0
d2
X,t (x, y)dt (12)

= Σ∞
i=1

1

λi

[φi(x) − φi(y)]2. (13)
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Fig. 1 Example of a mesh surface colored according to the diffusion
distance starting from the red point. The color scale indicates different
t value

This distance reflects the average number of all possible
paths connecting two points, contrary to the diffusion
distance that considers only paths of length t . Thereby, the
more paths connect x with y, the smaller is their commute
time distance. In addition, the commute time captures the
connectivity structure of the graph volume which makes
it more robust to structural disturbance and topological
changes unlike geodesic distance [23]. These advantages
motivate our choice to use the commute time distance values
in the MDS problem as a weighting function in the stress
equation (6). Our idea is motivated by the fact that vertices
on the same class have the same value of the commute
time distance. This weighting will be preserved as much as
possible in the embedding space in order to have the same
features as in the original space. In fact, we aim to overcome
the drawbacks of the geodesic distance, to ameliorate the
resulting canonical form and to preserve its features.

The biharmonic distance is another distance based on the
common “cotangent formula” discretization of the Laplace-
Beltrami differential operator on meshes. It was proposed

by Lipman et al. in [21] and its discrete version is defined
as follows

dB(x, y)2 = Σi=1
(φi(x) − φi(y))2

λ2i

. (14)

The latter distance is based on the biharmonic differential
operator, nevertheless, it applies different (inverse squared)
weighting to the eigenvalues of the Laplace-Beltrami
operator. Figure 2 shows examples of geodesic distances,
commute-time distances and biharmonic distances on mesh.
As we clearly see, the shape of isolines reflects the
intrinsic properties of each function. Regarding the geodesic
distance, the isocontours far from the source depend on
the exact placement of the starting point. This means that
the distance is not shape-aware. While the isolines of the
commute time distance are not equally distributed and very
close to the source point. The shape of the biharmonic
distance provides a trade-off between a nearly geodesic
behavior for small distances and global shape-awareness
for large distances. In addition, its isocontours are evenly
spaced on the whole mesh surface.

Generally, each distance has its own characteristics as
an intrinsic metric. In this paper, we benefit from all these
properties in order to properly describe the 3D mesh surface
and preserve its local features in the embedding space as
much as possible. The details of the proposed method are
described in the next section.

4 Local features-based 3D canonical form

The main idea behind our method is to construct 3D
canonical forms that are invariant to the shape pose. The
resulting form is then usefully treated as a rigid shape
instead of the non rigid one involved in the retrieval task.
Figure 3 shows examples of 3D canonical forms produced
by our method. It is easy to see that the MDS embedding
naturally deformed the original shapes by stretching out as

Fig. 2 Analysis on 3D shape intrinsic distance metrics. The geodesics
are computed using the fast marching algorithm starting from the
red point. All the shapes are color-coded according to the distances:

geodesic distance, commute-time distance and biharmonic distance.
Blue indicates small distance and red indicates long one
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Fig. 3 3D canonical forms for a
selection of the SHREC’15
dataset produced by our method.

much as possible its limbs. For this reason, we resort to
calculating the canonical form in a local way. We start by
detecting the limbs of a given model using an automatic
and unsupervised 3D salient point detector. We use the
local maximum of the Auto Diffusion Function (ADF) [24]
defined on the mesh surface as:

ADFt = K(x, x,
t

λ1
) = Σi=0e

−t
λt
λ1 φ2

i (x) (15)

where λ and φ are eigenfunctions of the Laplace-Beltrami
operator (LBO). This scalar function is controlled by a
single parameter t which can be interpreted as a feature
scale. The natural feature points of the shape are the set of
local maximum of the ADF located on the extremities of
deformable patches. A proof of the invariance of extracted
points to non-rigid transformation, scaling, occultation and
their insensitive to noise is given in [1].

The set of detected feature points are considered as seeds
to partition the 3D mesh into local regions using the Voronoi
diagram. Each local patch is then described by an affinity
matrix �, whose component δi,j is equal to the length of the
shortest path connecting vertex i to the vertex j . This idea
aims to minimizing the computation cost of the geodesic
distance and avoids exploring all the paths between every
pair of points in the original space. Thus, the estimated
complexity of this algorithm isO(km2

k), where k denotes the
number of local patches and mk is the size of the kth region.
In order to speed up the computation of geodesic distances,
we used the heat method proposed by Crane et al. in [25],
which gives an approximation of the geodesic distance by
exploiting heat kernels. As shown in Fig. 4, Geodesics in
heat is almost the same with exact geodesics. Nevertheless,
this approximation gives similar results of the embedding

form with high convergence speed. Figure 5 illustrates
the comparison of canonical forms, while dissimilarity is
computed using Fast marching algorithm and heat geodesic
method.We use theMatlab source code available on the web
site of Bronstein et al. book’s [26] to calculate the canonical
form.

To preserve local features of the mesh, we do not consider
all pairs of features in the same manner. However, we
enforce a target weight between all connected vertices i and
j in the same region. The value of wi,j is set according to
the value of the commute-time distance ci,j . Notes that this
is the expected time taken by the random walk to travel from
i to j in both directions. Therefore, if ci,j is small, then δi,j

should also be small enough to minimize the stress function
given in (6).

As a next step, we aim to assemble local affinity matrices
and create final canonical form of a given model. To do
this, a constraint between different partitions is needed. This
constraint is formulated as a spatial relationship associating
the feature points set to local patches. Thus, we made the
choice of the biharmonic distance [21] given in (14).

Fig. 4 Left: the exact geodesics. Right: the geodesic in heat
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Fig. 5 Swiss Roll surface (a) and its 3D canonical form using the classical MDS, b geodesic distance is computed by the fast marching algorithm
and heat geodesic method (c). Their convergence speed is plotted in (d)

Fig. 6 Mainly steps of our procedure that employs the local features (c) extracted by the ADF scalar function defined on the mesh surface (b) to
generate final 3D canonical form of the original model (a)
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Fig. 7 Examples of canonical
forms of each mesh

Roughly speaking, we reformulated the final stress
function to be minimized as:

S(X) = ΣkΣi,j∈Pk

c2i,j

δ2i,j

(δij − di,j )
2

+1

2
Σi,j∈F (ADFi + ADFj )(dBi,j − di,j )

2 (16)

where k is the number of local patches, F is the set of feature
points, δi,j is the local geodesic distances in each region P

and dBi,j is the biharmonic distance between feature points.
Figure 6 shows an overview of the performance of our

method to compute the canonical form (Fig. 6e) on a given
3D object depicted in Fig. 6a. The scalar function ADF is
used as an unsupervised detector of feature points (Fig. 6b
and c). Figure 6c, represents the overall dissimilarity matrix
computed from the set of local patches. For n = 9501
vertex, only 17 million values are used to calculate the final
canonical form (Fig. 6e).

Several canonical forms of two objects with non-rigid
deformations are shown in Fig. 7. Our method successfully
produced canonical forms of each shape and eliminates the
non-rigid deformations by stretching out the extremities.
The obtained results aim to standardize its pose.

4.1 Computational complexity

The computational complexity of the 3D canonical form
methods depend on the time complexity of the distance
calculation (matrices δ and dB in (16)) and the SMACOF
algorithm (see Section 3.1). Geodesic-based methods
calculate the geodesic distance between all pairs of vertices
using the fast marching algorithm which has a time
complexity of O(N2 logN), where N is the total number
of mesh vertices. Our method calculates geodesic distances
between points located in the same local patch only, rather
than all pairs. For a local patch on n vertices in average,

with n � N , the time complexity is O(n2 log n). So,
the total computational complexity of distance matrices has
O(mn2 log n), where m is the number of local patches. Note
that m is very small compared to N , (for instance, we have
m = 5 and N = 60000, for the human body shape).
Moreover, the SMACOF algorithm has a computational
complexity of O(N2), when the distance between all pairs
of points is used. Our Algorithm lowers this complexity to
O(mn2).

5 Experiments for 3D non rigid object
retrieval

5.1 Run-time

In order to highlight our contribution, we present a run-
time comparison between our local method and the global
variant based on geodesic distances matrix. We performed
run-time tests on a PC with a 2.6 GHz Intel Core i7-
4510U CPU and 16 GB of memory. Table 1 shows the
timings for computing canonical form of a given mesh
with 9500 vertices. Our method takes significantly less
time to calculate the dissimilarity matrix compared to the
global geodesic distances matrix. The time taken to produce
canonical forms using the Smacof algorithm are also
reduced using the local geodesic distances. Furthermore,
we simplified the original mesh to approximately 2000
vertices before computing the canonical forms. As a result,
the run-time is extremely reduced by both methods. This
shows that our method depends on the mesh resolution,
but it could be run on the original mesh in a reasonable
time. In addition, we test the dependence of our method
on the number of local features. To do this, we have
chosen a simplified model which uses approximately 2000
vertices. Then, we randomly selected a number of feature
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points from the mesh surface. These points are uniformly
distributed using Lloyd’s algorithm [27]. Figure 8 presents
a graph showing the time taken to compute associated
canonical forms versus the number of features. The run-
time remains stable when computing canonical forms with
global geodesic distances while it is higher than our method.
The run-time taken by our method decreases as the number
of features increases. These results are already theoretically
predicted in Section 4.1.

5.2 Non-rigid 3D object retrieval

In this section, we present the results of our experiments
for 3D non-rigid object retrieval. We used three public
databases containing similar models with different types of
non-rigid transformations. For each database, we created a
new 3D rigid shape database, by transforming each object
to its associated canonical form using the proposed method.
Then, we used the shape retrieval method of Lian et al.
[28] to evaluate the performance of our method for 3D
object retrieval. The main principle of Lian method is to
calculate the shape descriptor of an object using the bag
of features approach and a set of SIFT features. This set
is extracted from the 66 different depth images of each
object in the dataset. Algorithm 1 describes the main steps
of our 3D object retrieval method based on 3D canonical
forms.

Table 1 A run-time comparison between our method and the least
squared MDS method

Least Squares MDS Our method

Geodesic Smacof Geodesic Smacof

Original mesh 98.30 min 13.63 min 46.27 min 27.04 s

Simplified mesh 1.68 min 20.75 s 52.60 s 1.75 s

The times taken by our method to produce canonical form is
significantly reduced using the original and simplified mesh

The proposed approach was tested on the following
benchmarks:

– The database for the McGill 3D Shape Benchmark
(MSB) [29]. It contains 255 objects divided into ten
classes (Ant, Crabs, Hands, Humans, Octopuses, Pliers,
Snakes, spectacles, Spiders and Teddy); the intraclass
variations consist in non-rigid transforms applied to the
models.

– The database of the SHREC’11 Track (Shape Retrieval
on Non-rigid 3D Watertight Meshes) [30]. It comprises
600 watertight meshes with an average of 9300 vertices.
The database is evenly divided into 30 classes based on
their semantic meanings.

– SHREC’15 Track [2] is a new benchmark for testing
algorithms at creating canonical forms for use in non-
rigid 3D shape retrieval. The dataset contains models
from both the SHREC’11 non-rigid benchmark [30] and
the SHREC’14 non-rigid humans benchmark [31]. The
total number of meshes in the dataset is 100 meshes,
split into 10 different shape classes. Each shape class
contains a mesh in 10 different non-rigid poses.

– SHREC’15 non-rigid benchmark [32] contains 1200
meshes with an average 9607 vertices per mesh. The
dataset is split into 50 classes, each class contains
topological errors.

The following performance metrics were used to evaluate
the efficiency of the method results and to compare it with
other works were:

– Nearest Neighboor (NN): The percentage of the cases
for which the first closest match belongs to the query’s
class.

– First Tier (FT): The percentage of the models for the
(C − 1) closest matches, where C is the cardinality of
the query’s class.

– The Second Tier (ST): The percentage of the models for
the 2 ∗ (C − 1) closest matches.

– Discounted Cumulative Gain (DCG): Evaluates the
quality of the retrieval list by incorporating the entire
list. Since a user is most interested in the first results,
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Fig. 8 The run-times in seconds for a different number of features selected from the same mesh surface

correct results near the front of the retrieval list are
weighted more heavily than correct results near the end.

– E-measure combines precision and recall metrics into a
single number. It is defined as E = 2 × ( 1

P
+ 1

R
)−1,

where P and R are the precision and recall for a fixed
number of retrieved models.

Tables 2 and 3 show a comparison of our method with
the highest performing results submitted to the SHREC’11
non-rigid track and MCGill database. The selected methods
are all based on canonical forms and use the view-based
retrieval method of Lian et al. [28] for non-rigid 3D shape
retrieval. Our method achieves the best NN measure for
the SHREC’11 non-rigid track and a very competitive
performance behind Pickup method [7] and geodesic based
methods. Note that our method is fully automatic and does
not require all pairs of geodesic distances to be computed.
Despite these results, it is clear that the difference between
retrieval scores of original meshes and canonical forms is
negligible. This is justified by the large difference among
classes.

Table 4 shows the retrieval performance on the
SHREC’15 canonical forms benchmark [2]. Compared to

Table 2 Retrieval statistics for the SHREC’2011 database

Method NN 1-Tier 2-Tier e-Measure DCG

Originalmeshes 0.985 0.746 0.863 0.627 0.931

Classic MDS 0.987 0.855 0.943 0.691 0.964

Fast MDS 0.978 0.795 0.905 0.657 0.945

Least Squares MDS 0.995 0.913 0.969 0.717 0.982

Euclidean based canonical [7] 0.982 0.867 0.964 0.708 0.974

Our method 0.996 0.875 0.956 0.702 0.971

geodesic based methods (the Least Squares MDS, non-
metric MDS, Fast MDS...), our method achieved a very
competitive performance according to all performance mea-
sures. Although our method does not use all geodesic
distances, the commute time distance guided the embedding
to achieve the same performance. This highlights the impor-
tance of using spectral metrics to preserve local features of
the canonical form.

We also tested the performance of the proposed method
on SHREC’15 non-rigid shape retrieval benchmark [32].
The retrieval results are shown in Table 5. Despite the
huge size of this dataset and the presence of topological
errors within some of the meshes, we achieve good retrieval
performance behind the least squares non-metric MDS.
It outperforms the GPS method and the Euclidean based
method [7]. Our method is also competitive with the
skeleton based method although it is sensitive to topological
errors. This may be due to the use of the view-based
method in the retrieval task. Moreover, and as shown in
the precision–recall plots reported in Fig. 9, our method is
among the top three best methods.

Table 3 Retrieval results for the MCGillBall database

Method NN 1-Tier 2-Tier e-Measure DCG

Original meshes 0.980 0.744 0.896 0.691 0.940

Classic MDS 0.961 0.728 0.868 0.678 0.931

Fast MDS 0.918 0.692 0.860 0.649 0.909

Least Squares MDS 0.996 0.830 0.947 0.778 0.970

Euclidean based canonical [7] 0.969 0.761 0.891 0.710 0.940

Our method 0.972 0.788 0.904 0.736 0.949
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Table 4 Retrieval results for the SHREC’15 canonical forms
benchmark [2]

NN 1-Tier 2-Tier DCG

Original Meshes 0.50 0.567 0.702 0.753

Classic MDS 0.73 0.597 0.741 0.796

Fast MDS 0.66 0.590 0.718 0.789

Least Squares MDS 0.75 0.694 0.829 0.838

Non-Metric MDS 0.77 0.687 0.811 0.836

GPS 0.72 0.556 0.697 0.783

Euclidean-based canonical [7] 0.61 0.673 0.796 0.816

Skeleton-based method [16] 0.74 0.682 0.791 0.825

Our Method 0.63 0.687 0.820 0.829

Table 5 Retrieval results for the SHREC’15 non-rigid shape retrieval
benchmark [32]

NN FT ST DCG

Classic MDS 0.969 0.731 0.833 0.922

Fast MDS 0.944 0.649 0.766 0.884

Least-squares MDS 0.992 0.863 0.938 0.969

Non-metric MDS 0.991 0.853 0.929 0.965

GPS 0.749 0.453 0.582 0.745

Euclidean-based method [7] 0.978 0.793 0.884 0.943

skeleton-based method [16] 0.986 0.844 0.933 0.964

Our method 0.990 0.810 0.910 0.956

Fig. 9 Precision–recall curves for best methods tested on the
SHREC’15 non-rigid benchmark [32] and our method

To sum up, our method is much faster and has lower
computational complexity compared to geodesic based
methods. It used intrinsic distance based on the Laplace
Beltrami operator and provided better results compared
to the GPS method. While resulting in only a small
difference in performance compared to Euclidean-based
method and the skeleton-based method. Moreover, our
method is parameter-free and robust to topological errors.

6 Conclusion

In this paper, we have proposed a novel method to construct
canonical forms of 3D models based on local MDS method
dedicated to non-rigid shape retrieval. We have presented
a new idea to divide the problem of 3D canonical form
embedding into sub-problems. These sub-problems are
solved by adding a spatial constraint between each pairs
of them. We have taken advantage of the good properties
of the biharmonic distance to add relationship between
sub-problems. In addition, we have proposed an automated
setting of the weight values in the stress function, in
accordance with the values of the dissimilarity matrix and
the commute-time weight. Our method does not require
all pairs of geodesic distances to be calculated, and then
has lower computational complexity than geodesics-based
methods. Experiments demonstrated the efficiency of the
proposed method to construct invariant 3D canonical forms
for 3D non-rigid shape retrieval and achieving, in addition,
good retrieval performance in recent 3D non-rigid shapes
benchmark.
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