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Abstract High power density welding technologies are
widely used nowadays in various fields of engineering.
However, a computationally efficient and quick predictive
tool to select the operating parameters in order to achieve
the specified weld attribute is conspicuously missing in
the literature. In the present study, a computationally effi-
cient inverse model has been developed using artificial
neural networks (ANNs). These ANNs have been trained
with the outputs of physics-based phenomenological model
using back-propagation (BP) algorithm, genetic algorithm
(GA), particle swarm optimization (PSO) algorithm and
bat algorithm (BA) separately to develop both the forward
and reverse models. Unlike data driven ANN model, such
approach is unique and yet based on science. Power, weld-
ing speed, beam radius and power distribution factor have
been considered as input process parameters, and four weld
attributes, such as length of the pool, depth of penetration
of the pool, half-width of the pool and cooling time are
treated as the responses. The predicted outputs of both the
forward and reverse models are found to be in good agree-
ment with the experimental results. The novelty of this study
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lies with the development and testing of five neural network-
based approaches for carrying out both forward and reverse
mappings of the electron beam welding process.
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1 Introduction

Fusion welding is one of the most extensively used methods
for various metal joining processes. The applications of high
power density welding technologies, such as electron beam
welding (EBW), laser beam welding (LBW), plasma arc
welding (PAW) etc., are rapidly increasing in various fields
of engineering. EBW, in particular, offers advantages, such
as wide applicability, deep penetration, purity and many
more, which are unmatched, and hence is gaining impor-
tance in various sectors. Moreover, several artificial neural
network (ANN)-based models have been developed corre-
lating inputs with the outputs for predicting both in the
forward and backward directions. However, such models
are of black-box types that do not explain the behaviors
of the operating parameters based on science. Some litera-
tures have also been reported on phenomenological models
that are developed based on science, but final optimiza-
tion of operating parameters has hardly been achieved using
such a model employing with an optimization tool. Cou-
pling phenomenological model with an optimization tool
like either genetic algorithm (GA) or particle swarm opti-
mization (PSO) algorithm or bat algorithm (BA) is very
time consuming for running every individual of it by phe-
nomenological model. For more than 1000 population (or
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swarm) in a generation and running several such generations
(or iterations) before convergence, this approach will not be
computationally efficient. On the other hand, if the ANN
is trained based on the data collected from phenomenologi-
cal model using either back-propagation (BP), GA, PSO or
BA, its subsequent prediction will be very time efficient, yet
based on science. Such ANN-based inverse model will form
a quick predictive tool for practicing engineer to predict the
operating parameters for a particular weld. Additionally, the
development of a profound database through experiments
alone is impractical because of the time, money and effort
involved, but is feasible using such models.

The rest of the text is organized as follows. A detailed
literature review has been carried out in Section 2. The
gaps in the existing literature have been mentioned and
the objectives of the present study have been stated in
Section 3. A brief introduction to the phenomenological
model is provided in Section 4. Section 5 deals with the data
collection method adopted in the study. The developed neu-
ral networks-based approaches for the forward and reverse
mappings are described in Section 6. Results are explained
in Section 7. Some conclusions are drawn in Section 8.

2 Literature review

This section deals with the studies carried out on weld-
pool modeling using phenomenological model and soft
computing tools.

2.1 Studies on phenomenological models

David et al. [1] used a phenomenological model to study
the dynamics of welding process including evolution of
fluid flow, temperature profile and microstructure in order
to avoid welding defects. Mundra et al. [2] combined phase
transformation and thermo-fluid models for the prediction
of microstructures in low alloy steel. A quasi-steady temper-
ature distribution model having a linear heat source moving
with a constant velocity was developed by Koleva et al.
[3]. Their objective was to obtain a feasible range of opti-
mal process parameters, and thereby, estimate the expected
weld geometric characteristics. They also found consider-
able influences of turbulence and Marangoni force in the
liquid weld-pool. He et al. [4, 5] studied the evolution of
temperature and velocity fields, weld geometries, cooling
rate and solidification using a 3D numerical heat transfer
and fluid flow model for laser micro-spot welding of AISI
304 SS and also, compared the results with that of laser
micro-linear welding. Experimental results were in agree-
ment with the model predictions. Roy et al. [6] developed
a model for pulsed laser welding (PLD) by conceptualizing
PLD as a sequence of several tiny spot welds. The study

described, in details, the evolution of velocity field, mushy
zone and temperature profiles in the overlapped spots dur-
ing pulsed laser welding. A computationally efficient model
for keyhole mode welding without considering complex
liquid, vapor cavity interaction and using a simple one
equation turbulence model was developed by Rai et al. [7–
9]. Their studies revealed a strong influence of convective
heat transfer for low conductive materials. Solidification
characteristics were included in their studies. Their pre-
dictions were validated with the experimental results for
different materials having a wide range of properties in
LBW [8]. They also reported that a change in working dis-
tance causes noticeable variation and influence on not only
beam radius but also complete weld profile during EBW of
SS304 plates [9]. In EBW, various possible outlines of the
fusion zone geometry were expressed in terms of shape fac-
tor by Wang et al. [10]. Further analysis was carried out
using non-linear curve fitting of two deduced parameters,
obtained by combining different input parameters to find
their effects on weld shape.

2.1.1 Study of cooling time and cooling rate

Energy input per unit length of the weld-pool (E)(kJ/mm)
represents the combined effect of power (Q) and welding
speed (U), which individually has contrasting effect on the
weld-pool geometry and cooling time. The time required
to cool from 800 ◦C to 500 ◦C, that is, the time taken to
reduce the temperature by 300 ◦C is called 800–500 cool-
ing time

(
t8/5

)
. t8/5 is metallurgically significant especially

for mild steel, as it undergoes maximum phase transforma-
tion during this cooling period. The cooling time and energy
per unit length of the high energy welding are consider-
ably lower than that of conventional one, leading to overall
reduction in the area of heating, hence improved proper-
ties. Another parameter is called cooling rate (CR) ( ◦C/s),
which is a measure of amount of heat dissipated or lost in
unit time. Increase in energy input per unit length increases
the net heat input, resulting in reduction of cooling rate and
increase in cooling time. These two parameters are inversely
proportional, and are mentioned in (1) [11].

CR = 300◦

t8/5
(1)

The cooling rate can also be defined as a product of solidifi-
cation rate (R) and thermal gradient (G). It could be used as
a reference to carry out further study on micro-structures [1,
2, 4–8]. The study of cooling rate had been carried out on
different processes, such as electron beam (EB) hardening
[12], Metal Active Gas (MAG) welding [13], laser welding
[14–16] and EB welding [17].
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2.2 Weld-pool modeling using various soft
computing-based approaches

Bag et al. [18] combined a 3D convective heat transfer
model with PCX G3 GA-based optimization tool for Gas
Tungsten Arc Welding (GTAW) of SS304, for developing
an improved forward model, for the prediction of weld
geometries. An inverse model was also developed in order
to predict the welding process parameters. Manvatkar et al.
[19] developed ANN models following Bayesian approach
for the determination of Friction Stir Welding (FSW) weld
attributes. The training data were generated using phe-
nomenological model and the model was validated with
experimental results. Mishra and Debroy [20] studied a
thermo-fluid physical model in order to predict heat trans-
fer and fluid flow in GTAW of Ti-6Al-4V alloy. They used
a GA to optimize the temperature and velocity fields. They
found that by varying the set of welding parameters, such
as speed, current and voltage etc., definite weld geome-
try could be achieved through multiple pathways. Andersen
et al. [21] used an ANN to model the weld-pool in terms
of input parameters of GTAW process. Karsai et al. [22]
developed an ANN-based technique by using input-output
relationships to model and control the static and dynamic
behaviors of a GTAW process with limited errors. Lim and
Cho [23] designed a 4-layer neural network to use surface
temperature distributions on the work-piece to predict the
weld-pool geometry. Dutta and Pratihar [24] mapped the
input-output correlations of a welding process by utilizing
conventional regression analysis, back-propagation neural
network (BPNN) and genetic algorithm-tuned neural net-
work (GANN), and found that the overall performance of
GANN was better than that of the BPNN. Chokkalingham
et al. [25] attempted to develop an ANN model to esti-
mate the weld-pool geometry during an automated, robotic
GTAW welding of SS316LN work-piece. Temperature dis-
tributions were measured separately by thermocouples and
non-contact IR emission cameras, where the latter provided
the better results. Reddy and Pratihar [26] developed BPNN
and GANN-based expert systems separately to predict the
temperature distributions of EBW of aluminum alloy. In
their study, ANSYS was used to generate different sets
of data regarding the temperature distributions by varying
mesh refinement. GANN outperformed the BPNN in pre-
dicting the temperature distributions. Jha et al. [27] carried
out regression analysis to map input-output relationships
of electron beam (EB) butt welding of SS304 in both for-
ward as well as reverse direction by utilizing the BPNN and
GANN. The GANN outperformed the BPNN. Khorram et
al. [28] employed Response Surface Methodology (RSM) to
optimize weld-bead geometry in CO2 laser welding of Ti-
6Al-4V alloy in order to identify optimum weld conditions
for the improved productivity. Srivastava and Garg [29]

studied the effects of several input process parameters on
the different weld attributes during gas metal arc butt weld-
ing of mild steel plates. RSM was used to obtain optimum
weld geometries. Ronda and Siwek [30] developed a numer-
ical model to investigate the interactions of keyhole and
weld-pool. This model considered temperature dependent
material properties. The material vaporization, occurring in
the keyhole had also been simulated using the Volume of
Fluid (VOF) method. They found that the shape and depth of
melted zone depend on surface tension, pool surface temper-
ature and presence of sulfur. They also found that convective
heat loss had some effects on weld-pool shape. Gao and
Zhang [31] used BPNN and Radial Basis Function Neural
Network (RBFNN) to predict the weld-width during laser
welding of SS304. They captured the dynamic variations
of molten weld-pool morphology by using their shadows
with an active vision system. The BPNN was reported to
perform better than the RBFNN. A hybrid learning pro-
cess was used to improve the performance of a RBFNN for
the prediction of laser welding attributes [32]. The input-
output modeling was done using ANN for Resistance Spot
Welding (RSW) of Advanced High Strength Steel (AHSS)
plates and EvoNorm algorithm was found to provide with
a good Pareto-optimal front [33]. Buffa et al. [34] used an
ANN model to predict the microstructure and strength of
FSW welded titanium alloys. In another study, an ANN
model was utilized to predict the strength of pulsed laser
spot welded joints [35]. A fast and accurate Particle Swarm
Optimization (PSO) algorithm was proposed as a good sub-
stitute of the GA [36]. Forward and reverse modeling of
the EBW of zircaloy-4 had been carried out using different
ANN models, such as BPNN, GANN and particle swarm
optimization-tuned neural network (PSONN) [37]. The per-
formance of ANN was seen to be data-dependent. ANN,
with an intermediate feedback network from hidden neurons
is the Elman Recurrent Neural Network [38]. PSO-tuned
dynamic Elman Recurrent Neural Network (PSORNN) was
also found to provide accurate results in predictions [39,
40]. Recently, a new nature-inspired algorithm has been
developed from the prey locating behavior of bats using
echoes [41]. Bat algorithm (BA) is a superset of some of
the popular and efficient algorithms, such as PSO, Harmony
search (HS), Simulated annealing (SA). This has resulted
into the unification of the positive traits of these different
algorithms into a single model along with unique hunt-
ing feature of bats [41, 42]. Moreover, Khan and Sahai
[42] found the BA-tuned neural network (BANN) to out-
perform BPNN, GANN and PSONN. Still, the issues with
convergence and inadequate performances are observed due
to over-simplification of bat’s hunting nature and imbal-
ance between exploration and exploitation [43, 44]. As a
result, different modifications in the BA were proposed for
improvement in the performances of ANN [43, 45, 46]. A
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novel bat algorithm (NBA) was developed by Meng et al.
[43] having additional features of suitable habitat selection
and echo adjustment.

3 Limitations of existing literature and objective of
the present study

Although some input-output models exist based on ANN,
these are valid for a specific range of inputs [21, 22, 24,
27, 33]. Besides this, such black-box models do not explain
the behavior of the operating parameters based on science.
Initially, it was thought that a phenomenological model
will be coupled with an optimization tool named either
GA, PSO or BA for inverse modeling. However, running
such phenomenological model coupled with the GA, PSO,
or BA will be very time consuming because to run each
individual of the GA population/ PSO swarm/BA popula-
tion, phenomenological model will consume around 20 min.
Therefore, it is easily understandable that for a large pop-
ulation/swarm in a generation/iteration and several genera-
tions/iterations to converge the results, it may take several
days to solve the optimization problem. On the other hand,
if ANN is trained based on the data collected from the phe-
nomenological model using either a GA, PSO or BA, it will
be very time efficient. Such ANN-based inverse model will
form a quick predictive tool for practicing engineer to pre-
dict the operating parameters for a particular weld attribute
based on science. Such approach is conspicuously absent in
the literature. Furthermore, while carrying out actual exper-
iments in order to generate the test cases, there is no direct
way to provide the beam diameter and power distribution
factor (f ) as input parameters in the experimental setup.
In order to find the beam radius (rb), Elmer et al. [47]
attempted to measure it experimentally, while Kar et al. [48]
used the best-fit polynomial curve to predict it for different
values of energy per unit length. However, the applicability
of those methods is limited and only a rough estimation of
beam radius could be obtained.

In the present study, the phenomenological model has
been used to generate a large amount of input-output data
by utilizing the material properties given in Appendix
Table 2. Both forward and reverse modeling have been
conducted to establish input-output relationships of the pro-
cess using the BPNN, GANN, PSONN, PSORNN, and a
novel BA-tuned dynamic Elman Recurrent Neural Network
(NBARNN). The actual experiments have been carried out
in order to obtain the data for test scenarios considering
two separate cases. In case one, the current is kept con-
stant, while the voltage has been varied in order to change
the power. With the same range and values of power, the
voltage is kept constant and the current has been varied in
the second case of test scenarios. The experimental data,

thus measured for the test cases, have been compared with
the corresponding predicted values obtained from the above
mentioned models.

4 Phenomenological model used

A pre-existing indigenous welding code [49], which is well-
tested and validated against experimental data, is used to
determine the thermal cycle. It is developed based on three
dimensional steady heat, mass momentum balance equa-
tions. The code considers an incompressible, laminar and
Newtonian fluid flow. All three driving forces for liquid
flow, namely Marangoni force, Lorenz force and buoyancy
force are considered for evolving the liquid flow pattern.
Keyhole mode welding has been modeled by framing a
keyhole by point by point heat balance on the keyhole sur-
face and subsequently, putting it in the thermo-fluid code
as a rigid wall at boiling temperature. Turbulence in the
model is considered by a one dimension model [7, 8]. The
model equations are discretized by control volume method
and solved by SIMPLE algorithm. Non-uniform grids are
utilized to make the code computationally efficient using
only very fine grids at the location of steep gradients and
coarse, otherwise. The code uses material property, heat
source parameters as inputs and produces velocity, temper-
ature profiles, cooling rates, cooling times as outputs. The
circulation of liquid metal in the weld-pool can be repre-
sented by the following momentum equation given below.

ρ
∂uj

∂t
+ ρ

∂
(
uiuj

)

∂xi

= ∂

∂xi

(
μ

∂uj

∂xi

)
+ Sj , (2)

where ρ represents the density, t indicates the time, xi

denotes the distance along the i direction, ui and uj are the
velocity components along the i and j directions, respec-
tively, μ represents the viscosity and Sj is the source term
for the j -th momentum equation as given below.

Sj = − ∂P

∂xj

+ ∂

∂xj

(
μ

∂uj

∂xj

)
− C

(
(1 − fL)2

f 3
L + B

)

uj

+ρgβ (T − Tref) − ρU
∂uj

∂xj

, (3)

where P represents pressure. In (3), the first term on the
right hand side is the pressure gradient. The second term
carries information of the viscosity. The third term denotes
the frictional dissipation in the mushy zone according to the
Carman- Kozeny equation for flow through a porous media,
where fL represents the liquid fraction. Here,C takes a high
value for which the forces and velocity in the solid region
become equal to zero, while a small value is assigned to
B in order to avoid zero in the denominator. The fourth
term corresponds to the buoyancy force, where g and β
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represent the acceleration due to gravity and coefficient of
thermal expansion, respectively. Tref refers to any arbitrar-
ily selected reference temperature. The last term indicates
the source term due to welding velocity.

The following continuity equation is solved in conjunc-
tion with the momentum equation to obtain the pressure
field:

∂
(
ρui

)

∂xi

= 0 (4)

The thermal energy transportation in the weld work-piece
can be expressed by the following equation:

ρ
∂h

∂t
+ ρ

∂ (uih)

∂xi

= ∂

∂xi

(
k

Cp

∂h

∂xi

)
+ Sh, (5)

where k indicates the thermal conductivity, Cp is the spe-
cific heat, and Sh represents the source term due to latent
heat content, h denotes the sensible enthalpy. The heat flux
at the top surface is given by the following equation:

k
∂T

∂z

∣∣∣∣
top

= f Qη

r2b

exp

(

−f
(
x2 + y2

)

r2b

)

− εσ
(
T 4 − T 4

a

)

−hc (T − Ta) (6)

In (6), the first term on the right hand side is the heat input
from the source, defined by a Gaussian heat distribution,
where rb, Q and f have been defined previously. Here, η

is the power efficiency, ε represents emissivity, σ denotes
the Stefan Boltzmann constant, hc indicates the heat transfer
coefficient and Ta is the ambient temperature. The second
and third terms represent the heat loss by radiation and
convection, respectively.

The weld-top surface is assumed to be flat. The
Marangoni convection is initiated through the velocity
boundary condition as given below.

μ
∂u

∂z
= fL

dγ

dT

∂T

∂x
; μ

∂v

∂z
= fL

dγ

dT

∂T

∂y
; w = 0, (7)

where u, v and w are the velocity components along the
x, y and z directions, respectively, and dγ

dT
is the temperature

coefficient of surface tension. Symmetrical vertical plane
contains the direction of welding. The boundary conditions
indicate no flux across the symmetric surface as mentioned
below.

∂u

∂y
= 0; v = 0,

∂w

∂y
= 0; ∂h

∂y
= 0. (8)

At all the surfaces, temperatures are kept equal to ambient
temperature (Ta) and velocities are set to be equal to zero.

5 Data collection

5.1 Collection of training data

The ranges of input parameters, used in the current study
(refer to Table 1) have been selected on the basis of literature
survey and experiences [12, 27, 48]. The phenomenological
model has been used to generate input-output data according
to a full-factorial design, considering four input and four
output parameters, and each having six levels. Therefore, a
set of 64 = 1296 input-output data has been generated. The
thus generated input-output data set has been used to train
the BPNN, GANN, PSONN, PSORNN and NBARNN for
the forward and reverse models separately.

5.2 Collection of data for testing the models

The input-output data for the test cases have been obtained
after carrying out real experiments. The experiments are car-
ried out in a 12 kW EBW machine developed by Bhabha
Atomic Research Centre (BARC), Mumbai at IIT Kharag-
pur, India. It has the maximum voltage and current ratings
of 80 kV and 150 mA, respectively. A photograph of the
EBW setup is shown in Fig. 1.

The ranges of the test data have been kept the same with
that of the training data. In the existing facility, there is a
provision for selecting power and welding speed as input
parameters. The power and welding speed are varied in the
range of (3.2, 5.6) kW and (900,1800) mm/min, respec-
tively. The test data have been sub-divided into two separate
cases. In case one of the test data, the current is kept fixed to
80 mA and voltage is varried from 40 kV to 70 kV (refer to
Appendix Table 3). In case two, the voltage is kept constant
at 60 kV by varrying the current from 54mA to 94 mA (refer
to Appendix Table 4). In the present study, a total of sixteen
test scenarios have been considered for both the above two

Fig. 1 Photograph of 12 kW EBW Machine Setup at IIT Kharagpur,
India
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Table 1 Ranges of process
parameters for
Phenomenological Model [12,
27, 48]

Parameters Ranges of process parameters

Power (Q)(kW) 2.0 2.8 3.6 4.4 5.2 6.0

Welding Speed (U) (mm/min) 500 1000 1500 2000 2500 3000

Beam radius (rb) (μm) 100 160 220 280 340 400

Power Distribution Factor (f ) 0.5 1.2 1.9 2.6 3.3 4

cases. Bead-on-plate welding has been carried out on AISI
304 Stainless Steel plate of dimensions 150 mm × 50 mm
× 20 mm. Figure 2 depicts two weld passes.

After carrying out the welding, the required weld-pool
dimensions for the different experimental conditions have
been obtained by carrying out proper cutting, polishing and
etching of the welded samples. Then, the weld geome-
tries have been measured under a microscope and thereby,
documented.

The two input parameters, namely power and weld-
ing speed are known from the real experiments. However,
the other two input parameters considered in this study,
such as beam radius and power distribution factor are not
known beforehand. In order to find these two unknown input
parameters, trial and error runs using the phenomenologi-
cal model have been carried out. Along with the two known
parameters (power and welding speed), the two unknown
parameters have been varied in their respective ranges, as
provided in Table 1. The combinations of four input param-
eters, for which the predicted depth and half-width of the
pool by the phenomenological model almost match with
the experimentally measured results are identified. The two
unknown input parameters are, thus, determined. The beam
radius is found to vary from 220 to 400 μm (refer to
Appendices Tables 3 and 4), which matches with the range
for the same reported in the literature [50, 51].

The corresponding phenomenological model predicted
data on length of the pool

(
Lp

)
and cooling time, are

also documented along with the experimentally measured

Fig. 2 Bead-on-plate welded samples

outputs. The input-output data, consisting of four inputs and
four outputs are, thus, obtained for all the test scenarios
(refer to Appendices Tables 3 and 4), and have been used
to check the performances of the BPNN, GANN, PSONN,
PSORNN and NBARNN developed for the forward and
reverse modeling.

6 Developed artificial neural network models

Figure 3 shows the schematic view of an ANN used in for-
ward modeling. It consists of three layers, namely input,
hidden and output layers. Four inputs and four outputs
have been considered for the forward model. The symbols:
[V ] and [W ] are used to represent the connecting weights
between input and hidden layers and that between the hid-
den and output layers, respectively. The input, hidden and
output layers are considered to have linear, log-sigmoid and
log-sigmoid transfer functions, respectively. A total of 1296
input-output data generated using phenomenological model
according to full-factorial design have been used for training
of the network.

The performances of the trained ANN have been tested
using 16 test scenarios as discussed above. The average
absolute percent deviation in predicting the outputs has been
calculated, as shown in (9) [52].

fd = 1

L

1

Po

L∑

l=1

Po∑

k′=1

∣∣∣∣
Tok′l − Ook′l

Tok′l
× 100

∣∣∣∣, (9)

Fig. 3 Schematic view of an ANN used in forward modeling
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Fig. 4 Schematic view of an ANN used in reverse modeling

where Po denotes the number of outputs of the network, L

represents the number of training scenarios, Ook′l is the pre-
dicted output corresponding to lth training scenario and k′th
neuron of the output layer.

The connecting weights have been updated with the aid
of back-propagation algorithm employing the generalized
delta rule in order to minimize the predicted error as shown
in (10) and (11) [53].

	V (ti) = −ηl

∂f

∂V
(ti) + α

′
	V (ti − 1), (10)

	W(ti) = −ηl

∂f

∂W
(ti) + α

′
	W(ti − 1), (11)

where ηl, α
′ and ti represent the learning rate, momentum

constant and number of iterations, respectively.

Figure 4 displays anANN to be used for reverse modeling.
Here, the inputs and outputs of the forward model have been
inter-changed. To train the network, both back-propagation
algorithm and GA have been used as discussed above.

A parametric study is carried out to decide the number
of hidden neurons in the network, learning rate, momen-
tum constant, coefficients of transfer function of the hidden
and output layers, maximum number of iterations and bias
value. The details of the parametric study have been dis-
cussed in the result section. A batch mode of training has
been used in the BPNN.

Figure 5 shows the flowchart of GANN used in the
present study. In order to update the connecting weights,
the back-propagation (BP) algorithm of the BPNN has
been replaced by a real-coded genetic algorithm (GA). To
develop the trained network, a parametric study has been
carried out by varying the number of hidden neurons in
the network, probability values of crossover and mutation,
population size and maximum number of generations. In
GANN, the fitness function of the GA has been calcu-
lated using (9). This percent deviation in predictions has
been selected as the performance criterion for updating the
connecting weights.

PSO is an evolutionary computation tool, developed
through the study of particles’ behavior in a swarm. The best
solution is obtained through simultaneous local and global
upgrading of the velocity and position of the particles, as
given below.

vid (ti + 1) = wIvid (ti) + c1r1 (pid − xid (ti))

+c2r2
(
pgd − xid (ti)

)
, (12)

Fig. 5 Flow-chart of GANN
[53]
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xid (ti + 1) = xid (ti) + vid (ti + 1) , (13)
where vid and xid denote the velocity and position of ith
particle in dth dimension. pid represents the previous best
position of the ith particle in dth dimension, and pgd indi-
cates the global best position in dth dimension . Moreover,
wI denotes a constant inertia weight, c1 represents a cogni-
tive parameter, and c2 indicates a social parameter. r1 and r2
are the random numbers lying in the range of 0 to 1.

It is to be noted that the GA shown in Fig. 5 has
been replaced by the PSO in order to develop the PSONN
algorithm.

Unlike the previously discussed ANNs, a PSO-tuned
Recurrent Neural Network (PSORNN) has also been
employed in the said analysis. The effect of feedback on
the network improvement is analyzed. Figure 6 displays the
schematic view of an Elman recurrent neural network used
in this study.

The PSO of PSORNN has been replaced by a recently
reported novel bat algorithm (NBA) [43]. This NBA is
an upgradation of the standard BA [41], where addi-
tional bat behaviors, such as selection of a proper habitat
through quantum behavior and mechanical behavior like
echo adjustment in the form of Doppler effect have also
been taken into account. Thus, the developed NBARNN
is used in the present study. The equations used for the
standard bat algorithm have been stated below.

fi = fmin + (fmax − fmin) × β0, (14)

vbid (ti) = vbid (ti − 1) + (xbid (ti) − x∗) × fi, (15)

xbid (ti) = xbid (ti − 1) + vbid (ti) , (16)
where fi and β0 are the frequency and random number (0,
1), respectively. vbid and xbid denote the velocity and posi-
tion of ith bat in dth dimensional search space. x∗ represents

Fig. 6 Schematic view of recurrent neural network used in forward
and reverse modeling

the present best result. An additional local search through
random walk method is employed using the following
equations:

xnew = xold + ε0Amean (ti) , (17)

where ε0 is a random number varying in the range of (−1,
1). The average loudness of bats is represented byAmean(ti).
With the iterations, the decrease in loudness and increase in
pulse rate are given as follows:

Ai(ti + 1) = αb × Ai(ti), (18)

ri(ti + 1) = ri(0) × [
1 − exp (−γb × ti )

]
, (19)

where Ai and ri are the loudness and pulse rate in each iter-
ation. Here, αb and γb have been set equal to 0.90 each. The
modifications implemented in the standard BA, and the val-
ues of the parameters have been taken from the literature
[43].

7 Results and discussion

Results of the forward and reverse models developed in this
study are stated and discussed in this section. During for-
ward modeling, the deviations in predictions of the depth of
penetration and half-width of the weld pool, as obtained by
the phenomenological, BPNN, GANN, PSONN, PSORNN
and NBARNN models have been compared with the experi-
mental results. Since the length of the pool and cooling time
have not been determined experimentally, the results of the
trained BPNN, GANN, PSONN, PSORNN and NBARNN
models have been compared with that of the phenomeno-
logical model. The experimentally measured depth of pen-
etration and half-width, along with the phenomenological
model-predicted length of the pool and cooling time have
been used as inputs of the reverse model. During the reverse
modeling, the welding process parameters are predicted uti-
lizing the trained BPNN, GANN, PSONN, PSORNN and
NBARNNmodels. In addition, the effects of energy per unit
length of weld-pool on weld attributes, namely depth of the
pool, half-width of the pool, cooling time and cooling rate
have also been studied.

7.1 Results of forward modeling

The parametric studies of the BPNN, GANN, PSONN,
PSORNN and NBARNN have been carried out to decide
their optimal parameters, as discussed below.

7.1.1 Parametric study of BPNN

The results of BPNN parametric study are shown in Fig. 7a–
g. During this study, the number of hidden neurons in
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Fig. 7 Results of the parametric
study of BPNN: Average
absolute Percent Deviation vs. a
Number of Hidden Neurons, b
Learning Rate, c Momentum
Constant, d Coefficient of
Transfer Function of Hidden
Layer, e Coefficient of Transfer
Function of Output Layer, f
Maximum Number of Iterations,
g Bias Value
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Fig. 8 Results of the parametric
study of GANN: a Fitness vs.
Number of Hidden Neurons, b
Fitness vs. Probability of
Crossover (pc), c Fitness vs.
Probability of Mutation (pm), d
Fitness vs. Population size (N),
e Fitness vs. Maximum Number
of Generations

(
G′

max

)

the network, learning rate, momentum constant, coeffi-
cient of transfer function of the hidden and output layers,
maximum number of iterations and bias value have been
kept in the ranges of (2, 20), (0.1, 1.0), (0.1, 1.0), (0.5,
5.0), (100, 10,000) and (0.00001, 0.00010), respectively.
Here, one parameter has been varied at a time, keeping
the others unaltered. The optimum values of the number
of hidden neurons in the network, learning rate, momen-
tum constant, coefficient of transfer function of the hidden
layer, coefficient of transfer function of the output layer,

maximum number of iterations and bias value are found to
be equal to 19, 0.9, 0.10, 4.50, 2.50, 6000 and 0.00007,
respectively.

7.1.2 Parametric study of GANN

Figure 8a–e display the results of the parametric study for
GANN. The parameters like the number of hidden neurons,
probability of crossover (pc), probability of mutation (pm),
population size (N) and maximum number of generations
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Fig. 9 Percent deviation of
Phenomenological model-,
BPNN, GANN, PSONN,
PSORNN and NBARNN-
predicted outputs from the
corresponding experimentally
obtained outputs for case one
test scenarios: a Depth of
penetration of the pool, b
Half-Width of the pool

(
G′

max

)
have been varied in the ranges of (2, 20), (0.5, 1.0),

(0.001, 0.011), (1160, 2320) and (100, 3900), respectively.
After carrying out the parametric study, the optimum values
of the number of hidden neurons in the network, pc, pm,
N and G′

max are obtained as 14, 0.6, 0.004, 2204 and 3900,
respectively.

7.1.3 Parametric study of PSONN

A parametric study has also been carried out by following
the above procedure in order to obtain an optimized PSONN
network. The parameters, namely the number of hidden neu-
rons of the network and the maximum number of iterations
have been varied in the ranges of (2, 20) and (5000, 30,000),
respectively. The optimum results are obtained with 6 neu-
rons and 30,000 iterations. The values of wI , c1 and c2 are
kept fixed to 0.722, 1.193 and 1.193, respectively.

7.1.4 Parametric study of PSORNN

The parametric study of PSORNN is carried out by fol-
lowing the similar procedure adopted in Section 7.1.3. In
addition, the weights in the feedback mechanism have been
varied in the range of 0.1 to 1.0 with an increment of 0.05.
The optimum number of hidden neurons, maximum number
of iterations and feedback weights are found to be equal to
7, 30000, and 0.4, respectively.

7.1.5 Parametric study of NBARNN

A parametric study has also been conducted in order to
obtain an optimized NBARNN. The parameters of NBA
have been taken from the literature [43]. The parameters,
namely the number of hidden neurons of the network, num-
ber of bats, maximum number of iterations and feedback
weight for the recurrent network have been varied in the
ranges of (2, 20), (20, 200), (1000, 7000) and (0.1, 1.0),
respectively. The optimized results are obtained with 15 hid-
den neurons, 110 number of bats, 5000 iterations and 0.6 as
feedback weight.

7.1.6 Validation of experimental results
with phenomenological and neural networks-based models
during forward modeling

Experimental results have been compared with that of phe-
nomenological and neural networks-based models for the
two cases, as stated below.

Results of case one The current is kept constant and the
voltage has been varied. The percent deviation values in pre-
dictions of depth of penetration and half-width of the pool
using different models with respect to the experimentally
obtained results are plotted in Fig. 9a, b. Figure 10a, b dis-
play the values of precent deviation in predicting the length

Fig. 10 Percent deviation of
BPNN, GANN, PSONN,
PSORNN and NBARNN-
predicted outputs from the
corresponding
Phenomenological model
predicted outputs for case one
test scenarios: a Length of the
pool, b Cooling Time
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of the pool and cooling time by the BPNN, GANN, PSONN,
PSORNN and NBARNN models, as obtained through the
comparison of the results with that of the phenomenological
model.

It is clear from Fig. 9a, b that the values of percent devia-
tion in prediction of the depth of penetration and half-width
for most of the test cases are found to be in the range of
(−7%, +7%) and (−5%, +7.5%), respectively. Similarly, it
is observed from Fig. 10a, b that the values of percent devi-
ation in predicting the length of the pool and cooling time
vary in the range of (−7.5%, +6%) and (−17.5%, +20%),
respectively, for most of the test cases. It is to be noted
that a high value of percent deviation in prediction of cool-
ing time has been obtained for 11-th test scenario of the
Appendix Table 3 (refer to Fig. 10b). It has happened so,
as a low value of cooling time, that is, 0.283 s has been
obtained from the phenomenological model for this test sce-
nario. This may have occurred due to inherent limitations of
the phenomenological model to analyze the highly complex
process.

The values of average absolute percent deviation in pre-
dicting the depth of penetration are found to be equal
to 4.14%, 8.73%, 6.81%, 5.02%, 4.54% and 4.49% for
the phenomenological model, BPNN, GANN, PSONN,
PSORNN and NBARNN, respectively. Similarly, these val-
ues have been calculated for the predictions of half-width
of the weld pool by the phenomenological model, BPNN,
GANN, PSONN, PSORNN and NBARNN, which are
seen to be equal to 6.54%, 6.34%, 7.81%, 6.34%, 8.19%
and 6.10%, respectively. The BPNN, GANN, PSONN,
PSORNN and NBARNN models have predicted the lengths
of the weld pool with an average absolute percent deviation
of 6.81%, 4.74%, 6.40%, 6.81% and 7.31%, respectively.
Similarly, cooling time has been predicted with an aver-
age absolute percent deviation of 19.50%, 15.54%, 13.03%,
10.78% and 10.43% by the BPNN, GANN, PSONN,
PSORNN and NBARNN models, respectively. The phe-
nomenological model is able to predict the responses with
reasonable accuracy and PSORNN is seen to perform
slightly better than the PSONN, GANN and BPNN. This
may be attributed to the presence of a feedback mecha-
nism. Moreover, PSONN has outperformed GANN because
of preservation of the previous best solutions, while carry-
ing out the global and local searches simultaneously. Being
a gradient-based method, the chance of back-propagation
(BP) algorithm for getting stuck at the local minima is more,
and consequently, BPNN has yielded a slightly worse per-
formance compared to the GANN. The performances of
NBARNN and PSORNN, both having the feedback loop
have been compared. It is observed that the former distinctly
outperforms the latter for most of the cases. This may be
because of an efficient local search mechanism used by the
NBARNN. Moreover, the performance of the conventional

BA has been improved in the present study by an addition of
proper selection of habitat through quantum and mechanical
behaviors of the bats. The quantum behavior of bats facil-
itates the search in a wide range of habitats. The Doppler
effect considered under mechanical behavior of a bat, takes
into account the self-adaptive capabilities to automatically
adjust its velocity and position, depending upon the rela-
tive velocity and position of the prey by either increasing or
decreasing its speed.

Two experimentally measured outputs, namely depth of
penetration and half-width of the pool, phenomenological
model-predicted cooling time, and cooling rate deduced
from (1), have been plotted in Fig. 11a–d against the
energy input per unit length of the weld-pool. The energy
input per unit length has been varied from 0.107 kJ/mm to
0.373 kJ/mm. The power-welding speed combinations for
the low and high energy input per unit length are considered
to be 3200 W–1800 mm/min, and 5600 W–900 mm/min,
respectively. With the increase in energy input per unit
length, depth of penetration of the pool, half-width of the
pool and cooling time are seen to increase, while the cool-
ing rate is found to decrease. This has happened so, because
with the increase in energy per unit length, the net heat input
into the sample increases. It causes more melting, thereby
affects both the deeper as well as wider part of the sample,
and consequently, the depth of penetration and half-width
of the weld-pool are found to increase. As the net heat input
into the sample increases, the rate at which heat is dissipated
is reduced, which results into the increased cooling time and
decreased cooling rate.

The variations of cooling time and cooling rate with the
energy per unit length of weld-pool have been studied by
various researchers. Results of the present study, as shown
in Fig. 11c, d, are in close agreement with that of the
literature [12–17].

The bead-geometries corresponding to the minimum and
maximum energy per unit length of the weld-pool have been
considered for analysis. The experimentally measured bead-
geometries (shown on left side) and the phenomenological
model-predicted counterpart (displayed on right side) have
been compared in Fig. 12a, b. The temperature distributions
and fluid flow have also been shown in the phenomeno-
logical model-predicted weld-geometries. Both the depth
of penetration as well as half-width of the weld-pool, cor-
responding to the higher energy per unit length, has been
found to be higher than that of the lower counterpart. The
dimensions of the weld-geometries for case one have been
mentioned in the Appendix Table 3. The ratio of bead-
width to depth of penetration, that is, the aspect ratio in
Fig. 12a, corresponding to the highest energy per unit length
is obtained as 0.683, while the same in Fig. 12b, correspond-
ing to the lowest energy per unit length is found to be equal
to 1.77. The trend matches with the pattern highlighted in
Fig. 11a, b.
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Fig. 11 The effects of energy
per unit length for case one test
cases on a Depth of penetration
of the pool, b Half -Width of the
pool, c Cooling Time, d Cooling
Rate

Results of case two Here, the current has been varied after
keeping the voltage constant. The values of percent devia-
tion in predictions of depth of penetration and half-width of
the pool as obtained by different models with respect to the
experimental results are displayed in Fig. 13a, b. Figure 14a,
b show the percent deviation in predicting the length of
pool and cooling time by the BPNN, GANN, PSONN,
PSORNN and NBARNN models through the comparison
with the results of phenomenological model for the test
scenarios.

The phenomenological model, BPNN, GANN, PSONN,
PSORNN and NBARNN models have predicted the depth
of penetration of the weld-pool with an average absolute

percent deviation value of 7.69%, 10.314%, 9.45%, 8.18%,
9.62% and 8.08%, respectively. Similarly, these models
have been used for the predictions of half-width of weld-
pool, and the values of average absolute percent deviation in
predictions are found to be equal to 7.17%, 8.65%, 8.10%,
6.69%, 7.34% and 5.99%, respectively. The length of the
weld-pool has been predicted with an average absolute per-
cent deviation of 7.85%, 4.37%, 7.47%, 5.74% and 7.22%
by the BPNN, GANN, PSONN, PSORNN and NBARNN -
models, respectively. In a similar way, the BPNN, GANN,
PSONN, PSORNN and NBARNN-models have predicted
the cooling time with an average absolute percent devia-
tion of 11.90%, 14.92%, 11.37%, 10.82% and 10.17%,

Fig. 12 Bead geometries in
EBW corresponding to the
highest and lowest heat input per
unit length for case one of test
scenarios: a power = 5600 W,
welding speed = 900 mm/min,
power distribution factor = 1.5,
and beam radius = 400 μm; b
power = 3200 W, welding speed
= 1800 mm/min, power
distribution factor = 0.5, and
beam radius = 400 μm
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Fig. 13 Percent deviation of
phenomenological model-,
BPNN, GANN, PSONN,
PSORNN and NBARNN -
predicted outputs from the
corresponding experimentally
obtained outputs for case two
test scenarios: a Depth of
penetration of the pool, b
Half-Width of the pool

respectively. It is important to mention that here again,
NBARNN is seen to perform slightly better than PSORNN,
PSONN, GANN and BPNN. The reason for this has been
explained earlier.

Figure 15a and b display the variations of depth of pen-
etration and half-width of the weld-pool, respectively with
the energy input per unit length for the experimentally
obtained and three model-predicted results. Figure 15c and
d show the plots of cooling time and cooling rate vs. energy
input per unit length of weld pool. It is important to men-
tion that the similar trends of variations have been obtained
as that of Fig. 11 and the reasons for the same have been
explained above.

It is also to be noted that the variations of cooling time
and cooling rate with the energy input per unit length of
weld-pool follow the same trends as that available in the
literature [12–17].

The bead-geometries corresponding to the minimum and
maximum energy input per unit length of weld-pool have
been analyzed. Figure 16a and b compare the experimen-
tally obtained (displayed on left side) and phenomenologi-
cal model-predicted (shown on right side) bead-geometries
corresponding to the maximum and minimum energy input
per unit length of weld-pool, respectively. The temperature

distributions and fluid flow patterns have also been shown
in the phenomenological model predicted weld-geometries
in Fig. 16. The depth of penetration and half-width corre-
sponding to the higher energy per unit length of weld-pool
are found to be more than that of the lower counter-
part. The dimensions of the weld geometries are provided
in the Appendix Table 4. The aspect ratio in Fig. 16a
is found to be equal to 0.516, which corresponds to the
highest energy per unit length. The same in Fig. 16b
is obtained as 1.072, corresponding to the lowest energy
per unit length. The trend follows the pattern shown
in Fig. 15a, b. The aspect ratio of case two is found
to be less than that of case one. This highlights the
increase in depth of penetration in case two compared
to case one, and thereby, the influence of current on the
bead-geometry.

7.2 Results of neural networks-based reverse modeling

Reverse modeling aims to predict the necessary weld-
ing input parameters in order to obtain the desired weld
attributes. In the present study, BPNN, GANN, PSONN,
PSORNN and NBARNN have been used for the reverse
modeling, the results of which are explained below.

Fig. 14 Percent deviation of
BPNN, GANN, PSONN,
PSORNN and
NBARNN-predicted outputs
from the corresponding
phenomenological model
predicted outputs for case two
test scenarios: a Length of the
pool, b Cooling Time



2712 D. Das et al.

Fig. 15 The effects of energy
per unit length on a Depth of the
pool, b Half-Width of the pool, c
Cooling Time, d Cooling Rate

7.2.1 Parametric study of BPNN

For the reverse modeling, a parametric study has been con-
ducted for the BPNN, for which the ranges of the number of
hidden neurons, learning rate, momentum constant, maxi-
mum number of iterations, and bias value have been kept the
same as that of the forward model (refer to Section 7.1.1).
Through this parametric study, the optimum values of the
number of hidden neurons in the network, learning rate,
momentum constant, coefficient of transfer function of hidden
layer, coefficient of transfer function of output layer, maximum
number of iterations and bias value are found to be equal to
15, 0.8, 0.5, 8.5, 7.0, 8000, and 0.00006, respectively.

7.2.2 Parametric study of GANN

For the reverse modeling, during the GANN parametric
study, the ranges of variation for the number of hidden
neurons, probability values of crossover and mutation, and
maximum number of generations have been kept the same
as that of the forward model (refer to Section 7.1.2). The
population size has been varied in the range of (1480, 2960).
After carrying out the parametric study, the optimum values
of the number of hidden neurons in the network, probability
of crossover, probability of mutation, population size and
maximum number of generations are seen to be equal to 18,
0.5, 0.001, 1776 and 3900, respectively.

Fig. 16 Bead geometries in
EBW corresponding to the
highest and lowest heat input per
unit length for case two of test
scenarios: a power = 5600 W,
welding speed = 900 mm/min,
power distribution factor = 4.0,
and beam radius = 400 μm; b
power = 3200 W, welding speed
= 1800 mm/min, power
distribution factor = 1.0, and
beam radius = 370 μm
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Fig. 17 Percent deviation of
BPNN, GANN, PSONN,
PSORNN and
NBARNN-predicted inputs from
the corresponding inputs
provided in the experimental
setup for case one test scenarios:
a Power, bWelding Speed

7.2.3 Parametric study of PSONN

The ranges of variation of the number of hidden neurons and
maximum number of iterations during the parametric study
of PSONN used for reverse modeling are kept the same as
that of the forward model (refer to Section 7.1.3). The opti-
mum number of hidden neurons and maximum number of
iterations are seen to be equal to 9 and 30000, respectively.

7.2.4 Parametric study of PSORNN

The ranges of different parameters used in the parametric
study are kept the same as of the forward model (refer to
Section 7.1.4). The optimum values of the number of hid-
den neurons, maximum number of iterations and feedback
weights are obtained as 16, 30000 and 0.65, respectively.

7.2.5 Parametric study of NBARNN

During the parametric study, the ranges of different param-
eters have been kept the same as of the forward model (refer
to Section 7.1.5). The following parameters are found to
yield the best results: number of hidden neurons = 10,
number of bats = 170, maximum number of iterations =
6000, feedback weights = 0.70.

7.2.6 Validation of experimental results
with phenomenological and neural network-based models
during reverse modeling

During reverse modeling, the process parameters of welding
have been predicted. The results of the test scenarios are
discussed below.

Results of case one As previously mentioned, the current
is kept constant and the voltage has been varied in this case.
The percent deviations in predictions of power and weld-
ing speed using the BPNN, GANN, PSONN, PSORNN and
NBARNNmodels with respect to the experimental inputs of
the test scenarios are shown in Fig. 17a, b. Figure 18a, b dis-
play the percent deviation in the predicted values of beam
radius and power distribution factor by the BPNN, GANN,
PSONN, PSORNN and NBARNN models, in comparison
with the inputs used in the phenomenological model.

In Fig. 17a, b, the BPNN, GANN, PSONN, PSORNN
and NBARNN-predicted percent deviation values of the
power and welding speed for most of the test scenarios are
found to lie in the ranges of (−19%, +15%) and (−19%,
+27%), respectively. Likewise, the percent deviations in
predicting the beam radius and power distribution factor are
observed from Fig. 18a, b to vary in the ranges of (−15%,

Fig. 18 Percentage deviation of
BPNN, GANN, PSONN,
PSORNN and NBARNN-
predicted inputs from the
corresponding inputs provided
in the phenomenological model
for case one test scenarios: a
Beam Radius, b Power
Distribution Factor
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Fig. 19 Percent deviation of
BPNN, GANN, PSONN,
PSORNN and
NBARNN-predicted inputs from
the corresponding inputs
provided in the experimental
setup for case two test scenarios:
a Power, bWelding Speed

+20%) and (−18%, +25%), respectively, for most of the
test cases.

The values of average absolute percent deviation in
predictions of the power employing the BPNN, GANN,
PSONN, PSORNN and NBARNN-models are seen to be
equal to 11.85%, 10.44%, 10.65%, 10.02% and 9.92%,
respectively. Similarly, the same have been obtained for
the predictions of welding speed using the BPNN, GANN,
PSONN, PSORNN and NBARNN and these are seen to
be equal to 19.34%, 17.10%, 13.98%, 15.94% and 13.64%,
respectively. The BPNN, GANN, PSONN, PSORNN and
NBARNN-based models have been used to predict the
beam radius with an average absolute percent deviation
of 13.56%, 13.89%, 10.69%, 6.79% and 9.03%, respec-
tively. Likewise, power distribution factor is predicted
with an average absolute percent deviation of 16.26%,
11.29%, 12.23%, 12.35% and 10.86%, by the BPNN,
GANN, PSONN, PSORNN and NBARNN, respectively.
The overall average absolute percent deviations in predic-
tions as obtained by the BPNN, GANN, PSONN, PSORNN
and NBARNN models are found to be equal to 15.25%,

13.18%, 11.89%, 11.27% and 10.86%, respectively, thereby
NBARNN is found to perform better than the PSORNN,
PSONN, GANN and BPNN. The reason behind such obser-
vations has been discussed above.

It is important to mention that for some of the test sce-
narios, the percent deviation values are found to be high.
It may be due to inherent deviation in predictions of the
phenomenological model or neural network-based models,
although a proper care has been taken.

Results of case two In this case, the voltage is kept constant
and the current has been varried. The percent deviations in
predictions of power and welding speed as obtained by the
BPNN, GANN, PSONN, PSORNN and NBARNN models
with respect to the experimental inputs for the test sce-
narios are shown in Fig. 19a, b. Figure 20a, b display the
percent deviation values in predicting the beam radius and
power distribution factor by the BPNN, GANN, PSONN,
PSORNN and NBARNN models, with respect to the inputs
used in the phenomenological model.

BPNN, GANN, PSONN, PSORNN and NBARNN mod-
els are able to predict the power with an average absolute

Fig. 20 Percent deviation of
BPNN, GANN, PSONN,
PSORNN and NBARNN-
predicted inputs from the
corresponding inputs provided
in the phenomenological model
for case two test scenarios: a
Beam Radius, b Power
Distribution Factor
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percentage deviation of 8.24%, 7.34%, 11.11%, 11.59%
and 7.79%, respectively. Similarly, these values have
been determined for the predictions of welding speed by
the BPNN, GANN, PSONN, PSORNN and NBARNN-
models as 18.04%, 16.92%, 12.51%, 13.36% and 11.89%,
respectively. The BPNN, GANN, PSONN, PSORNN and
NBARNN-models have predicted the beam radius with
an average absolute percent deviation of 13.09%, 12.89%,
9.32%, 7.23% and 9.63%, respectively. Similarly, the power
distribution factor has been predicted with an average abso-
lute percent deviation of 14.37%, 13.98%, 11.82%, 11.65%
and 11.04%, by the BPNN, GANN, PSONN, PSORNN
and NBARNN models, respectively. The predicted results
are found to be in the acceptable range. The values of
overall average absolute percent deviation in predicting all
the welding process parameters are obtained as 13.44%,
12.78%, 11.19%, 10.96% and 10.09% for the BPNN,
GANN, PSONN, PSORNN and NBARNN-models, respec-
tively. Once again, NBARNN is found to perform slightly
better than other ANNs. The reason behind this fact has
been explained above.

8 Conclusion

In the present study, a phenomenological model has been
used to generate input-output welding data, according to a
full-factorial design. Then, the collected data are used in the
neural networks for the purpose of modeling the EBW pro-
cess. The following conclusions are drawn from this study:

1. The physics behind the working of the phenomeno-
logical model is preserved in the developed ANN
models, thereby acting as a quick and accurate pre-
dicting pseudo-phenomenological model.

2. Time, effort and money required for the develop-
ment of a profound database are reduced due to the
minimization of real experiments.

3. BPNN, GANN, PSONN, PSORNN and NBARNN-
based forward and reverse models have been devel-
oped. The forward model predicts the different weld
attributes, while the reverse model determines the
welding process parameters. Even the hard-to-obtain
beam radius has been predicted effortlessly. The pre-
dicted outputs by different models have shown very
good agreement with the experimental results.

4. During forward modeling, the lower aspect ratio for
case two (fixed voltage and varying current) than
that of case one (fixed current and varying voltage)
depicts the influence of current in the welding.

5. The experimentally measured and phenomenologi-
cal model-predicted bead-geometries during forward
modeling are found to be in good agreement.

6. Both the beam radius and power distribution factor
are found to increase with the increase in energy per
unit length of weld-pool.

7. GANN has provided better predictions compared to
the BPNN in both forward as well as reverse mod-
eling. It has happened so, as BPNN has a chance to
get stuck at the local minima, whereas the GANN can
provide globally minimum solution.

8. PSONN outperformed GANN through the preserva-
tion of the best fitness from the previous generations
by carrying out the local and global searches simulta-
neously.

9. PSORNN has performed slightly better than the
PSONN, which is expected because of the inclusion
of a dynamic feedback system.

10. NBARNN has outperformed PSORNN because the
former has a more efficient local search mecha-
nism compared to that of the latter. It is important
to mention that both the NBARNN and PSORNN
are equally efficient in terms of their global search
capability.

11. Neural network-based approaches are seen to estab-
lish input-output relationships of the EBW process
efficiently. However, their performances are found to
be data-dependent.
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Appendix

Table 2 Material properties used in the phenomenological model [4,
7, 18, 54]

Properties Stainless steel

Density of liquid ( kg/m3) 7200

Density at boiling point ( kg/m3) 5800

Molecular viscosity of liquid (Pa-s) 0.01

Solidus temperature (K) 1697

Liquidus temperature (K) 1727

Boiling temperature (K) 3090

Enthalpy of solid at melting point ( J/kg) 1.1E6

Enthalpy of liquid at melting point ( J/kg) 1.36E6

Specific heat ( J/kg-K) 800

Thermal conductivity of solid,( W/m-K) 25

Effective Thermal conductivity of liquid, ( W/m-K) 275

Coefficient of thermal expansion (1/K) 1.96E-05

Emissivity of the material 0.2

Temperature coefficient Of surface Tension (N/m-K) −0.43E-3
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Table 3 Results of the test scenarios for case one

Test Inputs Outputs

scenarios Machine inputs parameters Phenomenological Experimentally measured Phenomenological model predicted
model predicted

Q U E rb f D(mm) HW (mm) Lp(mm) t8/5 (s)

(kW) (mm/min) (KJ/mm) (μm)

1 3.200 1800.000 0.107 400.000 0.500 2.730 2.410 13.890 0.453
2 3.200 1500.000 0.128 400.000 0.500 3.270 2.680 14.390 0.509
3 4.000 1800.000 0.133 400.000 0.500 3.430 2.230 15.580 0.345
4 4.800 1800.000 0.160 250.000 0.500 4.000 1.700 12.680 0.481
5 4.000 1500.000 0.160 400.000 1.000 4.130 2.200 13.790 0.528
6 3.200 1200.000 0.160 400.000 0.500 3.410 2.770 14.890 0.570
7 5.600 1800.000 0.187 280.000 1.000 4.550 1.700 11.540 0.524
8 4.800 1500.000 0.192 280.000 1.200 4.500 1.750 10.340 0.607
9 4.000 1200.000 0.200 400.000 1.200 4.600 2.350 13.640 0.678
10 3.200 900.000 0.213 370.000 0.500 3.900 3.460 16.170 0.692
11 5.600 1500.000 0.224 340.000 0.500 4.800 2.550 17.320 0.283
12 4.800 1200.000 0.240 400.000 1.000 5.290 2.655 15.100 0.523
13 4.000 900.000 0.267 340.000 1.500 5.690 2.495 12.430 0.991
14 5.600 1200.000 0.280 400.000 1.500 5.800 2.750 13.910 0.598
15 4.800 900.000 0.320 400.000 2.600 7.150 2.500 11.770 1.029
16 5.600 900.000 0.373 400.000 1.500 8.200 2.800 14.750 0.705

Table 4 Results of the test scenarios for case two

Test Inputs Outputs

scenarios Machine inputs parameters Phenomenological Experimentally measured Phenomenological model predicted

model predicted

Q U E rb f D(mm) HW (mm) Lp(mm) t8/5 (s)

(kW) (mm/min) (KJ/mm) (μm)

1 3.200 1800.000 0.107 370.000 1.000 3.360 1.800 11.280 0.496
2 3.200 1500.000 0.128 280.000 0.500 3.390 2.000 12.100 0.591
3 4.000 1800.000 0.133 370.000 0.500 3.400 2.160 15.120 0.373
4 4.800 1800.000 0.160 220.000 0.500 4.000 1.700 11.450 0.527
5 4.000 1500.000 0.160 400.000 1.000 4.030 2.300 13.790 0.528
6 3.200 1200.000 0.160 340.000 1.000 4.010 2.200 11.940 0.738
7 5.600 1800.000 0.187 400.000 1.200 5.500 2.250 14.020 0.386
8 4.800 1500.000 0.192 300.000 1.000 4.500 1.750 11.970 0.622
9 4.000 1200.000 0.200 340.000 1.000 4.600 2.340 12.700 0.728
10 3.200 900.000 0.213 370.000 1.900 5.250 2.300 11.180 0.918
11 5.600 1500.000 0.224 400.000 1.500 6.700 2.200 13.500 0.513
12 4.800 1200.000 0.240 400.000 1.000 3.960 2.510 15.100 0.523
13 4.000 900.000 0.267 400.000 1.900 5.760 2.520 12.520 0.980
14 5.600 1200.000 0.280 400.000 2.600 7.600 2.400 11.510 0.803
15 4.800 900.000 0.320 400.000 2.600 6.900 2.770 11.770 1.029
16 5.600 900.000 0.373 400.000 4.000 9.500 2.450 10.390 1.037
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