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Abstract This paper proposes a novel quasi-oppositional
chaotic antlion optimizer (ALO) (QOCALO) for solving
global optimization problems. ALO is a population based
algorithm motivated by the unique hunting behavior of
antlions in nature and exhibits strong influence in solving
global and engineering optimization problems. In the pro-
posed QOCALO algorithm of the present work, the initial
population is generated using the quasi-opposition based
learning (QOBL) and the concept of QOBL based genera-
tion jumping is utilized inside the main searching strategy of
the proposed algorithm. Utilization of QOBL ensures bet-
ter convergence speed of the proposed algorithm and it also
provides better exploration of the search space. Alongside
the QOBL, a chaotic local search (CLS) is also incorporated
in the proposed QOCALO algorithm. The CLS guides local
search around the global best solution that provides bet-
ter exploitation of the search space. Thus, a better trade-off
between exploration and exploitation holds for the proposed
algorithm which makes it robust. It is observed that the
proposed algorithm offers better results than the original
ALO in terms of solution quality and convergence speed.
The proposed QOCALO algorithm is implemented and
tested, successfully, on nineteen mathematical benchmark
test functions of varying complexities and the experimental
results are compared to those offered by the basic ALO and
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some other recently developed nature inspired algorithms.
The efficacy of the proposed algorithm is further utilized
to solve three real world engineering optimization problems
viz. (a) the placement and sizing problem of distributed gen-
erators in radial distribution networks, (b) the congestion
management problem in power transmission system and (c)
the optimal design of pressure vessel.
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1 Introduction

The term optimization in mathematics and engineering
refers to the process of finding the best solution for a partic-
ular problem, subject to a set of constraints. Mathematical
optimization techniques, which borrowed ideas from fun-
damental geometry and calculus, were the tools to solve
engineering optimization problems till the mid-eighties.
These mathematical optimization techniques are determin-
istic in nature and some of them are gradient based methods
which employ derivation of the search space. This increases
complexity of the problem and often leads to entrapment
into local optima.

With the rapid improvement in computational efficiency
in the last few decades, metaheuristic algorithms have been
widely utilized as the primary tool for solving real world
engineering optimization problems. The metaheuristic algo-
rithms are problem independent and driven by stochastic
operators that assist them to avoid local optima. Evolu-
tionary algorithms (EAs) are stochastic, nature inspired
metaheuristic algorithms that evolve a randomly-picked
solution set from the search space of the problem toward
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the global best solution in an iterative manner. Some of
the widely used nature inspired metaheuristic algorithms
include genetic algorithm (GA) (based on Darwin’s the-
ory of evolution) [1], particle swarm optimization (PSO)
(which mimics the foraging behavior of a swarm of birds
or fishes) [2], differential evolution (DE) (based on evo-
lution theory) [3], artificial bee colony (ABC) algorithm
(that depicts the foraging behavior of honey bees) [4] and
ant colony optimization (ACO) (inspired from the behavior
of real ant colonies searching for food) [5]. These algo-
rithms have grown interest among the researchers since the
last two decades by offering good quality solutions to sci-
ence and engineering optimization problems. In contrast to
the success of these algorithms, there also exist a handful
of new metaheuristics which have been developed in the
recent years and this development is driven by the short-
coming of the no free lunch (NFL) theorem [6]. According
to the NFL theorem, there is no such optimization technique
that can solve all kinds of optimization problems. If any
optimizer performs well for a set of problems, then there
is no guarantee that it will offer good results for a differ-
ent set of optimization problems. This inspires researchers
to develop and propose novel metaheuristic algorithms for
global optimization and also sets up a new line of research.
Some of the recently developed nature inspired metaheuris-
tics are firefly algorithm (FA) [7], league championship
algorithm [8], gravitational search algorithm (GSA) [9], bat
algorithm (BA) [10], cuckoo search (CS) [11], teaching-
learning based optimization (TLBO) [12], krill herd algo-
rithm [13], mine blast algorithm [14], symbiotic organisms
search (SOS) [15], antlion optimizer (ALO) [16], water
wave optimization [17], moth flame optimization (MFO)
[18], sperm whale algorithm [19], multi-verse optimization
(MVO) [20], whale optimization algorithm (WOA) [21] and
crow search algorithm (CSA) [22]. Beside this, a large num-
ber of research works have been published in the last few
years which improve the effectiveness of an existing meta-
heuristic algorithm by either integrating an ingenious search
strategy into its original framework (see [23–28]) or by
hybridizing two or more metaheuristics (refer [29–32]).

Population based metaheuristic algorithms commence
the search process in two fundamental phases, namely,
exploration and exploitation. In exploration phase, an exten-
sive stochastic search is carried out over the entire search
space which improves the diversity of the solution. The
exploitation phase is followed by the exploration phase
and it aims to improve the quality of the solution by con-
tinuing local search around the promising regions of the
search space, already obtained in the exploration phase. It is
very important to keep a good balance between exploration
and exploitation while designing an algorithm because any
improper handling of these phases may produce sub-optimal
solution leading to stagnation into the local optima.

Recently, a nature inspired metaheuristic algorithm (i.e.,
ALO [16]) has been proposed by Mirjalili which is based
on the hunting behavior of antlion larvae. The ALO algo-
rithm has offered better results in terms of solution accuracy
and convergence mobility as compared to some other popu-
lar methods like PSO, GA, FA, BA and CS [16] in solving
global optimization problems. Also, the ALO algorithm has
successfully been utilized to solve some engineering opti-
mization problems (such as, design of ship propeller [16],
wind based hydrothermal scheduling [33, 34], automatic
generation control [35], design of linear discrete filters [36]
and so on).

Motivated by the NFL theorem [6] and the previous
researches for enhancing the performance of an exist-
ing metaheuristic, a new modified ALO algorithm has
been proposed in the present work which is designated
as quasi-oppositional chaotic ALO (QOCALO). The pro-
posed QOCALO algorithm is having a quasi-opposition
based learning (QOBL) strategy and a chaotic local search
(CLS) inside the framework of the original ALO. The con-
cept of QOBL helps to explore new areas of the search
space and provides better exploration. On the other hand,
CLS directs the search process around the most promising
areas of the search space which provides better exploitation.
Thus, a better balance between exploration and exploitation
holds in case of the proposed QOCALO algorithm which
makes this newly developed algorithm more robust as com-
pared to its original counterpart. The performance of the
proposed algorithm is validated by employing it for solving
nineteen mathematical benchmark functions which include
seven unimodal, six multimodal and six composite bench-
mark functions. The effectiveness and the superiority of
the proposed algorithm have been established by compar-
ing the performance of the proposed QOCALO with the
basic ALO algorithm and some other recently developed
nature inspired metaheuristics, such as MFO, MVO, WOA
and CSA.

The main contribution of this paper lies in the framing of
a new and robust variant of ALO algorithm which is capable
to solve global optimization problems more effectively than
the original ALO in terms of solution accuracy and conver-
gence mobility. The proposed QOCALO algorithm has been
utilized to solve three real world engineering optimization
problems, such as, (a) the placement and sizing problem of
distributed generators (DGs) in radial distribution networks,
(b) the congestion management (CM) problem in power
transmission system and (c) the optimal design problem of
pressure vessel.

The rest of this paper is organized as follows: In
Section 2, ALO algorithm is briefly described. Section 3
illustrates the proposed QOCALO algorithm. The simula-
tion results of benchmark test functions are presented and
discussed in Section 4. In Section 5, the placement and
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sizing problem of DGs has been solved by the proposed
QOCALO algorithm. The CM problem has been solved
using the proposed algorithm in Section 6. In Section 7,
the proposed QOCALO algorithm is utilized to determine
the optimal design of pressure vessel. Finally, the conclu-
sions of the present work are drawn in Section 8 along with
focusing on some future research directions.

2 The ALO algorithm

The ALO algorithm [16] is proposed by Mirjalili in 2015.
The ALO is a population based stochastic search algo-
rithm which mimics the predatory behavior of antlions
in the nature. The antlions (or doodlebugs) belong to the
Myrmeleontidae family of insects and Neuroptera order.
The average lifespan of antlions may take up to three years,
out of which only 3-5 weeks are spent in adulthood and the
rest of the lifetime is spent as larvae. The antlions carry out
a unique process of hunting in their larvae stage and prefer-
ably hunt for ants, which leads to their unique name. The
antlion larva digs conical pits in the sand with the help of its
massive jaw and waits at the bottom of the pit for the prey
to be trapped in the sand pits. The edges of the sand pits
are sharp enough to make insects (rather ants) fall down at
the bottom of the pit. Once a prey falls inside the trap, the
antlion throws sands out of the pit toward the prey such that
the prey fails to escape from the pit and slides at the bot-
tom of the pit. The prey is then consumed by the antlion and
the leftovers are thrown away from the pit. In this way, the
antlion prepares the pit for its next hunt [16]. In case of the
ALO algorithm, the ants behave as the search agents, which
move over the entire search space, whereas the antlions hunt
them and become fitter.

During the course of optimization of ALO algorithm,
the positions of ants and antlions over the search space are
stored in the following two matrices, namely, Pa and Pal

(see (1) and (2))

Pa =

⎡
⎢⎢⎢⎣

a1,1 a1,2 · · · a1,d
a2,1 a2,2 · · · a2,d
...

...
...

...

an,1 an,2 · · · an,d

⎤
⎥⎥⎥⎦ (1)

Pal =

⎡
⎢⎢⎢⎣

al1,1 al1,2 · · · al1,d
al2,1 al2,2 · · · al2,d

...
...

...
...

aln,1 aln,2 · · · aln,d

⎤
⎥⎥⎥⎦ (2)

where Pa stores the positions of ants over the search space,
d is the number of decision variables and Pal is the matrix

consisting of the positions of antlions hiding in the search
space. The number of ants and antlions in the search space
are equal and are represented by n. The position matrices
(i.e. Pa and Pal) are utilized to evaluate the objective func-
tion and the fitness values are stored in the following two
vectors, namely, Fa and Fal (refer (3) and (4))

Fa =

⎡
⎢⎢⎢⎣

f
([

a1,1, a1,2, · · · , a1,d
])

f
([

a2,1, a2,2, · · · , a2,d
])

...

f
([

an,1, an,2, · · · , an,d

])

⎤
⎥⎥⎥⎦ (3)

Fal =

⎡
⎢⎢⎢⎣

f
([

al1,1, al1,2, · · · , al1,d
])

f
([

al2,1, al2,2, · · · , al2,d
])

...

f
([

aln,1, aln,2, · · · , aln,d

])

⎤
⎥⎥⎥⎦ (4)

where Fa stores the fitness value of each ant while Fal stores
the fitness value of each antlion and f denotes the objective
function.

The optimization process of the ALO algorithm is gov-
erned by six operating steps which are, basically, the
adaptation of the real hunting deeds of antlions found in
nature. The step-by-step operations of the ALO algorithm
are discussed in the following six sub-sections.

2.1 Creation of random walks for ants

In the ALO algorithm, it is considered that the ants move
freely over the entire search space in search for food until
they get trapped by antlions. As the movement of the ants
is stochastic in nature, it is modeled based on random walk
and may be represented by (5) [16]

X(t) = [0, cumsum(2r(t1) − 1), cumsum(2r(t2) − 1), · · · ,

cumsum(2r(tmax) − 1)] (5)

where t is the step of random walk (or current itera-
tion), tmax is the maximum iteration, cumsum computes the
cumulative sum and r(t)is a function defined in (6).

r (t) =
{
1 if rand > 0.5
0 otherwise

(6)

Here, rand is a uniformly distributed random number in the
interval [0,1]. At each step of the optimization process, the
positions of the ants are updated with the help of this ran-
dom walk. In order to maintain the random walks inside the
search boundaries, (5) is normalized to (7)

Xt
i =
(
Xt

i − αi

)× (δt
i − γ t

i

)

(βi − αi)
+ γ t

i (7)
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where Xt
i is the ant position in the i-th dimension of a

d-dimensional space at the t-th iteration, αi and βi are the
minimum and the maximum of random walks, respectively,
for the i-th variable, δt

i and γ t
i are the upper and the lower

bounds of the i-th variable at the t-th iteration, respectively.

2.2 Building of traps using roulette wheel

It is assumed that each ant is to be trapped by only one
selected antlion. Also, the fitter the antlion is, the higher
the chance of hunting ants as the fitter antlion makes a bet-
ter trap. Hence, the selection of the antlion is done using a
roulette wheel operator which is based on the fitness of the
antlions during the optimization process [16].

2.3 Entrapment of ants in antlion’s pit

As per the previous discussion, the random walks of the ants
get affected by the antlion traps. To model this mathemat-
ically, the boundary of ant movement is adjusted in each
iteration, such that the ant moves in a hyperspace around the
selected antlion trap. The upper and lower bounds of the ant
dimension are computed in each iteration following (8) and
(9) [16]

δt = antliont
j + δt (8)

γ t = antliont
j + γ t (9)

where δt and γ t are the upper and the lower boundaries of
all ant dimensions at current iteration t and antliont

j is the
position of the j -th selected antlion at the current iteration
t . Thus, the ant movement is restricted in a d-dimensional
hyperspace with a boundary of

(
γ t , δt
)
, using (8) and (9),

in order to entrap the ants in the antlion pits.

2.4 Sliding of ants toward the antlion

When an antlion realizes that an ant has fallen into its pit, it
throws sands toward the ant, such that the ant never escapes
and slides down toward the antlion waiting at the bottom
of the pit. Hence, the radius of the random walk of ants
should be adaptively decreased to mathematically model
this behavior of antlions and it is governed by the following
three equations [16]:

γ t = γ t

I
(10)

δt = δt

I
(11)

I = 10ω · t

tmax
(12)

where ω is a constant that takes up a value between 1 and 6
depending on (13).

ω =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2 if t > 0.1 × tmax

3 if t > 0.5 × tmax

4 if t > 0.75 × tmax

5 if t > 0.9 × tmax

6 if t > 0.95 × tmax

1 otherwise

(13)

From (10) – (13), it is clear that with an increase in the
current iteration, the value of I is increased and, hence,
the radius of the random walk of ants is reduced. This
ensures shrinking of search space gradually and offers better
exploitation.

2.5 Catching of ants and rebuilding the pit

The final stage of hunt occurs when the ant reaches at the
bottom of the antlion’s pit. At this stage, the antlion catches
the ant and drags it inside the sand to devour it. For the
sake of mathematical modeling of this stage, it is assumed
that the ingestion of ant by the antlion takes place when
the ant becomes fitter than its corresponding antlion. The
antlion then updates its position to the latest position of the
hunted ant, i.e. improves its fitness and, hence, the chance
of catching a new prey is increased. This process of catching
ants is guided by (14) for the minimization of the objective
function [16]

antliont
j = antti if f

(
antti
)

< f
(
antliont

j

)
(14)

where antti is the position of the i-th ant at the t th iteration
and f
(
antti

)
is its corresponding fitness value. This is anal-

ogous to the rebuilding of the pit to enhance the chance of
hunting.

2.6 Application of elitism

The ALO algorithm applies elitism to its search strategy by
preserving the best solution (i.e. the fittest antlion) obtained
at each generation. This fittest antlion (or elite antlion) is
assumed to influence the movement of each ant. Hence, it
is considered that each ant is about to take a random walk
around the antlion selected by the roulette wheel and the
elite antlion simultaneously and this may be represented by
(15) [16]

antti = RWt
antlion + RWt

elite

2
(15)

where RWt
antlion represents the random walk around the

antlion selected by roulette wheel at the t-th iteration and
RWt

elite represents the random walk around the elite antlion
at the t-th iteration. The pseudo-code of the ALO algorithm
is provided in Algorithm 1 [16].
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Algorithm 1 Pseudo-code of ALO 

Define objective function Xf ; dxxxX ,...,, 21 % d is dimension of the problem

Randomly generate the initial population of ants and antlions

Calculate the fitness of initial antlions and sort them 

Find the best antlion and consider it as the elite

while
maxitert % maxiter is the maximum number of iterations

for i =1: n % n is the number of ants

Select an antlion using roulette wheel

Update 
t

and t using (8) and (9), respectively 

Update the radius of random walk of ant using (10) and (11)

Create a random walk using (5) and normalize it by using (7)

Update the ant position using (15)

end for

Calculate the fitness of all ants

If an ant becomes fitter than its corresponding antlion, then it is replaced using (14)

Update the position of the elite if any antlion becomes fitter than it

end while

Return the elite

3 The proposed QOCALO algorithm

The framework of the proposed QOCALO algorithm of the
present work is formulated by simultaneous integration of
QOBL and CLS strategies into the basic ALO algorithm.
The different components of the proposed algorithm are
discussed in the following sub-sections.

3.1 QOBL: a concept

Conventional metaheuristic algorithms begin the search
process using a set of randomly generated initial solu-
tions and progress toward the global best one. Hence,
the rate of convergence depends on the distance between
the initial solution set or the initial population and the
global optimum solution. If the randomly generated solu-
tion is too far away from the global optimum one, then
the algorithm takes considerably longer time to converge
and, hence, the convergence rate becomes very poor. To

avoid this problem and to improve the convergence rate,
Tizhoosh [37] has suggested for consideration of both
the randomly generated solutions and their opposite solu-
tions simultaneously. According to [38], the random guess
is far away from the global optimum than its opposite
guess for 50% cases. Hence, starting the search process
with an initial solution set that consists of the best of
the two sets (i.e. the randomly generated solution set and
its opposite solution set) helps to improve the conver-
gence mobility. The attributes of QOBL are defined as
follows.

3.1.1 Opposite point

Let x be a real number in one-dimensional search space
with search interval [a, b]. Then, the corresponding opposite
number (ox) is defined by (16)

ox = a + b − x (16)
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In case of a d-dimensional search space, let X = (x1, x2
, ..., xd) be a candidate solution, where (x1, x2, ..., xd) ∈ R

and xi ∈ [ai, bi] ∀i ∈ {1, 2, ..., d}. The opposite point of X

is considered as OX = (ox1, ox2, ..., oxd) and is defined
by (17)

oxi = ai + bi − xi (17)

3.1.2 Quasi-opposite point

For one-dimensional search space, the quasi-opposite num-
ber (qox) is defined as a random number between the center
of the search space

(
a+b
2

)
and the opposite number (ox), as

in (18)

qox = rand

((
a + b

2

)
, ox

)
(18)

Again, for d-dimensional search space, the quasi-opposite
point of X is considered as QOX = (qox1, qox2, ..., qoxd)

and is, mathematically, defined by (19).

qoxi = rand

((
ai + bi

2

)
, oxi

)
(19)

The quasi-opposite point has a higher chance to be closer
to the global optimum as compared to the opposite point
[39] and, hence, QOBL is more capable to improve the
convergence rate. Recently, QOBL has been applied in
different metaheuristic algorithms to improve its perfor-
mance and some of them are quasi-oppositional DE [39],
quasi-oppositional harmony search algorithm (HSA) [40],
quasi-oppositional TLBO [41] and quasi-oppositional
group search algorithm [42].

3.1.3 QOBL based population initialization

The initial population of the conventional metaheuristic
algorithms is generated randomly without having any prior
knowledge of the solution space. In this case, the QOBL
based population initialization may achieve fitter candidate
solutions as the simultaneous consideration of the randomly
generated initial positions and their quasi-opposite positions
improves the quality of the initial population and accelerates
the search process by exploring the powerful regions of the
search space. The pseudo-code of QOBL based population
initialization is presented in Algorithm 2.

Algorithm 2 Pseudo-code of QOBL based population initialization

Generate initial random population X

for i = 1: n % n is the population size

for j = 1: d % d is the dimension of the problem

jijjji XbaOX ,,
% OX is the opposite of the initial population X

2/)(, jjji baM % ba, is the search boundary

if jiji MX ,,

randMOXMQOX jijijiji ,,,,
% QOX is the quasi-opposite of X

else randOXMOXQOX jijijiji ,,,,

end if else

end for

end for

Select n number of fittest candidate solutions as initial population from the set QOXX ,

3.1.4 QOBL based generation jumping

The evolutionary process of the algorithm may be forced to
jump to a new candidate solution by applying the concept of

QOBL based generation jumping. This quasi-opposite pop-
ulation jumping has higher probability to produce fitter can-
didate solution than the existing one [39]. The QOBL based
generation jumping is associated with a parameter (namely,
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jumping rate (jr )) which decides whether to remain at the
position of the candidate solution generated by the search
process of the algorithm or jump over to the quasi-opposite

position of the candidate solution. The process of QOBL
based generation jumping is depicted in Algorithm 3.

Algorithm 3 Pseudo-code of QOBL based generation jumping

Set the value of rj % rj is the jumping rate

if rjrand

for i = 1: n % n is the population size

for j = 1:d % d is the dimension of the problem

jijjji XbaOX ,, % OX is the opposite of the ant population X

2/)(, jjji baM % ba, is the search boundary

if jiji MX ,,

randMOXMQOX jijijiji ,,,, % QOX is the quasi-opposite of X

else randOXMOXQOX jijijiji ,,,,

end if else

end for

end for

end if

3.2 CLS based optimization

To improve the performance of ALO in terms of solution
quality, a CLS based search strategy has been incorporated
in the present work. The CLS also helps to prevent the
optimizer to be trapped into local optima. In recent years,
a wide variety of CLS based metaheuristic algorithms has
been proposed and some of them are CLS based PSO [43–
48], chaotic binary PSO [49, 50], CLS based DE [51–53],
chaotic differential bee colony optimization [54], chaotic
bee colony algorithm [55, 56], chaotic HSA [57], chaotic
TLBO [58] and CLS based SOS [59, 60]. In contrast to
the performance of these algorithms, the effectiveness of
the CLS strategy to improve the search performance of the
metaheuristic algorithms may be justified.

The CLS paradigm of the present work is applied to
the global best solution obtained from the traditional ALO
algorithm. This is done so as there is higher probability to
achieve better solution in the vicinity of the global optimum

solution [44]. The CLS intensifies the search process toward
a more promising region and, thus, improves exploitation.
The CLS is stopped when a better solution is found or the
local search limit is reached.

3.2.1 Chaotic map

Chaos is a non-linear, dynamic and deterministic system
which is very sensitive to its initial condition [61]. Due
to some special characteristic features (like ergodicity and
non-repetition), the chaotic system has the potential to carry
out search process at a higher speed than the normal stochas-
tic search which is probabilistic in nature [50]. There is
a wide variety of chaotic maps available in the literature
(see [62, 63]). In the present work, the well-known logistic
map is utilized to carry out the CLS. The logistic map is,
mathematically, formulated as in (20) [51]

Chk+1 = μ×Chk×(1 − Chk) , Ch ∈ (0, 1) , Ch �= 0.25, 0.5 , 0.75 (20)
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where Chk is the chaotic variable at the k-th generation.
The initial value of the chaotic sequence (i.e. Ch0) is a
random number generated by using rand function. The
behavior of the logistic map is controlled by the parame-
ter μ and it is depicted in Fig. 1. At μ = 4, the logistic
function shows thorough chaotic behavior and, hence, the
value of μ is set to 4. The chaotic sequence generated by
the logistic map over 100 numbers of iterations is shown in
Fig. 2.

3.2.2 The proposed CLS strategy

The CLS strategy is, generally, employed to refine the qual-
ity of the previous best solution. In the present work, a new

candidate solution is generated in the neighborhood of the
previous best solution following (21)

pi,j = pg,j + Ch × (pk1,j − pk2,j
)

(21)

where pi,j is the j -th dimension of the i-th solution gen-
erated in the vicinity of the previous best solution, pg,j

is the j -th dimension of the previous best solution, Ch

is the chaotic number generated by the chaotic sequence
expressed in (20), k1 and k2 are twomutually exclusive inte-
gers randomly chosen from {1, 2, ..., n} (n being the pop-
ulation size). Thus, the CLS strategy, guided by (21), well
maintains the population diversity as it produces enough
random solutions. The detailed process of the proposed CLS
strategy is presented in Algorithm 4.

Algorithm 4 Pseudo-code of the proposed CLS strategy

Set CLS limit K

Initialize the chaotic sequence by generating 0Ch

for i =1: n % n is the population size

for j = 1: K

Update the chaotic sequence Ch using (20)

Pick k1 and k2 randomly from n...,,2,1 , such that ikkk 1,21 and ik2

Generate a new solution jkjkjji xxCheliteant ,2,1, according to (21)

if ii antlionfantf

ii antx

ii antfantlionf

break

end if

end for

if elitefantlionf i

ixelite

iantlionfelitef

end if

end for
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3.3 The proposed algorithm

The proposed algorithm is constructed by integrating both
the QOBL and the CLS based search strategies into the basic

structure of the original ALO algorithm. The search process
of the proposed QOCALO algorithm is presented in detail
in Algorithm 5.

Algorithm 5 Pseudo-code of the proposed QOCALO algorithm

Define objective function Xf ; dxxxX ,...,, 21 % d is dimension of the problem

Set the values of rj and K

Generate the initial population of ants and antlions using Algorithm 2

Calculate the fitness of initial antlions and sort them 

Find the best antlion and consider it as the elite

while
maxitert % maxiter is the maximum number of iterations

for i =1: n % n is the number of ants

Select an antlion using roulette wheel

Update 
t

and t using (8) and (9), respectively 

Update the radius of random walk of ant using (10) and (11)

Create a random walk using (5) and normalize it by using (7)

Update the ant position using (15)

end for

Calculate the fitness of all ants

if rjrand

for i =1: n

Determine the quasi-opposite ant positions using Algorithm 3

Calculate the quasi-opposite ant fitness

if ii antfantoppositequasif __

ii antoppositequasiant __

ii antoppositequasifantf __

end if

end for

Update antlion positions and fitness based on the ants using (14)

Update the elite

else perform the CLS according to Algorithm 4

end if else

end while

Return the elite
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Fig. 1 Bifurcation diagram of the logistic map

4 Experimental results pertaining to function
optimization problem

4.1 Details of test functions and experimental setup

The optimization capability of the proposed QOCALO
algorithm is investigated on nineteen benchmark test func-
tions. These test functions may be grouped into three cate-
gories, viz. unimodal, multimodal and composite functions.
Unimodal functions have a single optimum and, hence, they
are useful for examining the exploitation and the conver-
gence behavior of the algorithm [16]. On the other hand,
multimodal functions have multiple optima, one of which
is global optimum and the rest are local optima. The opti-
mization algorithm should converge to the global optimum
avoiding all the local optima. Hence, the multimodal func-
tions are benchmarked to examine the exploration of the
algorithm. Finally, the composite functions are the rotated,
shifted, combined and biased versions of other unimodal
and multimodal test functions. The composite functions
have a large number of local optima and the shape of search
space is different in different regions of the search space
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Fig. 2 Distribution of logistic map over 100 numbers of iterations

which resembles the real search space for practical problems
[16]. Therefore, the composite functions are benchmarked
to check whether an algorithm is capable of maintaining a
proper balance between exploration and exploitation. The
details of the unimodal, the multimodal and the composite
test functions are listed in Tables 1, 2 and 3 [16].

The simulations are carried out in MATLAB 2013a com-
puting environment on a 2.3 GHz core i5 personal computer
with 3.86 GB RAM. Due to the stochastic nature of the
evolutionary optimization techniques, each test function is
tested for 100 independent trial runs to minimize the statis-
tical error and the best, the worst, the mean and the standard
deviation of the results are obtained over the trial runs. The
proposed algorithm is tested on 10, 30 and 200-dimensional
versions of the unimodal and multimodal test functions to
establish the scalability of the proposed algorithm.

4.2 Non-parametric statistical test set up

The metrics, such as the mean and the standard devia-
tion, compare the overall performance of the algorithms
while statistical tests verify the superiority of an algorithm over
the others by considering the results of each trial run. The
statistical tests are necessary as the metaheuristic algorithms
are stochastic in nature. In the present work, a non-parametric
pair-wise Wilcoxon rank-sum test is performed to verify
whether the simulation results of the proposed QOCALO
are significantly superior to the simulation results of other
reported algorithms. The null hypothesis of this test states
that the median of the difference of the two samples is zero
(i.e. the solution sets of the algorithms are not statistically
different). The test is implemented at a significance level of
5% and a p-value less than 0.05 points toward a significant
difference between the two samples (i.e. the null hypothesis
is rejected).

4.3 Parameter setting

In the present work, the optimization capability of the pro-
posed QOCALO algorithm is tested by comparing its per-
formance with the other recently developed nature inspired
algorithms such as MFO, MVO, WOA, CSA and the orig-
inal ALO. Each trial run employs 30 antlions to carry out
the search process over 1000 iterations for 10 and 30-
dimensional test problems. The number of antlions and
iterations are considered as 100 and 5000, respectively, for
200-dimensional test problems. These settings are consid-
ered in line with [16] to maintain a fair comparison between
the proposed QOCALO and the basic ALO. The parameters
of the other reported algorithms are considered as of their
original published works (see [18, 20–22]).
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Table 1 Detailed description
of unimodal benchmark
functions

Function Dimension Range GM

F1(x) =
d∑

i=1
x2
i 10, 30, 200 [−100, 100] 0

F2(x) =
d∑

i=1
|xi | +∏d

i=1 |xi | 10, 30, 200 [−10, 10] 0

F3(x) =
d∑

i=1

(
i∑

j=1
xj

)2
10, 30, 200 [−100, 100] 0

F4(x) = max { |xi | } 1 ≤ i ≤ d 10, 30, 200 [−100, 100] 0

F5(x) =
d−1∑
i=1

(
100(xi+1 − x2

i )2 + (xi − 1)2
)

10, 30, 200 [−30, 30] 0

F6(x) =
d∑

i=1
(xi + 0.5)2 10, 30, 200 [−100, 100] 0

F7(x) =
d∑

i=1
ix4

i + random (0, 1) 10, 30, 200 [−1.28, 1.28] 0

*d denotes the number of variables, GM is the global minima

The parameter jr of the proposed algorithm controls the
convergence rate and, hence, it is to be carefully selected.
A higher value of jr may reduce the population diversity
at a very faster rate and leads to premature convergence.
An experiment has been conducted to set the value of jr .
Figure 3 shows the variation in the number of iterations
required for convergence with varying jr for the function
F4. It may be observed from Fig. 3 that, a jr value beyond
0.6 results in premature convergence. Hence, the value of jr

is set to 0.6.
Another parameter of the proposed algorithm is the CLS

limit (K), which is also set after conducting an experiment
on function F5 with 30 dimensions. In this experiment, all
the parameters of the proposed QOCALO algorithm are
considered to be the same as the previous experiment while
jr is considered as 0.6 and K is varied as in Fig. 4. From
Fig. 4, it is observed that the proposed algorithm yields the
minimum fitness value at K = 10. Therefore, the K value
is set to 10.

4.4 Simulation results for unimodal functions

The performance of the proposed QOCALO in optimizing
unimodal functions is compared to the performances of the
other reported algorithms and the detailed simulation results
are listed in Tables 4, 5 and 6. The algorithms are ranked on
the basis of their performance to optimize the set of seven
unimodal functions. The algorithm that produces the mini-
mum mean fitness value is considered to have rank 1 while
in case of a tie equal ranks are given to the respective algo-
rithms. It may be observed from Tables 4–6 that the proposed

algorithm stands second to only MFO for function F6 with
10 dimensions while it shares the first rank with WOA for
the 200 dimensional functions (F1 and F2) but for 30-dimen-
sional case the proposed algorithm stands first for all the test
functions. Hence, the proposed QOCALO dominates other
algorithms in optimizing unimodal functions as it attains an
overall rank 1 for all the three different dimensions. The p-
values obtained from the pair-wise Wilcoxon rank-sum test
for the unimodal functions with three different dimensions
are listed in Table 7. It may be noted that the p-values are
much less than 0.05 for almost all the instances which statis-
tically establishes the superiority of the proposed QOCALO
algorithm over the others. The ‘+’ sign implies that the
proposed QOCALO algorithm is significantly better than
the other algorithm, ‘-’ sign indicates that the other algo-
rithm is significantly better than the proposed QOCALO
and ‘=’ sign signifies that there is no significant difference
between the proposed QOCALO and the other algorithm.
From Table 7 it may be observed that the proposed algo-
rithm straightly outperformes MFO, MVO and CSA for all
the unimodal functions for all the three different dimensions
while it shows similar performance with ALO for the func-
tion F6 and with WOA for the functions F1, F2 and F7 with
200 dimensions. The comparative convergence profiles of
the proposed QOCALO and the other compared algorithms
are depicted in Figs. 5, 6 and 7. From the observation tables
and convergence profiles it may be concluded that the pro-
posed algorithm shows better performance in optimizing
unimodal test functions which points to better exploitation
and faster convergence behavior of the proposed algorithm
as compared to other reported algorithms.
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4.5 Simulation results for multimodal functions

The comparative simulation results of the proposed
QOCALO and the other algorithms for multimodal test
functions are provided in Tables 8, 9 and 10. From these
tables it may be observed that the proposed algorithm gets
an overall rank 1 for 10 and 30 dimensional test func-
tions while it stands second to WOA for 200 dimensional
functions. The p-values of the pair-wise Wilcoxon rank-
sum test for the multimodal test functions are reported in
Table 11. From Table 11, it may be noted that the pro-
posed QOCALO produces significantly better results than
MFO and MVO while it completely outperforms ALO and
CSA by beating them in 17 instances. The only competi-
tor to the proposed algorithm in this section is the WOA
as it produces better results than the proposed algorithm
for three instances and similar results for seven instances.
Hence, it may be stated that the proposed algorithm has
better capabilities to optimize lower and medium dimen-
sional multimodal functions as compared to other reported
algorithms but the performance deteriorates slightly when it
comes to optimize very high dimensional problems. Consid-
ering the properties of the multimodal test problems and the
performance of the proposed algorithm, it may be inferred
that the proposed QOCALO algorithm exhibits a better
exploration over the search space. The comparative conver-
gence profiles for some selected test functions are depicted
in Figs. 5–7, which indicate faster convergence mobility of
the proposed algorithm.

4.6 Simulation results for composite functions

The simulation results for the composite test problems are
tabulated in Table 12. These results are quite far from the
global minima as compared to the previous cases and this is
due to the complexity involved in the composite test func-
tions. However, the proposed QOCALO algorithm yields
better results in optimizing composite test problems com-
pared to other reported algorithms. The proposed algorithm
attains an overall rank 1 in solving composite test prob-
lems compared to its original counterpart (i.e. ALO) which
stands second. The p-values obtained from the pair-wise
Wilcoxon rank-sum test are reported in Table 13 which also
shows the superiority of the proposed algorithm over other
reported algorithms. From Table 13 it may be observed
that the proposed algorithm produces significantly better
results than MFO, WOA and CSA for all the six composite
test functions. The proposed algorithm produces signifi-
cantly better results than the original ALO for four functions
while it produces statistically similar results for the func-
tions CF2 and CF4. These results indicate that the proposed
QOCALO algorithm is capable of maintaining a better
balance between exploration and exploitation compared to
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Table 3 Detailed description of composite benchmark functions

Function Dimension Range GM

CF1 10 [−5, 5] 0

f1, f2, f3, ..., f10 = F1

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, λ3, ..., λ10] = [5/100, 5/100, 5/100, ..., 5/100]
CF2 10 [−5, 5] 0

f1, f2, f3, ..., f10 = F11

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, λ3, ..., λ10] = [5/100, 5/100, 5/100, ..., 5/100]
CF3 10 [−5, 5] 0

f1, f2, f3, ..., f10 = F11

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, λ3, ..., λ10] = [1, 1, 1, ..., 1]

CF4 10 [−5, 5] 0

f1, f2 = F10

f3, f4 = F9

f5, f6 = Weierstrass Function∗

f7, f8 = F11

f9, f10 = F1

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, λ3, ..., λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5
/
100, 5
/
100, 5

/
100
]

CF5 10 [−5, 5] 0

f1, f2 = F9

f3, f4 = Weierstrass Function∗

f5, f6 = F11

f7, f8 = F10

f9, f10 = F1

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, λ3, ..., λ10] = [1/5, 1/5, 5
/
0.5, 5
/
0.5, 5
/
100, 5

/
100, 5

/
32, 5
/
32, 5
/
100, 5
/
100
]

CF6 10 [−5, 5] 0

f1, f2 = F9

f3, f4 = Weierstrass Function∗

f5, f6 = F11

f7, f8 = F10

f9, f10 = F1 [σ1, σ2, σ3, ..., σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[λ1, λ2, λ3, ..., λ10] =
[
0.1 ∗ 1
/
5, 0.2 ∗ 1

/
5, 0.3 ∗ 5

/
0.5, 0.4 ∗ 5

/
0.5, 0.5 ∗ 5

/
100,

0.6 ∗ 5
/
100, 0.7 ∗ 5

/
32, 0.8 ∗ 5

/
32, 0.9 ∗ 5

/
100, 1 ∗ 5

/
100

]

*Weierstrass Function may be found in Appendix

original ALO and other reported algorithms. The compar-
ative convergence profiles for the composite test functions
are presented in Fig. 8, which shows that the proposed
QOCALO algorithm offers the best convergence mobility
among all the reported nature inspired algorithms.

5 Solution of placement and sizing problem of DGs
in radial distribution network

The aim of this section is to check whether the pro-
posed QOCALO algorithm is capable to solve real world
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Fig. 3 Variation in number of iterations required for convergence with
varying jr

constrained engineering optimization problems rather than
mathematical test problems. In pursuit of this, the problem
of optimal placement and sizing of DGs (as first applica-
tion of the proposed QOCALO algorithm) is solved using
the proposed QOCALO algorithm. The considered problem
is a power system optimization problem and is a topic of
research since the last decade. Various metaheuristic algo-
rithms have been utilized by the researchers to solve this
problem and some of these reported algorithms are GA
[64–66], PSO [67, 68], DE [69], ACO [70], ABC [71] and
GA-PSO [72].

5.1 Mathematical formulation of the problem

The multi-objective problem of finding the optimal loca-
tions and sizes of real power DGs is associated with
the reduction of real and reactive power loss indices and
improvement of voltage profile while keeping the line MVA
flow within its specified limit. The detailed mathematical

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

K

eulav
ssenti

F

F5, D=30

Fig. 4 Variation in fitness value with varying K

formulation of the objective functions is provided in the
following seven sub-sections.

5.1.1 Real and reactive power loss indices

The real and reactive power loss indices of the system are
defined in (22) and (23), respectively [66]

ILP = PLDG

PL

(22)

ILQ = QLDG

QL

(23)

where PL andQL are the total real and reactive power losses
of the distribution system without DGs while PLDG and
QLDG are the total real and reactive power losses of the sys-
tem after installing DGs. The real power loss (Ploss) and the
reactive power loss (Qloss) are calculated, in order, using
(24) and (25)

Ploss =
nbr∑
i=1

Ri |Ii |2 (24)

Qloss =
nbr∑
i=1

Xi |Ii |2 (25)

where Riand Xi are the resistance and reactance of the i-th
branch; Ii is the branch current of the i-th branch and nbr is
the total number of branches in the network.

5.1.2 Voltage profile index

Installation of DGs in the distribution system greatly
improves the voltage at each node of the system (except the
first node). The voltage profile index is defined as

IV D = n
max
i=2

(∣∣V nomin al

∣∣− ∣∣V i

∣∣
∣∣V nomin al

∣∣
)

(26)

where V nomin al is 1.03 p.u. for 38-node system and 1.00
p.u. for 69-node system [73]; V i is the voltage at the i-th
node of the system and n is the total number of nodes.

5.1.3 MVA capacity index

Incorporation of DGs in distribution networks, significantly,
changes the power flow in different sections of the network.
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Table 4 Comparative results for 10 dimensional unimodal test functions

Function Metrics ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

F1 Mean (Rank) 2.86E-09 (5) 3.38E-30 (3) 0.0047 (6) 6.33E-157 (2) 1.83E-09 (4) 0 (1)

SD 1.44E-09 7.61E-30 0.0021 2.00E-156 1.78E-09 0

Best 7.10E-10 3.24E-32 0.0014 5.19E-174 8.81E-11 0

Worst 6.91E-09 3.51E-29 0.0080 6.33E-156 5.65E-09 0

F2 Mean (Rank) 2.91E-05 (4) 1.20E-18 (3) 0.0218 (6) 4.28E-107 (2) 8.41E-05 (5) 0 (1)

SD 2.31E-05 1.69E-18 0.0080 1.09E-106 8.33E-05 0

Best 8.91E-06 2.87E-20 0.0131 1.81E-114 8.33E-06 0

Worst 8.12E-05 5.97E-18 0.0391 3.45E-106 2.94E-04 0

F3 Mean (Rank) 1.36E-05 (3) 8.13E-07 (2) 0.0237 (5.5) 0.0237 (5.5) 1.47E-05 (4) 0 (1)

SD 2.57E-05 1.77E-06 0.0153 0.0278 1.57E-05 0

Best 5.01E-07 6.35E-11 0.0072 1.11E-05 1.09E-06 0

Worst 1.02E-04 7.61E-06 0.0537 7.17E-02 4.23E-05 0

F4 Mean (Rank) 1.27E-04 (2) 0.0525 (6) 0.0395 (5) 5.98E-04 (4) 1.44E-04 (3) 0 (1)

SD 1.20E-04 0.0891 0.0152 0.0010 9.23E-05 0

Best 2.49E-05 1.39E-06 0.0217 4.65E-09 1.95E-05 0

Worst 4.51E-04 0.2767 0.0726 0.0027 4.11E-04 0

F5 Mean (Rank) 8.9049 (4) 4.27E+00 (2) 1.23E+01 (6) 5.89E+00 (3) 1.09E+01 (5) 3.78E-04 (1)

SD 0.0129 2.05E+00 2.06E+01 1.54E-01 2.14E+01 6.97E-04

Best 8.8788 5.70E-03 1.44E+00 5.62E+00 2.32E+00 2.93E-06

Worst 8.9205 6.3775 70.3947 6.0944 87.9675 1.62E-03

F6 Mean (Rank) 2.47E-09 (4) 3.76E-30 (1) 3.90E-03 (6) 3.04E-05 (5) 1.64E-09 (3) 2.17E-10 (2)

SD 8.70E-10 7.66E-30 1.20E-03 1.28E-05 1.37E-09 1.64E-10

Best 1.14E-09 1.23E-32 1.90E-03 1.09E-05 3.68E-10 2.46E-11

Worst 4.37E-09 3.34E-29 6.30E-03 4.98E-05 4.84E-09 5.31E-10

F7 Mean (Rank) 0.0062 (6) 4.60E-03 (5) 1.80E-03 (4) 2.85E-04 (2) 1.70E-03 (3) 4.21E-05 (1)

SD 0.0020 2.60E-03 1.00E-03 2.12E-04 1.00E-03 3.70E-05

Best 0.0024 2.00E-03 9.18E-04 9.71E-06 6.98E-04 4.87E-06

Worst 0.0092 1.26E-02 3.90E-03 6.79E-04 4.20E-03 1.14E-04

Average rank 4 3.14 5.5 3.36 3.86 1.14

Overall rank 5 2 6 3 4 1

In order to avoid overloading of the lines, it is very important
to keep the line MVA flow within its maximum allowable
limits. Hence, the MVA capacity index is defined in (27)

IC = nbr
max
i=1

( ∣∣Sij

∣∣
∣∣CSij

∣∣
)

(27)

where Sij is the MVA flow in the line connecting nodes
i and j while CSij is the MVA capacity limit of the line
connecting nodes i and j .

5.1.4 Voltage stability index (VSI)

The VSI of distribution system is defined as in (28) [74]

V SI (m2) = |V (m1)|4− 4[P(m2)x(jj)− Q(m2)r(jj)]2
−4[P(m2)r(jj)+ Q(m2)x(jj)] |V (m1)|2 (28)

where m1 is the sending end node, m2 is the receiving end
node, jj is the branch number, P(m2) is the real power load
fed through node m2, Q(m2) is the reactive power load fed
through node m2, r(jj) is the resistance of the branch jj ,
x(jj) is the reactance of the branch jj and V (m1) is the
voltage at node m1.

For stable operation of the system, the value of VSI
should be greater than zero. The node having the lowest
value of VSI (V SImin) is the weakest node of the sys-
tem in terms of voltage stability and is more vulnerable
to voltage collapse. Therefore, the objective should be the
improvement of the value of V SImin.

5.1.5 Multi-objective problem formulation

In the present work, the problem of placement and siz-
ing of DGs is considered as a multi-objective optimization
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Table 5 Comparative results for 30 dimensional unimodal test functions

Function Metrics ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

F1 Mean (Rank) 2.21E-08 (3) 2.76E-04 (4) 3.17E-01 (6) 6.63E-161 (2) 1.44E-02 (5) 0 (1)

SD 3.79E-09 2.78E-04 1.43E-01 9.95E-161 6.70E-03 0

Best 1.52E-08 3.27E-05 1.73E-01 1.50E-173 4.50E-03 0

Worst 2.76E-08 8.71E-04 6.95E-01 2.80E-160 2.79E-02 0

F2 Mean (Rank) 6.30E-05 (3) 4.00E+01 (6) 3.41E-01 (4) 1.32E-108 (2) 1.15E+00 (5) 0 (1)

SD 4.36E-06 2.25E+01 7.42E-02 2.41E-108 5.69E-01 0

Best 5.41E-05 1.00E+01 2.62E-01 1.70E-114 4.94E-01 0

Worst 6.91E-05 8.00E+01 4.96E-01 6.15E-108 2.68E+00 0

F3 Mean (Rank) 3.49E-08 (2) 1.58E+04 (6) 4.91E+01 (4) 1.08E+04 (5) 4.04E+01 (3) 0 (1)

SD 5.51E-09 1.40E+04 2.13E+01 6.83E+03 1.85E+01 0

Best 2.31E-08 4.74E+02 2.11E+01 7.57E+02 1.23E+01 0

Worst 4.08E-08 3.68E+04 8.88E+01 1.82E+04 7.37E+01 0

F4 Mean (Rank) 5.74E-05 (2) 6.70E+01 (6) 9.23E-01 (3) 6.96E+00 (5) 2.53E+00 (4) 0 (1)

SD 2.55E-06 9.04E+00 3.30E-01 6.73E+00 7.95E-01 0

Best 5.28E-05 4.48E+01 6.48E-01 1.68E-02 1.37E+00 0

Worst 6.09E-05 7.94E+01 1.71E+00 1.76E+01 3.58E+00 0

F5 Mean (Rank) 23.5503 (2) 1.87E+04 (6) 4.19E+01 (4) 2.68E+01 (3) 9.84E+01 (5) 6.18E-04 (1)

SD 6.84E+00 3.66E+04 2.38E+01 1.01E-01 1.23E+02 1.00E-03

Best 6.10E+00 4.42E+00 2.84E+01 2.67E+01 2.61E+01 3.43E-07

Worst 2.83E+01 9.00E+04 1.03E+02 2.70E+01 4.89E+02 3.40E-03

F6 Mean (Rank) 9.83E-06 (2) 2.24E-04 (3) 3.29E-01 (6) 1.85E-02 (5) 1.43E-02 (4) 1.16E-08 (1)

SD 9.28E-06 2.85E-04 9.70E-02 9.10E-03 1.02E-02 3.96E-09

Best 7.08E-07 3.29E-05 2.01E-01 5.10E-03 5.10E-03 4.85E-09

Worst 3.62E-05 1.00E-03 5.29E-01 3.09E-02 4.34E-02 1.92E-08

F7 Mean (Rank) 5.82E-05 (2) 1.37E-01 (6) 1.63E-02 (4) 3.97E-04 (3) 2.22E-02 (5) 1.33E-05 (1)

SD 3.72E-05 7.26E-02 6.60E-03 2.07E-04 8.10E-03 1.60E-05

Best 3.08E-05 4.82E-02 9.50E-03 1.29E-04 9.20E-03 5.52E-07

Worst 1.55E-04 3.08E-01 2.92E-02 8.03E-04 3.70E-02 5.55E-05

Average rank 2.28 5.28 4.43 3.57 4.43 1

Overall rank 2 6 4 3 5 1

problem taking into account all the separate objective func-
tions, as discussed in the previous sub-sections. The fitness
function of the current problem may be defined as of (29)
[73]

MOF = α1 · ILP + α2 · ILQ + α3 · IV D

+ α4 · IC + α5 ·
(

1

V SImin

)
(29)

where
5∑

k=1
αk = 1 ∧ αk ∈ [0, 1]. The values of these

weighting factors (αk) are taken from [73].

The fitness function is minimized subject to a variety
of operational constraints to be satisfied. These operational
constraints are listed in the Sections 5.1.6 and 5.1.7

5.1.6 Equality constraint

The equality constraint of the current problem is defined in
(30)

PSS =
n∑

i=2

PD(i) +
nbr∑
j=1

Ploss(j) −
ndg∑
k=1

PDG(k) (30)

where PD(i) is the real power demand of the i-th node,
Ploss(j) is the real power loss of the j -th branch, PDG(k)
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Table 6 Comparative results for 200 dimensional unimodal test functions

Function Metrics ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

F1 Mean (Rank) 7.56E-05 (3) 4.75E+04 (6) 7.7448 (5) 0 (1.5) 0.1319 (4) 0 (1.5)

SD 2.90E-05 2.07E+04 0.6658 0 0.0150 0

Best 5.31E-05 2.05E+04 6.4274 0 0.1119 0

Worst 1.26E-04 7.42E+04 8.7106 0 0.1512 0

F2 Mean (Rank) 111.7400 (4) 308.7839 (5) 4.82E+43 (6) 0 (1.5) 9.2010 (3) 0 (1.5)

SD 16.5900 68.9071 1.16E+44 0 1.2435 0

Best 88.9800 172.4439 5.19E+11 0 6.3217 0

Worst 132.5200 404.0773 3.66E+44 0 10.3028 0

F3 Mean (Rank) 1.56E-03 (2) 2.91E+05 (5) 6.15E+04 (4) 1.25E+06 (6) 722.729 (3) 0 (1)

SD 2.10E-03 9.38E+04 5.68E+03 2.12E+05 42.1527 0

Best 3.57E-04 1.72E+05 5.46E+04 8.92E+05 649.9713 0

Worst 5.20E-03 4.59E+05 7.06E+04 1.60E+06 788.3612 0

F4 Mean (Rank) 29.02 (3) 95.1487 (6) 52.7664 (4) 85.3655 (5) 6.2327 (2) 0 (1)

SD 2.6892 1.0824 3.1854 16.6892 0.4390 0

Best 25.9900 92.5989 47.8223 39.2006 5.4510 0

Worst 32.8500 96.4829 58.2010 95.7731 6.9401 0

F5 Mean (Rank) 459.2400 (4) 9.16E+07 (6) 836.1108 (5) 194.0499 (2) 290.5407 (3) 0.0504 (1)

SD 5.6670 1.32E+08 262.4703 0.2314 62.1739 0.0458

Best 452.8000 3.90E+05 497.2091 193.5862 206.3859 0.0158

Worst 467.2500 4.01E+08 1.32E+03 194.2968 386.4816 0.1253

F6 Mean (Rank) 1.19E-04 (2) 4.14E+04 (6) 7.9594 (5) 0.0144 (3) 0.1334 (4) 8.0340e-05 (1)

SD 1.33E-04 1.75E+04 0.8460 0.0022 0.0305 1.34E-04

Best 5.64E-05 1.78E+04 6.9024 0.0115 0.0998 1.33E-05

Worst 3.58E-04 7.82E+04 9.5409 0.0189 0.1905 3.21E-04

F7 Mean (Rank) 0.4154 (5) 429.8194 (6) 0.1946 (4) 1.23E-04 (2) 0.1193 (3) 4.9180e-06 (1)

SD 0.0826 342.6595 0.0262 9.91E-05 0.0106 4.30E-06

Best 0.3506 99.9309 0.1521 2.84E-06 0.1039 2.60E-06

Worst 0.5547 1.28E+03 0.2237 2.83E-04 0.1331 1.26E-05

Average rank 3.28 5.71 4.71 3 3.14 1.14

Overall rank 4 6 5 2 3 1

is the real power generated by the k-th DG, ndg is the total
number of DGs and PSS is the total real power delivered by
the sub-station.

5.1.7 Inequality constraints

The inequality constraints of the current problem are
defined in (31)–(33)

Pmin
DG ≤ PDG ≤ Pmax

DG (31)

V min
i ≤ Vi ≤ V max

i (32)

Sij ≤ Smax
ij (33)

where Sij is the thermal capacity of the line connecting
nodes i and j . The minimum and the maximum values of Vi

for 38-node system are 0.95 p.u. and 1.03 p.u., respectively,
while the same for 69-node system are, in order, 0.90 p.u.
and 1.00 p.u.

5.2 Simulation results and discussion

The current multi-objective problem is solved individu-
ally using the proposed QOCALO algorithm, its original
counterpart (i.e. ALO) and other recently developed nature
inspired algorithms such as MFO, MVO, WOA and CSA
and the performances are compared to those yielded by the
chaotic ABC (CABC) algorithm available in [73]. The sim-
ulations are carried out in the same computing environment



A novel quasi-oppositional chaotic antlion optimizer for global optimization 2645

Table 7 Results of Wilcoxon rank-sum test for unimodal test functions

Function Dimension ALO vs QOCALO MFO vs QOCALO MVO vs QOCALO WOA vs QOCALO CSA vs QOCALO

F1 10 p-value 6.38E-05 6.38E-05 6.38E-05 6.99E-04 6.38E-05

Sign + + + + +
F2 p-value 6.38E-05 6.38E-05 6.38E-05 6.99E-04 6.38E-05

Sign + + + + +
F3 p-value 6.38E-05 6.38E-05 6.38E-05 6.99E-04 6.38E-05

Sign + + + + +
F4 p-value 6.38E-05 6.38E-05 6.38E-05 6.99E-04 6.38E-05

Sign + + + + +
F5 p-value 1.82E-04 1.82E-04 1.82E-04 0.032 1.82E-04

Sign + + + + +
F6 p-value 1.82E-04 1.82E-04 1.82E-04 0.032 7.68E-04

Sign + - + + +
F7 p-value 1.82E-04 1.82E-04 1.82E-04 0.007 1.82E-04

Sign + + + + +
F1 30 p-value 6.38E-05 6.38E-05 6.34E-05 6.38E-05 6.38E-05

Sign + + + + +
F2 p-value 6.38E-05 6.15E-05 6.38E-05 6.38E-05 6.38E-05

Sign + + + + +
F3 p-value 6.38E-05 6.38E-05 6.38E-05 6.38E-05 6.38E-05

Sign + + + + +
F4 p-value 6.38E-05 6.38E-05 6.38E-05 6.38E-05 6.38E-05

Sign + + + + +
F5 p-value 1.82E-04 1.82E-04 1.82E-04 1.81E-04 1.82E-04

Sign + + + + +
F6 p-value 1.82E-04 1.82E-04 1.82E-04 1.82E-04 1.82E-04

Sign + + + + +
F7 p-value 0.0013 1.82E-04 1.82E-04 1.82E-04 1.82E-04

Sign + + + + +
F1 200 p-value 0.0079 0.0079 0.0079 1 0.0079

Sign + + + = +
F2 p-value 0.0079 0.0079 0.0079 1 0.0079

Sign + + + = +
F3 p-value 0.0079 0.0079 0.0079 0.0079 0.0079

Sign + + + + +
F4 p-value 0.0079 0.0079 0.0079 0.0079 0.0079

Sign + + + + +
F5 p-value 0.0079 0.0079 0.0079 0.0079 0.0079

Sign + + + + +
F6 p-value 0.0952 0.0079 0.0079 0.0079 0.0079

Sign = + + + +
F7 p-value 0.0079 0.0079 0.0079 0.0952 0.0079

Sign + + + = +
Total count of +/=/- 20/1/0 20/0/1 21/0/0 18/3/0 21/0/0

with the same algorithmic parameters as in the case of func-
tion optimization problems. The algorithms are run for 100

independent trial runs and each run is associated with 100
numbers of iterations.



2646 S. Saha, V. Mukherjee

Fig. 5 Comparative
convergence profiles of fitness
function value for 10
dimensional functions a F3, b
F5, c F9 and d F10

(a) (b)

(c) (d)

0 200 400 600 800 1000
10

-40

10
-30

10
-20

10
-10

10
0

10
10

Number of iterations

))x(f(gol

ALO

CSA

MFO
MVO

WOA

QOCALO

0 200 400 600 800 1000
10

-10

10
-5

10
0

10
5

10
10

Number of iterations

))x(f(gol

ALO
MFO

MVO

WOA

CSA
QOCALO

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

10
5

Number of iterations

))x(f(gol ALO

MFO

MVO
WOA

CSA

QOCALO

5.2.1 Case study 1: 38-node system

The effectiveness of the proposed QOCALO is tested by
implementing it on the 38-node radial distribution sys-
tem. The 38-node radial distribution network consists of
38 nodes and 37 branches. The details of branch and
load data for this test system may be found in [66].
The system has the base values of 100 MVA and 23
kV. The total real and reactive power losses of this sys-
tem without the installation of DGs are 0.20206 p.u. and
0.13474 p.u., respectively. In the current problem, three
real power DGs with unity power factor are considered
to be incorporated in the distribution network. The sizes
of the DGs are considered in the range 0 - 1.2 p.u.
[73].

The simulation results yielded by the proposed
QOCALO and the other algorithms for this test system are
provided in Table 14. From Table 14, it may be observed
that the proposed QOCALO yields better values of real and
reactive power losses after successfully integrating three
DGs into the system, as compared to the basic ALO, MFO,
MVO, WOA and CSA. Also, the proposed QOCALO

algorithm successfully minimizes the values of the indices
ILP and ILQ, as compared to the basic ALO, MFO, MVO,
WOA, CSA and CABC [73]. It may further be noted that the
proposed QOCALO yields better value of V SImin than the
basic ALO, MVO and CSA. The line MVA flows are within
their respective limits for both the proposed QOCALO and
the other reported algorithm. Finally, the proposed algo-
rithm produces better overall fitness value compared to the
other recent algorithms except MFO and CABC. Hence, it
may be stated that the proposed QOCALO algorithm suc-
cessfully finds the optimal locations and sizes of DGs while
satisfying all the operating constraints and performs better
than the basic ALO and some of the other recently devel-
oped algorithms. The comparative convergence profile of
the proposed QOCALO and the other reported algorithms
is shown in Fig. 9.

5.2.2 Case study 2: 69-node system

The 69-node radial distribution system has 69 nodes and 68
branches. The details of system branch and load data for
this test system may be found in [73]. The base values for
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Fig. 6 Comparative
convergence profiles of fitness
function value for 30
dimensional functions a F4, b
F6, c F12 and d F13
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this system are 100 MVA and 12.66 kV. The total real and
reactive power demand for this test system are 3.8021 MW
and 2.6945 MVAr, respectively. The real and reactive power
losses of the system before installation of DGs are 224.97
kW and 102.12 kVAr, respectively. Alike the previous case,
in this case also three numbers of real power DG units are
incorporated into the system to minimize the power loss
and to improve the voltage profile. The DGs are operated at
unity power factor and the sizes of the DGs are in the range
0 - 1.2 MW [73].

The simulation results for this test system are given in
Table 15. From Table 15, it may be noted that the proposed
QOCALO algorithm yields lesser values of the indices ILP
and ILQ as compared to the basic ALO and the other
reported algorithms except CABC. Both the real and the
reactive power losses of the system offered by the pro-
posed QOCALO are lesser than the losses offered by the
original ALO and other reported algorithms except CABC.
Also, it may be found from Table 15 that the proposed
algorithm yields the best values for the indices IVD and

V SImin as compared to the basic ALO, CABC [73] and
other reported algorithms. In the context of solving the
current multi-objective optimization problem, the proposed
QOCALO algorithm produces minimum value of the fit-
ness function compared to other algorithms referred therein.
Hence, it may be remarked that the proposed QOCALO
algorithm performs better than its original counterpart and
produces competitive results to other reported algorithms
in solving the current problem. A comparative convergence
profile of fitness function value for the considered case is
portrayed in Fig. 10.

6 Solution of CM problem in power transmission
system

The aim of this section is to minimize the congestion cost in
power transmission system by rescheduling the real power
outputs of the generators while satisfying all the operating
constraints. This may be treated as the second real world
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Fig. 7 Comparative
convergence profiles of fitness
function value for 200
dimensional functions a F3, b
F6, c F10 and d F13
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engineering optimization application of the proposed algo-
rithm. The considered power system optimization problem
is solved using the proposed QOCALO algorithm and the
simulation results are compared to those offered by the orig-
inal ALO and some other recently reported algorithms, such
as, BA, chaotic BA, flower pollination algorithm (FPA) and
FA [75].

6.1 Mathematical problem formulation

The transmission CM problem may be formulated as in (34)
[76]

Minimize C =
∑
jεNg

(Cj�P +
Gj + Dj�P −

Gj ) $/h (34)

where C represents the total CM cost ($/h), Cj and Dj rep-
resent the increment and decrement price bids ($/MWh),
respectively, submitted by the generating company for j -th
generator, �P +

Gj and �P −
Gj represent the real power incre-

ment of j -th generator (MW) and the real power decrement

of j -th generator (MW), respectively and Ng is the total
number of generators.

6.1.1 Equality constraints

The equality constraints of the current problem are stated in
(35)–(38) [75, 76]

PGk−PDk = ∣∣Vj

∣∣ |Vk |
∣∣Ykj

∣∣ cos(δk−δj −θkj ) ; j = 1, 2, ......, Nb

(35)

QGk−QDk = ∣∣Vj

∣∣ |Vk |
∣∣Ykj

∣∣ sin(δk−δj −θkj ) ; j = 1, 2, ....., Nb

(36)

PGk = P C
Gk+�P +

Gk−�P −
Gk ; k = 1, 2, ....., Ng

(37)

PDj = P C
Dj ; j = 1, 2, ....., Nd

(38)
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Table 8 Comparative results for 10 dimensional multimodal test functions

Function Metrics ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

F8 Mean (Rank) −2.55E+03 (6) −3.34E+03 (2) −2.89E+03 (4) −3.94E+03 (1) −2.78E+03 (5) −3.17E+03 (3)

SD 576.6912 399.4665 330.8130 328.4855 248.0872 406.2075

Best −3.97E+03 −4.07E+03 −3.52E+03 −4.19E+03 −3.32E+03 −3.72E+03

Worst −2.03E+03 −2.64E+03 −2.41E+03 −3.35E+03 −2.47E+03 −2.47E+03

F9 Mean (Rank) 1.29E-09 (3) 20.0022 (6) 9.2552 (5) 0 (1.5) 5.3064 (4) 0 (1.5)

SD 3.52E-10 10.2337 5.0737 0 2.1162 0

Best 6.72E-10 3.9798 2.9874 0 2.9849 0

Worst 1.88E-09 46.7629 20.8950 0 8.9546 0

F10 Mean (Rank) 2.35E-05 (4) 4.81E-15 (3) 5.35E-01 (5) 1.95E-15 (2) 1.15E+00 (6) 8.88E-16 (1)

SD 6.15E-06 1.12E-15 0.8561 1.72E-15 0.9438 0

Best 1.31E-05 4.44E-15 1.85E-02 8.88E-16 1.10E-05 8.88E-16

Worst 3.00E-05 7.99E-15 2.01E+00 4.44E-15 72.81E+00 8.88E-16

F11 Mean (Rank) 0.2100 (5) 0.1578 (4) 0.2755 (6) 0 (1.5) 0.1281 (3) 0 (1.5)

SD 0.1073 8.18E-02 0.1152 0 0.0600 0

Best 0.0763 0.0394 0.1078 0 0.0246 0

Worst 0.4771 0.2829 0.4471 0 0.2630 0

F12 Mean (Rank) 1.14E-10 (3) 6.30E-31 (1) 2.40E-04 (5) 6.62E-05 (4) 1.87E-01 (6) 4.38E-12 (2)

SD 6.23E-11 9.92E-31 1.08E-04 3.46E-05 3.86E-01 4.88E-12

Best 4.59E-11 4.91E-32 1.24E-04 2.70E-05 3.14E-10 1.72E-13

Worst 2.32E-10 3.60E-30 4.54E-04 1.28E-04 1.24E+00 1.68E-11

F13 Mean (Rank) 6.66E-10 (2) 2.20E-03 (5) 6.07E-04 (4) 3.11E-04 (3) 5.80E-03 (6) 1.77E-11 (1)

SD 6.88E-10 4.50E-03 2.90E-04 1.24E-04 6.90E-03 1.28E-11

Best 1.74E-10 1.35E-32 1.49E-04 8.71E-05 3.93E-09 8.63E-13

Worst 2.54E-09 1.10E-02 1.10E-03 4.73E-04 2.10E-02 5.18E-11

Average rank 3.83 3.5 4.83 2.17 5 1.67

Overall rank 4 3 5 2 6 1

where PGk and QGk are the real and reactive power gen-
erated at bus k respectively; PDk and QDk are the real and
reactive load at bus k, respectively; Vjand Vk are the volt-
ages at busses j and k, respectively; δj and δk are the bus
voltage angles of busses j and k, respectively; θkj is the
admittance angle of the line connected between busses k

and j ; Nb and Nd are the total number of busses and loads,
respectively; P C

Gk and P C
Dj are the real power produced by

generator k and the real power consumed by load bus j ,
respectively, as obtained by the market clearing procedure.

6.1.2 Inequality constraints

The inequality constraints associated with the current prob-
lem are stated in (39)–(43) in line with [75, 76]

Pmin
Gk ≤ PGk ≤ Pmax

Gk , ∀k ∈ Ng (39)

Qmin
Gk ≤ QGk ≤ Qmax

Gk , ∀k ∈ Ng (40)

(PGk−Pmin
Gk ) =�Pmin

Gk ≤ �PGk ≤ �Pmax
Gk = (Pmax

Gk −PGk)

(41)

V min
n ≤ Vn ≤ V max

n , ∀n ∈ Nb (42)

Pij ≤ Pmax
ij (43)

where the superscripts min and max represent the mini-
mum and the maximum values of the respected variables,
respectively.

6.1.3 Formulation of fitness function

The fitness function (FF) for achieving the desired mini-
mum CM cost is given by (44)

FF = C + P (44)
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Table 9 Comparative results for 30 dimensional multimodal test functions

Function Metrics ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

F8 Mean (Rank) −3.40E+03 (6) −8.71E+03 (2) −7.64E+03 (3) −1.24E+04 (1) −6.96E+03 (4) −6.85E+03 (5)

SD 2.74E+02 8.65E+02 7.33E+02 2.47E+02 7.31E+02 1.76E+03

Best −3.85E+03 −1.02E+04 −9.29E+03 −1.26E+04 −8.47E+03 −9.92E+03

Worst −2.91E+03 −6.98E+03 −6.73E+03 −1.18E+04 −5.99E+03 −5.42E+03

F9 Mean (Rank) 1.18E-08 (3) 149.9325 (6) 93.0047 (5) 0 (1.5) 21.1713 (4) 0 (1.5)

SD 1.09E-09 42.2841 15.2142 0 9.2509 0

Best 1.04E-08 73.6272 62.7730 0 10.9480 0

Worst 1.39E-08 239.1442 117.5394 0 46.7674 0

F10 Mean (Rank) 3.65E-05 (3) 1.44E+01 (6) 6.97E-01 (4) 2.66E-15 (2) 3.13E+00 (5) 8.88E-16 (1)

SD 1.00E-06 8.17E+00 5.06E-01 1.87E-15 6.82E-01 0

Best 3.49E-05 2.50E-03 1.29E-01 8.88E-16 2.50E+00 8.88E-16

Worst 3.82E-05 2.00E+01 1.47E+00 4.44E-15 4.81E+00 8.88E-16

F11 Mean (Rank) 3.83E-08 (3) 4.70E-03 (4) 5.84E-01 (6) 0 (1.5) 9.18E-02 (5) 0 (1.5)

SD 2.86E-09 1.00E-02 8.88E-02 0 3.11E-02 0

Best 3.45E-08 1.04E-05 4.73E-01 0 4.62E-02 0

Worst 4.30E-08 2.99E-02 7.22E-01 0 1.60E-01 0

F12 Mean (Rank) 4.98E-01 (4) 2.10E-01 (3) 1.11E+00 (5) 1.90E-03 (2) 2.64E+00 (6) 3.73E-11 (1)

SD 7.42E-02 2.60E-01 7.64E-01 4.89E-04 1.74E+00 6.11E-12

Best 3.96E-01 7.93E-06 1.71E-01 1.20E-03 2.61E-01 2.85E-11

Worst 6.24E-01 6.55E-01 2.53E+00 2.90E-03 7.29E+00 4.72E-11

F13 Mean (Rank) 2.72E+00 (6) 1.02E-02 (2) 1.65E-01 (5) 9.66E-02 (4) 7.04E-02 (3) 4.57E-10 (1)

SD 2.10E-01 6.30E-03 3.28E-01 5.50E-02 3.89E-02 1.47E-10

Best 2.39E+00 1.10E-03 2.64E-02 3.62E-02 1.43E-02 2.76E-10

Worst 2.99E+00 2.14E-02 1.10E+00 1.77E-01 1.32E-01 7.59E-10

Average rank 4.17 3.83 4.67 2 4.5 1.83

Overall rank 4 3 6 2 5 1

where, P is a penalty function, given by the following
equation

P = pf1

Nl∑
i=1

Pl + pf2

Nb∑
j=1

Pv + pf3

Ng∑
k=1

Ps (45)

where, pf1, pf2 and pf3 are penalty factors which are user
defined andNl is the total number of transmission lines. The
values of pf1, pf2 and pf3 are taken as 10,000 [75, 76].

The terms Pl , Pv and Ps are described as of (46)–(48).

Pl =
⎧⎨
⎩
0 if Pij ≤ Pmax

ij(
Pij − Pmax

ij

)2
if Pij > Pmax

ij

(46)

Pv =

⎧⎪⎨
⎪⎩

0 if V min
n ≤ Vn ≤ V max

n(
V min

n − Vn

)2
if Vn < V min

n(
Vn − V max

n

)2
if Vn > V max

n

(47)

Ps =

⎧⎪⎨
⎪⎩

0 if Pmin
Gk ≤ PGk ≤ Pmax

Gk(
Pmin

Gk − PGk

)2
if PGk < Pmin

Gk(
PGk − Pmax

Gk

)2
if PGk > Pmax

Gk

(48)

6.2 Simulation results and discussion

The CM problem of power transmission system is solved
by the proposed QOCALO algorithm and the simulation
results are compared with the results reported in [75]. The
simulations are carried out in MATLAB with the same sys-
tem configuration as in the previous cases. The number of
antlions is considered to be 40 in line with [75], the value of
jr is set to 0.6 and the value of K is equal to the dimension
of the considered problem.

6.2.1 Case study 1: Modified IEEE 30-bus system

The modified IEEE 30-bus system has six generator busses,
twenty-four load busses and forty-one transmission lines.
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Table 10 Comparative results for 200 dimensional multimodal test functions

Function Metrics ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

F8 Mean (Rank) −525 (5) −4.47E+04 (3) −4.96E+04 (2) −8.31E+04 (1) −4.11E+04 (4) −123.8600 (6)

SD 1442.5000 7.14E+03 2.11E+03 942.4065 3.78E+03 120.3500

Best −44.4652 −5.99E+04 −5.40E+04 −8.38E+04 −4.60E+04 −23.7500

Worst −1450 −3.95E+04 −4.70E+04 −8.11E+04 −3.29E+04 −578.3200

F9 Mean (Rank) 745.4360 (4) 1.25E+03 (5.5) 1.25E+03 (5.5) 0 (1) 82.296 0(3) 4.12E-13 (2)

SD 4.5418 155.9397 75.8458 0 35.3470 1.75E-13

Best 740.2000 941.8822 1.12E+03 0 39.9360 2.27E-13

Worst 752.2400 1.45E+03 1.35E+03 0 159.4928 6.28E-13

F10 Mean (Rank) 6.7662 (4) 19.9384 (6) 7.8885 (5) 3.73E-15 (2) 4.1320 (3) 8.76E-16 (1)

SD 0.4371 0.0244 8.0975 2.80E-15 0.5341 2.94E-17

Best 6.2360 19.9009 2.3704 8.88E-16 3.3833 8.23E-16

Worst 7.3250 19.9666 19.719 7.99E-15 5.2546 8.90E-16

F11 Mean (Rank) 0.0404 (3) 384.1716 (6) 0.9914 (5) 0 (1) 0.1760 (4) 2.19E-16 (2)

SD 0.0070 116.0675 0.0415 0 0.0272 9.97E-17

Best 0.0333 218.0512 0.9281 0 0.1398 1.12E-16

Worst 0.0513 554.8397 1.0472 0 0.2310 3.75E-16

F12 Mean (Rank) 19.9740 (5) 2.18E+08 (6) 8.5388 (4) 6.79E-05 (2) 1.8069 (3) 1.40E-07 (1)

SD 2.5526 2.76E+08 1.7293 1.07E-05 0.3847 2.35E-07

Best 17.6000 7.29E+05 6.2706 5.26E-05 1.3528 2.50E-08

Worst 23.6800 8.32E+08 12.8796 8.85E-05 2.4161 5.62E-07

F13 Mean (Rank) 7.5264 (3) 4.81E+08 (6) 172.8302 (5) 0.0152 (2) 123.1807 (4) 2.77E-06 (1)

SD 5.3247 4.27E+08 50.3106 0.0081 63.2580 7.07E-07

Best 1.1359 4.09E+05 74.9779 0.0072 43.2961 1.93E-06

Worst 15.2586 1.33E+09 241.5425 0.0297 219.0203 3.52E-06

Average rank 4 5.42 4.42 1.5 3.5 2.17

Overall rank 4 6 5 1 3 2

The total real and reactive power loads for this test system
are 283.4 MW and 126.2 MVAr, respectively. The system
data for the considered test system is taken from [75]. The
details of contingencies considered for this case study are
provided in Table 16.

In case 1A, congestion has occurred in the lines 1-7 and
7-8 due to the outage of the line 1-2. The real power flows
in these congested lines are 147.463 MW and 136.292 MW,
respectively, while the maximum allowable limit is 130MW
for both the lines. For secure operation of the system, the
line overloads should be alleviated. In the present study, a
QOCALO based CM scheme has been adopted to alleviate the
line overloads. The simulation results for this case have been
provided in Table 17. From Table 17, it may be observed
that the proposed QOCALO provides the minimumCM cost
compared to other metaheuristic methods. The amount of
real power rescheduling (�PG) as yielded by the proposed
method for different generators has also been provided in

Table 17. A positive value of �PG suggests for increment
in generation while a negative value suggests for decrement.
The power flow in the previously congested lines comes
under its specified limit after the application of the proposed
QOCALO based CM technique (refer Table 16).

In case 1B, congestion is created in the system by con-
sidering the outage of the line 1-7 along with the increment
in real and reactive power loads by 50%. As a result
of this, the lines 1-2, 2-8 and 2-9 get overloaded as the
power flows in these lines exceed their specified limit
(refer Table 16). The QOCALO based CM technique is
applied for relieving these line overloads and the simula-
tion results are tabulated in Table 17. From Table 17, it
may be noted that the proposed method yields the min-
imum value of CM cost as compared to other reported
algorithms. Also, it may be observed that the power flows
in the previously congested lines have been reduced and
come under their specified limit (refer Table 16). Hence,
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Table 11 Results of Wilcoxon rank-sum test for multimodal test functions

Function Dimension ALO vs QOCALO MFO vs QOCALO MVO vs QOCALO WOA vs QOCALO CSA vs QOCALO

F8 10 p-value 0.011 0.623 0.140 0.087 0.064

Sign + = = = +
F9 p-value 6.38E-05 6.38E-05 6.38E-05 1 6.29E-05

Sign + + + = +
F10 p-value 8.68E-05 2.42E-05 8.68E-05 0.073 8.62E-05

Sign + + + = +
F11 p-value 6.38E-05 6.38E-05 6.38E-05 1 6.38E-05

Sign + + + = +
F12 p-value 1.82E-04 1.82E-04 1.82E-04 0.032 1.81E-04

Sign + - + + +
F13 p-value 1.82E-04 0.139 1.82E-04 0.032 1.78E-04

Sign + = + + +
F8 30 p-value 1.78E-04 0.0209 0.1036 1.78E-04 0.2406

Sign + + = + =
F9 p-value 6.34E-05 6.38E-05 6.34E-05 1 6.34E-05

Sign + + + = +
F10 p-value 6.34E-05 6.29E-05 6.38E-05 0.0137 6.29E-05

Sign + + + + +
F11 p-value 6.38E-05 6.38E-05 6.34E-05 1 6.38E-05

Sign + + + = +
F12 p-value 1.82E-04 1.82E-04 1.81E-04 1.82E-04 1.82E-04

Sign + + + + +
F13 p-value 1.82E-04 1.82E-04 1.82E-04 1.82E-04 1.82E-04

Sign + + + + +
F8 200 p-value 0.1508 0.0079 0.0079 0.0079 0.0079

Sign = - - - +
F9 p-value 0.0079 0.0079 0.0079 0.0079 0.0079

Sign + + + - +
F10 p-value 0.0079 0.0079 0.0079 0.2302 0.0079

Sign + + + = +
F11 p-value 0.0079 0.0079 0.0079 0.0079 0.0079

Sign + + + - +
F12 p-value 0.0079 0.0079 0.0079 0.0079 0.0079

Sign + + + + +
F13 p-value 0.0079 0.0079 0.0079 0.0079 0.0079

Sign + + + + +
Total count of +/= /− 17/1/0 14/2/2 15/2/1 8/7/3 17/1/0

it may be concluded that the proposed method success-
fully clears out the line congestions in both the cases
and also outperforms other algorithms in terms of solution
quality.

The comparative convergence profiles of the proposed
QOCALO and the basic ALO algorithms in solving the CM
problem for the modified IEEE 30-bus system are portrayed
in Fig. 11.

6.2.2 Case study 2: Modified IEEE 57-bus system

The modified IEEE 57-bus system has seven generator
busses, fifty load busses and eighty transmission lines. The
total real and reactive power loads are 1250.8 MW and 336
MVAr, respectively. The details of the system data may be
found in [75]. The two different cases have been considered
for this case study and the details are provided in Table 16.
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Table 12 Comparative results for composite test functions

Function Metrics ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

CF1 Mean (Rank) 1.02E-09 (2) 1.44E+02 (6) 7.53E-04 (4) 1.11E+02 (5) 5.54E-09 (3) 2.14E-10 (1)

SD 5.47E-10 6.76E+01 2.66E-04 9.91E+01 4.54E-09 8.46E-11

Best 5.07E-10 8.81E+01 3.92E-04 1.80E-01 7.03E-10 1.06E-10

Worst 1.91E-09 3.00E+02 1.29E-03 3.01E+02 1.16E-08 2.97E-10

CF2 Mean (Rank) 19.8246 (2) 70.3808 (4) 145.4541 (5) 192.3626 (6) 69.4540 (3) 13.2784 (1)

SD 11.6734 56.9920 121.8507 95.5703 82.9355 3.6187

Best 3.6228 19.3815 27.8514 49.2888 4.7047 7.6684

Worst 35.9047 172.0806 430.3414 385.1983 227.2069 16.6828

CF3 Mean (Rank) 189.2136 (2) 287.5861 (3) 293.9876 (4) 441.4643 (6) 308.0762 (5) 139.4965 (1)

SD 29.2075 73.3075 141.3331 177.0612 68.5346 20.2512

Best 148.3986 171.9626 150.4586 288.8680 198.3268 116.3955

Worst 229.7251 396.0499 635.2630 775.9109 417.9269 166.7740

CF4 Mean (Rank) 359.7829 (4) 336.3123 (2) 359.7072 (3) 541.9167 (6) 485.3392 (5) 311.7008 (1)

SD 63.7326 31.2419 99.1535 115.4126 95.3447 7.8190

Best 259.7956 299.1165 269.7376 354.0743 315.2255 301.3733

Worst 481.0727 408.2062 600.0152 730.3820 608.6779 325.4760

CF5 Mean (Rank) 4.3852 (2) 82.1068 (4) 143.1680 (5) 189.3241 (6) 27.0009 (3) 2.0568 (1)

SD 1.7903 85.6326 195.9432 118.8072 40.1711 0.9599

Best 1.2965 3.25E+00 1.67E+00 7.81E+01 3.91E+00 1.25E-09

Worst 6.6117 224.7076 505.4436 457.4412 102.9989 2.9999

CF6 Mean (Rank) 502.6195 (3) 595.3108 (4) 892.5232 (6) 869.7328 (5) 502.1681 (2) 481.5000 (1)

SD 1.6268 162.4725 31.6485 120.6725 0.9719 41.4263

Best 500.3407 500.4224 802.4530 526.4697 500.3335 402.4940

Worst 505.5645 902.6564 903.0041 913.3921 503.5358 502.1211

Average rank 2.5 3.83 4.5 5.67 3.5 1

Overall rank 2 4 5 6 3 1

Table 13 Results of Wilcoxon rank-sum test for composite test functions

Function ALO vs QOCALO MFO vs QOCALO MVO vs QOCALO WOA vs QOCALO CSA vs QOCALO

CF1 p-value 5.82E-04 5.82E-04 5.82E-04 5.82E-04 5.82E-04

Sign + + + + +
CF2 p-value 0.1195 5.82E-04 5.82E-04 5.82E-04 0.0338

Sign = + + + +
CF3 p-value 0.0069 5.82E-04 0.0023 5.82E-04 5.82E-04

Sign + + + + +
CF4 p-value 0.2086 0.0023 0.6200 5.82E-04 0.0012

Sign = + = + +
CF5 p-value 0.0175 5.82E-04 5.82E-04 5.82E-04 5.82E-04

Sign + + + + +
CF6 p-value 0.0175 0.0175 5.82E-04 5.82E-04 0.0070

Sign + + + + +
Total count of +/ = /− 4/2/0 6/0/0 5/1/0 6/0/0 6/0/0
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Fig. 8 Comparative
convergence profiles of fitness
function value for composite
functions a CF3 and b CF5
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In case 2A, the congestion is created in the system by
considering the power flow limits of the lines 5-6 and 6-12
as 175 MW and 35 MW, respectively, instead of their orig-
inal power flow limits of 200 MW and 50 MW. Thus, the
lines 5-6 and 6-12 get overloaded at the base condition, as
the power flow in those lines exceeds the new specified limit
(refer Table 16). To relieve this line overload, the QOCALO
based CM technique is applied and the simulation results are
provided in Table 18. From Table 18, it may be noted that
the proposed QOCALO yields the minimum cost of CM as
compared to other reported algorithms. The power flows in
the previously congested lines also come under their speci-
fied limit after successful implementation of the QOCALO
based CM method (refer Table 16).

In case 2B, the congestion is created in the system by
reducing the capacity of the line 2-3 from 85 MW to

20 MW. As a result of this, the line 2-3 becomes over-
loaded as the power flow in this line is 37.048 MW which
is greater than its new specified limit (refer Table 16).
The simulation results obtained after applying the proposed
QOCALO based CM technique are provided in Table 18.
From Table 18, it may be noted that the proposed QOCALO
yields the minimum value of CM cost as compared to other
reported algorithms. Also, the power flow in the previously
congested line is reduced to be settled under its specified
limit (refer Table 16). Thus, the proposed QOCALO algo-
rithm outperforms its original counterpart in solving the
transmission CM problem in terms of quality of solution.

The comparative convergence profiles of the proposed
QOCALO and the basic ALO algorithms in solving the CM
problem for the modified IEEE 57-bus system are portrayed
in Fig. 12.

Table 14 Comparative results of optimal DG placement for 38-node system offered by different algorithms

Indices CABC [73] ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

ILP 0.3561 0.3610 0.3531 0.3785 0.3559 0.3591 0.3520

ILQ 0.3700 0.3759 0.3670 0.3919 0.3685 0.3695 0.3653

IVD 0.0267 0.0614 0.0563 0.0609 0.0562 0.0580 0.0577

IC 0.9854 0.9831 0.9830 0.9910 0.9830 0.9911 0.9830

V SImin 1.01 0.8736 0.8928 0.8752 0.8930 0.8862 0.8874

PLDG (p.u.) 0.0672 0.0729 0.0713 0.0764 0.0719 0.0725 0.0711

QLDG (p.u.) 0.0466 0.0506 0.0494 0.0528 0.0496 0.0498 0.0492

MOF 0.5295 0.5522 0.5448 0.5624 0.5460 0.5504 0.5451

Optimal 14 (0.7546) 15 (0.5518) 14 (0.7563) 11 (1.0849) 13 (0.8534) 12 (0.9972) 14 (0.7565)

location-size 24 (1.0878) 24 (1.1757) 24 (1.0888) 23 (1.1068) 24 (0.9121) 25 (0.8625) 24 (1.0891)

(p.u.) pair 30 (1.1621) 30 (1.1838) 30 (1.1744) 30 (0.8809) 30 (1.1554) 30 (1.0411) 30 (1.1280)
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Fig. 9 Comparative convergence profiles of fitness function value for
38-node system pertaining to DG placement and sizing problem

7 Solution of pressure vessel design problem

The pressure vessel design problem is a well known design
optimization problem and is considered as the third real
world engineering optimization application of the proposed
QOCALO algorithm. The objective of this problem is to
find out an optimal design of the pressure vessel with the
least fabrication cost. The details of the problem may be
found in [11]. This design optimization problem can be
formulated as follows:

Consider X = [x1 x2 x3 x4]

Minimize f (X) = 0.6224x1x3x4 + 1.7781x2x
2
3

+3.1661x2
1x4 + 19.84x2

1x3 (49)

Subject to

g1 (X) = −x1 + 0.0193x3 ≤ 0
g2 (X) = −x2 + 0.0095x3 ≤ 0
g3 (X) = −πx2

3x4 − 4
3πx3

3 + 1296000 ≤ 0
g4 (X) = x4 − 240 ≤ 0

⎫⎪⎪⎬
⎪⎪⎭
(50)
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Fig. 10 Comparative convergence profiles of fitness function value
for 69-node system pertaining to DG placement and sizing problem

The variable range may be specified as in (51) [11].

1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625
10 ≤ x3, x4 ≤ 200

}
(51)

This problem is solved using the proposed QOCALO
algorithm and the simulation results are compared to other
metaheuristic algorithms, such as, MFO, GSA, PSO, GA,
DE and ACO. The number of antlions is considered to be
40, the value of jr is set to 0.6 and the value of K is equal to
the dimension of the considered problem. The comparative
simulation results are reported in Table 19. From Table 19, it
may be easily observed that the proposed QOCALO yields
the minimum fabrication cost as compared to other reported
algorithms. Hence, it may be concluded that the proposed
QOCALO outperforms its original counterpart and other
popular swarm and evolution based algorithms in solv-
ing this highly constrained engineering design optimization
problem.

Table 15 Comparative results of optimal DG placement for 69-node system offered by different algorithms

Indices CABC [73] ALO [Studied] MFO [Studied] MVO [Studied] WOA [Studied] CSA [Studied] QOCALO [Proposed]

ILP 0.3186 0.3531 0.3408 0.3513 0.3464 0.3403 0.3323

ILQ 0.3515 0.3768 0.3658 0.3768 0.3706 0.3666 0.3604

IVD 0.0182 0.0261 0.0174 0.0265 0.0254 0.0192 0.0136

IC 0.8000 0.5761 0.5671 0.6013 0.5667 0.5738 0.5695

V SImin 0.9289 0.8995 0.9323 0.8845 0.9023 0.9253 0.9455

PLDG (KW) 71.69 79.4448 76.6676 79.0274 77.9270 76.5546 74.7632

QLDG (KW) 35.90 38.4836 37.3504 38.4827 37.8461 37.4366 36.8055

MOF 0.4746 0.4392 0.4258 0.4468 0.4331 0.4285 0.4205

Optimal 17 (0.5627) 51 (0.9499) 61 (1.1845) 59 (0.6463) 8 (1.2000) 60 (0.8381) 12 (1.0688)

location-size 61 (1.2000) 61 (0.9204) 62 (0.6084) 63 (0.9824) 61 (1.2000) 61 (1.0486) 61 (1.2000)

(MW) pair 64 (0.5733) 62 (0.9877) 67 (1.1965) 69 (0.9075) 62 (0.5993) 67 (0.9994) 63 (0.6785)
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Table 16 Details of simulated test cases for CM problem

Test system Cases Type of contingency Congested lines Line power flow (MW) Line flow

limit (MW)

Before CM After CM

Modified 1A Outage of line 1-2 1-7 147.463 129.531 130

IEEE 30-bus 7-8 136.292 120.366 130

1B Outage of line 1-7 and load at all busses increased 1-2 310.917 130 130

by 50% 2-8 97.353 63.335 65

2-9 103.524 65 65

Modified IEEE
57-bus

2A Reducing the capacity of the lines 5-6 and 6-12
from 200 MW to 175 MW and from 50 MW to 35
MW, respectively

5-6 195.971 174.904 175

6-12 49.351 34.991 35

2B Reducing the capacity of the line 2-3 from 85 MW 2-3 37.048 19.902 20

to 20 MW

Table 17 Comparative results of CM problem for modified IEEE 30-bus system offered by different algorithms

Parameters BA [75] CBA [75] FPA [75] FA [75] ALO [75] QOCALO [Proposed]

Case 1A

Total congestion cost ($/h) 496.78 482.023 519.62 511.873 480.0438 462.1199

�PG1 −9.0100 8.694 9.1278 8.778 9.0880 −8.1880

�PG2 13.969 13.917 14.1400 15.000 15.0668 14.9757

�PG3 0.102 0.016 0.206 0.106 0.0000 −0.0002

�PG4 0.301 0.109 0.0188 0.065 0.0001 0.0014

�PG5 0.523 0.349 0.189 0.173 0.0002 0.0031

�PG6 0.035 0.317 1.013 0.618 0.0001 0.0011

Total generation rescheduled (MW) 23.943 23.402 24.703 24.742 24.1552 23.1695

Case 1B

Total congestion cost ($/h) 5333.72 5302.4 5320.8 5304.4 5296.75 5281.1429

�PG1 8.582 8.361 8.589 8.579 8.588 -8.5870

�PG2 67.7200 76.402 74.024 75.995 76.400 75.4000

�PG3 11.2700 0.071 0.0000 0.057 0.056 0.0700

�PG4 49.4200 50.082 13.5174 42.994 42.844 42.6268

�PG5 13.1500 17.227 43.865 23.832 24.571 25.145

�PG6 14.4500 15.736 27.8900 16.5144 15.525 15.2695

Total generation rescheduled (MW) 164.6100 168.1500 167.896 167.974 167.9800 167.0983

Fig. 11 Comparative
convergence profiles of fitness
function value for a case 1A and
b case 1B pertaining to CM
problem
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Table 18 Comparative results of CM problem for modified IEEE 57-bus system offered by different algorithms

Parameters BA [75] CBA [75] FPA [75] FA [75] ALO [75] QOCALO [Proposed]

Case 2A

Total congestion cost ($/h) 6268.6 5982.8 6340.8 6050.1 5896.548 5890.57

�PG1 6.3650 26.3670 0.8760 5.6350 34.3670 59.5255

�PG2 0.0590 2.8090 0.0000 2.5230 1.6090 6.9993

�PG3 68.9020 0.7960 9.2470 0.5090 0.0000 0.0000

�PG4 −0.4470 0.1020 −1.3620 0.1070 −1.8670 0.0000

�PG5 −52.4000 −40.5550 −52.4790 −39.1510 −42.2540 −44.2541

�PG6 −24.8700 −32.5960 −24.5480 −35.1120 −31.5960 −27.545

�PG7 0.6360 40.3270 64.3340 62.1930 30.3270 3.2447

Total generation rescheduled (MW) 153.6000 143.5540 152.8490 145.2270 142.0200 141.5686

Case 2B

Total congestion cost ($/h) 2361 2332 2912.6 2618.1 2317.6 2310.18

�PG1 −0.6980 −0.3950 −0.0060 0.3700 −0.1074 0.0000

�PG2 −27.8580 −28.0720 −35.6230 −27.5080 −28.2907 −28.0783

�PG3 28.4500 28.6460 20.0970 31.6290 28.5930 28.7742

�PG4 −0.1840 0.0473 0.0280 0.3300 0.1338 0.1510

�PG5 0.6410 −0.1660 1.4290 −2.2540 −0.0503 0.0029

�PG6 −0.0530 0.0000 −0.0300 −1.9350 −0.0088 0.0000

�PG7 −0.0160 0.1745 13.9650 −0.5100 −0.0218 0.0000

Total generation rescheduled (MW) 57.9020 57.5020 71.1810 64.5390 57.2590 57.0064

Fig. 12 Comparative
convergence profiles of fitness
function value for a case 2A and
b case 2B pertaining to CM
problem

Table 19 Comparative results of pressure vessel design problem offered by different algorithms

Parameters MFO [18] GSA [18] PSO [77] GA [78] DE [79] ACO [80] ALO [Studied] QOCALO [Proposed]

x1 0.8125 1.1250 0.8125 0.8125 0.8125 0.8125 0.7869 0.7793

x2 0.4375 0.6250 0.4375 0.4375 0.4375 0.4375 0.3873 0.3836

x3 42.098445 55.988659 42.091266 42.097398 42.098411 42.103624 40.773169 40.376831

x4 176.636596 84.4542025 176.746500 176.654050 176.637690 176.572656 197.692834 199.273421

Optimal cost 6059.7143 8538.8359 6061.0777 6059.9463 6059.7340 6059.0888 5981.1338 5884.2655
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8 Conclusion and scope of future work

In the present article, a novel QOCALO algorithm is pro-
posed for solving global optimization problems. The pro-
posed algorithm is designed by combining the QOBL based
search and the CLS based search strategies. The inclusion
of QOBL based search technique improves the quality of
the initial solution set and accelerates the search process.
It greatly improves the convergence rate of the proposed
QOCALO algorithm over its original counterpart. Also,
the QOBL diversifies the search direction by exploring
powerful regions of the search space which offers better
exploration. On the other hand, the CLS guides local search
around the global best solution which is the most promising
region in the search space. It provides better exploitation and
the quality of solution is also improved. It may be observed
from the simulation results that the proposed QOCALO
algorithm performs much better in optimizing all the three
types of mathematical benchmark test functions (viz. uni-
modal, multimodal and composite) compared to its original
counterpart. Hence, it may be concluded that a fair balance
between exploration and exploitation is maintained in the
proposed algorithm which makes it robust. The proposed
QOCALO has also been utilized for solving three different
real world engineering optimization problems. The simula-
tion results show the superiority of the proposed QOCALO
algorithm over the original ALO and the other reported
algorithms. Hence, it may be concluded that the proposed
algorithm is capable of solving real world engineering opti-
mization problems with unknown search spaces. Thus, the
proposed QOCALO may become a promising optimizing
tool and may be further utilized to solve different non-
linear optimization problems in different fields of science
and engineering studies.

Appendix

The detailed mathematical formulation of the Weierstrass
function is provided in Table 20.

Table 20 Detail of Weierstrass function

Function name Formulation

Weierstrass
d∑

i=1

(
kmax∑
k=0

[
ak cos
(
2πbk (xi + 0.5)

)])

−d
kmax∑
k=0

[
ak cos
(
2πbk0.5

)]
,

a = 0.5, b = 3, kmax = 20
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