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Abstract The multi-task learning support vector machines
(SVMs) have recently attracted considerable attention since
the conventional single task learning ones usually ignore
the relatedness among multiple related tasks and train them
separately. Different from the single task learning, the multi-
task learning methods can capture the correlation among
tasks and achieve an improved performance by training all
tasks simultaneously. In this paper, we make two assump-
tions on the relatedness among tasks. One is that the normal
vectors of the related tasks share a certain common param-
eter value; the other is that the models of the related tasks
are close enough and share a common model. Under these
assumptions, we propose two multi-task learning methods,
named as MTL-aLS-SVM I and MTL-aLS-SVM II respec-
tively, for binary classification by taking full advantages of
multi-task learning and the asymmetric least squared loss.
MTL-aLS-SVM I seeks for a trade-off between the maximal
expectile distance for each task model and the closeness of
each task model to the averaged model. MTL-aLS-SVM II
can use different kernel functions for different tasks, and it is
an extension of the MTL-aLS-SVM I. Both of them can be
easily implemented by solving quadratic programming. In
addition, we develop their special cases which include L2-
SVM based multi-task learning methods (MTL-L2-SVM
I and MTL-L2-SVM II) and the least squares SVM (LS-
SVM) based multi-task learning methods (MTL-LS-SVM I
and MTL-LS-SVM II). Although the MTL-L2-SVM II and
MTL-LS-SVM II appear in the form of special cases, they
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are firstly proposed in this paper. The experimental results
show that the proposed methods are very encouraging.

Keywords Multi-task learning · Support vector machine ·
Asymmetric least squared loss

1 Introduction

Multi-task learning which is an important and ongoing issue
in machine learning has attracted growing attention in many
regions, such as multi-level analysis [1], semi-supervised
learning [2], medical diagnosis [3], speech recognition [4],
web search ranking [5], and cell biology [6]. The basic idea
of multi-task learning is to obtain the satisfactory perfor-
mance for each task by simultaneously learning multiple
tasks with underlying cross relatedness [7, 8]. Different
from single task learning, multi-task learning shares the
useful knowledge among multiple tasks, which is helpful
to improve the generalization performance. And determin-
ing the relatedness among the multiple tasks is important
for establishing the formulations of the multi-task learning
approaches [9–11]. Although the single task learning meth-
ods have achieved successful applications in many areas,
they train each task independently and ignore the potential
relatedness among tasks, which may reduce the accuracy of
prediction. When there are correlations between tasks, it is
more reasonable to learn all tasks simultaneously rather than
separately [7].

The regularized multi-task learning methods proposed by
Evgenious and Pontil [12, 13] generalize the kernel-based
methods from single task learning to multi-task learning.
Recently, the multi-task learning strategy has been applied
in evolutionary algorithm [6], deep neural network [14], pat-
tern recognition [15], support vector machine and so on.
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Thereinto, multi-task SVM is a power tool of machine learn-
ing, and a lot of literature reveal that the SVM-based multi-
task learning methods are effective when the related tasks
are trained simultaneously [16–24]. Yang et al. [17] pre-
sented a one-class SVM-based multi-task learning method
by constraining the solutions of multiple tasks close to each
other, and the resulting formulation is a conic program-
ming [16]. He et al. [18] proposed an improved SVM-based
multi-task learning method for the one-class classification
under the assumption that the parameter value of each task
model is close to a mean value [12]. A general formula-
tion which has the ability to employ the different kernels
for different tasks was then proposed under the assumption
that the models of different tasks are close enough [19]. Sun
et al. established a multi-task multi-class SVM approach
with a constrained optimization instead of the decomposi-
tion methods, which can learn both label-compatible and
label-incompatible scenarios [20, 21]. Based on the LS-
SVM [25], Xu et al. generalized a multi-task LS-SVM that
makes use of the advantages of LS-SVM and multi-task
learning [22]. Li et al. proposed a multi-task proximal SVM
with looser constraints to improve the training speed [23].
Song et al. proposed a novel formulation for multi-task
learning by extending the relative margin machine (RMM)
to the multi-task learning paradigm [24].

As an important part of machine learning, SVM has
been widely studied in many fields, such as multi-class
classification [26], feature selection [27], multi-instance
multi-label learning [28], and nonparallel least square sup-
port vector machine (NLSSVM) [29]. A wide spectrum of
successful applications show that SVM is an advanced clas-
sifier. As is well known, the loss function plays a key role
in SVM, and the different support vector approaches can
be established by using the corresponding loss functions
[25, 30–35]. The typical loss functions include hinge loss
function, least squared loss function, and insensitive loss
function. All of these functions are convex and convenient to
make calculations and theoretical analysis. Recently, a novel
asymmetric squared loss function and the corresponding
asymmetric least squares SVM (aLS-SVM) were proposed
by Huang et al. [31]. Compared with LS-SVM, the aLS-
SVM is more flexible since it introduces the expectile value
in the asymmetric squared loss function. The aLS-SVM has
the advantage of considerable robustness to the noise around
the decision boundary and stability to re-sampling.

In this paper, we propose two aLS-SVM based multi-task
learning methods and their special cases by integrating the
merits of multi-task learning and the asymmetric squared
loss function. We first make the assumption as in [12, 18,
20, 22, 23] that the normal vector of the hyperplane corre-
sponding to each task is expressed as the sum of a certain
common vector and a private vector, and establish the new
method MTL-aLS-SVM I. We prove that the new method

strikes a balance between the maximal expectile distance for
each task model and the closeness of each task model to the
averaged model. Then, we relax the assumption and suppose
that each task model is expressed as the sum of a common
model and a private model, and establish the second multi-
task learning method MTL-aLS-SVM II. Compared with
MTL-aLS-SVM I, MTL-aLS-SVM II is more flexible as it
can use different kernel functions for different tasks. These
two new methods can be easily implemented by solving
quadratic programming and simultaneously obtain the deci-
sion functions for all tasks. In addition, we also present their
special cases: LS-SVM based multi-task learning meth-
ods (denoted correspondingly by MTL-LS-SVM I [22] and
MTL-LS-SVM II) and L2-SVM based multi-task learning
methods (denoted correspondingly by MTL-L2-SVM I and
MTL-L2-SVM II). The special cases MTL-LS-SVM II and
MTL-L2-SVM II are also our newly proposed methods.
We compare these multi-task learning methods with sev-
eral related effective single-task learning methods including
aLS-SVM [31], LS-SVM, L2-SVM, and NLSSVM [29].
The experimental results verify the effectiveness of our
proposed multi-task learning methods.

In summary, by incorporating the properties of the multi-
task learning and the asymmetric squared loss function, the
advantages of our proposed methods are:

• To have a good ability to process multi-task learning
problems directly;

• To have the potential to capture the relatedness among
multiple related tasks;

• To effectively exploit different kernel functions for
different tasks;

• To be more flexible by using the asymmetric squared
loss function;

• To be easily implemented by solving quadratic
programming.

We organize the rest of this paper as follows. A brief
introduction of the aLS-SVM is given in Section 2. Then
we detail the MTL-aLS-SVM I and MTL-aLS-SVM II
formulations in Section 3. Meanwhile, we give their corre-
sponding special cases in this section. In Section 4, we eval-
uate the proposed methods by the numerical experiments.
Finally, we conclude the paper in Section 5.

2 The aLS-SVM

The asymmetric least squares support vector machine (aLS-
SVM) [31] is proposed based on the following asymmetric
squared loss function:

Lρ(r) =
{

ρr2, r ≥ 0
(1 − ρ)r2, r < 0

(1)
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where ρ (0 ≤ ρ ≤ 1) is the expectile value. Unlike the
general SVMs, the aLS-SVM maximizes the expectile dis-
tance instead of the minimal distance between two classes
and solves the following optimization problem:

min
ω,b,ζ

1

2
‖ω‖2 + C

2

m∑
k=1

Lρ(ζi)

s.t. ζi = 1 − yi(ω
T φ(xi ) + b), i = 1, 2, · · · , m (2)

where ζ is the error variable vector; φ(·) is a nonlinear map-
ping from the input space Rd into the feature space Rh; C is
the regularization parameter. According to the asymmetric
squared loss function (1), the optimization problem (2) can
be equivalently written as

min
ω,b,ζ

1

2
‖ω‖2 + C

2

m∑
k=1

ζi
2

s.t. yi(ω
T φ(xi ) + b) ≥ 1 − 1

ρ
ζi, i = 1, 2, · · · , m

yi(ω
T φ(xi ) + b) ≤ 1 + 1

1 − ρ
ζi, i = 1, 2, · · · , m

(3)

Compared with the usual SVMs, the aLS-SVM is robust
to noise around the decision boundary and stable to re-
sampling because of the maximization of the expectile
distance. It is also an extension of L2-SVM and LS-SVM
[25]. More details about the aLS-SVM can be seen in [31].

3 The aLS-SVM based multi-task learning
formulations

In this section, we propose two aLS-SVM based multi-task
learning methods—MTL-aLS-SVM I and MTL-aLS-SVM
II according to the different task relatedness assumptions.
Meanwhile, we develop two types of special cases of these
two multi-task learning methods. In the multi-task learn-
ing scenario, we are given N different but related tasks.
For each task k, we have mk training data {(xki , yki)}mk

i=1,
where xki ∈ R

d and yki ∈ {1, −1}. Thus, we totally
have m = ∑N

k=1 mk training data. Our aim is to learn
N different decision functions (hyperplanes) for each task
simultaneously.

3.1 MTL-aLS-SVM I

In the light of the method presented in [12], when the related
tasks share a common function ω0, the normal vector ωk ∈
R

h for the specific task k can be expressed as ωk = ω0 +
υk , where υk represents the private information of task k.

Under this assumption, we elaborate the primal optimization
problem of MTL-aLS-SVM I as follows.

min
ω0,υk,bk,ζ k

1

2
‖ω0‖2 + C1

2

N∑
k=1

‖υk‖2 + C2

2

N∑
k=1

‖ζ k‖2

s.t. ZT
k (ω0 + υk) + bkyk ≥ emk

− 1

ρ
ζ k,

k = 1, 2, · · · , N

ZT
k (ω0 + υk) + bkyk ≤ emk

+ 1

1 − ρ
ζ k,

k = 1, 2, · · · , N (4)

where Zk = (
yk1φ(xk1), yk2φ(xk2), · · · , ykmk

φ(xkmk
)
) ∈

R
h×mk with φ(·) having the same meaning as in (3);

yk = (yk1, yk2, · · · , ykmk
)T ; ζ k = (ζk1, ζk2, · · · , ζkmk

)T ∈
R

mk is the slack variable vector for task k; emk
=

(1, 1, · · · , 1)T ∈ R
mk ; C1 and C2 are the positive reg-

ularization parameters. We introduce C1 to control the
trade-off between the public classification information ω0

and the dissimilarity among all tasks. Specifically, biggerC1

enforces MTL-aLS-SVM I to train a common model, while
smaller C1 will make MTL-aLS-SVM I learn each task
model independently. It is shown from (4) that N different
tasks are trained simultaneously because of the connection
of the public classification information.

The Lagrangian of the primal problem (4) is

L(ω0, υk, bk, ζ k, αk, βk)

= 1

2
‖ω0‖2 + C1

2

N∑
k=1

‖υk‖2 + C2

2

N∑
k=1

‖ζ k‖2

−
N∑

k=1

αT
k

(
ZT

k (ω0+υk)+bkyk−emk
+ 1

ρ
ζ k

)

+
N∑

k=1

βT
k

(
ZT

k(ω0+υk)+bkyk−emk
− 1

1−ρ
ζ k

)

(5)

where αk = (αk1, αk2, · · · , αkmk
)T and βk = (βk1, βk2, · · · ,

βkmk
)T are the nonnegative Lagrange multiplier vectors. By

differentiating the Lagrangian with respect to ω0, υk, ζ k, bk

based on the Karush-Kuhn-Tucker (KKT) condition, we get
the following equations:

ω0 =
N∑

k=1

Zk(αk − βk) (6)

υk = 1

C1
Zk(αk − βk) (7)

ζ k = 1

C2

(
1

ρ
αk + 1

1 − ρ
βk

)
(8)

(αk − βk)
T yk = 0 (9)
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By (6) and (7), we have

ω0 = C1

N∑
k=1

υk (10)

which shows that ω0 is a linear combination of υk . Since
ωk = ω0 + υk , we further have

ω0 = C1

1 + C1N

N∑
k=1

ωk (11)

Substituting ω0, υk by ωk , we get the following equivalent
form of the objective function of the primal problem (4) (for
the proof of (12), see the Appendix).

τ1

2

N∑
k=1

‖ωk‖2 + τ2

2

N∑
k=1

‖ωk − ω̄‖2 + C2

2

N∑
k=1

‖ζ k‖2 (12)

where ω̄ = 1
N

∑N
k=1 ωk is the mean vector of ω1, · · · , ωN ,

τ1 = C1
1+C1N

, τ2 = C2
1N

1+C1N
. It is shown by (12) and the

constraints of (4) that the newly proposed MTL-aLS-SVM
I seeks for a trade-off between the maximum expectile dis-
tance for each task model and the closeness of each task
model to the averaged model.

Substituting (6)–(9) into the Lagrangian (5), we get the
following dual form of the primal problem (4):

max
α,β

−1

2

N∑
k,j=1

(αk − βk)
T ZT

k Zj (αj − βj )

− 1

2C1

N∑
k=1

(αk − βk)
T ZT

k Zk(αk − βk)

− 1

2C2

N∑
k=1

(
1

ρ
αk+ 1

1 − ρ
βk

)T (
1

ρ
αk+ 1

1 − ρ
βk

)

+
N∑

k=1

(αk−βk)
T emk

s.t. (αk − βk)
T yk = 0, k = 1, 2, · · · , N

αk ≥ 0, k = 1, 2, · · · , N

βk ≥ 0, k = 1, 2, · · · , N (13)

where α = (αT
1 , αT

2 , · · · , αT
N)T and β = (βT

1 , βT
2 , · · · ,

βT
N)T . By setting λk = αk − βk , we rewrite (13) as

min
λk,βk

1

2

N∑
k,j=1

λk
T ZT

k Zjλj + 1

2C1

N∑
k=1

λk
T Zk

T Zkλk

+ 1

2ρ2C2

N∑
k=1

(
λk + 1

1 − ρ
βk

)T (
λk + 1

1 − ρ
βk

)

−
N∑

k=1

λk
T emk

s.t. λk
T yk = 0, k = 1, 2, · · · , N

λk + βk ≥ 0, k = 1, 2, · · · , N

βk ≥ 0, k = 1, 2, · · · , N (14)

where λk = (λk1, λk2, · · · , λkmk
)T . Furthermore, the objec-

tive function of (14) can be rewritten as

1

2

N∑
k,j=1

mk∑
i=1

mj∑
r=1

λkiλjrykiyjr

(
1 + δkj

C1

)
K(xki , xjr )

+ 1

2ρ2C2

N∑
k=1

(
λk + 1

1 − ρ
βk

)T (
λk + 1

1 − ρ
βk

)

−
N∑

k=1

λk
T emk

(15)

where

δkj =
{
1, k = j

0, k �= j
(16)

Denote λ∗
k, k = 1, · · · , N as the optimal solutions of the

above optimization problem. Then the decision function for
task k can be obtained as

fk(x) = sign

(
φ(x)T

(
N∑

k=1

Zkλ
∗
k + 1

C1
Zkλ

∗
k

)
+ b∗

k

)

= sign

(
N∑

k=1

mk∑
i=1

λ∗
kiykiK(xki , x)

+ 1

C1

mk∑
i=1

λ∗
kiykiK(xki , x) + b∗

k

)
(17)

where K(·, ·) is a kernel function, and the optimal value b∗
k

can be obtained by the following equations:

ZT
kiZλ+ 1

C1
ZT

kiZkλk+ykibk =1− 1

ρ
ζki, ∀ki :αki >0 (18)

ZT
kiZλ+ 1

C1
ZT

kiZkλk + ykibk =1+ 1

1 − ρ
ζki, ∀ki : βki >0

(19)

where λ = (
λT
1 , λT

2 , · · · , λT
N

)T
; Z = (Z1, Z2, · · · , ZN) ∈

R
h×m, and Zki is the ith column of Zk .

3.2 MTL-aLS-SVM II

Next, we present an other elegant formulation under the
assumption that all tasks share a common model, and every
task function fk can be expressed as the sum of the common
function h0 and the private function hk:

fk = h0 + hk

= 〈ω0, φ0(x)〉 + 〈υk, φk(x)〉 + bk

where ω0 and φ0 are the normal vector and nonlinear fea-
ture mapping for the common model, respectively, and υk
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and φk are those for the private model. We denote the offset
b0 + bk by bk for simplicity. Obviously, φ0 and φk for the
different task k can be the different nonlinear mappings, and
compared with MTL-aLS-SVM I in which only one non-
linear transformation is employed, MTL-aLS-SVM II is its
extension. If φ0 = φk , then MTL-aLS-SVM II reduces to
MTL-aLS-SVM I.

We establish MTL-aLS-SVM II by solving the following
optimization problem:

min
ω0,υk,bk,ζ k

1

2
‖ω0‖2+ C1

2

N∑
k=1

‖υk‖2+ C2

2

N∑
k=1

‖ζ k‖2

s.t. Z̃
T

k ω0+AT
k υk+bkyk ≥emk

− 1

ρ
ζ k,

k=1, 2, · · · , N

Z̃
T

k ω0+AT
k υk+bkyk ≤emk

+ 1

1−ρ
ζ k,

k=1, 2, · · · , N (20)

where Z̃k = (yk1φ0(xk1), yk2φ0(xk2), · · · , ykmk
φ0 · · ·

(xkmk
)) ∈ R

h×mk ; Ak = (yk1φk(xk1), yk2φk(xk2) · · · ,
ykmk

φk(xkmk
)) ∈ R

h×mk , ζ k , yk , emk
C1, and C2 have the

same meanings as in formula (4).
The Lagrangian function of the above optimization

problem is

L(ω0, υk, bk, ζ k, αk, βk)

= 1

2
‖ω0‖2 + C1

2

N∑
k=1

‖υk‖2 + C2

2

N∑
k=1

‖ζ k‖2

−
N∑

k=1

αT
k

(
Z̃

T

k ω0+AT
k υk+bkyk−emk

+ 1

ρ
ζ k

)

+
N∑

k=1

βT
k

(
Z̃

T

k ω0+AT
k υk+bkyk−emk

− 1

1−ρ
ζ k

)

(21)

where αk = (αk1, αk2, · · · , αkmk
)T and βk = (βk1, βk2, · · · ,

βkmk
)T are the nonnegative Lagrange multiplier vectors.

According to the KKT condition, we get the following
equations:

ω0 =
N∑

k=1

Z̃k(αk − βk) (22)

υk = 1

C1
Ak(αk − βk) (23)

ζ k = 1

C2

(
1

ρ
αk + 1

1 − ρ
βk

)
(24)

(αk − βk)
T yk = 0 (25)

By substituting (22)–(25) into (21), we obtain the follow-
ing dual program of (20):

max
α,β

−1

2

N∑
k,j=1

(αk − βk)
T Z̃

T

k Z̃j (αj − βj )

− 1

2C1

N∑
k=1

(αk − βk)
T AT

k Ak(αk − βk)

− 1

2C2

N∑
k=1

(
1

ρ
αk+ 1

1−ρ
βk

)T (
1

ρ
αk+ 1

1−ρ
βk

)

+
N∑

k=1

(αk − βk)
T emk

s.t. (αk − βk)
T yk = 0, k = 1, 2, · · · , N

αk ≥ 0, k = 1, 2, · · · , N

βk ≥ 0, k = 1, 2, · · · , N (26)

where α = (αT
1 , αT

2 , · · · , αT
N)T and β = (βT

1 , βT
2 ,

· · · , βT
N)T .

Setting λk = αk −βk , we get the equivalent form of (26):

min
λk,βk

1

2

N∑
k,j=1

mk∑
i=1

mj∑
r=1

λkiλjrykiyjr

×
(

K0(xki , xjr ) + δkj

C1
Kk(xki , xjr )

)

+ 1

2ρ2C2

N∑
k=1

(
λk + 1

1 − ρ
βk

)T (
λk + 1

1 − ρ
βk

)

−
N∑

k=1

λk
T emk

s.t. λk
T yk = 0, k = 1, 2, · · · , N

λk + βk ≥ 0, k = 1, 2, · · · , N

βk ≥ 0, k = 1, 2, · · · , N (27)

where K0(·, ·) and Kk(·, ·)(k = 1, 2, · · · , N) are the kernel
functions. It can be seen by comparing the program (27)
with (14) (notice (15)) that MTL-aLS-SVM II and MTL-
aLS-SVM I are equivalent if K0 = Kk . Therefore, MTL-
aLS-SVM II is an extension of MTL-aLS-SVM I.

Denote λ∗
k, k = 1, · · · , N as the optimal solutions of the

above optimization problem. Then the decision function for
task k can be obtained as

fk(x)=sign

(
φ0(x)T

N∑
k=1

Z̃kλ
∗
k +φk(x)T

1

C1
Akλ

∗
k +b∗

k

)

= sign

(
N∑

k=1

mk∑
i=1

λ∗
kiykiK0(xki , x)

+ 1

C1

mk∑
i=1

λ∗
kiykiKk(xki , x)+b∗

k

)
(28)
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where the optimal value b∗
k can be obtained by the following

equations:

N∑
j=1

mj∑
r=1

λjrykiyjr

(
K0(xki , xjr )+ δkj

C1
Kk(xki , xjr )

)

+ykibk = 1 − 1

ρ
ζki, ∀ki : αki > 0

N∑
j=1

mj∑
r=1

λjrykiyjr

(
K0(xki , xjr )+ δkj

C1
Kk(xki , xjr )

)

+ykibk = 1 + 1

1 − ρ
ζki, ∀ki : βki > 0

3.3 The special cases

In this subsection, we develop two kinds of special cases of
MTL-aLS-SVM I and MTL-aLS-SVM II for the multi-task
learning. Recall that the sharp of the asymmetric squared
loss function (1) is closely related to the value of ρ. When
ρ = 1, the asymmetric squared loss (1) reduces to the
squared hinge loss:

Lρ(r) =
{

r2, r ≥ 0
0, r < 0

(29)

And accordingly, the MTL-aLS-SVM I and MTL-aLS-
SVM II reduce to the L2-SVM based multi-task learning
methods (denoted by MTL-L2-SVM I and MTL-L2-SVM
II, respectively).

MTL-L2-SVM I:

min
ω0,υk,bk,ζ k

1

2
‖ω0‖2 + C1

2

N∑
k=1

‖υk‖2 + C2

2

N∑
k=1

‖ζ k‖2

s.t. ZT
k (ω0 + υk) + bkyk ≥ emk

− ζ k,

k = 1, 2, · · · , N (30)

where Zk , ζ k , C1, C2 and emk
have the same meanings as in

formula (4). By the KKT condition, the dual problem of the
above optimization problem can be obtained

max
α

−1

2

N∑
k,j=1

αk
T Zk

T Zjαj − 1

2C1

N∑
k=1

αk
T Zk

T Zkαk

− 1

2C2

N∑
k=1

αk
T αk +

N∑
k=1

αk
T emk

s.t. αk
T yk = 0, k = 1, 2, · · · , N

αk ≥ 0, k = 1, 2, · · · , N (31)

MTL-L2-SVM II:

min
ω0,υk,bk,ζ k

1

2
‖ω0‖2+ C1

2

N∑
k=1

‖υk‖2+ C2

2

N∑
k=1

‖ζ k‖2

s.t. Z̃
T

k ω0 + AT
k υk + bkyk ≥ emk

− ζ k,

k = 1, 2, · · · , N (32)

where Z̃k , Ak have the same meanings as in (20). The dual
form of the above optimization problem is

min
αk

1

2

N∑
k,j=1

mk∑
i=1

mj∑
r=1

αkiαjrykiyjr

(
K0(xki , xjr )

+δkj

C1
Kk(xki,xjr)

)
+ 1

2C2

N∑
k=1

αk
Tαk−

N∑
k=1

αk
T emk

s.t. αk
T yk = 0, k = 1, 2, · · · , N

αk ≥ 0, k = 1, 2, · · · , N (33)

On the other hand, when ρ = 1/2, the asymmetric
squared loss (1) reduces to the least squared loss Lρ(r) =
1
2 r

2. Then the MTL-aLS-SVM I and MTL-aLS-SVM II
accordingly turn to be the least squares SVM based multi-
task learning methods (denoted by MTL-LS-SVM I and
MTL-LS-SVM II, respectively).

MTL-LS-SVM I [22]:

min
ω0,υk,bk,ζ k

1

2
‖ω0‖2+ C1

2

N∑
k=1

‖υk‖2+ C2

2

N∑
k=1

‖ζ k‖2

s.t. ZT
k (ω0 + υk) + bkyk = emk

− ζ k,

k = 1, 2, · · · , N (34)

The optimization problem (34) can be solved by the follow-
ing linear system:[
0N×N DT

D H

] [
b

α

]
=

[
0N

em

]
(35)

where D = blockdiag(y1, y2, · · · , yN), the positive
definite matrix H = � + 1

C2
Im + 1

C1
B ∈ R

m×m,

� = ZT Z ∈ R
m×m with Z = (Z1, Z2, · · · , ZN), and

B = blockdiag(�1, �2, · · · , �N) ∈ R
m×m with �k =

Zk
T Zk ∈ R

mk×mk .
The efficiency of MTL-LS-SVM I has been verified by

comparing it with other several multi-task learning methods
[22]. More details can be seen in [22].

MTL-LS-SVM II:

min
ω0,υk,bk,ζ k

1

2
‖ω0‖2+ C1

2

N∑
k=1

‖υk‖2+ C2

2

N∑
k=1

‖ζ k‖2

s.t. Z̃
T

k ω0 + AT
k υk + bkyk = emk

− ζ k,

k = 1, 2, · · · , N (36)
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The optimization problem (36) can be solved by the follow-
ing linear system:
[
0N×N DT

D H̃

] [
b

α

]
=

[
0N

em

]
(37)

where D = blockdiag(y1, y2, · · · , yN), the positive
definite matrix H = �̃ + 1

C2
Im + 1

C1
B̃ ∈ R

m×m,

�̃ = Z̃
T
Z̃ ∈ R

m×m with Z̃ = (Z̃1, Z̃2, · · · , Z̃N), and
B̃ = blockdiag(	1, 	2, · · · , 	N) ∈ R

m×m with 	k =
Ak

T Ak ∈ R
mk×mk .

4 Experiments

To verify the effectiveness of the newly proposed multi-task
learning methods, we conduct experiments to compare the
newly proposed multi-task learning methods with the strat-
egy that all of the N tasks are learned independently by
employing aLS-SVM [31], L2-SVM [32], LS-SVM [25],
and nonparallel least square SVM (NLSSVM) [29]. And
the corresponding single task learning methods are denoted
as N-aLS-SVM, N-L2-SVM, N-LS-SVM, and N-NLSSVM
respectively. All the experiments are carried out in MAT-
LAB R2014a on a personal computer (PC) with an Intel(R)
Core(TM) i7 processor (3.40 GHz) and 4GB random access
memory (RAM).

We test these methods on a collection of three bench-
mark datasets including Isolet, Monk, and Dermatology
coming from the UCI Machine Learning Repository1. The
Isolet dataset that is gathered from 150 subjects speaking
26 English letters twice consists of 7797 instances with 617
attributes (three instances had been historically lost). All
of the speakers are divided into five equal number subsets
known as Isolet1 to Isolet5, and each subset is treated as one
classification task. On one hand, the five tasks have close
relationship because they are gathered from the same utter-
ances [11, 20]. On the other hand, the five tasks differ from
each other because the speakers within diverse groups vary
in the way of pronouncing the English letters. We classified
three pairs of similar sounding letters including (B, D), (G,
J) and (M, N) in our experiments. For (B, D) and (G, J) pairs,
there are totally 600 instances in the five tasks of each pair;
and for (M, N) pair, there are totally 599 instances in the
five tasks. We employ principal component analysis (PCA)
on the chosen datasets for removing the low variance noise.
We reduce the attributes from 617 to 200, and 97.5% of the
data variance is captured.

The Monk dataset with 432 instances is the basis of
a first international comparison of learning algorithms. It
is divided into 3 subsets based on the characteristic of 6

1http://www.ics.uci.edu/∼mlearn/MLRepository.html

attributes. The subsets are referred to as Monk1, Monk2,
and Monk3 which are corresponding to the three tasks.

The Dermatology dataset is a collection of 366 differen-
tial diagnosis including six kinds of dermatological diseases
grounded on 33 clinicopathological characteristics. As in
[8, 22], the problem can be converted into six binary one-
versus-rest classification problems, and each one is regarded
as a task. Therefore, we totally have six tasks.

In our experiments, the Gaussian kernel K(xi , xj ) =
exp(−σ‖xi − xj‖2) is employed in the first multi-task
learning method MTL-aLS-SVM I. For the second multi-
task learning method MTL-aLS-SVM II, there exist two
basic kernel functions: K0 in the common model and Kk

in the private model (27). We test our method with two
different combinations: One is that K0(xki , xjr ) = 〈xki ,
xjr 〉 is a linear kernel and Kk(xki,xjr) = exp(−σ‖xki−
xjr‖2) is a Gaussian kernel; The other combination is that
K0(xki,xjr) = 〈xki,xjr〉 is a linear kernel and Kk(xki ,
xjr ) = (〈xki , xjr 〉 + 1)d is a polynomial kernel with
d > 1.

Generally speaking, the performance of the algorithms
relies on the selections of parameters. There exist four (five)
tuning parameters in MTL-aLS-SVM I (MTL-aLS-SVM
II): C1, C2, σ , d (in MTL-aLS-SVM II), ρ. The first three
(four) parameters are the same as those of MTL-L2-SVM I
and MTL-LS-SVM I (MTL-L2-SVM II and MTL-LS-SVM
II). The parameter ρ in MTL-aLS-SVM I and MTL-aLS-
SVM II controls the sharp of the loss function. In our
experiments, as in [31], we set ρ = 0.99, 0.95, 0.83. The
parameter scopes are C1 ∈ {2−7, 2−5, · · · , 25}, C2 ∈
{2−6, 2−4, · · · , 28}, σ ∈ {2−7, 2−5, · · · , 25}, and d ∈
{2, 3, · · · , 9}. For the single task learning methods N-
aLS-SVM, N-L2-SVM, and N-LS-SVM, except the kernel
parameters σ, d, the optimal tuning parameter C is cho-
sen from {2−6, 2−4, · · · , 28}. For N-NLSSVM, except the
kernel parameters σ, d, there are two tuning parameters c1
and c2 with the same ranges {2−7, 2−6, · · · , 28}. For each
dataset, the attributes are scaled in [-1,1]. About 55% of the
instances are randomly chosen from the whole dataset to
constitute the training set, and the rest is the testing set. The
five-fold cross validation is used on the training dataset to
find the optimal parameters, and then a classification accu-
racy on the testing set is obtained. Repeat the process ten
times, and the “Accuracy” in the following tables is the
mean value of ten times testing results.

In Tables 1, 2, 3, 4 and 5, “Accuracy±S” denotes the
averaged classification accuracy plus or minus the stan-
dard deviation. “L”, “G”, and “P” represent Linear kernel,
Gaussian kernel, and Polynomial kernel, respectively. In the
second kind of multi-task learning methods, “L+G” rep-
resents that K0 is the linear kernel function and Kk is the
Gaussian kernel function; and “L+P” means that K0 is
the linear kernel function and Kk is the Polynomial kernel

http://www.ics.uci.edu/$\sim $mlearn/MLRepository.html
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Table 1 Experimental results
on (B, D) pair of Isolet dataset Single task learning method Accuracy±S Multi-task learning method Accuracy±S

N-aLS-SVM (ρ = 0.99, L) 0.7674±0.0240 MTL-aLS-SVM II (ρ = 0.99, L+G) 0.9652±0.0070

N-aLS-SVM (ρ = 0.99, G) 0.7641±0.0230 MTL-aLS-SVM II (ρ = 0.99, L+P) 0.9652±0.0096

N-aLS-SVM (ρ = 0.99, P) 0.7148±0.0293 MTL-aLS-SVM I (ρ = 0.99, G) 0.9459±0.0129

N-aLS-SVM (ρ = 0.95, L) 0.7670±0.0251 MTL-aLS-SVM II (ρ = 0.95, L+G) 0.9644±0.0091

N-aLS-SVM (ρ = 0.95, G) 0.7648±0.0210 MTL-aLS-SVM II (ρ = 0.95, L+P) 0.9656±0.0086

N-aLS-SVM (ρ = 0.95, P) 0.7111±0.0313 MTL-aLS-SVM I (ρ = 0.95, G) 0.9633±0.0075

N-aLS-SVM (ρ = 0.83, L) 0.7663±0.0281 MTL-aLS-SVM II (ρ = 0.83, L+G) 0.9622±0.0085

N-aLS-SVM (ρ = 0.83, G) 0.7685±0.0191 MTL-aLS-SVM II (ρ = 0.83, L+P) 0.9644±0.0109

N-aLS-SVM (ρ = 0.83, P) 0.7070±0.0319 MTL-aLS-SVM I (ρ = 0.83, G) 0.9637±0.0109

N-L2-SVM (L) 0.7670±0.0250 MTL-L2-SVM II (L+G) 0.9581±0.0175

N-L2-SVM (G) 0.7663±0.0216 MTL-L2-SVM II (L+P) 0.9630±0.0105

N-L2-SVM (P) 0.7163±0.0331 MTL-L2-SVM I (G) 0.9622±0.0097

N-LS-SVM (L) 0.7681±0.0267 MTL-LS-SVM II (L+G) 0.9637±0.0147

N-LS-SVM (G) 0.7663±0.0216 MTL-LS-SVM II (L+P) 0.8211±0.0187

N-LS-SVM (P) 0.7156±0.0349 MTL-LS-SVM I (G) 0.9141±0.0130

N-NLSSVM (L) 0.5517±0.0513

N-NLSSVM (G) 0.7596±0.0276

N-NLSSVM (P) 0.6504±0.0475

function. The best result among all the methods for each
dataset is highlighted.

As can be seen from Tables 1, 2 and 3, for Isolet dataset,
the accuracies of the multi-task learning methods are much
higher than the single task learning methods in general.

Specifically, for (B, D) pair, the highest accuracy was cre-
ated by MTL-aLS-SVM II using the combination of the
linear kernel and Polynomial kernel. For (G, J) pair, the
multi-task learning method MTL-L2-SVM II with the linear
kernel and Gaussian kernel combination achieved the best

Table 2 Experimental results
on (G, J) pair of Isolet dataset Single task learning method Accuracy±S Multi-task learning method Accuracy±S

N-aLS-SVM (ρ = 0.99, L) 0.8578±0.0126 MTL-aLS-SVM II (ρ = 0.99, L+G) 0.9791±0.0069
N-aLS-SVM (ρ = 0.99, G) 0.8556±0.0136 MTL-aLS-SVM II (ρ = 0.99, L+P) 0.9637±0.0083
N-aLS-SVM (ρ = 0.99, P) 0.7567±0.0443 MTL-aLS-SVM I (ρ = 0.99, G) 0.9559±0.0082
N-aLS-SVM (ρ = 0.95, L) 0.8578±0.0139 MTL-aLS-SVM II (ρ = 0.95, L+G) 0.9819±0.0054

N-aLS-SVM (ρ = 0.95, G) 0.8548±0.0141 MTL-aLS-SVM II (ρ = 0.95, L+P) 0.9641±0.0087
N-aLS-SVM (ρ = 0.95, P) 0.7530±0.0328 MTL-aLS-SVM I (ρ = 0.95, G) 0.9793±0.0060

N-aLS-SVM (ρ = 0.83, L) 0.8544±0.0134 MTL-aLS-SVM II (ρ = 0.83, L+G) 0.9815±0.0068

N-aLS-SVM (ρ = 0.83, G) 0.8574±0.0127 MTL-aLS-SVM II (ρ = 0.83, L+P) 0.9637±0.0098

N-aLS-SVM (ρ = 0.83, P) 0.7504±0.0437 MTL-aLS-SVM I (ρ = 0.83, G) 0.9796±0.0058

N-L2-SVM (L) 0.8589±0.0120 MTL-L2-SVM II (L+G) 0.9841±0.0058

N-L2-SVM (G) 0.8557±0.0143 MTL-L2-SVM II (L+P) 0.9789±0.0080

N-L2-SVM (P) 0.7611±0.0508 MTL-L2-SVM I (G) 0.9778±0.0074

N-LS-SVM (L) 0.8574±0.0132 MTL-LS-SVM II (L+G) 0.9770±0.0072

N-LS-SVM (G) 0.8566±0.0147 MTL-LS-SVM II (L+P) 0.9007±0.0193

N-LS-SVM (P) 0.5622±0.0692 MTL-LS-SVM I (G) 0.9430±0.0273

N-NLSSVM (L) 0.5200±0.0205

N-NLSSVM (G) 0.6229±0.0115

N-NLSSVM (P) 0.5633±0.0189
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Table 3 Experimental results
on (M,N) pair of Isolet dataset Single task learning method Accuracy±S Multi-task learning method Accuracy±S

N-aLS-SVM (ρ = 0.99, L) 0.6885±0.0291 MTL-aLS-SVM II (ρ = 0.99, L+G) 0.8669±0.0172

N-aLS-SVM (ρ = 0.99,G) 0.6788±0.0331 MTL-aLS-SVM II (ρ = 0.99, L+P) 0.8227±0.0305

N-aLS-SVM (ρ = 0.99, P) 0.6022±0.0138 MTL-aLS-SVM I (ρ = 0.99, G) 0.8468±0.0248

N-aLS-SVM (ρ = 0.95, L) 0.6881±0.0296 MTL-aLS-SVM II (ρ = 0.95, L+G) 0.8677±0.0209

N-aLS-SVM (ρ = 0.95, G) 0.6788±0.0294 MTL-aLS-SVM II (ρ = 0.95, L+P) 0.8234±0.0299

N-aLS-SVM (ρ = 0.95, P) 0.5955±0.0195 MTL-aLS-SVM I (ρ = 0.95, G) 0.8717±0.0142

N-aLS-SVM (ρ = 0.83, L) 0.6840±0.0295 MTL-aLS-SVM II (ρ = 0.83, L+G) 0.8725±0.0132

N-aLS-SVM (ρ = 0.83, G) 0.6762±0.0324 MTL-aLS-SVM II (ρ = 0.83, L+P) 0.8208±0.0284

N-aLS-SVM (ρ = 0.83, P) 0.5937±0.0228 MTL-aLS-SVM I (ρ = 0.83, G) 0.8725±0.0138

N-L2-SVM (L) 0.6855±0.0296 MTL-L2-SVM II (L+G) 0.8699±0.0185

N-L2-SVM (G) 0.6792±0.0337 MTL-L2-SVM II (L+P) 0.8747±0.0148

N-L2-SVM (P) 0.6033±0.0186 MTL-L2-SVM I (G) 0.8729±0.0168

N-LS-SVM (L) 0.6907±0.0267 MTL-LS-SVM II (L+G) 0.8706±0.0189

N-LS-SVM (G) 0.6810±0.0328 MTL-LS-SVM II (L+P) 0.7004±0.0207

N-LS-SVM (P) 0.5364±0.0254 MTL-LS-SVM I (G) 0.8138±0.0488

N-NLSSVM (L) 0.5067±0.0086

N-NLSSVM (G) 0.7350±0.0126

N-NLSSVM (P) 0.6000±0.0539

accuracy. For (M, N) pair, the best accuracy was obtained by
the multi-task learning method MTL-L2-SVM II with the
linear kernel and Polynomial kernel combination.

For the Monk dataset, it is shown by Table 4 that the
MTL-aLS-SVM I and MTL-aLS-SVM II achieve better

performance than the other multi-task learning methods and
the single task learning methods. And MTL-aLS-SVM II
obtains the best accuracy among all of the multi-task and
single task learning methods. In addition, it can be found
that the performance of the single task learning methods has

Table 4 Experimental results
on Monk dataset Single task learning method Accuracy±S Multi-task learning method Accuracy±S

N-aLS-SVM (ρ = 0.99, L) 0.7050±0.0133 MTL-aLS-SVM II (ρ = 0.99, L+G) 0.8992±0.0177

N-aLS-SVM (ρ = 0.99, G) 0.8725±0.0077 MTL-aLS-SVM II (ρ = 0.99, L+P) 0.8773±0.0294

N-aLS-SVM (ρ = 0.99, P) 0.8268±0.0142 MTL-aLS-SVM I (ρ = 0.99, G) 0.8896±0.0277

N-aLS-SVM (ρ = 0.95, L) 0.7060±0.0117 MTL-aLS-SVM II (ρ = 0.95, L+G) 0.8963±0.0141

N-aLS-SVM (ρ = 0.95, G) 0.8785±0.0114 MTL-aLS-SVM II (ρ = 0.95, L+P) 0.8830±0.0396

N-aLS-SVM (ρ = 0.95, P) 0.8237±0.0161 MTL-aLS-SVM I (ρ = 0.95, G) 0.8930±0.0124

N-aLS-SVM (ρ = 0.83, L) 0.7067±0.0128 MTL-aLS-SVM II (ρ = 0.83, L+G) 0.8942±0.0143

N-aLS-SVM (ρ = 0.83, G) 0.8887±0.0108 MTL-aLS-SVM II (ρ = 0.83, L+P) 0.8858±0.0227

N-aLS-SVM (ρ = 0.83, P) 0.8142±0.0137 MTL-aLS-SVM I (ρ = 0.83, G) 0.8935±0.0153

N-L2-SVM (L) 0.7058±0.0118 MTL-L2-SVM II (L+G) 0.8672±0.0347

N-L2-SVM (G) 0.8681±0.0200 MTL-L2-SVM II (L+P) 0.8613±0.0470

N-L2-SVM (P) 0.8560±0.0157 MTL-L2-SVM I (G) 0.8605±0.0385

N-LS-SVM (L) 0.7069±0.0114 MTL-LS-SVM II (L+G) 0.8022±0.0165

N-LS-SVM (G) 0.8851±0.0174 MTL-LS-SVM II (L+P) 0.8085±0.0210

N-LS-SVM (P) 0.8495±0.0206 MTL-LS-SVM I (G) 0.7925±0.0139

N-NLSSVM (L) 0.5818± 0.1113

N-NLSSVM (G) 0.6815±0.0254

N-NLSSVM (P) 0.6025±0.1426
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Table 5 Experimental results
on Dermatology dataset Single task learning method Accuracy±S Multi-task learning method Accuracy±S

N-aLS-SVM (ρ = 0.99, L) 0.9676±0.0104 MTL-aLS-SVM II (ρ = 0.99, L+G) 0.9723±0.0061

N-aLS-SVM (ρ = 0.99, G) 0.9827±0.0044 MTL-aLS-SVM II ρ = 0.99, L+P) 0.9707±0.0043

N-aLS-SVM (ρ = 0.99, P) 0.8166±0.0165 MTL-aLS-SVM I (ρ = 0.99, G) 0.9720±0.0060

N-aLS-SVM (ρ = 0.95, L) 0.9744±0.0064 MTL-aLS-SVM II (ρ = 0.95, L+G) 0.9734±0.0066

N-aLS-SVM (ρ = 0.95, G) 0.9819±0.0039 MTL-aLS-SVM II (ρ = 0.95, L+P) 0.9664±0.0132

N-aLS-SVM (ρ = 0.95, P) 0.8727±0.0153 MTL-aLS-SVM I (ρ = 0.95, G) 0.9743±0.0065

N-aLS-SVM (ρ = 0.83, L) 0.9792±0.0052 MTL-aLS-SVM II (ρ = 0.83, L+G) 0.9774±0.0057

N-aLS-SVM (ρ = 0.83, G) 0.9804±0.0029 MTL-aLS-SVM II (ρ = 0.83, L+P) 0.9679±0.0088

N-aLS-SVM (ρ = 0.83, P) 0.9545±0.0144 MTL-aLS-SVM I (ρ = 0.83, G) 0.9772±0.0053

N-L2-SVM (L) 0.9805±0.0042 MTL-L2-SVM II (L+G) 0.9760±0.0081

N-L2-SVM (G) 0.9833±0.0023 MTL-L2-SVM II (L+P) 0.9558±0.0298

N-L2-SVM (P) 0.9815±0.0036 MTL-L2-SVM I (G) 0.9765±0.0086

N-LS-SVM (L) 0.9575±0.0065 MTL-LS-SVM II (L+G) 0.9643±0.0096

N-LS-SVM (G) 0.9818±0.0043 MTL-LS-SVM II (L+P) 0.7272±0.0869

N-LS-SVM (P) 0.9752±0.0045 MTL-LS-SVM I (G) 0.9527±0.0101

N-NLSSVM (L) 0.8343±0.0759

N-NLSSVM (G) 0.8533±0.0657

N-NLSSVM (P) 0.8424±0.0448

much to do with the different choices of the kernel func-
tions. However, the multi-task learning methods are less
sensitive to kernel functions.

For the Dermatology dataset, it can be seen from Table 5
that the accuracies obtained by MTL-aLS-SVM I and MTL-
aLS-SVM II are sightly lower than the highest accuracy
obtained by the single task learning method L2-SVM. The
same phenomenon occurs in [8] for MTL-FEAT (RBF) and
independent (RBF). Argyrious et al. reinforce their conjec-
ture by the numerical experiments that the relation among
these tasks is weak or not [8]. As in [8, 22], the results in
Table 5 indicate that the newly proposed multi-task learning
methods can also achieve good performance even in such case.

In addition, it has been shown by Tables 1, 2, 3, 4 and 5
that the results obtained by our proposed multi-task learn-
ing methods are better than those reported by the multi-task
RMM algorithm in [24].

Further, we employ the non-parametric Friedman test
with its corresponding Nemenyi post-hoc test [36] to

perform a more fair comparison of all the involved algo-
rithms on the employed UCI datasets. For simplicity, only
the best accuracy of each involved algorithm is under con-
sideration. Table 6 reports the ranks of “Accuracy” of all
the involved algorithms on the employed UCI datasets,
where each algorithm is represented by its abbreviation, for
example, “MTL-aL I” denotes “MTL-aLS-SVM I”.

Let Ri denotes the average rank of the ith algorithm in
Table 6, the Friedman statistic which is distributed accord-
ing to X 2

F with (K − 1) degrees of freedom and the FF

which is distributed according to the F-distribution with
(K −1) and (K −1)(N −1) degrees of freedom can be cal-

culated as X 2
F = 12N

K(K+1)

[
K∑

i=1
R2

i − K(K+1)2

4

]
= 21.1418

and FF = (N−1)X 2
F

N(K−1)−X 2
F

= 3.5446, where N = 5, K=10.

According to the table of critical values, it is easy to know
that Fα=0.1(10, 5) = 1.811 < 3.5446, so we reject the null
hypothesis. For further pairwise comparison, we resort to

Table 6 The ranks of the involved algorithms in the Friedman test on the employed UCI datasets

Dataset N-aL N-L2 N-LS N-NL MTL-L2 I MTL-LS I MTL-aL I MTL-aL II MTL-L2 II MTL-LS II

(B, D) 7 9 8 10 5 6 2.5 1 4 2.5

(G, J) 8 7 9 10 4 6 3 2 1 5

(M,N) 9 10 8 7 2 6 3.5 3.5 1 5

Monk 3 5 4 10 7 9 2 1 6 8

Dermatology 2 1 3 10 6 9 5 4 7 8

Average ranks 5.8 6.4 6.4 9.4 4.8 7.2 3.2 2.3 3.8 5.7



The aLS-SVM based multi-task learning classifiers 2403

the Nemenyi post-hoc test. For α = 0.1, the critical dif-

ference CD = Fα=0.1(10, 5) ∗
√

K(K+1)
6N = 3.4678. It is

well known that the performance of two algorithms is sig-
nificantly different if their average ranks differ by at least
the critical difference. Based on Table 6, the differences
between MTL-aL II and other algorithms can be calculated
as follows:

d(N-aL)−d(MTL-aL II)=5.8−2.3=3.5>3.4678

d(N-L2)−d(MTL-aL II)=6.4−2.3=4.1>3.4678

d(N-LS)−d(MTL-aL II)=6.4−2.3=4.1>3.4678

d(N-NL)−d(MTL-aL II)=9.4−2.3=7.1>3.4678

d(MTL-L2 I)−d(MTL-aL II)=4.8−2.3=2.5<3.4678

d(MTL-LS I)−d(MTL-aL II)=7.2−2.3=4.9>3.4678

d(MTL-aL I)−d(MTL-aL II)=3.2−2.3=0.9<3.4678

d(MTL-L2 II)−d( MTL-aL II)=3.8−2.3=1.5<3.4678

d(MTL-LS II)−d(MTL-aL II)=5.7−2.3=3.4<3.4678

where d(a − b) denotes the differences between a and b.
Then we obtain the following conclusion: on the employed
UCI datasets, MTL-aLS-SVM II performs significantly bet-
ter than all the single task learning methods including
N-aLS-SVM, N-L2-SVM, N-LS-SVM, N-NLSSVM and
the multi-task learning method MTL-LS-SVM I, and there
is no significant differences between MTL-aLS-SVM II
and MTL-aLS-SVM I, MTL-L2-SVM I, MTL-L2-SVM II,
MTL-LS-SVM II.

In the next part of the experiments, we demonstrate the
influence of the parameter C1 in multi-task learning meth-
ods MTL-aLS-SVM I and MTL-aLS-SVM II (formulations
(4) and (20)) which trades off the public classification infor-
mation and the dissimilarity between tasks. For this purpose,
we contradistinguish MTL-aLS-SVM I, MTL-aLS-SVM II
including MTL-aLS-SVM II (L+G) and MTL-aLS-SVM
II (L+P), N-aLS-SVM, and 1-aLS-SVM (the method that
employs one aLS-SVM for all tasks when all tasks are

Fig. 1 Accuracy variations of
MTL-aLS-SVM I and MTL-
aLS-SVM II along with C1; and
the comparison algorithms
N-aLS-SVM and 1-aLS-SVM
use the Linear kernel
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regarded as one big task). We take ρ = 0.95 as an exam-
ple, and conduct the experiments on the (B, D) pair of
Isolet dataset. The variations of the averaged accuracy of
the multi-task learning methods on each task along with
the values of C1 are illustrated in the Figs. 1, 2 and 3. As
comparisons, the averaged accuracy obtained by the sin-
gle learning methods N-aLS-SVM and 1-aLS-SVM with
linear kernel, polynomial kernel, and Gaussian kernel are
also illustrated in the Figs. 1, 2 and 3, respectively. Note
that the N-aLS-SVM and 1-aLS-SVM models do not con-
tain parameter C1, the averaged accuracy of these two
models are not affected by the variation of parameter C1.
The “Accuracy” in the three figures denotes the averaged
accuracy.

It is shown by the three figures that when the values
of C1 are small, the accuracies of MTL-aLS-SVM I and

MTL-aLS-SVM II (L+P) are close to those of the con-
ventional independent learning strategy N-aLS-SVM.When
the values of C1 are large, the performance of MTL-aLS-
SVM I and MTL-aLS-SVM II (L+P) is in line with that
of 1-aLS-SVM. However, the variation of the accuracies
of MTL-aLS-SVM II (L+G) is not distinct, and MTL-aLS-
SVM II (L+G) keeps the good performance along with the
values of C1.

In addition, it is interesting to see that the averaged accu-
racies of N-aLS-SVM are always lower than those of 1-aLS-
SVM. The reason for this is that a small number of training
data provides less information for N-aLS-SVM. And 1-
aLS-SVM cannot deal with the label-incompatible dataset
(for example, Monk dataset and Dermatology dataset).
However, MTL-aLS-SVM I and MTL-aLS-SVM II can
obtain the good performance with the proper values of C1

Fig. 2 Accuracy variations of
MTL-aLS-SVM I and MTL-
aLS-SVM II along with C1; and
the comparison algorithms
N-aLS-SVM and 1-aLS-SVM
use the Polynomial kernel
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Fig. 3 Accuracy variations of
MTL-aLS-SVM I and MTL-
aLS-SVM II along with C1; and
the comparison algorithms
N-aLS-SVM and 1-aLS-SVM
use the Gaussian kernel
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since they can potentially learn correlation between tasks
leading to more information.

5 Conclusion

In this paper, we have proposed the multi-task learning
methods MTL-aLS-SVM I, MTL-aLS-SVM II, and their
special cases for binary classification. MTL-aLS-SVM
I combines the advantages of multi-task learning and the
asymmetric least squares support vector machines. MTL-
aLS-SVM II is an extension of the MTL-aLS-SVM I which
adopt the assumption that the models of related tasks share
a common model. A regularization parameter C1 is intro-
duced in MTL-aLS-SVM I and MTL-aLS-SVM II to seek
for a trade-off between the public information and the
private information dedicated to some specific task. In

addition, the special cases MTL-L2-SVM II and MTL-LS-
SVM II are also the newly proposed multi-task learning
methods, which exhibit good performance. We have con-
ducted comprehensive experiments to test the performance
of the newly proposed methods and the influence of the reg-
ularization parameter C1. Experimental results have shown
that our methods are more effective than the corresponding
single task learning methods. Additionally, our methods are
flexible due to the introduction of parameter C1. When there
exists relatedness among the tasks, a proper value of C1 can
be selected to make the methods achieve good performance.
On the other hand, if the tasks are independent, a small value
of C1 will make the methods learn tasks independently.

The multi-task learning is mainly designed to explore
the latent information by learning all tasks jointly. As for
exploiting the underlying information to improve the tradi-
tional inductive learning, an other renewed interest approach
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is Learning Using Privileged Information (LUPI) [37, 38].
Our future work is to extend our proposed multi-task learn-
ing methods to the LUPI learning paradigm.
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Appendix: The proof of (12)

Substituting (11) into the objective function of (4), we have

1

2
‖ω0‖2 + C1

2

N∑
k=1

‖υk‖2 + C2

2

N∑
k=1

‖ζ k‖2

= 1

2
‖ω0‖2 + C1

2

N∑
k=1

‖ωk − ω0‖2 + C2

2

N∑
k=1

‖ζ k‖2

= 1

2

∥∥∥∥∥
C1N

1 + C1N
· 1

N

N∑
k=1

ωk

∥∥∥∥∥
2

+ C1

2

N∑
k=1

‖ωk

− C1N

1 + C1N
· 1

N

N∑
t=1

ωt

∥∥∥∥∥
2

+ C2

2

N∑
k=1

‖ζ k‖2

= τ 21N2

2
‖ω̄‖2+ C1

2

N∑
k=1

‖ωk−τ1Nω̄‖2+ C2

2

N∑
k=1

‖ζ k‖2

where ω̄ = 1
N

∑N
t=1 ωt , τ1 = C1

1+C1N
, τ2 = C2

1N

1+C1N
. Notic-

ing that τ1 + τ2 = C1, τ2 = τ1C1N , and τ2 = (1 +
C1N)τ 21N , the above equation can be calculated as follows.

τ 21N2

2
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2
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2

N∑
k=1

‖ζ k‖2

= C1

2

N∑
k=1

‖ωk‖2 − τ1C1N
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T ω̄

+ (1 + C1N)τ 21N2

2
‖ω̄‖2 + C2

2

N∑
k=1

‖ζ k‖2

= 1

2

(
(τ1+τ2)

N∑
k=1
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k ω̄+τ2N‖ω̄‖

)

+C2

2

N∑
k=1

‖ζ k‖2

= τ1

2

N∑
k=1

‖ωk‖2+ τ2

2

N∑
k=1

‖ωk−ω̄‖2+ C2

2

N∑
k=1

‖ζ k‖2

Therefore, the proof of (12) is completed.
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