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Abstract This paper proposes an improved bat algorithm to
solve multi-objective optimal power flow problem (MOPF)
based on the weighted method. The MOPF problem is
formulated as a non-linear constrained optimization prob-
lem where two objective functions (minimization of fuel
cost and emission) and various constraints are considered.
After having found the Pareto solutions with the improved
bat algorithm, the fuzzy set theory is used to find the
compromise solution. Finally, the IEEE 57-bus system is
applied to verify the performance of the proposed method
for the MOPF problem. The results are compared with those
obtained by the state-of-the-art optimization algorithms
reported in literature. The simulation results demonstrate the
superiority of the proposed method for solving the MOPF
problem in terms of solution quality.

Keywords Bat algorithm · Multi-objective optimization ·
Optimal power flow · Fuzzy logic

1 Introduction

The optimal power flow (OPF) proposed by Carpentier
in 1962 is one of the challenges for economic operation
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of power systems [1] and it has attracted the attention of
many scholars. The main purpose of the OPF problem is
to determine the values of control variables (active power
and voltage magnitude of generator buses, reactive power of
shunt capacitors and tap setting of transformers) for mini-
mum of objective function, while satisfying various physical
and operational constraints in power systems. In recent
years, due to the crisis of fossil fuel, energy conservation has
become a big issue for power systems operation. The tradi-
tional OPF problem only takes the minimization of the fuel
cost into consideration, thus leading to pollution emissions.
Therefore, this paper applies multi-objective optimization
method to deal with two-objective OPF problem (minimum
of fuel cost and emission).

Many traditional optimization methods have been
adopted to solve the OPF problem in the past decades,
such as linear programming [2], nonlinear programming
[3], Newton method [4], integer quadratic programming [5]
and interior point method [6]. When dealing with single
objective OPF problem, the traditional methods still have
some drawbacks, such as limitation by the continuity and
differentiability of objective function and constraints, slow
convergence and trapping into local extremum.

Over the past few years, heuristic algorithms have been
developed in the solution of large-scale nonconvex non-
smooth constrained optimization problem [7–10]. There-
fore, many scholars have also focused on the heuristic
algorithm for the OPF problem, such as genetic algorithm
[11, 12], particle swarm optimization [13], evolutionary
programming [14], bacteria foraging algorithm [15], arti-
ficial bee colony algorithm [16], invasive weed optimiza-
tion algorithm [17], gravitational search algorithm [18, 19]
and differential evolution [20]. The results show that the
heuristic algorithms have the superiority over the OPF
problem. Recently, application of heuristic algorithms to
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solve multi-objective optimal power flow (MOPF) prob-
lem becomes a hotspot. Many researchers have solved
the MOPF problem with heuristic algorithms, such as
shuffle frog leaping algorithm [21], teaching–learning
based optimization method [22], imperialist competitive
algorithm [23], biogeography-based optimization method
[24], improved artificial bee colony algorithm [25], multi-
objective evolutionary algorithm based decomposition
approach [26] and improved strength Pareto evolutionary
algorithm [27]. The results demonstrate that the heuristic
algorithms are still a promising way for solving the MOPF
problem.

In 2010, Yang X. proposed a new heuristic search algo-
rithm named bat algorithm (BA) [28]. Nowadays, BA has
been successfully applied to many industrial fields [29–34],
which shows that BA is a promising method for solving
optimization problems. In our previous work, the MOPF
problem has been solved by improved strength Pareto evo-
lutionary algorithm (ISPEA2) [27]. In ISPEA2, improved
strategies of environmental selection, external elite popu-
lation update and local search are embedded in the orig-
inal strength Pareto evolutionary algorithm. Although the
ISPEA2 obtains less total cost and emissions than some
other optimization methods for solving the MOPF problem,
we find out that it is necessary to further study optimization
method for achieving higher quality solutions. Therefore,
this paper proposes an improved multi-objective bat algo-
rithm (IMOBA) to solve the OPF problem based on the
advantages of bat algorithm and the shortcomings of the tra-
ditional optimization methods. Compared with ISPEA2, the
proposed IMOBA adopts different strategy to handle mul-
tiple objective functions in the OPF problem and it is easy
to be implemented. Moreover, improvement of strategies in
IMOBA and ISPEA2 are far apart from each other. The
main novelties of this paper can be briefly summarized as
follows. To our best knowledge, this may be the first try of
BA to the solution of the MOPF problem.We equip BAwith
suitable constraint handling technique to solve complicated
optimization problem. To enhance the feasibility of Pareto
solutions of the MOPF problem, a mixed constraint han-
dling technique is put forward. The mechanism applies both
heuristic-adjusted procedure and penalty function to han-
dle various complicated constraints of the MOPF problem.
In order to obtain uniformly distributed Pareto solutions
in objective space, the fixed weight coefficient is substi-
tuted by the self-adaptive inertia weight in BA. In addition,
the switch of dynamic flight mode is adopted to modify
the velocity update strategy during the evolutionary pro-
cess, that is, three types of flight modes (normal searching
mode, approaching mode and attacking mode) are designed
for update of velocity. Finally, the improved BA integrates
fuzzy logic approach to determine the compromise solu-
tion of Pareto set of the MOPF problem. Furthermore, the

IEEE 57-bus test system is used to verify the performance
of the improved bat algorithm for solving single-objective
and multi-objective OPF problem. To verify the superior-
ity of the proposed method, the results are compared with
those of state-of-the-art optimization algorithms and the
original bat algorithm. The comparison demonstrates that
the proposed method can obtain solutions with higher qual-
ity and it is superior to other methods for solving the OPF
problem.

The rest of this paper is organized as follows. The MOPF
problem is formulated in Section 2. Overview of multi-
objective optimization problem is described in Section 3.
Section 4 presents the improved bat algorithm for solv-
ing the OPF problem. Case study is provided in Section 5.
Section 6 gives the conclusions.

2 Formulation of multi-objective optimal power
flow problem

In general, the mathematical model of the MOPF problem
can be formulated as:

Min J (x, u) = { J1(x, u), · · · , Ji(x, u), · · · , Jm(x, u) }
(1)

gi(x, u) = 0, i = 1, 2, · · · , KL (2)

hj (x, u) ≤ 0, j = 1, 2, · · · , HL (3)

where Ji (x, u) is the i-th objective function of the
OPF problem; m is the number of objective functions;
gi(x, u) and hj (x, u) represent the i-th equality constraint
and the j -th inequality constraint, respectively; KL and
HL are the number of equality and inequality constraints,
respectively.

u is control variables including generator active power
PG, generator voltage magnitude VG, reactive power of
shunt compensator QC and transformer tap setting T . It can
be described as:

u=
[
PG1,· · ·PGNG

,VG1,· · ·VGNG
,QC1,· · ·QCNC

,T1,· · ·TNT

]

(4)

where NG is the number of generators; NC is the number of
shunt compensators; NT is the number of transformers.

x is the dependent variables including active power of the
slack bus PG1 , load bus voltage magnitude VL, generator
reactive power QG and transmission line loading SL:

x =
[
PG1, VL1,· · ·,VLNL

, QG1 , · · ·,QGNG
, SL1 , · · ·, SLNL

]

(5)

where NL is the number of transmission lines.
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2.1 Objective function

Two objective functions are composed of the total genera-
tion fuel cost and emissions of power systems.

2.1.1 Fuel cost function

The minimization of the total fuel cost of power systems can
be described as:

Min FC(x, u) =
NG∑
i=1

fi(PGi
) (6)

fi(PGi
) is the fuel cost of the i-th generator which can be

expressed as:

fi(PGi
) = aiP

2
Gi

+ biPGi
+ ci (7)

where ai , bi , ci are the fuel cost coefficients of the i-th
generator; PGi

is the active power of the i-th generator.

2.1.2 Emission function

The minimization of NOX and SOX emissions in power
systems per hour can be defined by:

Min EM(x, u) =
NG∑
i=1

ei(PGi
) (8)

ei(PGi
) = γiP

2
Gi

+ βiPGi
+ αi + ςi exp(λiPGi

) (9)

where ei is the amount of the i-th generator emission; αi , βi ,
γi , ζi , λi are the emission coefficients of the i-th generator.

2.2 Constraints

2.2.1 Inequality constraints

1) Generator constraints
The values of active power, reactive power and

voltage magnitude of each generator in power sys-
tems should be restricted between their maximum and
minimum values.

Pmin
Gi

≤ PGi
≤ Pmax

Gi
, i = 1, 2, . . . , NG (10)

Qmin
Gi

≤ QGi
≤ Qmax

Gi
, i = 1, 2, . . . , NG (11)

V min
Gi

≤ VGi
≤ V max

Gi
, i = 1, 2, . . . , NG (12)

where Pmin
Gi

and Pmax
Gi

are the minimum and maximum
active power limits of the i-th generator; QGi

is the
reactive power of the i-th generator; Qmin

Gi
and Qmax

Gi

are the minimum and maximum reactive power limits
of the i-th generator; VGi

is the voltage of the i-th gen-
erator; V min

Gi
and V max

Gi
are the minimum and maximum

voltage limits of the i-th generator.

2) Reactive compensation constraints

Qmin
Ci

≤ QCi
≤ Qmax

Ci
, i = 1, 2, · · · , NC (13)

where QCi
is the reactive power injection by the i-th

shunt compensator; Qmin
Ci

and Qmax
Ci

are the minimum
and maximum reactive power injection limits of the i-th
shunt compensator.

3) Transformer tap-setting constraints

T min
i ≤ Ti ≤ T max

i , i = 1, 2, . . . , NT (14)

where Ti is the tap-setting of the i-th transformer; T min
i

and T max
i are the minimum and maximum tap-setting

limits of the i-th transformer.
4) Load bus voltage constraints

V min
Li

≤ VLi
≤ V max

Li
, i = 1, 2, · · · , NT L (15)

where VLi
is the voltage of the i-th load bus; V min

Li
and

V max
Li

are the minimum and maximum voltage limits of
the i-th load bus; NT L is the number of load buses.

5) Power flow of transmission line constraints
Considering the security of power systems, each

transmission line has maximum power flow.

SLi
≤ Smax

Li
, i = 1, 2, . . . , NL (16)

where SLi
is the transmission line loading of the i-

th branch; Smax
Li

is the maximum apparent power flow
limit of the i-th branch.

2.2.2 Equality constraints

1) Power flow equations
The active power and reactive power of each bus in

power systems should satisfy power flow equations:

PGi
− PDi

= Vi

NB∑
j=1

Vj

(
Gij cos θij + Bij sin θij

)
(17)

QGi
−QDi

= Vi

NB∑
j=1

Vj

(
Gij sin θij − Bij cos θij

)
(18)

where PGi
and QGi

are the active and reactive power
at bus i; PDi

and QDi
are the active and reactive

power loads at bus i; Gij and Bij are respectively the
conductance and susceptance of the transmission line
connecting the i-th bus and the j -th bus; Vi and Vj are
the voltage magnitudes of bus i and bus j ; θij is the
difference of voltage phase angle between bus i and
bus j .

2) Power balance equation

NG∑
i=1

PGi
= Pload + Ploss (19)

where Pload is the total load of the system; Ploss is the
total network loss.
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3 Overview of multi-objective optimization
problem

A multi-objective optimization problem can be mathemati-
cally described as [35]:

Min F(x) = { f1(x), f2(x), · · · , fm(x) } (20)

where fi(x) is the i-th objective function; x is the decision
variable and m is the number of objective functions.

3.1 Pareto set

As there are many conflict objectives in multi-objective
optimization problem, an optimal solution of a certain
objective may be the worst solution for other objectives.
The improvement of one objective will deteriorate another
objective simultaneously [36]. Assuming x1 and x2 are two
solutions of a multi-objective optimization problem, when
each objective function value of x1 is not worse than that of
x2, and x1 can find at least one objective better than the cor-
responding one of x2, namely, the (21) and (22) are satisfied,
we can say solution x1 dominates solution x2, expressed as
x1 � x2 [37].

∀ i ∈ {1, 2, · · · , m} : fi(x1) ≤ fi(x2) (21)

∃ j ∈ {1, 2, · · · , m} : fj (x1) < fj (x2) (22)

For a given multi-objective problem, the Pareto solution
(or the non-dominated solution) x* can be defined as: x*
is a feasible solution and there are no other solutions that
dominate x* in the feasible region 	 [38]:

¬∃ xk ∈ 	 : xk � x∗ (23)

where 	 is the feasible region of multi-objective optimiza-
tion problem.

All Pareto solutions x* form Pareto set (PS), which can
be expressed as:

PS = { x∗ ∈ 	 | ¬∃ y ∈ 	, F(y) � F(x∗ )} (24)

Another important concept is Pareto front, which is repre-
sented by PF. It is the set of the values of objective functions
corresponding to the Pareto solutions in PS [39]:

PF = {F(x) = {f1(x), f2(x), · · · , fm(x)}|x ∈ PS} (25)

3.2 Compromise solution

After having found the Pareto set, the decision maker should
choose a compromise solution. Fuzzy set theory is applied
to determine compromise solution. The corresponding pro-
cedures can be described as follows.

Step 1: Record the maximum value Fmax
i and minimum

value Fmin
i of the i-th objective function after

searching over the Pareto set.

Step 2: Use (26) to calculate uk
i for the k-th non-

dominated solution.

uk
i =

⎧⎪⎨
⎪⎩

1 if Fi < Fmin
i

Fmax
i −Fi

Fmax
i −Fmin

i

if Fmin
i ≤ Fi ≤ Fmax

i

0 if Fi > Fmax
i

(26)

Step 3: Equation (27) is adopted to normalize uk
i for the

k-th non-dominated solution.

Uk =

N∑
i=1

uk
i

M∑
k=1

N∑
i=1

uk
i

(27)

where N and M are the number of objective
functions and Pareto solutions, respectively.

After implementing the above steps, the values of Uk for
all non-dominated solutions can be obtained. The one with
the maximum Uk in Pareto set is chosen as the compromise
solution of the MOPF problem.

4 Improved multi-objective bat algorithm
and application to the MOPF problem

4.1 Multi-objective optimization bat algorithm

4.1.1 Overview of bat algorithm

The bat algorithm (BA) proposed by Yang in 2010 is a bion-
ics algorithm [28], which is derived from simulation of the
bat’s foraging behavior by echolocation. The bat is the fly-
ing mammal, which has the amazing echolocation ability
for navigating and searching for prey. During the process
of prey searching, a bat releases a series of loud ultra-
sound waves. According to the echoes, it uses time delay
of two ears and the loudness variation to identify the prey
position in searching space. In BA, the similar searching
mechanism is employed to solve the following optimization
problem.

min F(X)

s.t.X ∈ RD (28)

Assume Xi = (xi,1, xi,2, . . . , xi,D) is a feasible solution,
which is represented by a bat in BA, the first step randomly
generates N bats in searching space RD:

xi,j = xmin
j + rand (0, 1) ×

(
xmax
j − xmin

j

)

i = 1, 2, . . . , N; j = 1, 2, . . . , D (29)

whereN is the number of bats;D is the number of variables;
xmax
j and xmin

j are the maximum and minimum limit values
of the j -th variable, respectively.
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After initialization of each bat, the bats begin their move-
ment for the prey using the way of echolocation. The
movement of each bat can be described as follows.

Qt
i = Qmin + (Qmax − Qmin) · rand(0, 1) (30)

vt+1
ij = vt

ij + (xt
ij − xbest,j ) · Qt

ij (31)

xt+1
i = xt

i + vt+1
i (32)

where Qi is the corresponding frequency of the i-th bat;
Qmax and Qmin are the values of frequency limit; rand(0,1)
is a random number in the range of 0 and 1; vt

i and xt
i are

respectively the velocity and position of the i-th bat at time
t ; xbest is the best position of the current bat.

According to (30), each bat is randomly assigned a fre-
quency. Using the frequency, the position xt

i at time t and
the current optimal position xbest , we can get the velocity
vt+1
i of the i-th bat at time t + 1 with (31). After getting

vt+1
i , the position of the i-th bat will be updated using (32).
After the position update is carried out on all bats, ran-

dom walk is employed to search optimal solution locally.
The current optimal bat begins the local search by using the
loudness and random walk.

xt = xt
best + ε · At (33)

where ε is a random number andε ∈ (−1, 1); At is the
loudness at time t .

It should be noticed that the local search controlled by
the loudness At is launched with the probability ri , which
is called the pulse emission rate in BA. A random number
in the range of 0 and 1 is generated and compared with the
pulse emission rate. If the former is larger, then they begin
search locally using (33); otherwise, the current optimal bat
position xbest does not change. So the loudness At decides
the random walk range of the local search, and whether to
begin local search depends on the pulse emission rate ri . In
nature, after a bat finds the prey, the loudness will decrease
while the pulse emission rate will increase. The variations of
two parameters in BA imitate bat’s behavior in nature, and
the variation of two parameters can be depicted as:

At+1
i = α · At

i (34)

rt+1
i = r0 · [1 − exp(−γ t)] (35)
where α and γ are two constants in the range of 0 and 1.

4.1.2 Approach of bat algorithm to multi-objective
optimization problem

The key idea of BA for solving multi-objective optimiza-
tion problem is to convert multiple objective functions into
a single objective function with weighted method.

fsum = ω1 · f1 + ω2 · f2 + · · · + ωN · fN (36)

where fsum is the weight of all objective functions; ωi is
weight coefficient of the i-th objective function, and it must
satisfy ω1 + ω2 + · · · + ωN = 1 and 0 < ωi < 1; N is
number of objective functions.

Each of weight coefficient ωi can be either generated
randomly between (0, 1) or generated with uniform distri-
bution. This paper generates ω1 and ω2 as follows.

ω1 = k

Npareto

, ω2 = 1 − ω1 (37)

where Npareto is the total number of Pareto solutions; k is
an integer variable in the range of 1 and Npareto, which is
used to calculate the k-th Pareto solution. According to (37),
ω1 increases from 1/Npareto to 1 and ω2 decreases from
(1− 1

Npareto
) to 0.

4.2 Improvement strategies of multi-objective
optimization bat algorithm

The velocity update strategy in multi-objective optimization
bat algorithm (MOBA) plays an important role in optimiza-
tion process. The velocity update strategy in the traditional
BA only considers the best position information without
using the population information, which may either trap
into local extremum or be slow convergence. In order to
overcome the shortcomings of MOBA, this paper proposed
an improved multi-objective bat algorithm (IMOBA). In
IMOBA, two ways of improvement have been put forward:
(i) add self-adaptive inertia weight to velocity update rule
so as to fully utilize population information; (ii) dynamic
flight mode is applied to modify velocity update strategy. In
IMOBA, three types of flight modes are designed for veloc-
ity update strategy: searching mode, approaching mode and
attacking mode.

4.2.1 Self-adaptive inertia weight strategy

To dynamically adjust the change of velocity with the best
position information, this study adds self-adaptive iner-
tia weight to the rule of velocity update. The adjustment
method is as follows.When the bat is far away from the prey,
the bat flies at a relatively faster speed (using a larger inertia
weight coefficient) so as to be close to the prey as soon as pos-
sible. While the bat is close to the prey, it will use a relatively
slower flight speed (smaller inertia weight coefficient) so as
to gradually approach and capture the prey (finding the opti-
mal solution). After using the self-adaptive inertia weight
for update of velocity, the bat can dynamically adjust its
flight speed and direction in the prey searching process.

The strategy of velocity update by adding the self-
adaptive inertia weight can be described as:

vt+1
ij = μij · vt

ij + (xt
ij − xbest,j ) · Qt

ij (38)
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μt
ij = μ0 ·

(
1 − exp

(
−k ·

∣∣∣xt−1
ij − xt−1

best,j

∣∣∣
))

(39)

where μij is the self-adaptive inertia weight; k is the
amplitude of regulating coefficient.

4.2.2 Dynamic flight mode

1) Normal searching mode
In this mode, the bats do not find the prey and they

only search around their own best region by mem-
ory. The strategy of velocity update can be shown
as:

vt+1
ij = μij · vt

ij + (xgj − xt−1
ij ) · Qt

ij (40)

where μij is the self-adaptive inertia; xgj is the j -th
coordinate of the best position found so far.

2) Approaching mode
When a bat finds the prey which does not reach the

attacking position, the bat will fly directly to approach
it, which can be described as follows.

vt+1
ij = μij · vt

ij + c · rand(0, 1) · (xt
ij − xbest,j ) (41)

where c is velocity regulation factor.
3) Attacking mode

When a bat arrives at the attacking position of the
prey, it will adopt a flexible way to attack the prey in
order to increase the probability of the capture for the
prey.

{
vt+1
ij = xbest,k

xt+1
ij = vt+1

ij

(42)

where k is a random integer.

In IMOBA, the flight mode switch basis is proposed to
implement three flight modes alternately. Before presenting
the switch basis, a parameter should be defined.

ψi = ||xbest − xi || , qi = ψi/

popsize∑
j=1

ψj (43)

The larger the distance between the bat i and the best
position is, the larger qi will be given. The flight mode
switch basis can be determined as follows.

(i) If qi > β, the bat will select the searching mode to
update velocity.

(ii) If |t /Tmax − 0.5|β < qi < β, the bat will select the
approaching mode to approach the prey.

(iii) If qi < C|t/Tmax − 0.5|β, the bat will select the
attacking mode to attack the prey.

4.3 Application of IMOBA in the MOPF problem

4.3.1 Handling constraints

When using IMOBA to solve the MOPF problem, the con-
trol variables are represented by the bats. First, the power
flow should be calculated before calculating the objective
functions. Secondly, the equality and inequality constraints
of the MOPF problem should be satisfied. For the equality
constraints (17) and (18), the Newton-Raphson method is
adopted to calculate the power flow, whose calculation steps
are shown in Fig. 1.

The penalty function method is applied to handle the
inequality constraints. The penalty function is formed as
follows.

Jaug = fo + fp (44)

Fig. 1 Flow chart of Newton-Raphson power flow calculation method
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Fig. 2 Flow chart of the OPF objective function calculation

where fo is the objective function in (36); fp is the penalty
term considering the dependent variables constraints, which
can be defined as follows.

fp = kP

(
PG1−P lim

G1

)2+kQ

NG∑
i=1

(
QGi −Qlim

Gi

)2

+kV

NL∑
i=1

(
VLi −V lim

Li

)2+kS

NL∑
i=1

(
SLi −Slim

Li

)2
(45)

where kP , kQ, kV and kS are the penalty coefficients; xlim

is the maximum or minimum value of the corresponding
dependent variable, which can be defined as:

xlim =
{

xmax if x > xmax

xmin if x < xmin (46)

After finishing the power flow calculation and the
penalty function process, calculation of objective functions
is shown in Fig. 2.

4.3.2 Implementation procedures of IMOBA for the MOPF
problem

The main steps of IMOBA for solving the MOPF problem
can be summarized as follows.

Step 1. Initialize the parameters of IMOBA; let the cal-
culation time k = 1 and use (37) to generate ω1

and ω2.
Step 2. Generate the initial population and let the itera-

tion time i = 0.

Step 3. Perform the active power balance treatment
shown in Fig. 3. Calculate power flow with
Newton-Raphson method; then record the depen-
dent variables.

Step 4. Put into the corresponding control variables to
fuel cost function and emission function; then use
the weighted method to combine two functions
together as a single objective function. Use the
penalty function method to calculate each bat’s
objective function, and compare them to find the
best position of the current bat.

Step 5. Initialize the pulse emission rate, and calculate
the self-adaptive inertia weight μij for each bat.
Use the flight mode switch basis to choose the
flight mode and update the bat’s position.

Step 6. Generate a random number r1. If r1 > ri , perform
random walk around the best bat, and update
the position of the best bat based on the random
walk.

Step 7. Generate a random number r2. If r2 > Ai and
the bat’s position is improved, replace the old
position with the new one.

Step 8. When the condition of Step7 is satisfied, (34) and
(35) are used to update the loudness and the pulse
emission rate; otherwise, ignore Step 8.

Step 9. Record the current optimal solution; if i < Max-
iter, go to Step 3; otherwise, go to Step 10.

Step 10. Update the two weights using (37) and use
weighted method to calculate the next Pareto
solution.

Step 11. k = k + 1. If k = Npareto, output the Pareto
front and the corresponding control variables;
otherwise, go to Step 3.

5 Case study

In this section, case study is carried out to investigate the
performance of the proposed IMOBA for solving the OPF
problem. The IEEE 57-bus test system is selected to validate
the effectiveness of the IMOBA. All simulations are imple-
mented in MATLAB on a laptop with 2.8 GHz Intel Core
i5-3360 CPU and 8GB RAM. The main parameters of the
IMOBA are set as: Popsize = 20, Qmax = 2, Qmin = 0,
α = 0.9, γ = 0.9, Maxiter = 200 and Npareto = 30.

5.1 System data

The IEEE 57-bus system has seven generators placed on
the buses 1, 2, 3, 6, 8, 9, and 12. Seventeen transformers
are equipped in the system, and three reactive power com-
pensators are respectively installed in the buses 18, 25, 53.
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Fig. 3 Flow chart of the active
balance equation calculation

The ranges of transformer ratios are 0.9–1.1p.u., and each
reactive compensator capacity is 30 MVA. The ranges of
the bus voltage amplitude are 0.94–1.06p.u. The total active
power load is 12.508p.u. with 100MVA base power. The
topology and other data of the IEEE 57-bus system can be
seen in Reference [21].

5.2 Single-objective OPF problem

In this case, the comparison between various methods
is carried out to verify the performance of the IMOBA
for solving single-objective OPF problem. Each objec-
tive function is deliberated individually. IEEE 57-bus
test system is implemented with the IMOBA and origi-
nal MOBA. During the simulation, 10 independent trails
are executed and the best solution is found for single-
objective OPF problem. In order to show the competi-
tiveness of the proposed approach, IMOBA is compared
with other algorithms reported in literature [22, 23, 25].
These algorithms involve artificial bee colony algorithm
(ABC), improved ABC (IABC), cat swarm optimiza-
tion (CSO), teaching-learning-based optimization algo-
rithm (TLBO), modified TLBO method (MTLBO), genetic

algorithm (GA), particle swarm optimization (PSO), differ-
ential evolution (DE) and imperialist competitive algorithm
(ICA).

Table 1 Comparison of the results for minimization of the total fuel
cost with different methods

Methods The total fuel cost ($/h) Standard deviation

Min Mean Max

IMOBA 41673 41720 41795 35.1

MOBA 41716 41808 41889 60.6

ABC 41781 41840 41927 38.2

IABC 41684 41698 41711 7.8

CSO 41696 41708 41719 13.7

TLBO 41689 41693 41698 12.7

GA 41712 41720 41734 18.2

PSO 41695 41714 41718 13.0

DE 41710 41715 41720 14.9

ICA 41710 41713 41716 11.6

MTLBO 41638 41651 41663 9.9

GSA 41696 – – –

– denotes “not available in literature”
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Table 2 Comparison of the results for minimization of the total
emission with different methods

Methods The total emission (ton/h) Standard deviation

Min Mean Max

IMOBA 1.0656 1.0718 1.1358 0.0212

MOBA 1.0726 1.0948 1.1428 0.0241

ABC 1.2048 1.3262 1.6351 0.1202

IABC 1.0484 1.1382 1.3709 0.0789

TLBO 1.0781 1.0802 1.9716 0.018

MTLBO 1.0772 1.0781 1.9152 0.011

The best minimization of fuel cost and emission solu-
tions obtained by the IMOBA in 10 trials is given in Tables 1
and 2. The results indicate that the application of IMOBA
leads to 41673 $/h fuel cost and 1.0656 ton/h emission.
By examining the results in Tables 1 and 2, it turns out
that the best fuel cost and emission calculated by IMOBA
are less in comparison with reported results in literatures
and other algorithms. The critical performance indexes for
all algorithms such as minimization fuel cost (Min), mean
fuel cost (Mean), maximum fuel cost (Max), and the cor-
responding standard deviation for 10 independent runs are
also shown in Tables 1 and 2. To illustrate the convergence
characteristics of IMOBA and original MOBA, the mini-
mum objective values of single fuel cost and single emission
over 200 iterations are plotted in Fig. 4. As shown in
Fig. 4, IMOBA has faster convergence rate than the original
MOBA.

In a word, it is clear that the proposed IMOBA has
better performance for solving the OPF problem in com-
parison with other algorithms reported in literatures. The

Fig. 5 Comparison of Pareto front for different methods

superiority of the proposed IMOBA is obvious and obtains
better results.

5.3 Multi-objective OPF problem

In this case, the proposed IMOBA is employed to solve
the MOPF problem where the total fuel cost and the total
emissions are deliberated as objective functions. In order
to demonstrate the effectiveness of IMOBA, the results
are compared with those of SPEA2, NSGA2 and MOBA.
The Pareto front of IMOBA is compared with the above
three algorithms shown in Fig. 5, from which we can
clearly find that the Pareto front of IMOBA gives bet-
ter distributed Pareto solutions. The Pareto front of the
IMOBA totally lies inside the concave portion of other
Pareto fronts. The corresponding compromise solution of
IMOBA, SPEA2, NSGA2, MOBA and other algorithms
reported in literature [22, 25, 27] are listed in Table 3,
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Fig. 4 Convergence characteristics of the IMOBA and MOBA algorithm. a The total fuel cost; b the total emissionss
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Table 3 Comparison of compromise solution for different algorithms

Methods Emission(ton/h) Fuel cost($/h)

IMOBA 1.2387 42271

MOBA 1.2577 42449

NSGA2 1.2979 43568

SPEA2 1.4054 42320

ISPEA2 1.2904 42445

TLBO 1.2810 42510

MTLBO 1.2780 42490

ABC 1.3396 44741

IABC 1.2643 44152

which indicates obviously that the compromise solution of
IMOBA dominates other algorithms. Therefore, the com-
promise solution of IMOBA is the best solution among all
algorithms.

The index of C-Metric is presented to further check
the calculation performance and superiority of IMOBA for
solving the MOPF problem. TheC-Metric is mainly applied
to evaluate the degree of which one multi-objective opti-
mization algorithm dominates another one. Suppose A1 and
A2 are the Pareto sets of two different multi-objective algo-
rithms, the C-Metric of A1 and A2 is defined as the ratio of
the total number of solutions in A2 which dominates solu-
tions in A1 and the number of A2. The formula of C-Metric
is expressed as [40].

C(A1, A2) = |a2 ∈ A2, ∃a1 ∈ A1 : a1 < a2|
|A2| (47)

Table 4 shows the C-Metric values of IMOBA and other
algorithms, which indicates that there is no solutions
in SPEA2, NSGA2, and MOBA dominate solutions in
IMOBA. Therefore, the IMOBA obtains superior Pareto set.

To study the robustness of IMOBA for the IEEE 57-bus
system, IMOBA is employed to solve the MOPF prob-
lem for ten independent trials in succession. Then it makes
statistics for compromise solution of the Pareto set. The
ultimate Pareto set is determined by choosing the best com-
promise solution in ten trials. Figure 6 shows the distribution
of compromise solutions for ten repetitions. It is clear that
the IMOBA has good robustness for solving the MOPF
problem.

Table 4 C-Metric of IMOBA with other algorithms

Method C-Metric

C(IMOBA,SPEA2) 100%

C(IMOBA, MOBA) 100%

C(IMOBA,NSGA2) 100%

Fig. 6 Compromise solutions of objective functions distribution for
10 trials: a The total fuel cost; b The total emissions

6 Conclusions

An improved multi-objective optimization bat algorithm
(IMOBA) is proposed to solve two-objective OPF prob-
lem. The proposed method is effectively implemented on
the IEEE 57-bus system to deal with the OPF problem. In
order to demonstrate the effectiveness and superiority of the
proposed IMOBA method, the results are compared with
other optimization algorithms reported in the literatures and
the original MOBA algorithm. From the comparison results,
we can conclude that the IMOBA has good performance
when solving the OPF problem. The Pareto front distributes
well and the diversity characteristic is satisfactory. Accord-
ing to the analysis, the IMOBA has good robustness and
better distribution of Pareto front for solving the OPF
problem.
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