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Abstract Dominating Tree Problem (DTP) aims to find
a dominating tree (dTree) of minimum cost on a given
connected, undirected and weighted graph in such a way
that a vertex in the graph is either in dTree or adjacent
to a vertex in dTree. A solution (dTree) to this problem
can be used as routing backbone in wireless sensor net-
work. Being a N'P-Hard problem, several problem-specific
heuristics and metaheuristic techniques have been proposed.
This paper presents two new heuristics for the DTP. First
one is a new problem-specific heuristic that exploits the
problem structure effectively, whereas the other is an arti-
ficial bee colony (ABC) algorithm. The proposed ABC
for the DTP is different from the existing ABC algorithm
for the DTP in the literature on its two main components:
initial solution generation, and determining a neighboring
solution. Computational results show on a set of standard
benchmark instances that the proposed problem-specific
heuristic and ABC algorithm for the DTP demonstrate the
superiority over all existing problem-specific heuristics and
metaheuristic techniques respectively in the literature.
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1 Introduction

The dominating tree problem (DTP) [11] is one of recently
encountered combinatorial optimization problems in the
field of wireless sensor networks (WSNs) due to its practi-
cal relevance in routing. The DTP is defined as follows: Let
G = (V, E, w) be an undirected, connected, and weighted
graph, where V is the set of vertices (nodes), E is the set
of edges, and for each edge (u, v) € E, there exists a non-
negative weight. The DTP deals with finding a dominating
tree (dTree) of minimum cost on G in such a way that
each vertex of G is either in dTree or adjacent to a vertex
in dTree. Vertices that are in dTree are called dominat-
ing nodes, whereas vertices that are not in d 7 ree are called
non-dominating nodes. Hereafter, vertex and node are used
interchangeably in this paper.

Figure la presents a connected, undirected and edge-
weighted graph G with 9 vertices and 13 edges, whereas
Fig. 1b presents a dTree of G whose dominating nodes (<
2,5, 6,7 >) are shown in dark grey color, non-dominating
vertices (< 0, 1, 3, 4, 8 >) are shown in light grey color.
Thick grey edges in Fig. 1b are part of dTree. The total
edge-cost of this dT'ree is 6.

The practical relevance of DTP lies in network routing
as its solution (dominating tree) can be used as a routing
backbone. Dominating nodes of a dominating tree of min-
imum cost (dTree or solution) that consist of a subset of
nodes of WSN (graph) can be used for storing routing infor-
mation, as each non-dominating node is adjacent to at least
one of the dominating nodes of dTree. Under this setup,
the edge weight can be considered as energy consumption
in sending a message along with that edge. In the process
of message forwarding from source to destination, the mes-
sage needs to be first forwarded to the nearest dominating
node of sender, then this message is further routed to the
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Fig.1 A graph (G) and dTree of (G)

nearest dominating node of the receiver with the help of
dTree, and finally it is forwarded to the receiver. Each non-
dominating node requires to only memorize the information
of its nearest dominating node. The major advantage of this
scheme [20] is that dominating nodes of dTree (virtual
backbone) that are usually smaller in number in compari-
son to the total number of nodes in WSNs can store such
routing information, resulting overall a significant reduc-
tion in the size of routing table. Moreover, no recalculation
of such routing table is required in case of occurrence of
topological changes in the network, if such occurrence does
not cause change in the set of dominating nodes of the
network [20].

2 Literature survey

On the concept of connected dominating set, many
approaches [6, 9, 17-19] for constructing a routing back-
bone with the objective of minimizing energy consump-
tion in WSNs have been reported in the literature. How-
ever, all these approaches consider only node-weight rather
than edge-weight for minimizing the energy consump-
tion. All these papers discussed only the number of nodes
obtained. In practice, the energy consumed at each edge
directly effects the energy consumed in routing. This obser-
vation led to the introduction of DTP [11, 21]. They
proved N'P-hardness of this problem together with the
inapproximability and proposed an approximation algo-
rithm with quasi-polynomial time complexity (|V|9U2IVD)
for the DTP. Further, they also proposed two polynomial
time problem-specific heuristics (respectively referred to as
Heu_DT1 and Heu_DT?2 in this paper) for the DTP. The per-
formance of their proposed heuristics were compared with
a method based on minimum spanning tree without leaf
edges, as the resultant tree obtained after this method is also
a dominating tree. In addition, there are some work related
to the tree cover problem [1, 4, 5] in the literature. However,
the tree cover problem is defined as a connected edge dom-
inating set with the total minimum edge weights, whereas
the DTP is defined as a node dominating set.
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Later, many approaches have been developed for the DTP.
Sundar and Singh [15] developed one problem-specific
heuristic (referred to as H_ DT in the paper) and two swarm
intelligence techniques — artificial bee colony algorithm
(referred to as O_ABCPT (O in O_ABCPT stands for
existing ABC algorithm for the DTP) in this paper) and
ant colony optimization algorithm (referred to as ACO_DT
in the paper) — for the DTP. Chaurasia and Singh [2] pre-
sented one problem-specific heuristic (referred to as M_DT
in the paper) and an evolutionary algorithm with guided
mutation (referred to as EA/G in the paper) for the DTP.
Zorica et al. [3] presented a variable neighborhood search
algorithm (referred to as VNS in the paper) for the DTP.
Meanwhile, Sundar [13] presented a steady-state genetic
algorithm (referred to SSGA in the paper) as for the DTP.

This paper presents two new heuristics for the DTP: first
one is a problem-specific heuristic that exploits the prob-
lem structure effectively; and second one is an artificial
bee colony (ABC) algorithm. The proposed ABC algorithm
is different from existing ABC algorithm (O_ABCPT) for
the DTP [15] on two main components: initial solution
generation, and determination of a neighboring solution.
O_ABCPT [15] which was the first developed meta-
heuristic technique for the DTP and is not competitive
in terms of solution quality and computational time in
comparison to other metaheuristic techniques developed
later. This motivated us to develop an ABC algorithm for
the DTP through main two components: initial solution
generation; and determination of a neighboring solution.
Both proposed methods i.e., problem-specific heuristic and
ABC algorithm for the DTP have been tested on a set
of standard benchmark instances and compared respec-
tively with existing problem-specific heuristics (Heu_DT1,
Heu DT2, H DT and M_DT) and metaheuristic techniques
(O_ABCPT  ACO_DT, EA/G, VNS, SSGA) in the litera-
ture. Computational results demonstrate the superiority of
the proposed problem-specific heuristic and ABC algorithm
for the DTP over all existing problem-specific heuristics and
metaheuristic techniques respectively in the literature.

The structure of the remaining paper is as follows:
Section 3 presents the problem-specific heuristic approach
for the DTP. Section 4 presents a brief description of ABC
algorithm and describes an ABC algorithm for the DTP.
Section 5 reports computational results. Finally, Section 6
contains some concluding remarks.

3 Heuristic for the DTP

In literature, four different problem-specific heuristics
(Heu_DT1 [11], Heu_DT2 [21], H.DT[15], M_DT [2]) have
been so far presented for the DTP. A brief description
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of each such heuristic that highlights its properties is as
follows:

1. Heu._DT1 [11] constructs a dominating tree based on
active and inactive edge concepts. A pruning procedure
is applied on the resultant tree.

2. Heu DT2 [21] first creates a minimum spanning tree
(MST) with the help of Kruskal Algorithm, then a
sequence of search rule is applied to switch internal
edges of MST to leaf edges as many as possible if there
is a net gain. All the leaf edges of the resultant tree are
pruned, and the remaining tree is a dominating tree.

3. H.DT [15] follows a greedy approach which is based
on the concept of Kruskal algorithm and shortest paths
between all pairs of vertices in G in order to construct a
dominating tree. A pruning procedure is applied on the
resultant tree.

4. M_DT [2] which is similar to H.DT [15] except selec-
tion of a next edge which is based on a criteria instead
of selection of next edge based on least cost.

This section presents a new problem-specific heuristic
for the DTP. The idea of developing a new and effec-
tive problem-specific heuristic for the DTP came from the
observation of the objective of the DTP which lays the
basis of two salient features, viz., minimum edge-weight
set and set of vertices covering the given entire graph (G).
This observation motivated us to focus on those nodes that
cover the maximum number of non-dominating nodes in G
and lead to a dominating tree with minimum cost. Partic-
ularly, the second salient feature is the key motivation for
the development of a new problem-specific heuristic called
Heu 2C_DTP. Heu 2C_DT P consists of two phases that
are followed one-by-one.

® Phase One: In the beginning, find shortest paths
between all pairs of vertices of a given G; label each
vertex unvisited; compute degree of each vertex, where
the degree of a vertex, say v, is defined as the total
number of unvisited vert(ex/ices) adjacent to v; and
compute weight of each vertex, where the weight of
a vertex, say v, is defined as the total sum of weight
of edge(s) incident to v. Initially, both dominating tree
(dTree) and the set, say S, containing dominating
nodes of dTree are empty. Hereafter, select a vertex,
say first vertex or vg, with maximum degree from V.
Note that there are chances of more than one vertex with
same maximum degree. If such chances exist, a first tie-
breaking rule is applied. As per this rule, select a vertex
that has minimum weight in V. In the course of apply-
ing the first tie breaking rule, if more than one vertex
with same minimum weight are encountered in V, then

ties are broken arbitrarily. The selected v becomes a
dominating node of the partial dT'ree and is added to S.
All unvisited vertices that are adjacent to vy are labeled
visited along with vg. Update the degree of each vertex
in V\S.

®  Phase Two: At each step, select a vertex (say u) with
maximum degree from V\S. Note that u may be visited
or unvisited vertex. To establish a connection between
u and a vertex, say v, in §, a shortest path, say SP,
is determined. Each vertex except v in SP becomes a
dominating node and is added to S. Each edge in SP
becomes a part of partial dTree. Each unvisited ver-
tex in S P along with its unvisited adjacent vert(ex/ices)
is(are) labeled visited. Hereafter, update the degree of
each vertex in V\S. Note that there are chances of
more than one vertex with maximum degree. If such
chances exist, a first tie-breaking rule is applied. As
per this rule, select a vertex that has shortest distance
from the partial dTree. In the course of applying the
first tie-breaking rule, if more than one vertex with
same shortest distance are encountered, then further a
second tie-breaking rule is applied. According to this
rule, select a vertex whose shortest distance contains
maximum number of unvisited vertices. Again, while
applying the second tie-breaking rule, if further ties are
encountered, then ties are broken arbitrarily. This itera-
tive process continues until all vertices of G are labeled
visited.

Hence, a dTree is constructed with minimal number of
dominating nodes. It is possible that constructed d7Tree on
the set of dominating nodes is not optimal due to some
edges which are incorrect, but are part of resultant d7 ree.
Since, many dominating trees (spanning trees) are possi-
ble on the subgraph of G induced by the set of dominating
nodes of resultant dTree. Through Prim’s algorithm [10],
a new dominating tree with optimal cost (minimum span-
ning tree) can be constructed on the subgraph of G induced
by the set of dominating nodes of resultant d7ree. In doing
so0, no constraint of DTP is violated. This new dominating
tree (minimum spanning tree) replaces the resultant d7'ree
and becomes dT'ree. Further, a pruning method is applied
on dTree. This method starts with examining each current
leaf node, say vy, of resultant d7ree one-by-one. If all
non-dominating nodes adjacent to v are also adjacent to
other dominating nodes in dT'ree, then the edge incident to
vir is eliminated from dTree, resulting in further deduc-
tion in the total cost of the resultant dTree. v;y becomes
a non-dominating node and is labeled unvisited. This prun-
ing method is applied on only current leaf nodes of dTree.
The idea of constructing MST and pruning method was first
applied in [15].
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Algorithm 1 The pseudo-code of Heu 2C_DT P

Input : A connected, weighted, and undirected graph
G=(V,E w);
Output: A dominating tree, say dTree;

Find shortest paths between all pairs of vertices of G;

dTree < ¢,; S < ¢;

for each vertex u in V do

L u < unvisited,;

for each vertex u in V do
degreelu] < Total number of unvisited
vert(ex/ices) in Adj[u]; // Adjlu] means
vert (ex/ices) adjacent to u

weightlu] < Y =AM eAdjlil, w));
Select a vertex vy with maximum degree from V
// Bpply tie-breaking rule if there
exists ties
S <« S vs; vs < visited; My < M, + 1,
for each vertex i in Adj[vs] do

L i < visited; M, < M, +1;

for each vertex i in V\S do

L Update degreeli];
while M, # |V| do
Select a vertex (say u) with maximum degree from
VA\S;// Apply tie-breaking rule if
there exists ties
Determine a shortest path (say S P) for connection
establishment between u and a vertex (say v)in S ;
// RApply tie-breaking rule if
there exists ties
for each vertex i in SP except v do
S« SUi;
if i is labeled unvisited then

L i < visited, My, < M, + 1;

for each vertex j € Adj[i] do
if j is labeled unvisited then
| j < visited; My < M, +1;

for each edge e in SP from u to v do
L dTree < dTree| Je;

for each vertexi in V\S do
L Update degreeli];

Construct a new d T ree on the subgraph of G induced
by dominating vertices in S using Prim’s algorithm;
Apply pruning procedure on current leaf nodes of
newly constructed dT'ree;

Return dTree;

Note that the idea of applying labeling vertex unvisited or
visited is very common as it clearly distinguishes whether
a vertex is in dTree or not. Similar ideas can be observed
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in [2, 15, 20]. The idea of applying degree concept for
each vertex is rational, as each time selecting a vertex
with maximum degree during the construction of dTree
increases the chances of covering the maximum number of
unvisited vertices. Also, in case of first-tie breaking rule in
Phase One, the idea of applying minimum weight concept
in conjunction with the maximum degree only once during
the selection of first vertex or vy is intuitively meaning-
ful, as whenever an edge (say e(u, vy)) incident to vg will
get a chance to be a part of partial dTree during estab-
lishing a connection between an unselected vertex () and
vy through a shortest path concept, its weight (weight on
e(u, vy)) will be of possible minimum weight due to min-
imum weight concept on a vertex with maximum degree.
Our preliminary experiments justify this intuitive idea. In
Phase Two, applying shortest path concept for connection
establishment between an unselected vertex and a vertex in
the partial dT ree is common-sense or intuitively correct, as
such shortest path consisting of edges of minimum weight
will help in constructing a dominating tree with minimum
cost. Further this phase also uses two tie-breaking rules, i.e.,
first tie-breaking rule and second tie-breaking rule with the
aim of minimizing the cost of dTree and maximizing the
number of non-dominating nodes.

The psuedo-code of Heu 2C_DTP is presented in
Algorithm 1. One can observe in the pseudo-code of
Heu 2C_DT P that the running time of Heu 2C_DT P
is mainly dominated by finding shortest paths between all
pairs of vertices in G.

Figure 2 illustrates how Heu_2C_DT P works. Figure 2a
represents a connected, weighted and undirected graph G =
(V,E,w), where |V| = 9 and |E| = 13. Figure 2b-i
depict various stages of execution of Heu 2C_DT P. Ini-
tially, dTree and S are two empty sets. Each vertex in V is
labeled unvisited shown in white color. A vertex with max-
imum degree is selected. In Fig. 2a, there exists more than
one vertex with same maximum degree, i.e., < 2, 7 > in
V\S. To handle this situation, a first tie-breaking rule (see
Phase One) is applied. This rule selects vertex 2 as a dom-
inating vertex shown in dark grey color, because the weight
associated with vertex 2 is less than that of vertex 7. Vertex 2
is added to S; labeled visited; and shown in dark grey color.
All vertices adjacent to vertex 2 are labeled visited and are
shown in grey color. This is shown in Fig. 2b. Update the
degree of each vertex in V'\ S. Hereafter, at each iteration, a
vertex of maximum degree is selected from V\S. In the first
iteration, there exists more than one vertex with same max-
imum degree, i.e., < 1,7,5, 8 > in V\S. To handle this, a
first tie-breaking rule (see Phase Two) is applied. As per this
rule, vertex 8 is selected as a dominating vertex shown in
dark grey color due to having shortest distance from d7T'ree.
Edge (2, 8) is added to dTree, and vertex 8 is added to S.
The label of vertex 8 is already visited. All unvisited vertices
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Fig. 2 The various stages in execution of Heu 2C_DT P

adjacent to vertex 8 are labeled visited and are shown in grey
color. This is shown in Fig. 2c—d. Update the degree of each
vertex in V'\ S. In the second iteration, there exists more than
one vertex with the same maximum degree, i.e., < 1, 3, 5,
7 > in V\S. As per the first-tie breaking rule (see Phase
Two), vertex 5 is selected as a dominating vertex shown in
dark grey color due to having shortest distance from d T ree.
Edge (2, 5) is added to dT'ree, and vertex 5 is added to S.
The label of vertex 5 is already visited. All unvisited vertices
adjacent to vertex 5 are labeled visited and are shown in grey
color. This is shown in Fig. 2e—f. Update the degree of each
vertex in V\S. In the final iteration, there exists more than

one vertex with the same maximum degree, i.e., <7, 1 > in
V\S. As per the first-tie breaking rule (see Phase Two), ver-
tex 7 is selected as a dominating vertex shown in dark grey
color due to having shortest distance from d T ree. Edges (7,
6) and (6, 5) are added to dTree, and vertices 7 and 6 are
added to S. This is shown in Fig. 2g-h. At this stage all the
vertices of dTree are visited, so Heu 2C_DT P stops here.
Further, Prim’s algorithm [10] is applied on the subgraph of
G induced by the set of dominating vertices (nodes), i.e., <
2,5,6,7,8 > in § of resultant dTree (Fig. 2h) in order
to construct a new dominating tree with optimal cost (min-
imum spanning tree). Resultant minimum spanning tree is
same as d T ree (Fig. 2h) obtained by Heu 2C_DT P. Prun-
ing method is applied on resultant d T ree shown in Fig. 2h.
Only vertex 8 is the leaf node that can be pruned with-
out violating the constraints of DTP. Vertex 8§ is pruned
and deleted from S. Pruned vertex 8 is now shown in grey
color. Figure 2i shows the resultant d7ree whose dominat-
ing nodes, i.e., < 2,5, 6, 7 > are in S. Heu 2C_DT P
returns this resultant dT'ree as the final dTree.

4 Artificial bee colony algorithm

Artificial bee colony (ABC) algorithm is one among swarm
intelligence techniques and inspired by foraging behavior of
honey bees in nature [7]. ABC algorithm models the collec-
tive behavior of decentralized and self organized systems.
Like real bees, ABC algorithm also categorizes artificial
bees into three different groups: employed bees; scout bees;
and onlooker bees in order to search high quality solutions
for the optimization problem under consideration. A food
source represents a feasible solution to the problem, and the
nectar amount of its food source corresponds to the fitness
of its solution. Since each food source is uniquely asso-
ciated with an employed bee, the number of solutions is
same as the number of employed bees. ABC algorithm starts
with generating a fixed set of initial solution (food source).
Then at each iteration, each group of artificial bee works as
follows:

e  FEmployed bees: Each employed bee performs the job
of determining a new solution in the neighborhood of
its currently associated solution. If the new solution,
in terms of fitness, is better than that of its currently
associated solution, then the current employed bee will
move to this new solution discarding the old one,
otherwise it will continue with its old one.

®  Scout bees: If the solution is not improving for some
time, controlled by a parameter called limit, then its
associated employed bee becomes a scout bee by dis-
carding its solution. The job of scout bee is to gener-
ate a new random solution. Once the new solution is
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generated, the status of scout bee changes to employed
bee on this new solution.

®  Onlooker bees: Once each employed bee completes
the job of determining a neighboring solution, the job
of each onlooker bee starts. Each onlooker bee uses
probability-based selection method to select a solution
associated by an employed bee, and then it determines
a new solution in the neighborhood of its selected solu-
tion that is similar to determining a new neighboring
solution by an employed bee. This selection method
biases towards selection of high quality solution. Once
the job of each onlooker bee in terms of selecting
a solution and determining a new neighboring solu-
tion is done, then all new solutions — determined in the
neighborhood of a particular solution (say X) selected
by one or more onlooker bees — and the solution itself X
compete against each other for the position of solution
X in the next iteration. The best in them will be chosen
for the new position of solution X in the next iteration.
Once new positions of all solutions are chosen, the next
iteration of the ABC algorithm is carried out.

This whole iterative procedure is applied again and again
until the termination criteria is met.

Readers can find a detail of ABC algorithm and its
applications in [8].

4.1 ABC algorithm for the DTP

This subsection presents an ABC algorithm (ABC_DTP) for
the DTP. Hereafter, the proposed ABC algorithm for the
DTP will be referred to as ABC_DTP. The description of
each component of ABC_DTP is as follows:

4.1.1 Initial solution generation

Instead of generating each initial solution of the population
randomly as used in [15], ABC_DTP follows a random ver-
sion of the proposed heuristic Heu 2C_DT P for generating
each initial solution of the population. This random version
also contains two phases which are as follows:

®  Phase One: In the beginning, label each vertex unvis-
ited; calculate degree of each vertex similar to degree
computed in Heu 2C_DT P. Initially, the dominating
tree (dTree) and the set, say S, containing dominat-
ing nodes of dTree are empty. Each vertex in V whose
degree is greater than zero is kept in a set, say D. Here-
after, select a vertex, say first vertex or vy randomly
from D. The selected vy becomes a dominating node
of the partial dTree and is added to S. All unvisited
vertices that are adjacent to vy are labeled visited along
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with vg. Update the degree of each vertex in V'\S. Now
D will contain only those vertices in V'\ S whose degree
is greater than zero.

®  Phase Two: At each step, select a vertex (say u) ran-
domly from D. Note that u may be visited or unvisited
vertex. To establish a connection between u and a ver-
tex, say v, in S, a shortest path, say S P, is determined.
Each vertex except v in S P becomes a dominating node
and is added to S. Each edge in SP becomes a part
of partial dTree. Each unvisited vertex in SP as well
as its unvisited adjacent vert(ex/ices) are labeled vis-
ited. Hereafter, update the degree of each vertex in V'\ S.
Now D will contain only those vertices in V\S whose
degree is greater than zero. Note that if there exists
more than one shortest path of same cost, then select a
path that consists of maximum number of vertices. This
iterative process continues until all vertices of G are
labeled visited.

Once dTree is constructed, pruning procedure [15] is
applied repeatedly until no leaf node in dTree can be
pruned. After that, a minimum spanning tree (MST) is con-
structed on the sub-graph of G induced by the set (S) of
dominating vertices of dTree with the help of Prim’s algo-
rithm. The concept of pruning-MST applied here is similar
to [15].

We have also tested with generating each initial solution
of the population randomly; however, our initial experi-
ments have suggested that this way led to inferior solution
quality in comparison to generating each initial solution of
the population with the help of a mixed strategy that uses
randomness and problem-structure knowledge.

Each employee bee uniquely associates with each initial
solution (dTree). The fitness of each solution is computed.

4.1.2 Probability of selecting a solution

In onlooker phase, each onlooker bee selects a solution
(food source), which is one among all solutions associated
by all employed bees, with the help of binary tournament
selection method. In this selection method, two solutions
from all solutions associated with all employed bees are
picked randomly. With probability Py, a solution with
better fitness is selected, otherwise worse one is selected.

4.1.3 Determination of a neighboring solution

Determining a new neighboring solution of high quality
relies heavily on how problem structure of a combinato-
rial optimization problem is unravelled. In this direction, we
propose two methods applied in a mutually exclusive way
for determining a solution (say X¢) in the neighborhood of
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current solution (X). First method is CNAS-Method that is
based on copy a set of dominating nodes from another solu-
tion of the population to current solution, whereas second
method is MEDI-Method that is based on performing ran-
dom multiple edge-deletion-insertion on current solution.
Initially, a copy (say X¢) of X is created. With probability
Pybr, CNAS-Method is applied, otherwise MEDI-Method is
applied.

1. CNAS-Method: Initially, a solution, say Y, (different
from X) is picked from the population with the help
of binary tournament selection method. Then, CNAS-
Method picks at most y_dn dominating nodes of Y
different from dominating nodes of X and assigns them
to a set, say Sy. y_dn is equal to mdn% of total num-
ber of dominating nodes of Y. mdn is a parameter to be
determined empirically. Hereafter, at each step, a ver-
tex, say u, in the order is picked from Sy. An edge
connecting u and a vertex in current X€ is searched, as
soon as an edge connecting u# and a vertex in current X ¢
is found, it is immediately added to current dTree of
X€. Vertex u is added to X¢. This procedure is repeated
again and again until all nodes in Sy are added to X°.

Note that if CNAS-Method fails to pick a dominating
node of Y different from dominating nodes of X, then it
shows that X and Y are same, which in turn also shows
that employed bee solutions are suffering from a lack
of diversity. This situation is coined as collision [12,
14]. In such a situtation, MEDI-Method is applied on
X instead of abandoning this solution [16]. Abandoning
this solution means employed bee associated with this
solution abandons it to become scout so that the diver-
sity in the population can be improved. However, initial
experiments have suggested that this way led to infe-
rior solution quality overall in comparison to applying
MEDI-Method which is perturbation strategy.

2. MEDI Method: This method follows a certain number
of edge-deletion-insertion procedure which is applied
S, times, where S, is equal to edi% of total number
of edges of X. edi is a parameter to be determined
empirically. Initially, this method picks a certain num-
ber of edges, where degree of atleast one end vertex (i
or j) of each picked edge (say e(i, j)) must be greater
than one in G. All picked edges are assigned to a set,
say S.. Note that S, includes only edges of X (not
of X¢), as X¢ becomes different from X after apply-
ing first successful edge-deletion-insertion procedure.
Hereafter, at each step, this method picks an edge (say
e(i, j)) randomly from S, and deletes it from X¢, result-
ing a partition of X¢ into two disjoint sets, say C; and
C». To connect Cy and C,, a second connectivity rule
is applied. This rule searches a particular shortest path

from all candidate shortest paths connecting C; and
C». This particular shortest path does not contain those
edges that are already part of current dTree of X and
that are not added from any previous edge-deletion-
insertion procedure if it has occurred already for the
current dTree of X¢ as edge-deletion-insertion proce-
dure performs multiple times for a given solution. Once
this particular shortest path is found, all new edges in
this particular shortest path are inserted to connect Cj
and C; of X¢. However, if such particular shortest path
is not possible, then deleted edge (e(i, j)) is restored to
X€.

Note that if MEDI-Method fails to perform a sin-
gle edge-deletion-insertion procedure, then in case of
employed bee phase, current solution X is replaced
with a new initial solution and in case of onlooker bee
phase, a very large fitness value is assigned to fitness of
onlooker bee associated with X.

Once the neighboring solution X¢ is determined, a prun-
ing procedure [15] is applied repeatedly on X¢ until no
leaf node in dTree of X¢ except all new nodes added
through either CNAS-Method or MEDI-Method can be
pruned. After that, a minimum spanning tree (or dominat-
ing tree) is constructed on the sub-graph of G induced by
the set (S) of dominating vertices of d7ree with the help
of Prim’s algorithm [10]. This new dominating tree (min-
imum spanning tree) replaces the resultant dTree of X¢
and becomes dTree of X¢. Again, the process of prun-
ing is applied repeatedly on resultant d7ree of X¢ until
no leaf node (including all new nodes added through either
CNAS-Method or MEDI-Method) in dTree of X¢ can be
pruned.

Note that determining a neighboring solution which is an
important component of ABC_DTP is different from that
of previous ABC algorithm for the DTP, i.e., O_ABCPT
[15] except pruning-MST-pruning methods. O_ABCPT
[15] also applies two methods that are based on single
edge-deletion-insertion procedure randomly from the cur-
rent solution and adding a non-dominating vertex randomly
to the current solution in a mutually exclusive way. How-
ever, ABC_DTP uses CNAS-Method and MEDI-Method in
a mutually exclusive way. CNAS-Method is based on this
concept that if a node as a dominating node is present in a
good solution then the same node will be present in many
good solutions. MEDI-Method based on multiple edge-
deletion-insertion procedure leads to better exploration in
the search space in comparison to single edge-deletion-
insertion procedure [15]. Experimental results justify that
these two methods for determining a neighboring solu-
tion coordinated with other components of ABC_DTP make
ABC_DTP more effective and robust for searching high
quality solutions.
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Algorithm 2 The pseudo-code of ABC_DTP

Generate a set of N'€ solutions, i.e., £1, &2, ..., Enes
Best < Best solution in A€ solutions;
while Termination criteria is not met do
fori < 1to NE do
E" < DNbring_Sol(&));
if & is better than &; then
L E <~ E&;
else if &; is not improving last limit iterations
then
L Scout bee;

if &; is better than best then
L best < &;;

fori < 1to NO do
s; < Binary TSM(E1,E2, ...,En€);
| O < DNbring_Sol(Es,);
fori < 1to NO do
if O; is better than E,; then
L (C/‘S,' <~ Ola
if O; is better than best then
L best < O;;

4.1.4 Other features

A solution that is not improving in terms of fitness for some
iterations (controlled by a parameter called limit) is aban-
doned by its employed bee. The employed bee becomes a
scout. This scout favors in generating a new random solu-
tion. Once a new solution is generated (similar to initial
solution generation (see Section 4.1.1)), the status of scout
bee changes to employed bee on this new solution.

Algorithm 2 presents the pseudo-code of ABC_DTP. In
this pseudo-code, binary tournament selection method is
called by Binary - TSM(E1, £2, ..., Enrg) function which
returns a selected solution; and the method for determining
a solution in the neighborhood of a solution, say X, is called
by DN'bring_Sol(X) function which returns a neighboring
solution, say X”.

5 Computational results

Both proposed approaches — Heu 2C_DT P and ABC_DTP
— were implemented in C and tested on three different
benchmark instance sets for evaluation. All experiments
were executed on a Linux based 1.6 GHz Core 2 Duo
system with 1 GB RAM which is different from that of pre-
vious existing metaheuristic techniques for the DTP, such

@ Springer

as O_ABCPT [15], ACODT [15], EA/G [2], SSGA [13],
and VNS [3]. 0_ABCPT, ACO_DT, EA/G and SSGA used
Intel Core 2 Duo processor 3.0 GHz with 2 GB RAM under
Fedora 12, whereas VNS used Intel Core 17-4702MQ 2.2
GHz with 4 GB RAM under Windows XP. In such cir-
cumstances, it is difficult to exactly compare the speed of
these metaheuristic techniques with ABC_DTP; however, a
rough comparison can always be made. One can observe
SSGA in terms of computational time and solution quality
(see Table 6) that overall SSGA is superior to O_ABCPT,
ACO_DT, EA/G and VNS. This observation gives an idea
for rough comparison, i.e., the number of solutions gener-
ated by ABC_DTP is approximately similar to that of SSGA
[13] in order to test the effectiveness of ABC_DTP. Since
SSGA [13] generates X _Sol solutions to find a high qual-
ity solution for each instance, where X _Sol is equal to the
sum of size of initial population and |V| x 500. Therefore,
ABC_DTP is also allowed to generate approximately Y _Sol
solutions to find a high quality solution for each instance,
where Y _Sol is equal to the sum of size of initial popula-
tion and (|V| x 500)/(NE + NO). In addition, ABC_DTP,
similar to all previous existing metaheuristic techniques
for the DTP, was also executed 20 independent times on
each instance in order to test its robustness. Heu 2C_DT P,
similar to all previous existing problem-specific heuristics
— such as Heu_DT1 [11], Heu_DT2 [21], H.DT [15] and
M_DT [2] —, Heu 2C _DT P was also executed once.

All instance sets used for the DTP are available on http://
dcis.uohyd.ac.in/~alokcs/dtp.zip. Each instance [11, 21] is
considered as a disk graph G = (V, E), where disk of a
node denotes the transmission range of that node. For every
pair of nodes, there will be an edge iff two nodes connecting
this edge will be in the common area of their corresponding
disks. For each edge e,,, € E, there exists a non-negative
weight w(e, ,) which is defined as C; x dfyv, where d,f’v
is the Euclidean distance between u and v; and C; is a ran-
dom constant whose value is set to 1. Since instances used
in [11, 21] were not available, Sundar and Singh [15], sim-
ilar to [11, 21], generated a set of instances with different
size varying in total number of nodes. Nodes are randomly
distributed over an area of 500m x 500m, and transmis-
sion range of each node is 100m. For each size, i.e., |V| =
{50, 100, 200, 300, 400, 500}, three different instances were
generated, resulting a total of 18 instances. Later, Chaurasia
and Singh [2] generated two different instance sets exactly
similar to instance set [15], but the transmission range of
each node in two different instance sets is 125m and 150m,
resulting in generation of additional 36 (18+18) different
instances.

In the next three subsections, parameter settings for
ABC_DTP, comparison of the results obtained by
Heu 2C_DTP with that of existing problem-specific
heuristics in the literature, and comparison of the results
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obtained by ABC_DTP with that of existing metaheuristic
approach in the literature are reported respectively.

5.1 Parameter tuning for ABC_DTP

Being stochastic in nature, proper tuning of parameters for
ABC_DTP become significant. For this, various possible
values of each candidate parameter (reported in Table 1)
were chosen based on preliminary experimentations and
available literature. To investigate parameter sensitiveness,
two different instances from each instance set were taken
into account. Then, the performance of ABC_DTP on dif-
ferent combination due to possible values of different
parameters were carefully tested on these instances. One
can observe in Table 2, where column Parameter denotes
various parameters (NE, NO, Py, Pupr, mdn, edi, limit)
used for ABC_DTP; val_para denotes possible values of
each parameter; Best and Avg respectively denote the best
value and the average value over 20 runs obtained on such
instances from corresponding value of the parameter. This
investigation led to the best combination of parameter set-
tings, i.e., NE = 50, NO = 100, Py, = 0.85, Pypr =
0.7, mdn = 20, edi = 10, and limit = 50 that approximately
produces high quality solutions (in terms of Best and Avg
in Table 2) highlighted in bold on most of these instances
taken into account. Note that this testing uses every time one
possible value of a parameter, while keeping values of other
remaining parameters fixed (see val_para in bold of each
parameter).

5.2 Comparison of Heu 2C _DT P with Heu DT1,
Heu DT2, H DT and M_DT

In this subsection, we present an overview of effec-
tiveness of the proposed problem-specific heuristic, i.e.,
Heu 2C_DT P in comparison to other existing problem-
specific heuristics [2, 11, 15, 21], which will be referred
to as Heu_DT1 [11], Heu_DT2 [21], H.DT [15] and M_DT
[2] respectively. Tables 3, 4 and 5 report the results of
Heu 2C _DT P along with Heu_DT1, Heu_DT2, H.DT and
M_DT on instances with transmission range 100m, 125m

Table 1 Potential values of each parameter for ABC_DTP

and 150m respectively. In Tables 3-5, column [Instance
denotes the name of each instance, and for each heuristic,
column Value denote the value obtained on each instance.
In addition, similar to [2, 11, 15, 21], column NDN that
denotes the number of nodes in dominating tree obtained
on each instance is added, as the total number of domi-
nating nodes has a significant role in the performance of
any routing protocols based on virtual backbone structure.
In Table 3, results of Heu_DT1, Heu_DT2, H_DT are taken
from [15], whereas results of M_DT are taken from [2].
In Tables 4 and 5, results of Heu_DT1, Heu_.DT2, H.DT
and M_DT on instances with transmission range 125m and
150m respectively are taken from [2]. For each instance, the
best value Value among Heu_DT1, Heu_DT2, H.DT, M_DT
and Heu 2C_DT P is highlighted in bold.

Tables 3, 4 and 5 clearly show that Heu 2C_DT P out-
performs all previous existing problem-specific heuristics,
i.e., Heu_DT1, Heu_DT2, H_ DT and M_DT in terms of solu-
tion quality. In terms of Value, Heu 2C_DT P is better
on all 54 instances in comparison to Heu DT1, Heu DT2,
H_DT and M_DT. In terms of NDN, Heu 2C _DT P is bet-
ter on all 54 instances except on one instance, i.e., 300_3 in
150m range whose NDN value is similar to that of M_DT.

Execution times of Heu 2C_DT P, H.DT and M_DT
are dominated by precomputing all pair shortest paths in
G. It is mentioned in [15] that Heu_DT1 and Heu_DT2
are faster than H.DT. Hence Heu 2C_DT P is slower than
Heu_DT1 and Heu_DT?2. Since Heu 2C_DT P outperforms
all Heu_DT1, Heu_DT2, H.DT and M_DT in terms of solu-
tion quality and the number of dominating vertices for
each test instance, such performance can compensate its
execution time.

5.3 Comparison of ABC_DTP with state-of-the-art
metaheuristic techniques

This subsection presents an overview of effectiveness of
ABC_DTP with state-of-the-art metaheuristic techniques
such as O_ABCPT [15], ACO_DT [15], EA/G [2], SSGA
[13] and VNS [3] for the DTP. Table 6 reports the results of
ABC_DTP along with the results of 0_ABCPT, ACO_DT,

Parameter Description Possible values of a parameter
NE Number of employed bees {25, 50, 100}

NO Number of onlooker bees {50, 100, 150}

Py, Probability used in Binary Tournament Selection Method {0.8, 0.85, 0.90}

Popr Probability used for selection of neighborhood {0.6, 0.7, 0.8}

mdn Percentage value of total number of dominating nodes of Y {10, 20, 30}

edi Percentage value of total number of edges in X {5, 10, 15}

limit A value in terms of iterations used for abandoning a solution (Scout bee) {25, 50, 100}
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Two new heuristics for the dominating tree problem
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Fig. 3 Comparison of Value obtained by various heuristics for different transmission ranges (a—c) for 100m range; (d—f) for 125m range; and

(g—i) for 150m range

EA/G, SSGA and VNS on instances with the transmis-
sion range 100m. Results of 0_ABCPT, ACO_DT, EA/G,
SSGA and VNS reported in Table 6 are taken from
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Fig. 4 Comparison of NDN obtained by various heuristics for different transmission ranges (a—c) for 100m range; (d—f) for 125m range; and
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150m respectively. Results of O_ABCPT, ACO_DT and
EA/G reported in Tables 7 and 8 are taken from [2]. For
each instance in Tables 6-8, column Instance denotes the
name of instance; and for each metaheuristic technique,
columns Best, Avg, SD, ANDN and TET respectively denote
the best value, the average solution quality, standard devi-
ation, the average number of dominating vertices, and the
average total execution time obtained over 20 runs. For each
instance, the best value Best and the best average solution
quality Avg among O_ABCPT, ACO_DT, EA/G, SSGA,
VNS and ABC_DTP are highlighted in bold.

Table 6 that reports the results of O_ABC DT ACO.DT,
EA/G, SSGA, VNS and ABC_DTP on 18 instances with
the transmission range 100m shows the effectiveness of
ABC_DTP in comparison to all other approaches. Com-
paring with O_ABCPT, ABC_DTP, in terms of solution
quality (Best), is better on 10 and equals on 8; ABC_DTP,
in terms of average solution quality (Avg), is better on 11,
equals on 2 and is worse on 5; ABC_DTP, in terms of aver-
age number of dominating nodes (ANDN), is better on 6,
equals on 3 and is worse on 9. Comparing with ACO_DT,
ABC_DTP, in terms of Best, is better on 11, equals on 2
and is worse on 5; ABC_DTP, in terms of Avg, is better on
11, equals on 2 and is worse on 5; ABC_DTP, in terms of
ANDN, is better on 10, equals on 4 and is worse on 4. Com-
paring with EA/G, ABC_DTP, in terms of Best, is better
on 8, equals on 8 and is worse on 2; ABC_DTP, in terms
of Avg, is better on 10, equals on 2 and is worse on 6;
ABC_DTP, in terms of ANDN, is better on 7, equals on 5
and is worse on 6. Comparing with SSGA, ABC_DTP, in
terms of Best, is better on 6, equals on 8 and is worse on 4;
ABC_DTP, in terms of Avg, is better on 10 and is worse on
8; ABC_DTP, in terms of ANDN, is better on 4, equals on
2 and is worse on 12. Comparing with VNS, ABC_DTP, in
terms of Best, is better on 7, equals on 8 and is worse on 3;
ABC_DTP, in terms of Avg, is better on 17 and is worse on
1; ABC_DTP, in terms of ANDN, is better on 9 and is worse
on9.

Table 7 that reports the results of O_ABC D T, ACO_DT,
EA/G and ABC_DTP on 18 instances with the transmission
range 125m shows the effectiveness of ABC_DTP in compari-
son to all other approaches. Comparing with O_ABCPT,
ABC_DTP, in terms of solution quality (Best), is better on
10 and equals on 8; ABC_DTP, in terms of average solu-
tion quality (Avg), is better on 10, equals on 3 and is worse
on 5; ABC_DTP, in terms of average number of dominating
nodes (ANDN), is better on 6, equals on 4 and is worse on
8. Comparing with ACO_DT, ABC_DTP, in terms of Best,
is better on 10, equals on 7 and is worse on 1; ABC_DTP,
in terms of Avg, is better on 13, equals on 1 and is worse on
4; ABC_DTP, in terms of ANDN, is better on 8, equals on
1 and is worse on 9. Comparing with EA/G, ABC_DTP, in
terms of Best, is better on 3, equals on 12 and is worse on 3;

@ Springer

Table 9 Comparison of ABC_DTP with O_ABCPT, ACO_DT, EA/G, SSGA and VNS approaches
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Fig. 5 Comparison of Value obtained by various metaheuristics for different transmission ranges (a—c) for 100m range; (d—f) for 125m range;
and (g—i) for 150m range
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ABC_DTP, in terms of Avg, is better on 8§, equals on 3 and
is worse on 7; ABC_DTP, in terms of ANDN, is better on 3,
equals on 6 and is worse on 9.

Table 8 that reports the results of O_ABC DT ACO.DT,
EA/G and ABC_DTP on 18 instances with the transmission
range 150m shows the effectiveness of ABC_DTP in compar-
ison to all other approaches. Comparing with O_ABCPT,
ABC_DTP, in terms of solution quality (Best), is better on
8 and equals on 10; ABC_DTP, in terms of average solution
quality (Avg), is better on 12, equals on 3 and is worse on 3;
ABC_DTP, in terms of average number of dominating nodes
(ANDN), is better on 6, equals on 5 and is worse on 7. Com-
paring with ACO_DT, ABC_DTP, in terms of Best, is better
on 8 and equals on 10; ABC_DTP, in terms of Avg, is better
on 12, equals on 3 and is worse on 3; ABC_DTP, in terms of
ANDN, is better on 10, equals on 4 and is worse on 4. Com-
paring with EA/G, ABC_DTP, in terms of Best, equals on
16 and is worse on 2; ABC_DTP, in terms of Avg, is better
on 10, equals on 4 and is worse on 4; ABC_DTP, in terms of
ANDN, is better on 6, equals on 6 and is worse on 6.

5.4 Collective picture

This subsection presents a collective picture with respect
to all problem-specific heuristics (Heu-DT1, Heu DT2,
H.DT, M.DT and Heu 2C_DT P) and all metaheuristic
techniques (O_ABCPT, ACO_DT, EA/G, SSGA, VNS and
ABC_DTP) for the DTP. Clearly, in terms of solution quality
(Value and NDN), Heu 2C_DT P shows superiority over
all other existing problem-specific heuristics (Heu_DT1,
Heu DT2, H DT, and M_DT) on all 54 instances except on
one instance, i.e., 300_3 in 150m range whose NDN value is
similar to that of M_DT. One can observe the performance of
Heu 2C_DT P in terms of Value and NDN in Figs. 3 and 4
respectively.

As far as comparison with all metaheuristic tech-
niques (O_ABCPT, ACODT, EA/G, SSGA, VNS and
ABC_DTP), ABC_DTP performs better overall in terms of
solution quality (Best and Avg). One can observe solution
quality of ABC_DTP (Best and Avg) in Table 9. ABC_DTP
finds new values (Best) for 6 instances (300_1, 4002, 400_3
and 500_2 in 100m range, and 300_3 in 125m range). One
can notice in Fig. 5 that in terms of Best, ABC_DTP is
overall better than all existing metaheuristic techniques for
the DTP. ABC_DTP has improved average solution qual-
ity (Avg) for 23 instances (7 instances in 100m range, 7
instances in 125m range and 9 instances in 150m range) out
of 54 instances. In terms of average number of dominating
nodes (ANDN), ABC_DTP is comparable with all existing
metaheuristic techniques for the DTP. This can be observed
in Fig. 6.

In terms of computational time, ABC_DTP is many
times faster than O_ABCPT, ACO_DT and VNS. Overall,
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ABC_DTP is faster than EA/G. ABC_DTP is slower than
SSGA, but ABC_DTP provides better solution quality (Best
and Avg).

It is to be noted that Tables 3, 4 and 5 report best
known solution value (BKS) for each instance taken from
all approaches for the DTP, i.e., problem-specific heuris-
tics including Heu 2C _DT P and metaheuristic techniques
including ABC_DTP. Tables 3, 4 and 5 also report the
percentage relative deviation (PRD) of each instance for
Heu 2C _DT P. The PRD is defined in (1),

Heu2C_DTP __ BKS
BKS

Value

[PRD = x 100%} (1

In equation (1), Valueteu2C-DTP denotes the value
(Value) of each instance obtained by Heu 2C_DT P. One
can observe from Tables 3, 4 and 5 that the results of
Heu 2C_DT P on all instances are nearer to BKS whose
maximum PRD value is 27.31 for 300_3 in 150m and min-
imum PRD value is 0.00 for 50_1 in 125m. It shows that
Heu 2C_DT P can be a good choice for obtaining a dTree
(solution) to the DTP in a very short time.

6 Conclusions

In this paper, we have proposed a new and effective
problem-specific heuristic for the DTP (Heu 2C_DT P)
that produces much better results on a set of benchmark
instances than existing problem-specific heuristics in the lit-
erature. Heu 2C_DT P is so effective that it can be a good
choice for obtaining a dTree (solution) to the DTP in a
very short time. In addition, we have also proposed an arti-
ficial bee colony algorithm for the DTP (ABC_DTP) which
is different from the existing ABC algorithm for the DTP
in the literature on its two main components: initial solu-
tion generation; and determining a neighboring solution.
These two components coordinated with other components
of ABC_DTP help in making ABC_DTP more effective
and robust. ABC_DTP demonstrates the superiority over not
only previous ABC algorithm for the DTP, but also other
existing metaheuristic techniques in the literature.

In future, similar strategies used in ABC_DTP can also
be applied to develop ABC algorithms for other NP-Hard
graph problems.
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