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Abstract Dominating Tree Problem (DTP) aims to find
a dominating tree (dT ree) of minimum cost on a given
connected, undirected and weighted graph in such a way
that a vertex in the graph is either in dT ree or adjacent
to a vertex in dT ree. A solution (dT ree) to this problem
can be used as routing backbone in wireless sensor net-
work. Being aNP-Hard problem, several problem-specific
heuristics and metaheuristic techniques have been proposed.
This paper presents two new heuristics for the DTP. First
one is a new problem-specific heuristic that exploits the
problem structure effectively, whereas the other is an arti-
ficial bee colony (ABC) algorithm. The proposed ABC
for the DTP is different from the existing ABC algorithm
for the DTP in the literature on its two main components:
initial solution generation, and determining a neighboring
solution. Computational results show on a set of standard
benchmark instances that the proposed problem-specific
heuristic and ABC algorithm for the DTP demonstrate the
superiority over all existing problem-specific heuristics and
metaheuristic techniques respectively in the literature.
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1 Introduction

The dominating tree problem (DTP) [11] is one of recently
encountered combinatorial optimization problems in the
field of wireless sensor networks (WSNs) due to its practi-
cal relevance in routing. The DTP is defined as follows: Let
G = (V , E, w) be an undirected, connected, and weighted
graph, where V is the set of vertices (nodes), E is the set
of edges, and for each edge (u, v) ∈ E, there exists a non-
negative weight. The DTP deals with finding a dominating
tree (dT ree) of minimum cost on G in such a way that
each vertex of G is either in dT ree or adjacent to a vertex
in dT ree. Vertices that are in dT ree are called dominat-
ing nodes, whereas vertices that are not in dT ree are called
non-dominating nodes. Hereafter, vertex and node are used
interchangeably in this paper.

Figure 1a presents a connected, undirected and edge-
weighted graph G with 9 vertices and 13 edges, whereas
Fig. 1b presents a dT ree of G whose dominating nodes (<
2, 5, 6, 7 >) are shown in dark grey color, non-dominating
vertices (< 0, 1, 3, 4, 8 >) are shown in light grey color.
Thick grey edges in Fig. 1b are part of dT ree. The total
edge-cost of this dT ree is 6.

The practical relevance of DTP lies in network routing
as its solution (dominating tree) can be used as a routing
backbone. Dominating nodes of a dominating tree of min-
imum cost (dT ree or solution) that consist of a subset of
nodes of WSN (graph) can be used for storing routing infor-
mation, as each non-dominating node is adjacent to at least
one of the dominating nodes of dT ree. Under this setup,
the edge weight can be considered as energy consumption
in sending a message along with that edge. In the process
of message forwarding from source to destination, the mes-
sage needs to be first forwarded to the nearest dominating
node of sender, then this message is further routed to the
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Fig. 1 A graph (G) and dT ree of (G)

nearest dominating node of the receiver with the help of
dT ree, and finally it is forwarded to the receiver. Each non-
dominating node requires to only memorize the information
of its nearest dominating node. The major advantage of this
scheme [20] is that dominating nodes of dT ree (virtual
backbone) that are usually smaller in number in compari-
son to the total number of nodes in WSNs can store such
routing information, resulting overall a significant reduc-
tion in the size of routing table. Moreover, no recalculation
of such routing table is required in case of occurrence of
topological changes in the network, if such occurrence does
not cause change in the set of dominating nodes of the
network [20].

2 Literature survey

On the concept of connected dominating set, many
approaches [6, 9, 17–19] for constructing a routing back-
bone with the objective of minimizing energy consump-
tion in WSNs have been reported in the literature. How-
ever, all these approaches consider only node-weight rather
than edge-weight for minimizing the energy consump-
tion. All these papers discussed only the number of nodes
obtained. In practice, the energy consumed at each edge
directly effects the energy consumed in routing. This obser-
vation led to the introduction of DTP [11, 21]. They
proved NP-hardness of this problem together with the
inapproximability and proposed an approximation algo-
rithm with quasi-polynomial time complexity (|V |O(lg|V |))
for the DTP. Further, they also proposed two polynomial
time problem-specific heuristics (respectively referred to as
Heu DT1 and Heu DT2 in this paper) for the DTP. The per-
formance of their proposed heuristics were compared with
a method based on minimum spanning tree without leaf
edges, as the resultant tree obtained after this method is also
a dominating tree. In addition, there are some work related
to the tree cover problem [1, 4, 5] in the literature. However,
the tree cover problem is defined as a connected edge dom-
inating set with the total minimum edge weights, whereas
the DTP is defined as a node dominating set.

Later, many approaches have been developed for the DTP.
Sundar and Singh [15] developed one problem-specific
heuristic (referred to as H DT in the paper) and two swarm
intelligence techniques – artificial bee colony algorithm
(referred to as O ABCDT (O in O ABCDT stands for
existing ABC algorithm for the DTP) in this paper) and
ant colony optimization algorithm (referred to as ACO DT
in the paper) – for the DTP. Chaurasia and Singh [2] pre-
sented one problem-specific heuristic (referred to as M DT
in the paper) and an evolutionary algorithm with guided
mutation (referred to as EA/G in the paper) for the DTP.
Zorica et al. [3] presented a variable neighborhood search
algorithm (referred to as VNS in the paper) for the DTP.
Meanwhile, Sundar [13] presented a steady-state genetic
algorithm (referred to SSGA in the paper) as for the DTP.

This paper presents two new heuristics for the DTP: first
one is a problem-specific heuristic that exploits the prob-
lem structure effectively; and second one is an artificial
bee colony (ABC) algorithm. The proposed ABC algorithm
is different from existing ABC algorithm (O ABCDT ) for
the DTP [15] on two main components: initial solution
generation, and determination of a neighboring solution.
O ABCDT [15] which was the first developed meta-
heuristic technique for the DTP and is not competitive
in terms of solution quality and computational time in
comparison to other metaheuristic techniques developed
later. This motivated us to develop an ABC algorithm for
the DTP through main two components: initial solution
generation; and determination of a neighboring solution.
Both proposed methods i.e., problem-specific heuristic and
ABC algorithm for the DTP have been tested on a set
of standard benchmark instances and compared respec-
tively with existing problem-specific heuristics (Heu DT1,
Heu DT2, H DT and M DT) and metaheuristic techniques
(O ABCDT , ACO DT, EA/G, VNS, SSGA) in the litera-
ture. Computational results demonstrate the superiority of
the proposed problem-specific heuristic and ABC algorithm
for the DTP over all existing problem-specific heuristics and
metaheuristic techniques respectively in the literature.

The structure of the remaining paper is as follows:
Section 3 presents the problem-specific heuristic approach
for the DTP. Section 4 presents a brief description of ABC
algorithm and describes an ABC algorithm for the DTP.
Section 5 reports computational results. Finally, Section 6
contains some concluding remarks.

3 Heuristic for the DTP

In literature, four different problem-specific heuristics
(Heu DT1 [11], Heu DT2 [21], H DT[15], M DT [2]) have
been so far presented for the DTP. A brief description
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of each such heuristic that highlights its properties is as
follows:

1. Heu DT1 [11] constructs a dominating tree based on
active and inactive edge concepts. A pruning procedure
is applied on the resultant tree.

2. Heu DT2 [21] first creates a minimum spanning tree
(MST) with the help of Kruskal Algorithm, then a
sequence of search rule is applied to switch internal
edges of MST to leaf edges as many as possible if there
is a net gain. All the leaf edges of the resultant tree are
pruned, and the remaining tree is a dominating tree.

3. H DT [15] follows a greedy approach which is based
on the concept of Kruskal algorithm and shortest paths
between all pairs of vertices in G in order to construct a
dominating tree. A pruning procedure is applied on the
resultant tree.

4. M DT [2] which is similar to H DT [15] except selec-
tion of a next edge which is based on a criteria instead
of selection of next edge based on least cost.

This section presents a new problem-specific heuristic
for the DTP. The idea of developing a new and effec-
tive problem-specific heuristic for the DTP came from the
observation of the objective of the DTP which lays the
basis of two salient features, viz., minimum edge-weight
set and set of vertices covering the given entire graph (G).
This observation motivated us to focus on those nodes that
cover the maximum number of non-dominating nodes in G

and lead to a dominating tree with minimum cost. Partic-
ularly, the second salient feature is the key motivation for
the development of a new problem-specific heuristic called
Heu 2C DT P . Heu 2C DT P consists of two phases that
are followed one-by-one.

• Phase One: In the beginning, find shortest paths
between all pairs of vertices of a given G; label each
vertex unvisited; compute degree of each vertex, where
the degree of a vertex, say v, is defined as the total
number of unvisited vert(ex/ices) adjacent to v; and
compute weight of each vertex, where the weight of
a vertex, say v, is defined as the total sum of weight
of edge(s) incident to v. Initially, both dominating tree
(dT ree) and the set, say S, containing dominating
nodes of dT ree are empty. Hereafter, select a vertex,
say first vertex or vs , with maximum degree from V .
Note that there are chances of more than one vertex with
same maximum degree. If such chances exist, a first tie-
breaking rule is applied. As per this rule, select a vertex
that has minimum weight in V . In the course of apply-
ing the first tie breaking rule, if more than one vertex
with same minimum weight are encountered in V , then

ties are broken arbitrarily. The selected vs becomes a
dominating node of the partial dT ree and is added to S.
All unvisited vertices that are adjacent to vs are labeled
visited along with vs . Update the degree of each vertex
in V \S.

• Phase Two: At each step, select a vertex (say u) with
maximum degree from V \S. Note that u may be visited
or unvisited vertex. To establish a connection between
u and a vertex, say v, in S, a shortest path, say SP ,
is determined. Each vertex except v in SP becomes a
dominating node and is added to S. Each edge in SP

becomes a part of partial dT ree. Each unvisited ver-
tex in SP along with its unvisited adjacent vert(ex/ices)
is(are) labeled visited. Hereafter, update the degree of
each vertex in V \S. Note that there are chances of
more than one vertex with maximum degree. If such
chances exist, a first tie-breaking rule is applied. As
per this rule, select a vertex that has shortest distance
from the partial dT ree. In the course of applying the
first tie-breaking rule, if more than one vertex with
same shortest distance are encountered, then further a
second tie-breaking rule is applied. According to this
rule, select a vertex whose shortest distance contains
maximum number of unvisited vertices. Again, while
applying the second tie-breaking rule, if further ties are
encountered, then ties are broken arbitrarily. This itera-
tive process continues until all vertices of G are labeled
visited.

Hence, a dT ree is constructed with minimal number of
dominating nodes. It is possible that constructed dT ree on
the set of dominating nodes is not optimal due to some
edges which are incorrect, but are part of resultant dT ree.
Since, many dominating trees (spanning trees) are possi-
ble on the subgraph of G induced by the set of dominating
nodes of resultant dT ree. Through Prim’s algorithm [10],
a new dominating tree with optimal cost (minimum span-
ning tree) can be constructed on the subgraph of G induced
by the set of dominating nodes of resultant dT ree. In doing
so, no constraint of DTP is violated. This new dominating
tree (minimum spanning tree) replaces the resultant dT ree

and becomes dT ree. Further, a pruning method is applied
on dT ree. This method starts with examining each current
leaf node, say vlf , of resultant dT ree one-by-one. If all
non-dominating nodes adjacent to vlf are also adjacent to
other dominating nodes in dT ree, then the edge incident to
vlf is eliminated from dT ree, resulting in further deduc-
tion in the total cost of the resultant dT ree. vlf becomes
a non-dominating node and is labeled unvisited. This prun-
ing method is applied on only current leaf nodes of dT ree.
The idea of constructing MST and pruning method was first
applied in [15].
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Algorithm 1 The pseudo-code of

Input : A connected, weighted, and undirected graph

Output: A dominating tree, say

ind shortest paths between all pairs of vertices of

for each vertex in do

for each vertex in do
Total number of

vert(ex ices) in ; // means
vert(ex ices) adjacent to

0

elect a vertex with maximum degree from ;

// Apply tie-breaking rule if there
exists ties

for each vertex in do

for each vertex in do

pdate

while do
elect a vertex (say ) with maximum degree from

; // Apply tie-breaking rule if
there exists ties
etermine a shortest path (say ) for connection

establishment between and a vertex (say ) in ;

// Apply tie-breaking rule if
there exists ties
for each vertex i in except v do

if i is labeled then

for each vertex do

if j is labeled then

for each edge e in from u to v do

for each vertex in do

pdate

onstruct a new on the subgraph of G induced

by dominating vertices in using Prim’s algorithm;

pply pruning procedure on current leaf nodes of

newly constructed ;

eturn ;

Note that the idea of applying labeling vertex unvisited or
visited is very common as it clearly distinguishes whether
a vertex is in dT ree or not. Similar ideas can be observed

in [2, 15, 20]. The idea of applying degree concept for
each vertex is rational, as each time selecting a vertex
with maximum degree during the construction of dT ree

increases the chances of covering the maximum number of
unvisited vertices. Also, in case of first-tie breaking rule in
Phase One, the idea of applying minimum weight concept
in conjunction with the maximum degree only once during
the selection of first vertex or vs is intuitively meaning-
ful, as whenever an edge (say e(u, vs)) incident to vs will
get a chance to be a part of partial dT ree during estab-
lishing a connection between an unselected vertex (u) and
vs through a shortest path concept, its weight (weight on
e(u, vs)) will be of possible minimum weight due to min-
imum weight concept on a vertex with maximum degree.
Our preliminary experiments justify this intuitive idea. In
Phase Two, applying shortest path concept for connection
establishment between an unselected vertex and a vertex in
the partial dT ree is common-sense or intuitively correct, as
such shortest path consisting of edges of minimum weight
will help in constructing a dominating tree with minimum
cost. Further this phase also uses two tie-breaking rules, i.e.,
first tie-breaking rule and second tie-breaking rule with the
aim of minimizing the cost of dT ree and maximizing the
number of non-dominating nodes.

The psuedo-code of Heu 2C DT P is presented in
Algorithm 1. One can observe in the pseudo-code of
Heu 2C DT P that the running time of Heu 2C DT P

is mainly dominated by finding shortest paths between all
pairs of vertices in G.

Figure 2 illustrates how Heu 2C DT P works. Figure 2a
represents a connected, weighted and undirected graph G =
(V , E, w), where |V | = 9 and |E| = 13. Figure 2b–i
depict various stages of execution of Heu 2C DT P . Ini-
tially, dT ree and S are two empty sets. Each vertex in V is
labeled unvisited shown in white color. A vertex with max-
imum degree is selected. In Fig. 2a, there exists more than
one vertex with same maximum degree, i.e., < 2, 7 > in
V \S. To handle this situation, a first tie-breaking rule (see
Phase One) is applied. This rule selects vertex 2 as a dom-
inating vertex shown in dark grey color, because the weight
associated with vertex 2 is less than that of vertex 7. Vertex 2
is added to S; labeled visited; and shown in dark grey color.
All vertices adjacent to vertex 2 are labeled visited and are
shown in grey color. This is shown in Fig. 2b. Update the
degree of each vertex in V \S. Hereafter, at each iteration, a
vertex of maximum degree is selected from V \S. In the first
iteration, there exists more than one vertex with same max-
imum degree, i.e., < 1, 7, 5, 8 > in V \S. To handle this, a
first tie-breaking rule (see Phase Two) is applied. As per this
rule, vertex 8 is selected as a dominating vertex shown in
dark grey color due to having shortest distance from dT ree.
Edge (2, 8) is added to dT ree, and vertex 8 is added to S.
The label of vertex 8 is already visited. All unvisited vertices
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Fig. 2 The various stages in execution of Heu 2C DT P

adjacent to vertex 8 are labeled visited and are shown in grey
color. This is shown in Fig. 2c–d. Update the degree of each
vertex in V \S. In the second iteration, there exists more than
one vertex with the same maximum degree, i.e., < 1, 3, 5,
7 > in V \S. As per the first-tie breaking rule (see Phase
Two), vertex 5 is selected as a dominating vertex shown in
dark grey color due to having shortest distance from dT ree.
Edge (2, 5) is added to dT ree, and vertex 5 is added to S.
The label of vertex 5 is already visited. All unvisited vertices
adjacent to vertex 5 are labeled visited and are shown in grey
color. This is shown in Fig. 2e–f. Update the degree of each
vertex in V \S. In the final iteration, there exists more than

one vertex with the same maximum degree, i.e., < 7, 1 > in
V \S. As per the first-tie breaking rule (see Phase Two), ver-
tex 7 is selected as a dominating vertex shown in dark grey
color due to having shortest distance from dT ree. Edges (7,
6) and (6, 5) are added to dT ree, and vertices 7 and 6 are
added to S. This is shown in Fig. 2g–h. At this stage all the
vertices of dT ree are visited, so Heu 2C DT P stops here.
Further, Prim’s algorithm [10] is applied on the subgraph of
G induced by the set of dominating vertices (nodes), i.e., <
2, 5, 6, 7, 8 > in S of resultant dT ree (Fig. 2h) in order
to construct a new dominating tree with optimal cost (min-
imum spanning tree). Resultant minimum spanning tree is
same as dT ree (Fig. 2h) obtained by Heu 2C DT P . Prun-
ing method is applied on resultant dT ree shown in Fig. 2h.
Only vertex 8 is the leaf node that can be pruned with-
out violating the constraints of DTP. Vertex 8 is pruned
and deleted from S. Pruned vertex 8 is now shown in grey
color. Figure 2i shows the resultant dT ree whose dominat-
ing nodes, i.e., < 2, 5, 6, 7 > are in S. Heu 2C DT P

returns this resultant dT ree as the final dT ree.

4 Artificial bee colony algorithm

Artificial bee colony (ABC) algorithm is one among swarm
intelligence techniques and inspired by foraging behavior of
honey bees in nature [7]. ABC algorithm models the collec-
tive behavior of decentralized and self organized systems.
Like real bees, ABC algorithm also categorizes artificial
bees into three different groups: employed bees; scout bees;
and onlooker bees in order to search high quality solutions
for the optimization problem under consideration. A food
source represents a feasible solution to the problem, and the
nectar amount of its food source corresponds to the fitness
of its solution. Since each food source is uniquely asso-
ciated with an employed bee, the number of solutions is
same as the number of employed bees. ABC algorithm starts
with generating a fixed set of initial solution (food source).
Then at each iteration, each group of artificial bee works as
follows:

• Employed bees: Each employed bee performs the job
of determining a new solution in the neighborhood of
its currently associated solution. If the new solution,
in terms of fitness, is better than that of its currently
associated solution, then the current employed bee will
move to this new solution discarding the old one,
otherwise it will continue with its old one.

• Scout bees: If the solution is not improving for some
time, controlled by a parameter called limit, then its
associated employed bee becomes a scout bee by dis-
carding its solution. The job of scout bee is to gener-
ate a new random solution. Once the new solution is



2252 K. Singh, S. Sundar

generated, the status of scout bee changes to employed
bee on this new solution.

• Onlooker bees: Once each employed bee completes
the job of determining a neighboring solution, the job
of each onlooker bee starts. Each onlooker bee uses
probability-based selection method to select a solution
associated by an employed bee, and then it determines
a new solution in the neighborhood of its selected solu-
tion that is similar to determining a new neighboring
solution by an employed bee. This selection method
biases towards selection of high quality solution. Once
the job of each onlooker bee in terms of selecting
a solution and determining a new neighboring solu-
tion is done, then all new solutions – determined in the
neighborhood of a particular solution (say X) selected
by one or more onlooker bees – and the solution itself X

compete against each other for the position of solution
X in the next iteration. The best in them will be chosen
for the new position of solution X in the next iteration.
Once new positions of all solutions are chosen, the next
iteration of the ABC algorithm is carried out.

This whole iterative procedure is applied again and again
until the termination criteria is met.

Readers can find a detail of ABC algorithm and its
applications in [8].

4.1 ABC algorithm for the DTP

This subsection presents an ABC algorithm (ABC DTP) for
the DTP. Hereafter, the proposed ABC algorithm for the
DTP will be referred to as ABC DTP. The description of
each component of ABC DTP is as follows:

4.1.1 Initial solution generation

Instead of generating each initial solution of the population
randomly as used in [15], ABC DTP follows a random ver-
sion of the proposed heuristicHeu 2C DT P for generating
each initial solution of the population. This random version
also contains two phases which are as follows:

• Phase One: In the beginning, label each vertex unvis-
ited; calculate degree of each vertex similar to degree
computed in Heu 2C DT P . Initially, the dominating
tree (dT ree) and the set, say S, containing dominat-
ing nodes of dT ree are empty. Each vertex in V whose
degree is greater than zero is kept in a set, say D. Here-
after, select a vertex, say first vertex or vs randomly
from D. The selected vs becomes a dominating node
of the partial dT ree and is added to S. All unvisited
vertices that are adjacent to vs are labeled visited along

with vs . Update the degree of each vertex in V \S. Now
D will contain only those vertices in V \S whose degree
is greater than zero.

• Phase Two: At each step, select a vertex (say u) ran-
domly from D. Note that u may be visited or unvisited
vertex. To establish a connection between u and a ver-
tex, say v, in S, a shortest path, say SP , is determined.
Each vertex except v in SP becomes a dominating node
and is added to S. Each edge in SP becomes a part
of partial dT ree. Each unvisited vertex in SP as well
as its unvisited adjacent vert(ex/ices) are labeled vis-
ited. Hereafter, update the degree of each vertex in V \S.
Now D will contain only those vertices in V \S whose
degree is greater than zero. Note that if there exists
more than one shortest path of same cost, then select a
path that consists of maximum number of vertices. This
iterative process continues until all vertices of G are
labeled visited.

Once dT ree is constructed, pruning procedure [15] is
applied repeatedly until no leaf node in dT ree can be
pruned. After that, a minimum spanning tree (MST) is con-
structed on the sub-graph of G induced by the set (S) of
dominating vertices of dT ree with the help of Prim’s algo-
rithm. The concept of pruning-MST applied here is similar
to [15].

We have also tested with generating each initial solution
of the population randomly; however, our initial experi-
ments have suggested that this way led to inferior solution
quality in comparison to generating each initial solution of
the population with the help of a mixed strategy that uses
randomness and problem-structure knowledge.

Each employee bee uniquely associates with each initial
solution (dT ree). The fitness of each solution is computed.

4.1.2 Probability of selecting a solution

In onlooker phase, each onlooker bee selects a solution
(food source), which is one among all solutions associated
by all employed bees, with the help of binary tournament
selection method. In this selection method, two solutions
from all solutions associated with all employed bees are
picked randomly. With probability Pbt , a solution with
better fitness is selected, otherwise worse one is selected.

4.1.3 Determination of a neighboring solution

Determining a new neighboring solution of high quality
relies heavily on how problem structure of a combinato-
rial optimization problem is unravelled. In this direction, we
propose two methods applied in a mutually exclusive way
for determining a solution (say Xc) in the neighborhood of
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current solution (X). First method is CNAS-Method that is
based on copy a set of dominating nodes from another solu-
tion of the population to current solution, whereas second
method is MEDI-Method that is based on performing ran-
dom multiple edge-deletion-insertion on current solution.
Initially, a copy (say Xc) of X is created. With probability
Pnbr , CNAS-Method is applied, otherwiseMEDI-Method is
applied.

1. CNAS-Method: Initially, a solution, say Y , (different
from X) is picked from the population with the help
of binary tournament selection method. Then, CNAS-
Method picks at most y dn dominating nodes of Y

different from dominating nodes of X and assigns them
to a set, say Sy . y dn is equal to mdn% of total num-
ber of dominating nodes of Y . mdn is a parameter to be
determined empirically. Hereafter, at each step, a ver-
tex, say u, in the order is picked from Sy . An edge
connecting u and a vertex in current Xc is searched, as
soon as an edge connecting u and a vertex in current Xc

is found, it is immediately added to current dT ree of
Xc. Vertex u is added to Xc. This procedure is repeated
again and again until all nodes in Sy are added to Xc.

Note that if CNAS-Method fails to pick a dominating
node of Y different from dominating nodes of X, then it
shows that X and Y are same, which in turn also shows
that employed bee solutions are suffering from a lack
of diversity. This situation is coined as collision [12,
14]. In such a situtation, MEDI-Method is applied on
X instead of abandoning this solution [16]. Abandoning
this solution means employed bee associated with this
solution abandons it to become scout so that the diver-
sity in the population can be improved. However, initial
experiments have suggested that this way led to infe-
rior solution quality overall in comparison to applying
MEDI-Method which is perturbation strategy.

2. MEDI Method: This method follows a certain number
of edge-deletion-insertion procedure which is applied
Se times, where Se is equal to edi% of total number
of edges of X. edi is a parameter to be determined
empirically. Initially, this method picks a certain num-
ber of edges, where degree of atleast one end vertex (i
or j ) of each picked edge (say e(i, j)) must be greater
than one in G. All picked edges are assigned to a set,
say Se. Note that Se includes only edges of X (not
of Xc), as Xc becomes different from X after apply-
ing first successful edge-deletion-insertion procedure.
Hereafter, at each step, this method picks an edge (say
e(i, j)) randomly from Se and deletes it from Xc, result-
ing a partition of Xc into two disjoint sets, say C1 and
C2. To connect C1 and C2, a second connectivity rule
is applied. This rule searches a particular shortest path

from all candidate shortest paths connecting C1 and
C2. This particular shortest path does not contain those
edges that are already part of current dT ree of Xc and
that are not added from any previous edge-deletion-
insertion procedure if it has occurred already for the
current dT ree of Xc as edge-deletion-insertion proce-
dure performs multiple times for a given solution. Once
this particular shortest path is found, all new edges in
this particular shortest path are inserted to connect C1

and C2 of Xc. However, if such particular shortest path
is not possible, then deleted edge (e(i, j)) is restored to
Xc.

Note that if MEDI-Method fails to perform a sin-
gle edge-deletion-insertion procedure, then in case of
employed bee phase, current solution X is replaced
with a new initial solution and in case of onlooker bee
phase, a very large fitness value is assigned to fitness of
onlooker bee associated with X.

Once the neighboring solution Xc is determined, a prun-
ing procedure [15] is applied repeatedly on Xc until no
leaf node in dT ree of Xc except all new nodes added
through either CNAS-Method or MEDI-Method can be
pruned. After that, a minimum spanning tree (or dominat-
ing tree) is constructed on the sub-graph of G induced by
the set (S) of dominating vertices of dT ree with the help
of Prim’s algorithm [10]. This new dominating tree (min-
imum spanning tree) replaces the resultant dT ree of Xc

and becomes dT ree of Xc. Again, the process of prun-
ing is applied repeatedly on resultant dT ree of Xc until
no leaf node (including all new nodes added through either
CNAS-Method or MEDI-Method) in dT ree of Xc can be
pruned.

Note that determining a neighboring solution which is an
important component of ABC DTP is different from that
of previous ABC algorithm for the DTP, i.e., O ABCDT

[15] except pruning-MST-pruning methods. O ABCDT

[15] also applies two methods that are based on single
edge-deletion-insertion procedure randomly from the cur-
rent solution and adding a non-dominating vertex randomly
to the current solution in a mutually exclusive way. How-
ever, ABC DTP uses CNAS-Method and MEDI-Method in
a mutually exclusive way. CNAS-Method is based on this
concept that if a node as a dominating node is present in a
good solution then the same node will be present in many
good solutions. MEDI-Method based on multiple edge-
deletion-insertion procedure leads to better exploration in
the search space in comparison to single edge-deletion-
insertion procedure [15]. Experimental results justify that
these two methods for determining a neighboring solu-
tion coordinated with other components of ABC DTP make
ABC DTP more effective and robust for searching high
quality solutions.
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Algorithm 2 The pseudo-code of ABC DTP

Generate a set of solutions, i.e., 1 2

Best solution in solutions;

while Termination criteria is not met do
for 1 to do

if is better than then

else if is not improving last iterations
then

Scout bee;

if is better than then

for 1 to do

for 1 to do

if is better than then

if is better than then

4.1.4 Other features

A solution that is not improving in terms of fitness for some
iterations (controlled by a parameter called limit) is aban-
doned by its employed bee. The employed bee becomes a
scout. This scout favors in generating a new random solu-
tion. Once a new solution is generated (similar to initial
solution generation (see Section 4.1.1)), the status of scout
bee changes to employed bee on this new solution.

Algorithm 2 presents the pseudo-code of ABC DTP. In
this pseudo-code, binary tournament selection method is
called by Binary T SM(E1, E2, ..., ENE ) function which
returns a selected solution; and the method for determining
a solution in the neighborhood of a solution, sayX , is called
byDNbring Sol(X ) function which returns a neighboring
solution, say X ′.

5 Computational results

Both proposed approaches –Heu 2C DT P and ABC DTP
– were implemented in C and tested on three different
benchmark instance sets for evaluation. All experiments
were executed on a Linux based 1.6 GHz Core 2 Duo
system with 1 GB RAM which is different from that of pre-
vious existing metaheuristic techniques for the DTP, such

as O ABCDT [15], ACO DT [15], EA/G [2], SSGA [13],
and VNS [3]. O ABCDT , ACO DT, EA/G and SSGA used
Intel Core 2 Duo processor 3.0 GHz with 2 GB RAM under
Fedora 12, whereas VNS used Intel Core I7-4702MQ 2.2
GHz with 4 GB RAM under Windows XP. In such cir-
cumstances, it is difficult to exactly compare the speed of
these metaheuristic techniques with ABC DTP; however, a
rough comparison can always be made. One can observe
SSGA in terms of computational time and solution quality
(see Table 6) that overall SSGA is superior to O ABCDT ,
ACO DT, EA/G and VNS. This observation gives an idea
for rough comparison, i.e., the number of solutions gener-
ated by ABC DTP is approximately similar to that of SSGA
[13] in order to test the effectiveness of ABC DTP. Since
SSGA [13] generates X Sol solutions to find a high qual-
ity solution for each instance, where X Sol is equal to the
sum of size of initial population and |V | × 500. Therefore,
ABC DTP is also allowed to generate approximately Y Sol

solutions to find a high quality solution for each instance,
where Y Sol is equal to the sum of size of initial popula-
tion and (|V | × 500)/(NE + NO). In addition, ABC DTP,
similar to all previous existing metaheuristic techniques
for the DTP, was also executed 20 independent times on
each instance in order to test its robustness. Heu 2C DT P ,
similar to all previous existing problem-specific heuristics
– such as Heu DT1 [11], Heu DT2 [21], H DT [15] and
M DT [2] –, Heu 2C DT P was also executed once.

All instance sets used for the DTP are available on http://
dcis.uohyd.ac.in/∼alokcs/dtp.zip. Each instance [11, 21] is
considered as a disk graph G = (V , E), where disk of a
node denotes the transmission range of that node. For every
pair of nodes, there will be an edge iff two nodes connecting
this edge will be in the common area of their corresponding
disks. For each edge eu,v ∈ E, there exists a non-negative
weight w(eu,v) which is defined as Cj × d2

u,v , where d2
u,v

is the Euclidean distance between u and v; and Cj is a ran-
dom constant whose value is set to 1. Since instances used
in [11, 21] were not available, Sundar and Singh [15], sim-
ilar to [11, 21], generated a set of instances with different
size varying in total number of nodes. Nodes are randomly
distributed over an area of 500m × 500m, and transmis-
sion range of each node is 100m. For each size, i.e., |V| =
{50, 100, 200, 300, 400, 500}, three different instances were
generated, resulting a total of 18 instances. Later, Chaurasia
and Singh [2] generated two different instance sets exactly
similar to instance set [15], but the transmission range of
each node in two different instance sets is 125m and 150m,
resulting in generation of additional 36 (18+18) different
instances.

In the next three subsections, parameter settings for
ABC DTP, comparison of the results obtained by
Heu 2C DT P with that of existing problem-specific
heuristics in the literature, and comparison of the results

http://dcis.uohyd.ac.in/~alokcs/dtp.zip
http://dcis.uohyd.ac.in/~alokcs/dtp.zip
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obtained by ABC DTP with that of existing metaheuristic
approach in the literature are reported respectively.

5.1 Parameter tuning for ABC DTP

Being stochastic in nature, proper tuning of parameters for
ABC DTP become significant. For this, various possible
values of each candidate parameter (reported in Table 1)
were chosen based on preliminary experimentations and
available literature. To investigate parameter sensitiveness,
two different instances from each instance set were taken
into account. Then, the performance of ABC DTP on dif-
ferent combination due to possible values of different
parameters were carefully tested on these instances. One
can observe in Table 2, where column Parameter denotes
various parameters (NE , NO, Pbt , Pnbr , mdn, edi, limit)
used for ABC DTP; val para denotes possible values of
each parameter; Best and Avg respectively denote the best
value and the average value over 20 runs obtained on such
instances from corresponding value of the parameter. This
investigation led to the best combination of parameter set-
tings, i.e., NE = 50, NO = 100, Pbt = 0.85, Pnbr =
0.7, mdn = 20, edi = 10, and limit = 50 that approximately
produces high quality solutions (in terms of Best and Avg
in Table 2) highlighted in bold on most of these instances
taken into account. Note that this testing uses every time one
possible value of a parameter, while keeping values of other
remaining parameters fixed (see val para in bold of each
parameter).

5.2 Comparison of Heu 2C DT P with Heu DT1,
Heu DT2, H DT and M DT

In this subsection, we present an overview of effec-
tiveness of the proposed problem-specific heuristic, i.e.,
Heu 2C DT P in comparison to other existing problem-
specific heuristics [2, 11, 15, 21], which will be referred
to as Heu DT1 [11], Heu DT2 [21], H DT [15] and M DT
[2] respectively. Tables 3, 4 and 5 report the results of
Heu 2C DT P along with Heu DT1, Heu DT2, H DT and
M DT on instances with transmission range 100m, 125m

and 150m respectively. In Tables 3–5, column Instance
denotes the name of each instance, and for each heuristic,
column Value denote the value obtained on each instance.
In addition, similar to [2, 11, 15, 21], column NDN that
denotes the number of nodes in dominating tree obtained
on each instance is added, as the total number of domi-
nating nodes has a significant role in the performance of
any routing protocols based on virtual backbone structure.
In Table 3, results of Heu DT1, Heu DT2, H DT are taken
from [15], whereas results of M DT are taken from [2].
In Tables 4 and 5, results of Heu DT1, Heu DT2, H DT
and M DT on instances with transmission range 125m and
150m respectively are taken from [2]. For each instance, the
best value Value among Heu DT1, Heu DT2, H DT, M DT
and Heu 2C DT P is highlighted in bold.

Tables 3, 4 and 5 clearly show that Heu 2C DT P out-
performs all previous existing problem-specific heuristics,
i.e., Heu DT1, Heu DT2, H DT andM DT in terms of solu-
tion quality. In terms of Value, Heu 2C DT P is better
on all 54 instances in comparison to Heu DT1, Heu DT2,
H DT and M DT. In terms of NDN, Heu 2C DT P is bet-
ter on all 54 instances except on one instance, i.e., 300 3 in
150m range whose NDN value is similar to that of M DT.

Execution times of Heu 2C DT P , H DT and M DT
are dominated by precomputing all pair shortest paths in
G. It is mentioned in [15] that Heu DT1 and Heu DT2
are faster than H DT. Hence Heu 2C DT P is slower than
Heu DT1 and Heu DT2. SinceHeu 2C DT P outperforms
all Heu DT1, Heu DT2, H DT and M DT in terms of solu-
tion quality and the number of dominating vertices for
each test instance, such performance can compensate its
execution time.

5.3 Comparison of ABC DTP with state-of-the-art
metaheuristic techniques

This subsection presents an overview of effectiveness of
ABC DTP with state-of-the-art metaheuristic techniques
such as O ABCDT [15], ACO DT [15], EA/G [2], SSGA
[13] and VNS [3] for the DTP. Table 6 reports the results of
ABC DTP along with the results of O ABCDT , ACO DT,

Table 1 Potential values of each parameter for ABC DTP

Parameter Description Possible values of a parameter

NE Number of employed bees {25, 50, 100}
NO Number of onlooker bees {50, 100, 150}
Pbt Probability used in Binary Tournament Selection Method {0.8, 0.85, 0.90}
Pnbr Probability used for selection of neighborhood {0.6, 0.7, 0.8}
mdn Percentage value of total number of dominating nodes of Y {10, 20, 30}
edi Percentage value of total number of edges in X {5, 10, 15}
limit A value in terms of iterations used for abandoning a solution (Scout bee) {25, 50, 100}
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a b c

d e f

g h i

Fig. 3 Comparison of Value obtained by various heuristics for different transmission ranges (a–c) for 100m range; (d–f) for 125m range; and
(g–i) for 150m range

EA/G, SSGA and VNS on instances with the transmis-
sion range 100m. Results of O ABCDT , ACO DT, EA/G,
SSGA and VNS reported in Table 6 are taken from

their respective papers. Tables 7–8 report the results of
ABC DTP along with the results of O ABCDT , ACO DT
and EA/G on instances with transmission range 125m and

a b c

d e f

g h i

Fig. 4 Comparison of NDN obtained by various heuristics for different transmission ranges (a–c) for 100m range; (d–f) for 125m range; and
(g–i) for 150m range
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150m respectively. Results of O ABCDT , ACO DT and
EA/G reported in Tables 7 and 8 are taken from [2]. For
each instance in Tables 6–8, column Instance denotes the
name of instance; and for each metaheuristic technique,
columns Best, Avg, SD, ANDN and TET respectively denote
the best value, the average solution quality, standard devi-
ation, the average number of dominating vertices, and the
average total execution time obtained over 20 runs. For each
instance, the best value Best and the best average solution
quality Avg among O ABCDT , ACO DT, EA/G, SSGA,
VNS and ABC DTP are highlighted in bold.

Table 6 that reports the results of O ABCDT , ACO DT,
EA/G, SSGA, VNS and ABC DTP on 18 instances with
the transmission range 100m shows the effectiveness of
ABC DTP in comparison to all other approaches. Com-
paring with O ABCDT , ABC DTP, in terms of solution
quality (Best), is better on 10 and equals on 8; ABC DTP,
in terms of average solution quality (Avg), is better on 11,
equals on 2 and is worse on 5; ABC DTP, in terms of aver-
age number of dominating nodes (ANDN), is better on 6,
equals on 3 and is worse on 9. Comparing with ACO DT,
ABC DTP, in terms of Best, is better on 11, equals on 2
and is worse on 5; ABC DTP, in terms of Avg, is better on
11, equals on 2 and is worse on 5; ABC DTP, in terms of
ANDN, is better on 10, equals on 4 and is worse on 4. Com-
paring with EA/G, ABC DTP, in terms of Best, is better
on 8, equals on 8 and is worse on 2; ABC DTP, in terms
of Avg, is better on 10, equals on 2 and is worse on 6;
ABC DTP, in terms of ANDN, is better on 7, equals on 5
and is worse on 6. Comparing with SSGA, ABC DTP, in
terms of Best, is better on 6, equals on 8 and is worse on 4;
ABC DTP, in terms of Avg, is better on 10 and is worse on
8; ABC DTP, in terms of ANDN, is better on 4, equals on
2 and is worse on 12. Comparing with VNS, ABC DTP, in
terms of Best, is better on 7, equals on 8 and is worse on 3;
ABC DTP, in terms of Avg, is better on 17 and is worse on
1; ABC DTP, in terms of ANDN, is better on 9 and is worse
on 9.

Table 7 that reports the results of O ABCDT , ACO DT,
EA/G and ABC DTP on 18 instances with the transmission
range 125m shows the effectiveness of ABC DTP in compari-
son to all other approaches. Comparing with O ABCDT ,
ABC DTP, in terms of solution quality (Best), is better on
10 and equals on 8; ABC DTP, in terms of average solu-
tion quality (Avg), is better on 10, equals on 3 and is worse
on 5; ABC DTP, in terms of average number of dominating
nodes (ANDN), is better on 6, equals on 4 and is worse on
8. Comparing with ACO DT, ABC DTP, in terms of Best,
is better on 10, equals on 7 and is worse on 1; ABC DTP,
in terms of Avg, is better on 13, equals on 1 and is worse on
4; ABC DTP, in terms of ANDN, is better on 8, equals on
1 and is worse on 9. Comparing with EA/G, ABC DTP, in
terms of Best, is better on 3, equals on 12 and is worse on 3;
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a b c

d e f

g h i
Fig. 5 Comparison of Value obtained by various metaheuristics for different transmission ranges (a–c) for 100m range; (d–f) for 125m range;
and (g–i) for 150m range
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d e f

g h i

Fig. 6 Comparison of ANDN obtained by various metaheuristics for different transmission ranges (a–c) for 100m range; (d–f) for 125m range;
and (g–i) for 150m range
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ABC DTP, in terms of Avg, is better on 8, equals on 3 and
is worse on 7; ABC DTP, in terms of ANDN, is better on 3,
equals on 6 and is worse on 9.

Table 8 that reports the results of O ABCDT , ACO DT,
EA/G and ABC DTP on 18 instances with the transmission
range 150m shows the effectiveness of ABC DTP in compar-
ison to all other approaches. Comparing with O ABCDT ,
ABC DTP, in terms of solution quality (Best), is better on
8 and equals on 10; ABC DTP, in terms of average solution
quality (Avg), is better on 12, equals on 3 and is worse on 3;
ABC DTP, in terms of average number of dominating nodes
(ANDN), is better on 6, equals on 5 and is worse on 7. Com-
paring with ACO DT, ABC DTP, in terms of Best, is better
on 8 and equals on 10; ABC DTP, in terms of Avg, is better
on 12, equals on 3 and is worse on 3; ABC DTP, in terms of
ANDN, is better on 10, equals on 4 and is worse on 4. Com-
paring with EA/G, ABC DTP, in terms of Best, equals on
16 and is worse on 2; ABC DTP, in terms of Avg, is better
on 10, equals on 4 and is worse on 4; ABC DTP, in terms of
ANDN, is better on 6, equals on 6 and is worse on 6.

5.4 Collective picture

This subsection presents a collective picture with respect
to all problem-specific heuristics (Heu DT1, Heu DT2,
H DT, M DT and Heu 2C DT P ) and all metaheuristic
techniques (O ABCDT , ACO DT, EA/G, SSGA, VNS and
ABC DTP) for the DTP. Clearly, in terms of solution quality
(Value and NDN), Heu 2C DT P shows superiority over
all other existing problem-specific heuristics (Heu DT1,
Heu DT2, H DT, and M DT) on all 54 instances except on
one instance, i.e., 300 3 in 150m range whose NDN value is
similar to that ofM DT. One can observe the performance of
Heu 2C DT P in terms of Value and NDN in Figs. 3 and 4
respectively.

As far as comparison with all metaheuristic tech-
niques (O ABCDT , ACO DT, EA/G, SSGA, VNS and
ABC DTP), ABC DTP performs better overall in terms of
solution quality (Best and Avg). One can observe solution
quality of ABC DTP (Best and Avg) in Table 9. ABC DTP
finds new values (Best) for 6 instances (300 1, 400 2, 400 3
and 500 2 in 100m range, and 300 3 in 125m range). One
can notice in Fig. 5 that in terms of Best, ABC DTP is
overall better than all existing metaheuristic techniques for
the DTP. ABC DTP has improved average solution qual-
ity (Avg) for 23 instances (7 instances in 100m range, 7
instances in 125m range and 9 instances in 150m range) out
of 54 instances. In terms of average number of dominating
nodes (ANDN), ABC DTP is comparable with all existing
metaheuristic techniques for the DTP. This can be observed
in Fig. 6.

In terms of computational time, ABC DTP is many
times faster than O ABCDT , ACO DT and VNS. Overall,

ABC DTP is faster than EA/G. ABC DTP is slower than
SSGA, but ABC DTP provides better solution quality (Best
and Avg).

It is to be noted that Tables 3, 4 and 5 report best
known solution value (BKS) for each instance taken from
all approaches for the DTP, i.e., problem-specific heuris-
tics including Heu 2C DT P and metaheuristic techniques
including ABC DTP. Tables 3, 4 and 5 also report the
percentage relative deviation (PRD) of each instance for
Heu 2C DT P . The PRD is defined in (1),

[
PRD = V alueHeu 2C DT P − BKS

BKS
× 100%

]
(1)

In equation (1), V alueHeu 2C DT P denotes the value
(Value) of each instance obtained by Heu 2C DT P . One
can observe from Tables 3, 4 and 5 that the results of
Heu 2C DT P on all instances are nearer to BKS whose
maximum PRD value is 27.31 for 300 3 in 150m and min-
imum PRD value is 0.00 for 50 1 in 125m. It shows that
Heu 2C DT P can be a good choice for obtaining a dT ree

(solution) to the DTP in a very short time.

6 Conclusions

In this paper, we have proposed a new and effective
problem-specific heuristic for the DTP (Heu 2C DT P )
that produces much better results on a set of benchmark
instances than existing problem-specific heuristics in the lit-
erature. Heu 2C DT P is so effective that it can be a good
choice for obtaining a dT ree (solution) to the DTP in a
very short time. In addition, we have also proposed an arti-
ficial bee colony algorithm for the DTP (ABC DTP) which
is different from the existing ABC algorithm for the DTP
in the literature on its two main components: initial solu-
tion generation; and determining a neighboring solution.
These two components coordinated with other components
of ABC DTP help in making ABC DTP more effective
and robust. ABC DTP demonstrates the superiority over not
only previous ABC algorithm for the DTP, but also other
existing metaheuristic techniques in the literature.

In future, similar strategies used in ABC DTP can also
be applied to develop ABC algorithms for other NP-Hard
graph problems.
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