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Abstract The main objective of this manuscript is to
present a new preference relation called the intuitionis-
tic fuzzy multiplicative preference relation. Under this,
some series of new aggregation operators, by overcoming
the shortcomings of some existing operators, have been
defined. As most of the aggregation operators have been
constructed under the intuitionistic fuzzy preference rela-
tion which deals with the conditions that the attribute values
grades are symmetrical and uniformly distributed. In this
manuscript, these assumptions have been relaxed by dis-
tributing the attribute grades to be asymmetrical around
1 and hence under it, some series of aggregation opera-
tors, namely intuitionistic fuzzy multiplicative interactive
weighted, ordered weighted and hybrid weighted averaging
operators have been proposed. Various desirable properties
of these operators have also been discussed in details. A
group decision-making method has been presented, based
on the proposed operators, for ranking the different alterna-
tives. A real example is taken to demonstrate the applicabil-
ity and validity of the proposed methodology.
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1 Introduction

In many decision-making problems, it is difficult for a deci-
sion maker to give his assessments toward the object in
crisp values due to ambiguity and incomplete information.
To depict the decision-making problem mathematically, the
preference relation is proposed which stores the prefer-
ence information of the decision maker with respect to a
set of alternatives or criteria in a matrix. There are mainly
three sorts of preference relations, namely fuzzy prefer-
ence relation (FPR) [21], intuitionistic fuzzy preference
relation (IFPR) [1, 32] and multiplicative preference rela-
tion (MPR) [22]. In FPR, an analysis has been conducted
in which decision-makers evaluate the object by describ-
ing their intensities of preferences only, but can’t depict the
degrees of non-preferences. But however, in some circum-
stances, it is difficult for the decision-maker to determine
an exact membership function for a set. To handle this sit-
uation, an IFPR has been defined as R = (αij )n×n with
the condition that αij + αji = 1 and 0 ≤ αij ≤ 1, where
αij indicates the alternative xi is preferred to xj . Under
this environment, various researchers have addressed the
problem of the decision-making by using different kinds of
aggregation operators [34]. For instance, [31, 33] presented
a weighted average and geometric aggregation operator for
the intuitionistic fuzzy numbers (IFNs). [25] presented an
aggregation operator by using Einstein norm operations.
[12] presented a decision-making method based on the aver-
aging aggregation operations. [2] presented a generalized
intuitionistic fuzzy interactive geometric aggregation oper-
ator using Einstein t-norm and t-conorm operations. [38]
presented a hybrid weighted averaging and geometric aggre-
gation operator based on the Einstein norm operations for
IFNs. [8] proposed some series of interactive aggregation
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operators for IFNs. [4], further, presented a generalized
improved score function to rank the different interval-valued
IFNs (IVIFNs). Apart from these, various authors [5–7,
11, 15, 18, 19, 28, 35] have addressed the problems of
the decision-making in the IFPR environment. All these
theories have been investigated under the IFPR envi-
ronment which are valid only for those grades who are dis-
tributed uniformly and symmetrical. But due to the large
complexities of the system day-to-day, it is difficult for
the system analyst to represent the data in a symmetrical
form and hence, IFPR theory may have unable to get the
correct option to the decision-maker to opt for the system
representation.

To resolve this issue, [22] presented a different scale
named as 1- 9 scale, where the decision maker gives their
preferences on the scale of 1/9− 9 instead of 0−1 to rep-
resent the data. However, it can only represent the degree
of acceptance of the alternative but is unable to represent
the degree of rejection. To cope with this situation, the intu-
itionistic multiplicative preference relation (IMPR) [29] has
been proposed in which the representation of each alter-
native is considered as a pair of acceptance and rejection
degrees and hence, their corresponding preference rela-
tion is called IMPR, denoted by S = (αij )m×n with the
condition that αijαji = 1 and 1

9 ≤ αij ≤ 9 where
αij represents the asymmetrical distribution degree of the
alternative xi w.r.t. xj . From these, it has been concluded
that IMPR describes the characteristics of the alternative
in a better way than IFPR. Under this preference environ-
ment, [29] introduced an aggregation operator for different
intuitionistic multiplicative sets (IMSs) in the decision mak-
ing process while [36] extended it to an interval-valued
IMS environment. [37] introduced the aggregation operator
under the triangular intuitionistic multiplicative numbers.
[3] developed some improved weighted geometric aggre-
gation operators to solve the decision making problems.
[30] introduced the aggregation operator based on the Cho-
quet integral and applied them to the group decision-making
problems. [37] introduced an aggregation operator under the
triangular intuitionistic multiplicative numbers. [14] pro-
posed a method for ranking the IMSs based on distance
measures. Recently, Garg [9] presented the distance and
similarity measures for intuitionistic multiplicative prefer-
ence relation and applied them to solve the decision-making
problems. Apart from these, various authors [16, 17, 27]
have addressed the problems of the decision-making in the
IMPR environment.

Further, during the decision-making process, the aggre-
gation operators are very important tools to solve the
problems of information fusion. But from the literature,
it has been observed that few operators come into the
existence in the IMPR environment which are carried out
based on the traditional operational rules of intuitionistic

multiplicative numbers (IMNs). However, these operational
rules have some drawbacks. For instance, there is no impact
of changing the membership or non-membership degrees
on the aggregated degree by the existing aggregation opera-
tors. In addition, we know that the membership degree and
non-membership degree of aggregated result are obtained
independently from the membership degrees and non-
membership degrees of n IMNs, respectively. Obviously,
this is also unreasonable. Therefore, their corresponding
aggregated value is unable to give the correct information
about the decision practices during the decision-making
process. Hence, there is a need to improve the opera-
tional laws between the pairs of IMNs and hence their
corresponding aggregation operators.

Thus, in the view of the fact that the IMPR can express
the uncertain and fuzzy decision process more precisely
and objectively it is a useful tool for solving the decision-
making problems under the uncertain environment. By
taking the advantages of these, the main objective of this
manuscript is to present the new operational law by consid-
ering the interaction between the pairs of the membership
degrees on the IMPR. Based on these laws, some series
of aggregation operators, namely intuitionistic fuzzy multi-
plicative weighted, ordered weighted and hybrid weighted
averaging have been proposed. Some desirable properties
of these operators are also investigated. Furthermore, these
operators have been extended to its generalized version
and named as generalized intuitionistic fuzzy multiplica-
tive interactive weighted, ordered weighted and hybrid
weighted averaging operators. Finally, decision-making
methods based on these operators have been presented and
an illustrative example has been taken for demonstrating the
approach.

2 Intuitionistic multiplicative preference relations

In this section, some basic concepts of intuitionistic multi-
plicative set (IMS) and intuitionistic multiplicative prefer-
ence relation have been presented.

Definition 1 An IMS D on the universal set X is defined as
[29]

D = {〈x, μ(x), ν(x)〉 | x ∈ X} (1)

where μ, ν : X → [1/9, 9] represents, respectively, the
degrees of membership and non-membership such that 1

9 ≤
μ(x), ν(x) ≤ 9, μ(x)ν(x) ≤ 1, ∀x ∈ X. On the other
hand, the degree of indeterminacy is given by τ(x) =
1/μ(x)ν(x). The pairs of the membership degrees is called
as intuitionistic multiplicative number (IMN) and denoted
by α = 〈μ, ν〉.
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Definition 2 [29] A score function S of an IMN α can be
represented as S(α) = μ

ν
and an accuracy functionH is rep-

resented as H(α) = μ · ν. Based on these, an order relation
between two IMNs α and β is defined as: (i) S(α) < S(β)

then α is smaller than β; (ii) if S(α) = S(β) then (a)
H(α) < H(β) which implies that α is smaller than β; (b)
H(α) = H(β) then α ∼ β.

Definition 3 For three IMNs α = 〈μ, ν〉, α1 = 〈μ1, ν1〉
and α2 = 〈μ2, ν2〉, λ > 0 be a real number, the basic
operational law between them have been defined as follows
[29]

(i) α1 ⊕ α2 =
〈
(1+2μ1)(1+2μ2)−1

2 ,
2ν1ν2

(2+ν1)(2+ν2)−ν1ν2

〉

(ii) α1 ⊗ α2 =
〈

2μ1μ2
(2+μ1)(2+μ2)−μ1μ2

,
(1+2ν1)(1+2ν2)−1

2

〉

(iii) λα =
〈
(1+2μ)λ−1

2 , 2νλ

(2+ν)λ−νλ

〉

(iv) αλ =
〈

2μλ

(2+μ)λ−μλ ,
(1+2ν)λ−1

2

〉

Definition 4 [13] Let X = {x1, x2, . . . , xn} be a finite
set and Di = {xi, 〈μ(xi), ν(xi), τ (xi)〉 | xi ∈ X}, (i =
1, 2, . . . , n) be an IMS then the corresponding IFS Gi =
{xi, 〈ρ(xi), ξ(xi), π(xi)〉 | xi ∈ X}, (i = 1, 2, . . . , n)

associated with Di is given as follows:

ρ(xi )= 1

2
(1+log9 μ(xi )) ; ξ(xi )= 1

2
(1+log9 ν(xi )) ; π(xi )= 1

2
(log9 τ(xi ))

Definition 5 [14] Let A = {xi, 〈μA(xi), νA(xi), τA(xi)〉 |
xi ∈ X}(i = 1, 2, . . . , n) be an IMS, then based on the
weighted Manhattan distance,

(i) the extended weighted distance function is given as

Epw(A) =
1 −

n∑
i=1

ωi log9 νA(xi)

2 −
n∑

i=1
ωi(log9 μA(xi) + log9 νA(xi))

(2)

(ii) the extended weighted accuracy function is given as

Eqw(A) = 1 − 1

2

n∑
i=1

ωi log9 τA(xi) (3)

Definition 6 For a collection of IMNs αi = 〈μi, νi〉,
(i = 1, 2, . . . , n), the intuitionistic multiplicative weighted
aggregation (IMWA) operator is defined as [29]

IMWA(α1, α2, . . . , αn) =
n⊕

i=1

ωiαi

=
〈 n∏

i=1
(1 + 2μi)

ωi −1

2
,

2
n∏

i=1
ν

ωi

i

n∏
i=1

(2 + νi )ωi −
n∏

i=1
ν

ωi

i

〉
(4)

where ω = (ω1, ω2, . . . , ωn)
T be the weight vector of

αi(i = 1, 2, . . . , n) such that ωi ≥ 0 and
n∑

i=1
ωi = 1.

Especially, if ω = (1/n, 1/n, . . . , 1/n)T , then the IMWA
operator reduces to the intuitionistic multiplicative averag-
ing operator.

It has been observed from the above defined IMWA
operator that they have some sort of deficiencies during
the decision-making process and hence it does not provide
the sufficient information to the decision-maker during the
phase of the aggregation process. These shortcomings have
been highlighted as follows:

(i) Degree of non-membership values becomes inde-
pendent on the change of the other degree of mem-
bership values: It has been observed from (4) that if
we change the degree of membership of any IMN α,
then their corresponding impact on the degree of non-
membership becomes independent. In other words,
we can say that the aggregated degrees obtained by
IMWA operator become independent of each other.
This shortcoming has been illustrated with the follow-
ing example.

Example 1 Let α1 = 〈1/3, 1/4〉, α2 = 〈2, 1/6〉,
α3 = 〈4, 1/7〉 and α4 = 〈1/9, 5〉 be four IMNs.
If we replace only the degree of membership func-
tion of these αi with a new one, then we get new
IMNs γi(i = 1, 2, 3, 4) as γ1 = 〈1/2, 1/4〉,
γ2 = 〈4, 1/6〉, γ3 = 〈5, 1/7〉 and γ4 = 〈1/6, 5〉.
Let ω = (0.1, 0.4, 0.2, 0.3)T be the weight vec-
tor of IMNs αi and γi . Then by utilizing (4) we
get IMWA(α1, α2, α3, α4) = 〈1.1510, 0.3566〉 and
IMWA(γ1, γ2, γ3, γ4) = 〈1.7726, 0.3566〉. Therefore,
it is clearly seen that the degree of non-membership
value remain same i.e., 0.3566 in both the cases. Thus,
the impact of changing μi(i = 1, 2, 3, 4) is com-
pletely independent on the degree of non-membership
of IMWA operator. Similarly, we can see the impact of
changing νi(i = 1, 2, 3, 4) on the aggregated degree
of membership of IMWA operators and found that they
are independent of each other during the aggregation
phase of the operation.

(ii) There is no proper interaction between the pairs of
the degrees of IMNs: It has been analyzed from the
existing operators that there is not a proper interaction
between the degrees of membership functions while
defining their operational laws. For instance,

Example 2 Let A = (α1, α2, α3, α4) be the collection
of IMNs where α1 = 〈0.3333, 2.000〉, α2 = 〈0.1429,
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3.000〉, α3 = 〈4.000, 0.2000〉 and α4 = 〈6.000,
0.1429〉 be four IMNs and ω = (0.2, 0.3, 0.4, 0.1)T

is the standardized weight vector of these numbers.
Then by using the IMWA operator, the aggregate
IMN becomes 〈1.4491, 0.5283〉. On the other hand,
if we take another collections of the IMNs B =
(β1, β2, β3, β4) where β1 = 〈0.2500, 3.000〉, β2 =
〈0.1667, 5.000〉, β3 = 〈7.0000, 0.1111〉 and β4 =
〈4.0626, 0.1542〉 corresponding to same weight set
then we get 〈1.4491, 0.5283〉 as the aggregated IMN
by IMWA operator. Therefore, it has been seen that the
aggregated IMN is same and hence it is unable to dis-
tinguish between the ranking of these IMNs and hence
gives an insufficient information about the preference
of the alternatives.

Therefore, there is a need to pay more attention on it in order
to rank the different IMNs. Furthermore, the uncertainties
degree has not been considered during the formulation,
so the indeterminacy information has not been completely
extracted. Therefore, in order to handle it, an improved opera-
tional law has been proposed in the next section by suffi-
ciently considering the indeterminacy information of IMNs.

3 Proposed improved aggregation operators

The above shortcoming has been overcome by defining
some new operational laws on IMNs, which has been
defined by considering the degree of the hesitation between
the membership functions, as follows:

Definition 7 Let α1 = 〈μ1, ν1〉, α2 = 〈μ2, ν2〉 and α =
〈μ, ν〉 be three IMNs and λ > 0 be a real number, then the
new operations on these IMNs are defined as follows:

(i) α1 ⊕ α2 =
〈
(1+2μ1)(1+2μ2)−1

2
,

2 {1−(1−μ1ν1)(1−μ2ν2)}
(1 + 2μ1)(1 + 2μ2) − 1

〉

1. α1 ⊗ α2 =
〈
2 {1−(1−μ1ν1)(1−μ2ν2)}

(1+2ν1)(1+2ν2)−1
,

(1+2ν1)(1+2ν2)−1

2

〉

(ii) λα =
〈

(1 + 2μ)λ − 1

2
,

2
{
1 − (1 − μν)λ

}

(1 + 2μ)λ − 1

〉

(iii) αλ =
〈
2
{
1 − (1 − μν)λ

}

(1 + 2ν)λ − 1
,

(1 + 2ν)λ − 1

2

〉

From α1 ⊕ α2, it has been obtained that the member-
ship function of α1 ⊕ α2 does not contain the pair of μ1, ν2

and ν1, μ2 while the non-membership function contains
μ1 · ν2 and ν1 · μ2. Thus, the influence of membership
function is greater than the influence on non-membership
function, which means that that attitude of decision maker
is optimistic. Similarly, the geometric meaning of new mul-
tiplication operator α1 ⊗ α2 has been obtained and found
that influence of non-membership function is greater than
that of membership functions. This is to say, the attitude of
decision maker is pessimistic.

Theorem 1 Consider three IMNs α = 〈μ, ν〉, α1 =
〈μ1, ν1〉 and α2 = 〈μ2, ν2〉 and a real λ > 0 then α1 ⊕ α2,
λα, α1 ⊗ α2 and αλ are also IMNs.

Proof Proof is straight forward, so we omit here.

Let � be a collection of an IMN αi = 〈μi, νi〉, i =
1, 2, . . . , n then, we have defined an aggregation operator
as follows.

3.1 Weighted averaging operator

Definition 8 If IFMIWA : �n −→ � be an intuitionistic
fuzzy multiplicative interactive weighted averaging operator
of dimension n that has an associated weight vector ω =
(ω1, ω2, . . . , ωn)

T , such that ωi > 0,
∑n

i=1 ωi = 1, then

IFMIWA(α1, α2, . . . , αn) = ω1α1⊕ω2α2⊕ . . .⊕ωnαn (5)

Theorem 2 For an IMN αi = 〈μi, νi〉, (i = 1, 2, . . . , n),
the aggregated value by using IFMIWA operator is still IMN
and becomes

IFMIWA(α1, α2, . . . , αn)=
〈 n∏

i=1
(1+2μi)

ωi −1

2
,

2

{
1−

n∏
i=1

(1−μiνi)
ωi

}

n∏
i=1

(1+2μi)ωi −1

〉

(6)

Proof We will prove this theorem by induction on n.
When n = 2, we have

ω1α1 =
〈
(1 + 2μ1)

ω1 − 1

2
,
2 {1 − (1 − μ1ν1)

ω1}
(1 + 2μ1)ω1 − 1

(7)

ω2α2 =
〈
(1 + 2μ2)

ω2 − 1

2
,
2 {1 − (1 − μ2ν2)

ω2}
(1 + 2μ2)ω2 − 1

〉
(8)

Thus,

IFMIWA(α1, α2) = ω1α1 ⊕ ω2α2

=
〈
(1 + 2μ1)

ω1 − 1

2
,
2 {1 − (1 − μ1ν1)

ω1 }
(1 + 2μ1)ω1 − 1

〉
⊕
〈
(1 + 2μ2)

ω2 − 1

2
,
2 {1 − (1 − μ2ν2)

ω2 }
(1 + 2μ2)ω2 − 1

〉

=
〈 2∏

i=1
(1 + 2μi)

ωi − 1

2
,

2

{
1 −

2∏
i=1

(1 − μiνi)
ωi

}

2∏
i=1

(1 + 2μi)ωi − 1

〉
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Hence, (6) holds for n = 2. Assume (6) holds for n = k,
then by using the operational laws as defined in Definition
7, we have

IFMIWA(α1, α2, . . . , αk+1) =
k+1⊕
i=1

ωiαi

= IFMIWA(α1, α2, . . . , αk) ⊕ ωk+1αk+1

=
〈 k∏

i=1
(1 + 2μi)

ωi − 1

2
,

2

{
1 −

k∏
i=1

(1 − μiνi)
ωi

}

k∏
i=1

(1 + 2μi)ωi − 1

〉

⊕
〈
(1 + 2μk+1)

ωk+1 − 1

2
,
2 {1 − (1 − μk+1νk+1)

ωk+1}
(1 + 2μk+1)ωk+1 − 1

〉

=
〈 k+1∏

i=1
(1 + 2μi)

ωi − 1

2
,

2

{
1 −

k+1∏
i=1

(1 − μiνi)
ωi

}

k+1∏
i=1

(1 + 2μi)ωi − 1

〉

Hence, result holds for n = k+1. Therefore, by principal of
mathematical induction, (6) holds for all positive integer n.

Finally, in order to show that the aggregated number is
an IMN. For this, assume that IFMIWA(α1, α2, . . . , αn) =

〈μM, νM 〉, where μM =
n∏

i=1
(1+2μi)

ωi −1

2 and νM =
2

{
1−

n∏
i=1

(1−μiνi )
ωi

}

n∏
i=1

(1+2μi)
ωi −1

. Then, it is sufficient to show that 1
9 ≤

μM, νM ≤ 9 and μMνM ≤ 1.
Since for each i, αi = 〈μi, νi〉 be an IMN, thus, we have

1
9 ≤ μi, νi ≤ 9 and μiνi ≤ 1. It can be easily prove that

1
9 ≤

n∏
i=1

(1+2μi)
ωi −1

2 ≤ 9, 1
9 ≤

2

{
1−

n∏
i=1

(1−μiνi )
ωi

}

n∏
i=1

(1+2μi)
ωi −1

≤ 9, i.e.,

1
9 ≤ μM, νM ≤ 9. Finally, we have

μMνM =

⎛
⎜⎜⎝

n∏
i=1

(1+2μi)
ωi −1

2

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝
2

{
1−

n∏
i=1

(1−μiνi)
ωi

}

n∏
i=1

(1+2μi)ωi −1

⎞
⎟⎟⎟⎠

= 1 −
n∏

i=1

(1 − μiνi)
ωi

≤ 1

Hence, the aggregated number is again an IMN.

Next, based on the proposed operator, it has been
analyzed that it successfully overcomes the shortcoming
of the existing operators as described in above section.

(i) There is a significant effect of the change of degree
of membership values on to the degree of non-
membership values: From the proposed operator, it
has also been analyzed that if degree of member-
ship functions has been changed then their corre-
sponding non-membership degree of aggregated IMN
changes. This has been illustrated and tested on the
previous Example 1, where the existing operator has
failed to justify it. Now, by applying the proposed
IFMIWA operator on IMNs αi’s given in Exam-
ple 1, we get aggregated IMN as 〈1.1510, 0.3841〉.
On the other hand, if we aggregate modified IMNs
by proposed operator then we get 〈1.7726, 0.4010〉.
Thus, it has been seen that the degree of non-
membership changes from 0.3841 to 0.4010 when
membership values of αi changes. Hence, the change
of membership degree will affect on the degree of
non-membership.

(ii) Pairs of the membership functions have a proper
interaction between them: From the definition of
the improved operations law and their corresponding
operator, it has been seen that the non-membership
degree contains the pairs of the membership and non-
membership degrees i.e., μi · νi and hence there is
a proper interaction between the membership func-
tions during the aggregation operators. This can be
illustrated by applying the proposed operator on
Example 2 and we get IFMIWA(α1, α2, α3, α4) =
〈1.4491, 0.4902〉 and IFMIWA(β1, β2, β3, β4) =
〈1.4492, 0.5283〉. Thus, by using the score function,
we get their respective values are 2.9559 and 2.7423,
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and concluded that collection of A is better than the
collection of B.

Lemma 1 [31] Let αi = 〈μi, νi〉, ωi > 0 for i =
1, 2, . . . , n and

n∑
i=1

ωi = 1, then

n∏
i=1

α
ωi

i ≤
n∑

i=1

ωiαi

with equality holds if and only if α1 = α2 = . . . = αn.

Corollary 1 For a collection of IMN αi , the proposed and
the existing operators i.e., the IFMIWA and IMWA, satisfies
the following inequality:

IFMIWA(α1, α2, . . . , αn) ≤ IMWA(α1, α2, . . . , αn)

Proof Let IFMIWA(α1, α2, . . . , αn) = 〈μp
α, ν

p
α 〉 = αp and

IMWA(α1, α2, . . . , αn) = 〈μα, να〉 = α, then we have
μ

p
α = μα and

νp
α =

2

{
1−

n∏
i=1

(1−μiνi)
ωi

}

n∏
i=1

(1 + 2μi)ωi −1
≥

2
n∏

i=1
ν

ωi

i

n∏
i=1

(νi +2)ωi −
n∏

i=1
ν

ωi

i

= να

where equality holds if and only ifμ1 = μ2 = . . . = μn and

ν1 = ν2 = . . . = νn. Therefore, S(αp) = μ
p
α

ν
p
α

≤ μα

να
= S(α).

If S(αp) < S(α) then by Definition 2, for every ω, we have
IFMIWA(α1, α2, . . . , αn) < IMWA(α1, α2, . . . , αn). On

the other hand, if S(αp) = S(α) i.e., μ
p
α

ν
p
α

= μα

να
then by the

condition μ
p
α = μα , we have ν

p
α = να . So, by the accuracy

function, we have H(αp) = μ
p
αν

p
α = μανα = H(α) and

hence IFMIWA(α1, α2, . . . , αn) = IMWA(α1, α2, . . . , αn)

Therefore, we get

IFMIWA(α1, α2, . . . , αn) ≤ IMWA(α1, α2, . . . , αn)

where that equality holds if and only if α1 = α2 = . . . =
αn.

Thus, it has been concluded from the Corollary 1 that
the proposed IFMIWA operator shows the decision maker’s
more optimistic attitude than the existing IMWA operator
proposed by [29] in the phase of the aggregation process.
This has been illustrated through an example given as below.

Example 3 Let α1 = 〈1/2, 1/3〉, α2 = 〈3, 1/5〉, α3 =
〈5, 1/7〉 and α4 = 〈1/6, 4〉 be four IMNs and ω = (0.2, 0.3,
0.1, 0.4)T be their weight vectors, then

IFMIWA(α1, α2, α3, α4)=
〈 4∏

i=1
(1 + 2μi)

ωi −1

2
,

2

{
1−

4∏
i=1

(1−μiνi)
ωi

}

4∏
i=1

(1+2μi)ωi −1

〉

=
〈
2.9366 − 1

2
,
2 × (1 − 0.5836)

2.9366 − 1

〉

= 〈0.9683, 0.6027〉

IMWA(α1, α2, α3, α4) =
〈 4∏

i=1
(1+2μi)

ωi −1

2
,

2
4∏

i=1
ν

ωi

i

n∏
i=1

(2+νi)ωi −
n∏

i=1
ν

ωi

i

〉

=
〈
2.9366 − 1

2
,

2 × 0.7099

3.3165 − 0.7099

〉

= 〈0.9683, 0.5447〉

Thus, by definition of score function, we conclude that

IFMIWA(α1, α2, α3, α4) < IMWA(α1, α2, α3, α4)

Now, we have presented some properties of the IFMIWA
operator for a collection of IMNs αi = 〈μi, νi〉, (i =
1, 2, . . . , n).

Property 1 Idempotency: If αi = α0 = 〈μ0, ν0〉 for all i,
then

IFMIWA(α1, α2, . . . , αn) = α0

Proof Since αi = α0 = 〈μ0, ν0〉, (i = 1, 2, . . . , n) and
n∑

i=1
ωi = 1, so by Theorem 2, we have

IFMIWA(α1, α2, . . . , αn) =
〈 n∏

i=1
(1+2μ0)

ωi −1

2
,

2

{
1−

n∏
i=1

(1−μ0ν0)
ωi

}

n∏
i=1

(1+2μ0)ωi −1

〉

=
〈

(1+2μ0)

n∑
i=1

ωi −1

2
,

2

⎧
⎨
⎩1−(1 − μ0ν0)

n∑
i=1

ωi

⎫
⎬
⎭

(1 + 2μ0)

n∑
i=1

ωi − 1

〉

= 〈μ0, ν0〉
= α0

Property 2 Boundedness: Let α− =〈
min

i
{μi},

max
i

{μi }max
i

{νi }
min

i
{μi }

〉
and α+ =

〈
max

i
{μi},

min
i

{μi }min
i

{νi }
max

i
{μi }

〉
then

α− ≤ IFMIWA(α1, α2, . . . , αn) ≤ α+
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Proof Let IFMIWA(A1, A2, . . . , An) = α = 〈μα, να〉.
As min

i
{μi} ≤ μi ≤ max

i
{μi} then for weight vec-

tor ω, we have

n∏
i=1

(
1+2min

i
{μi }

)ωi −1

2 ≤
n∏

i=1
(1+2μi)

ωi −1

2 ≤
n∏

i=1

(
1+2max

i
{μi }

)ωi −1

2 which implies that min
i

{μi} ≤ μα ≤
max

i
{μi}. Also, mini{νi} ≤ νi ≤ maxi{νi} and

mini{μi}mini{νi} ≤ μiνi ≤ maxi{μi}maxi{νi} which
implies that

⇒ 1 − max
i

{μi }max
i

{νi } ≤ 1 − μiνi ≤ 1 − min
i

{μi }min
i

{νi }

⇒
(
1−max

i
{μi }max

i
{νi }

)∑
i ωi

≤
n∏

i=1

(1−μiνi )
ωi≤

(
1−min

i
{μi }min

i
{νi }

)∑
i ωi

⇒ min
i

{μi }min
i

{νi } ≤ 1 −
n∏

i=1

(1 − μiνi )
ωi ≤ max

i
{μi }max

i
{νi }

⇒
min

i
{μi }min

i
{νi }

max
i

{μi } ≤
2{1 −∏

i

(1 − μiνi )
ωi }

n∏
i=1

(1 + 2μi)ωi − 1
≤

max
i

{μi }max
i

{νi }
min

i
{μi }

i.e.,
min

i
{μi }min

i
{νi }

max
i

{μi } ≤ να ≤
max

i
{μi }max

i
{νi }

min
i

{μi }

Take α− =
〈
min

i
{μi},

max
i

{μi }max
i

{νi }
min

i
{μi }

〉
and α+ =

〈
max

i
{μi},

min
i

{μi }min
i

{νi }
max

i
{μi }

〉
and thus, by definition of score

function, we get S(α) ≤ S(α+) and S(α) ≥ S(α−) and
hence by order relation between two IMNs, we have α− ≤
IFMIWA(α1, α2, . . . , αn) ≤ α+.

Property 3 Monotonicity: If αi and βi , be two collections
of IMNs such that αi ≤ βi for all i, then

IFMIWA(α1, α2, . . . , αn) ≤ IFMIWA(β1, β2, . . . , βn)

Proof Proof of this property is similar to above, so we omit
here.

Property 4 Shift-invariance: If β = 〈μβ, νβ〉 be another
IMN, then

IFMIWA(α1 ⊕ β, α2 ⊕ β, . . . , αn ⊕ β)

= IFMIWA(α1, α2 . . . , αn) ⊕ β

Proof See the proof in Appendix.

Property 5 Homogeneity: If β > 0 be a real number, then

IFMIWA(βα1, βα2, . . . , βαn)=βIFMIWA(α1, α2 . . . , αn)

Proof See the proof Appendix.

Property 6 If αi = 〈μαi
, ναi

〉 and β = 〈μβi
, νβi

〉(i =
1, 2, . . . , n) be two collections of IMNs then

IFMIWA(α1 ⊕ β1, α2 ⊕ β2, . . . , αn ⊕ βn)

= IFMIWA(α1, α2 . . . , αn) ⊕ IFMIWA(β1, β2 . . . , βn)

Proof See the proof in Appendix.

3.2 Ordered weighted averaging operator

In this section, we intend to take the idea of OWA into
IFMIWA operator and propose a new operator which is
defined as follows:

Definition 9 If IFMIOWA : �n → � be an intu-
itionistic fuzzy multiplicative interactive ordered weighted
averaging operator that has an associated weight ω =
(ω1, ω2, . . . , ωn)

T such that ωi > 0 and
∑n

i=1 ωi = 1, then

IFMIOWA(α1, α2, . . . , αn) = ω1αδ(1) ⊕ . . . ⊕ ωnαδ(n)

where (δ(1), δ(2), . . . , δ(n)) be the permutation of
(1, 2, . . . , n) such that αδ(i−1) ≥ αδ(i) for i = 2, 3, . . . , n
and αδ(i) is the ith largest of IMN αi .

Theorem 3 Let αi = 〈μi, νi〉, (i = 1, 2, . . . , n) be the
collection of IMNs, then based on IFMIOWA operator, the
aggregated IMN can be expressed as

IFMIOWA(α1, α2, . . . , αn) =
〈 n∏

i=1
(1+2μδ(i))

ωi −1

2
,

2

{
1−

n∏
i=1

(1−μδ(i)νδ(i))
ωi

}

n∏
i=1

(1+2μδ(i))ωi −1

〉

(9)

Proof The proof of this theorem is similar to that of Theo-
rem 2 and hence it is omitted here.

Corollary 2 The IFMIOWA operator and IFMOWA oper-
ator have the following relation for a collection of IMNs
αi(i = 1, 2, . . . , n)

IFMIOWA(α1, α2, . . . , αn) ≤ IFMOWA(α1, α2, . . . , αn)

Proof Proof is similar to that of Corollary 1 and hence it is
omitted here.
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Furthermore, it has been observed that the IFMIOWA
operator also satisfies the idempotent, boundedness, mono-
tonicity, shift-invariance and homogeneity property.

Example 4 Let α1 = 〈1/3, 1/4〉, α2 = 〈2, 1/6〉, α3 =
〈4, 1/7〉 and α4 = 〈1/9, 5〉 be four IMNs and the IFMIOWA
operator has an associated vector ω = (0.1, 0.4, 0.2, 0.3)T .
Since S(α3) > S(α2) > S(α1) > S(α4) and hence
αδ(1) = 〈4, 1/7〉, αδ(2) = 〈2, 1/6〉, αδ(3) = 〈1/3, 1/4〉 and
αδ(4) = 〈1/9, 5〉. Then,

4∏
i=1

(1 + 2μδ(i))
ωi = (1 + 2 ×

4)0.1 × (1 + 2 × 2)0.4 × (1 + 2 × 1/3)0.2 × (1 + 2 ×
1/3)0.3 = 2.7895,

4∏
i=1

(νδ(i))
ωi = (1/7)0.1 × (1/6)0.4 ×

(1/4)0.2 × (5)0.3 = 0.4938,
4∏

i=1
(2 + νδ(i))

ωi = (2 +
1/7)0.1 × (2 + 1/6)0.4 × (2 + 1/4)0.2 × (2 + 5)0.3 =
3.1001 and

4∏
i=1

(1 − μδ(i)νδ(i))
ωi = (1 − 4/7)0.1 ×

(1 − 2/6)0.4 × (1 − 1/12)0.2 × (1 − 5/9)0.3 = 0.6019.
Therefore, IFMIOWA(α1, . . . , α4) = 〈0.8948, 0.4449〉
and IMOWA(α1, . . . , α4) = 〈0.8948, 0.3789〉 and hence
it has been obtained that IFMIOWA(α1, . . . , α4) <

IFMOWA(α1, . . . , α4).

3.3 Hybrid weighted averaging operator

In this section, by combining the advantage of both
IFMIWA and IFMIOWA operators, we have defined a new
hybrid averaging operator under the IMS environment as
follows.

Definition 10 For a collection of IMNs, αi = 〈μi, νi〉, (i =
1, 2, . . . , n), if IFMIHWA : �n → � be defined as

IFMIHWA(α1, α2, . . . , αn) = ω1α̇δ(1) ⊕ . . . ⊕ ωnα̇δ(n)

where ω = (ω1, ω2, . . . , ωn)
T is the associated standard-

ized weight vector of IFMIHWA operator satisfying ωi > 0

and
n∑

i=1
ωi = 1, α̇δ(i) is the ith largest of the weighted IMNs

α̇i (α̇i = nwiαi, i = 1, 2, . . . , n), n is the number of IMNs
and w = (w1, w2, . . . , wn)

T is the standard weight vector
of αi(i = 1, 2, . . . , n), then IFMIHWA is called as an intu-
itionistic fuzzy multiplicative interactive hybrid weighted
averaging operator.

From the Definition 10, it has been concluded that

(i) It firstly weights the IMNs αi by the associated
weights wi and hence get the weighted IMNs α̇i =
nwiαi(i = 1, 2, . . . , n).

(ii) It reorders the weighted arguments in descending
order (α̇δ(1), α̇δ(2), . . . , α̇δ(n)), where α̇δ(i) is the ith

largest of α̇i (i = 1, 2, . . . , n).
(iii) It weights these ordered weighted IMNs α̇δ(i) by

the IFMIWA weights ωi(i = 1, 2, . . . , n) and then
aggregates all these values into a collective one.

Based on the proposed improved operational rules of the
IMNs, we can derive the result shown in Theorem 4.

Theorem 4 For a collection of IMN αi = 〈μi, νi〉, (i =
1, 2, . . . , n), the aggregated value by IFMIHWA operator
can be expressed as

IFMIHWA(α1, α2, . . . , αn) =
〈 n∏

i=1
(1+2μ̇δ(i))

ωi −1

2
,

2

{
1−

n∏
i=1

(1−μ̇δ(i)ν̇δ(i))
ωi

}

n∏
i=1

(1+2μ̇δ(i))ωi −1

〉

Proof The proof is similar to Theorem 2, so it is omitted
here.

It can be easily proved that the IFMIHWA operator is also
bounded, idempotent and monotonic.

Example 5 Let α1 = 〈1/3, 1/4〉, α2 = 〈2, 1/6〉, α3 =
〈4, 1/7〉 and α4 = 〈1/9, 5〉 be four IMNs and w =
(0.12, 0.27, 0.24, 0.31)T be the standardized weight vec-
tor of the four IMNs, and ω = (0.1, 0.4, 0.2, 0.3)T is
the associated weighted vector of the IFMIHWA oper-
ator. Then, α̇i = nwiαi, (i = 1, 2, 3, 4) becomes
α̇1 = 〈0.1389, 0.2944〉, α̇2 = 〈2.3435, 0.1513〉, α̇3 =
〈3.6214, 0.1537〉 and α̇4 = 〈0.1729, 4.0419〉. Thus S(α̇3) >

S(α̇2) > S(α̇1) > S(α̇4). Hence, α̇δ(1) = α3; α̇δ(2) =
α2; α̇δ(3) = α1 and α̇δ(4) = α4. Therefore, based on
these IMNs and by utilizing the IFMIHWA operator cor-
responding to weight vector ω, we get aggregated IMN as
〈0.9208, 0.5047〉. On the other hand, if we aggregate these
IMNs by IMHWA operators [29] then the aggregated IMN
becomes 〈0.9208, 0.4318〉.

Now, next, we have defined the generalized weighted,
ordered and hybrid aggregation operators by using the pro-
posed operational laws for a collection of an IMN αi =
〈μi, νi〉, i = 1, 2, . . . , n and named as generalized intuition-
istic fuzzy multiplicative interactive weighted averaging
(GIFMIWA), generalized intuitionistic fuzzy multiplicative
interactive ordered weighted averaging (GIFMIOWA) and
generalized intuitionistic fuzzy multiplicative interactive
hybrid weighted averaging (GIFMIHWA) operators.
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Definition 11 Let αi = 〈μi, νi〉, (i = 1, 2, . . . , n) be a
collection of IMNs. A GIFMIWA operator of dimension n

is a mapping GIFMIWA : �n → �, that has an associated

weight vector ω = (ω1, ω2, . . . , ωn)
T , such that ωi > 0,∑n

i=1 ωi = 1. Furthermore,

GIFMIWA(α1, α2, . . . , αn) = (
ω1α

λ
1 ⊕ ω2α

λ
2 ⊕ . . . ⊕ ωnα

λ
n

)1/λ
(10)

=
〈 2

{
n∏

i=1

{
3 + (1 + 2νi)

λ
}ωi −

n∏
i=1

{
(1 + 2νi)

λ − 1
}ωi

}1/λ [
1 −

n∏
i=1

(1 − μiνi)
ωi

]

⎡
⎢⎢⎣

{
n∏

i=1

{
3 + (1 + 2νi)

λ − 4(1 − μiνi)
λ
}ωi − 4

n∏
i=1

{
(1 + 2νi)

λ − 1
}ωi

n∏
i=1

(1 − μiνi)
λωi

+3
n∏

i=1

{
(1 + 2νi)

λ − 1
}ωi

}1/λ
−
{

n∏
i=1

{
3 + (1 + 2νi)

λ
}ωi −

n∏
i=1

{
(1 + 2νi)

λ − 1
}ωi

}1/λ

⎤
⎥⎥⎦

,

⎡
⎢⎢⎣

{
n∏

i=1

{
3 + (1 + 2νi)

λ − 4(1 − μiνi)
λ
}ωi − 4

n∏
i=1

{
(1 + 2νi)

λ − 1
}ωi

n∏
i=1

(1 − μiνi)
λωi

+3
n∏

i=1

{
(1 + 2νi)

λ − 1
}ωi

}1/λ
−
{

n∏
i=1

{
3 + (1 + 2νi)

λ
}ωi −

n∏
i=1

{
(1 + 2νi)

λ − 1
}ωi

}1/λ

⎤
⎥⎥⎦

2

{
n∏

i=1

{
3 + (1 + 2νi)λ

}ωi −
n∏

i=1

{
(1 + 2νi)λ − 1

}ωi

}1/λ
〉

where λ is a real number greater than zero.

Especially,

(i) If λ = 1 then the GIFMIWA reduces to IFMIWA
operator;

(ii) If ω = (1/n, 1/n, . . . , 1/n)T then GIFMIWA reduces
to the generalized intuitionistic fuzzy weighted

multiplicative averaging (GIFWMA) operator,

GIFWMA(α1, α2, . . . , αn) =
(

1
n

n⊕
i=1

αλ
i

)1/λ

Definition 12 For a collection of IMN αi , i = 1, 2, . . . , n,
a GIFMIOWA operator of dimension n is mapping
GIFMIOWA : �n → � and is defined as follows:

GIFMIOWA(α1, α2, . . . , αn) =
(
ω1α

λ
δ(1) ⊕ ω2α

λ
δ(2) ⊕ . . . ⊕ ωnα

λ
δ(n)

)1/λ

=
〈 2

{
n∏

i=1

{
3 + (1 + 2νδ(i))

λ
}ωi −

n∏
i=1

{
(1 + 2νδ(i))

λ − 1
}ωi

}1/λ [
1 −

n∏
i=1

(1 − μδ(i)νδ(i))
ωi

]

⎡
⎢⎢⎣

{
n∏

i=1

{
2 + (1 + 2νδ(i))

λ − 4(1 − μδ(i)νδ(i))
λ
}ωi − 4

n∏
i=1

{
(1 + 2νδ(i))

λ − 1
}ωi

n∏
i=1

(1 − μδ(i)νδ(i))
λωi

+3
n∏

i=1

{
(1 + 2νδ(i))

λ − 1
}ωi

}1/λ
−
{

n∏
i=1

{
3 + (1 + 2νδ(i))

λ
}ωi −

n∏
i=1

{
(1 + 2νδ(i))

λ − 1
}ωi

}1/λ

⎤
⎥⎥⎦

,

⎡
⎢⎢⎣

{
n∏

i=1

{
3 + (1 + 2νδ(i))

λ − 4(1 − μδ(i)νδ(i))
λ
}ωi − 4

n∏
i=1

{
(1 + 2νδ(i))

λ − 1
}ωi

n∏
i=1

(1 − μδ(i)νδ(i))
λωi

+3
n∏

i=1

{
(1 + 2νδ(i))

λ − 1
}ωi

}1/λ
−
{

n∏
i=1

{
3 + (1 + 2νδ(i))

λ
}ωi −

n∏
i=1

{
(1 + 2νδ(i))

λ − 1
}ωi

}1/λ

⎤
⎥⎥⎦

2

{
n∏

i=1

{
3 + (1 + 2νδ(i))λ

}ωi −
n∏

i=1

{
(1 + 2νδ(i))λ − 1

}ωi

}1/λ
〉

where λ is the real number greater than zero, δ :
(1, 2, . . . , n) −→ (1, 2, . . . , n) is the permutation mapping

and αδ(i) is the ith largest of IMN αi . When the parameter
λ = 1, then it reduces to IFMIOWA operator.
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Definition 13 For a collection of IMN αi , i = 1, 2, . . . , n,
a GIFMIHWA operator of dimension n is mapping
GIFMIHWA : �n → � and is defined as follows:

GIFMIHWA(α1, α2, . . . , αn) =
(
ω1α̇

λ
δ(1) ⊕ ω2α̇

λ
δ(2) ⊕ . . . ⊕ ωnα̇

λ
δ(n)

)1/λ

=
〈 2

{
n∏

i=1

{
3 + (1 + 2ν̇δ(i))

λ
}ωi −

n∏
i=1

{
(1 + 2ν̇δ(i))

λ − 1
}ωi

}1/λ [
1 −

n∏
i=1

(1 − μ̇δ(i)ν̇δ(i))
ωi

]

⎡
⎢⎢⎣

{
n∏

i=1

{
2 + (1 + 2ν̇δ(i))

λ − 4(1 − μ̇δ(i)ν̇δ(i))
λ
}ωi − 4

n∏
i=1

{
(1 + 2ν̇δ(i))

λ − 1
}ωi

n∏
i=1

(1 − μ̇δ(i)ν̇δ(i))
λωi

+3
n∏

i=1

{
(1 + 2ν̇δ(i))

λ − 1
}ωi

}1/λ
−
{

n∏
i=1

{
3 + (1 + 2ν̇δ(i))

λ
}ωi −

n∏
i=1

{
(1 + 2ν̇δ(i))

λ − 1
}ωi

}1/λ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

{
n∏

i=1

{
2 + (1 + 2ν̇δ(i))

λ − 4(1 − μ̇δ(i)ν̇δ(i))
λ
}ωi − 4

n∏
i=1

{
(1 + 2ν̇δ(i))

λ − 1
}ωi

n∏
i=1

(1 − μ̇δ(i)ν̇δ(i))
λωi

+3
n∏

i=1

{
(1 + 2ν̇δ(i))

λ − 1
}ωi

}1/λ
−
{

n∏
i=1

{
3 + (1 + 2ν̇δ(i))

λ
}ωi −

n∏
i=1

{
(1 + 2ν̇δ(i))

λ − 1
}ωi

}1/λ

⎤
⎥⎥⎦

2

{
n∏

i=1

{
3 + (1 + 2ν̇δ(i))λ

}ωi −
n∏

i=1

{
(1 + 2ν̇δ(i))λ − 1

}ωi

}1/λ
〉

where α̇δ(i) is the ith largest of the weighted IMNs α̇i (α̇i =
nwiαi, i = 1, 2, . . . , n), n is the number of IMNs and w =
(w1, w2, . . . , wn)

T is the standard weight vector of αi .

4 Group decision making approach based
on the proposed operators with intuitionistic
multiplicative preference relations

4.1 Proposed approach

Assume that a set of alternatives X = (X1, X2, . . . , Xn)

which are evaluated by the group of decision makers D =
(D(1), D(2), . . . , D(q)) who will receive the full responsi-
bility for the whole process. These experts have evaluated
each of the alternative and give their preferences in terms
of IMNs α

(k)
ij and their corresponding decision matrix is

denoted by D(k) = (α
(k)
ij )n×n where α

(k)
ij = 〈μ(k)

ij , ν
(k)
ij 〉 rep-

resents the priority value of alternative Xi given by decision
maker D(k)(k = 1, 2, . . . , q) such that 1

9 ≤ μ
(k)
ij , ν

(k)
ij ≤ 9

and μ
(k)
ij ν

(k)
ij ≤ 1. Let ω = (ω1, ω2, . . . , ωn)

T is the corre-

sponding weighting vector, satisfying wi > 0,
n∑

i=1
wi = 1.

Then, in order to choose the best alternative, we forwarded
the following steps of the proposed approach.

(Step 1:) Use of the GIFMIWA or GIFMIOWA
or GIFMIHWA operators to aggregate
the (α

(k)
1j , α

(k)
2j , . . . , α

(k)
nj ) and obtain the

α
(k)
i (k = 1, 2, . . . , q; i = 1, 2, . . . , n).

(Step 2:) Based on the IFMIWA or IFMIOWA
or IFMIHWA operator to aggregate the
(α

(k)
1 , α

(k)
2 , . . . , α

(k)
n ) to IMNs αi which is

the overall aggregated value of the alternative
Xi(i = 1, 2, . . . , n).

(Step 3:) Compute the score value of aggregated IMN αi ,
denoted by S(αi), in accordance with the score
function of the IMN.

(Step 4:) Rank the alternatives based on the values of
S(αi) and hence select the best alternative(s).

(Step 5:) Do the sensitivity analysis on the parameter λ

according to decision maker’s preference.

4.2 Numerical example

The above mentioned approach has been illustrated with a
practical example of the DM which can be read as:

The Kedarnath valley, along with and other parts of the
state of Uttarakhand in the north of India, was hit with
unprecedented flash floods in July 2013. A large number
of roads, which connect to the Kedarnath valley with other
parts of Uttarakhand had been destroyed in this flood. In
this context, Uttrakhand government has to take a consid-
erable number of road building projects either to preserve
the roads already built or to undertake the new roads.
These projects have been carried out by a limited number
of the well-established contractors, and the selection pro-
cess has been on the basis of bid price alone. In recent
years, increased project complexity, technical capability,
higher performance, and safety and financial requirements
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have been demanding the use of multi-attribute decision-
making methods. For this, Uttarakhand government had
been issued the notice in the newspapers, and the four
officers (D(1), D(2), D(3), D(4)) which takes the responsi-
bility to select the best contractor out of the four possible
alternatives, namely, Jaihind Road Builders Pvt. Ltd. (X1),
J.K. Construction (X2), Buildquick Infrastructure Pvt. Ltd.
(X3), Relcon Intraprojects Ltd. (X4) bid for these projects.

Then the objective of the Government is to choose the
best contractor among them for the task. In order to ful-
fill it, let ω = (0.3, 0.2, 0.4, 0.1)T be the weight vector
corresponding to the four officers such that they have eval-
uated each candidate and gave their preferences in terms
of IMNs and hence constructed the following four deci-
sion matrices D(k) = (α

(k)
ij )4×4, (k = 1, 2, 3, 4) as shown

below:

D(1) =

⎛
⎜⎜⎝

〈1, 1〉 〈1/4, 3〉 〈1/3, 1〉 〈1/5, 1〉
〈3, 1/4〉 〈1, 1〉 〈1/7, 2〉 〈2/3, 1/3〉
〈1, 1/3〉 〈2, 1/7〉 〈1, 1〉 〈1/4, 1/7〉
〈1, 1/5〉 〈1/3, 2/3〉 〈1/7, 1/4〉 〈1, 1〉

⎞
⎟⎟⎠ , D(2) =

⎛
⎜⎜⎝

〈1, 1〉 〈1/7, 2〉 〈2/3, 1/3〉 〈1/4, 1〉
〈2, 1/7〉 〈1, 1〉 〈1/8, 1〉 〈2/5, 2〉
〈1/3, 2/3〉 〈1, 1/8〉 〈1, 1〉 〈1, 2/3〉
〈1, 1/4〉 〈2, 2/5〉 〈2/3, 1〉 〈1, 1〉

⎞
⎟⎟⎠

D(3) =

⎛
⎜⎜⎝

〈1, 1〉 〈3, 1/5〉 〈1/3, 1〉 〈1/5, 2〉
〈1/5, 3〉 〈1, 1〉 〈1/4, 3〉 〈2/5, 1/2〉
〈1, 1/3〉 〈3, 1/4〉 〈1, 1〉 〈2/7, 3〉
〈2, 1/5〉 〈1/2, 2/5〉 〈3, 2/7〉 〈1, 1〉

⎞
⎟⎟⎠ , D(4) =

⎛
⎜⎜⎝

〈1, 1〉 〈1/4, 3〉 〈3, 1/5〉 〈1/4, 1〉
〈3, 1/4〉 〈1, 1〉 〈1/4, 1/3〉 〈2/5, 1/3〉
〈1/5, 3〉 〈1/3, 1/4〉 〈1, 1〉 〈3/5, 2/3〉
〈1, 1/4〉 〈1/3, 2/5〉 〈2/3, 3/5〉 〈1, 1〉

⎞
⎟⎟⎠

Here, in the first decision matrix, D(1), for example, the
first preference is (1, 1) implies that when the first contrac-
tor X1 compares with himself then the preference is (1, 1).
On the other hand, the IMN (1/4, 3) indicates that the first
officer argued that the degree of first contractor is priority to
the second contractor is 1/4 while at the same time, he thinks
the degree of first contractor is not a priority to the second
contractor is 3. Similarly, the other observations have their
meaning. Now, for the sake of simplicity, we take λ = 0.6,
the following steps are being executed for aggregating these

different preferences by using GIFMIWA and GIFMIHWA
operators as follows:

4.2.1 By GIFMIWA operator

(Step 1:) To make use of GIFMIWA operator to aggregate
(α

(k)
1j , . . . , α

(k)
4j ) and hence obtain the aggregated

IMNs α
(k)
i , (i, k = 1, 2, 3, 4) and represented as

a decision-matrix M as

M =

⎛
⎜⎜⎝

〈0.2766, 3.6152〉 〈0.5003, 1.9988〉 〈0.6782, 1.4745〉 〈0.1723, 5.8053〉
〈0.3128, 3.1966〉 〈0.3465, 2.8862〉 〈0.4774, 2.0948〉 〈0.6146, 1.6270〉
〈0.5001, 1.9996〉 〈0.2231, 4.4828〉 〈0.8506, 1.1756〉 〈1.1503, 0.8694〉
〈0.8405, 1.1898〉 〈0.5024, 1.9904〉 〈0.3405, 2.9366〉 〈0.3418, 2.9260〉

⎞
⎟⎟⎠

(Step 2:) Use the IFMIWA operator to aggregate the
decision-making matrix M by using weight vec-
tor ω and get IMNs αi as

α1=〈0.4103, 2.4373〉, α2=〈0.3445, 2.9026〉,
α3=〈0.6547,1.5274〉, α4=〈0.5611, 1.7824〉

(Step 3:) The score values corresponding to these αi are
computed as

S(α1) = 0.1683, S(α2) = 0.1187, S(α3)

= 0.4286, S(α4) = 0.3148

(Step 4:) Therefore, based on these score values, it has
been concluded that S(α3)  S(α4)  S(α2) 
S(α1). Thus, the ordering of the four contractors
is X3  X4  X1  X2 and hence the best
contractor is X3.

4.2.2 By GIFMIHWA operator

(Step 1:) To make use of GIFMIHWA operator to aggre-
gate (α

(k)
1j , . . . , α

(k)
4j ) and hence obtain the aggre-

gated IMNs α
(k)
i and their corresponding results

are summarized as

M =

⎛
⎜⎜⎝

〈0.2299, 4.3496〉 〈0.6752, 1.4810〉 〈0.6491, 1.5405〉 〈0.1755, 5.6981〉
〈0.2689, 3.7188〉 〈0.3371, 2.9664〉 〈0.4721, 2.1181〉 〈0.7139, 1.4008〉
〈0.5462, 1.8309〉 〈0.3050, 3.2782〉 〈0.9036, 1.1066〉 〈1.1784, 0.8486〉
〈0.8117, 1.2320〉 〈0.3906, 2.5601〉 〈0.3652, 2.7380〉 〈0.2964, 3.3735〉

⎞
⎟⎟⎠
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(Step 2:) Use the IFMIHWA operator to aggregate the
decision matrix M and hence get the overall
aggregated value αi as

α1=〈0.4422, 2.2612〉, α2=〈0.4088, 2.4464〉,
α3=〈0.7088, 1.4108〉, α4=〈0.6314, 1.5839〉

(Step 3:) The score values corresponding to these αi(i =
1, 2, 3, 4) are computed as

S(α1) = 0.1956, S(α2) = 0.1671, S(α3)

= 0.5024, S(α4) = 0.3986

(Step 4:) Thus, the ordering of the four contractors is
X3  X4  X1  X2 and therefore, the best
contractor for the job is X3.

On the other hand, if we apply IMHWA operator to
aggregated the IMNs then we get the overall IMN as

α1 = 〈0.4680, 1.2274〉, α2 = 〈0.5491, 0.7389〉,
α3 = 〈0.6345, 0.6633〉, α4 = 〈0.7309, 0.5885〉

and hence by using score function of these numbers, we get
the ordering of these four contractors as X4  X3  X1 
X2.

4.3 Comparative study

In this section, we have compared the performance of the
proposed operator based decision-making approach under
the IMS as well as IFS environments.

4.3.1 Comparison of results with those obtained with IMS
environment

If we compare the proposed approach results with some
existing measures [9, 14, 29] under IMS environment by
taking weight vector ω then we get

(i) If we use [29] method to aggregate all preference
values as defined in (4) then we obtain the aver-
aged IMNs αi(i = 1, 2, 3, 4) of the candidate
Xi(i = 1, 2, 3, 4) as α1 = 〈0.6414, 0.8222〉, α2 =
〈0.5496, 0.8971〉, α3 = 〈0.9506, 0.5202〉 and α4 =
〈0.9714, 0.3573〉. Thus, the score values of these
αi(i = 1, 2, 3, 4) are S(α1) = 0.7801, S(α2) =
0.6127, S(α3) = 1.8274 and S(α4) = 2.7188 and
hence α4 > α3 > α1 > α2 by which we can get the
ranking X4  X3  X1  X2. Therefore, the best
contractor for the required job is X4.

(ii) If we use (2) as proposed by Jiang et al. [14] under
IMS environment, then we get Ep(X1) = 0.3054,
Ep(X2) = 0.2940,Ep(X3) = 0.3729 andEp(X4) =
0.3343. Thus Ep(X3) > Ep(X4) > Ep(X1) >

Ep(X2), by which we get the ranking order as X3 
X4  X1  X2. Thus, the best contractor for the
required post is X3.

(iii) If we use weighted hamming distance measure,
denoted by d(·) as proposed by Garg [9] to the
considered data for finding the best alternative with
respect to ideal alternative X∗ = 〈9, 1/9〉 then we
get d(X1, X

∗) = 0.7347, d(X2, X
∗) = 0.6962,

d(X3, X
∗) = 0.6260 and d(X4, X

∗) = 0.6714. Thus,
based on these measure values, we get X3  X4 
X2  X1 and hence best contractor for the job is X3.

4.3.2 Comparison of results with those obtained with IFS
environment

In order to compare the proposed approach with the results
obtained through IFS environment. For it, firstly Defini-
tion 4 has been used for converting the preferences of
the alternatives from IMS to IFS and then existing mea-
sures [2, 4–6, 10, 19, 20, 23, 24, 31, 33, 35] have been
utilized for finding the most suitable alternative(s). The
results corresponding to these existing approaches are sum-
marized in Table 1. From this table, it has been con-
cluded that the best alternative obtained by the proposed
approach coincides with these existing studies. Therefore,
the considered approach can be taken as an alternative
way to solve these types of problem in a more profitable
way.

4.4 Effect of λ on the ranking of the candidate

In order to analyze the effect of the parameter λ on
the final ranking of the contractors, an investigation has
been done, in which λ varies from 0 to 15, by using
the proposed approach. The overall score values of each
contractor corresponding to GIFMIWA, GIFMIOWA, and
GIFMIHWA operators are represented in Table 2 along
with their ranking order. From this table, it has been seen
that for different values λ, the decision-maker have dif-
ferent ranking related to the contractor, which shows to
the decision makers that they can choose the best val-
ues according to their preferences. Furthermore, the results
corresponding to λ = 1 are equivalent to the results as
obtained by IFMIWA operator, which represents that the
decision maker’s attitude toward the analysis is neutral.
Thus, the management meaning of λ is that the decision
makers’ different preference had effects on the overall val-
ues of alternative, which leads to the different optimal
alternative.



2132 H. Garg

Table 1 Comparative study

Method Overall value of the contractor Ranking order

X1 X2 X3 X4

[31] Averaging operator −0.3728 −0.4080 −0.2314 −0.3188 X3  X4  X1  X2

[33] Geometric operator −0.4392 −0.4211 −0.3077 −0.3537 X3  X4  X2  X1

[35] Improved accuracy function 0.3136 0.2960 0.3843 0.3406 X3  X4  X1  X2

[4] Improved score function 0.3379 0.2973 0.3937 0.3346 X3  X1  X4  X2

[24] Einstein averaging operator −0.3752 −0.4085 −0.2341 −0.3203 X3  X4  X1  X2

[2] Einstein Geometric operator −0.4383 −0.4209 −0.3062 −0.3530 X3  X4  X2  X1

[19] novel accuracy function −0.1576 −0.1996 0.0052 −0.0942 X3  X4  X1  X2

[6] Improved accuracy function −0.5421 −0.5542 −0.5219 −0.5436 X3  X1  X4  X2

[23] Accuracy score function 0.3136 0.2960 0.3843 0.3406 X3  X4  X1  X2

[20] non-hesistance score function 0.3989 0.3918 0.4318 0.4107 X3  X4  X1  X2

[5] Pythagorean Einstein averaging operator −0.3261 −0.3610 −0.1896 −0.2743 X3  X4  X1  X2

[10] Improved aggregation operator −0.3817 −0.4101 −0.2421 −0.3249 X3  X4  X1  X2

Table 2 Effect of λ on the score values and ranking of the alternatives

Score values (λ = 0.5) Score values (λ = 0.7) Score values (λ = 1)

GIFMIWA GIFMIOWA GIFMIHWA GIFMIWA GIFMIOWA GIFMIHWA GIFMIWA GIFMIOWA GIFMIHWA

X1 0.1087 0.0794 0.1172 0.2347 0.1944 0.2884 0.4520 0.4315 0.6333

X2 0.0723 0.2691 0.1078 0.1724 0.5027 0.2327 0.3566 0.8624 0.4459

X3 0.3074 0.1939 0.3196 0.5548 0.4337 0.7133 0.9380 0.8800 1.4583

X4 0.1866 0.2780 0.2254 0.4848 0.5454 0.6181 1.0182 1.0015 1.4888

Ranking (3412) (4231) (3412) (3412) (4231) (3412) (4312) (4321) (4312)

Score values (λ = 2) Score values (λ = 2.5) Score values (λ = 3.5)

GIFMIWA GIFMIOWA GIFMIHWA GIFMIWA GIFMIOWA GIFMIHWA GIFMIWA GIFMIOWA GIFMIHWA

X1 1.1689 1.3441 2.1438 1.5181 1.8064 3.0422 2.2627 2.7604 5.1543

X2 1.0738 2.0043 1.1663 1.4950 2.6087 1.5392 2.4721 3.9579 2.4689

X3 2.3144 2.3702 4.4177 2.7204 3.1825 5.9533 3.9482 4.9380 9.2221

X4 3.0337 2.4730 5.8349 3.9653 3.1320 8.3845 5.6520 4.4371 14.464

Ranking (4312) (4321) (4312) (4312) (3421) (4312) (4321) (3421) (4312)

Score values (λ = 4.5) Score values (λ = 6.5) Score values (λ = 10)

GIFMIWA GIFMIOWA GIFMIHWA GIFMIWA GIFMIOWA GIFMIHWA GIFMIWA GIFMIOWA GIFMIHWA

X1 3.0959 3.7647 7.7020 4.9006 5.7811 13.9369 7.7791 8.7588 25.7568

X2 3.5733 5.3214 3.3498 5.8725 7.9936 5.0309 9.3619 12.021 7.7236

X3 5.2476 6.8553 12.521 7.9055 10.379 14.8428 12.4081 16.203 29.7224

X4 7.1311 5.6228 16.503 9.5222 7.7012 42.0610 12.3274 10.420 90.9131

Ranking (4321) (3421) (4312) (4321) (3241) (4312) (3421) (3241) (4312)

Score values (λ = 12) Score values (λ = 13.5) Score values (λ = 15)

GIFMIWA GIFMIOWA GIFMIHWA GIFMIWA GIFMIOWA GIFMIHWA GIFMIWA GIFMIOWA GIFMIHWA

X1 9.1290 10.1015 30.4122 7.0602 6.7222 14.7973 10.8162 11.7525 45.4136

X2 11.5098 13.9585 8.9566 8.8449 11.8429 9.7440 14.1005 16.5788 10.4319

X3 14.8443 19.1506 34.9783 12.736 15.1107 38.4755 18.2474 23.0462 41.7395

X4 13.4338 11.6103 125.8473 8.3977 8.5921 154.9157 14.7061 12.9910 186.1265

Ranking (3421) (3241) (4312) (3241) (3241) (4312) (3421) (3241) (4132)
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4.5 Validity test of the proposed approach

Since practically it is not possible to determine which one
is the best suitable alternative for a given decision prob-
lem, [26] established following testing criteria to evaluate
the validity of MCDM methods.
Test criterion 1: An effective MCDM method should not
change the indication of the best alternative on replacing
a non-optimal alternative by anotherworse alternative without
changing the relative importance of each decision criteria.
Test criterion 2: An effective MCDM method should fol-
low transitive property.
Test criterion 3: When a MCDM problem is decomposed
into smaller problems and same MCDM method is applied

on smaller problems to rank the alternatives, combined
ranking of the alternatives should be identical to the original
ranking of un-decomposed problem.

The validity of the proposed aggregation operators based
MCDM method is tested using these test criterions.

4.5.1 Validity test of proposed approach using test criterion
1

In order to test the validity of the proposed approach under
test criterion 1, the following decision matrix M ′ is obtained
by interchanging the membership and non-membership
grades of the alternative X2 (non-optimal alternative) and
X1 (worse alternative) as

M ′ =

⎛
⎜⎜⎝

〈0.8412, 1.1888〉 〈0.5003, 1.9988〉 〈0.6782, 1.4745〉 〈0.1723, 5.8053〉
〈0.4677, 2.1379〉 〈0.3465, 2.8862〉 〈0.4774, 2.0948〉 〈0.6146, 1.6270〉
〈0.5343, 1.8717〉 〈0.2231, 4.4828〉 〈0.8506, 1.1756〉 〈1.1503, 0.8694〉
〈0.5457, 1.8325〉 〈0.5024, 1.9904〉 〈0.3405, 2.9366〉 〈0.3418, 2.9260〉

⎞
⎟⎟⎠

Since, the relative importance of the criteria remain
unchanged in the modified problem, so the proposed
IFMIWA operator has been implemented to find the best
alternative and hence the weighted IMN of each con-
tractor is obtained as α1 = 〈0.6022, 1.6602〉, α2 =
〈0.3445, 2.9026〉, α3 = 〈0.6547, 1.5247〉 and α4 =
〈0.5611, 1.7824〉. Thus, the score values of each contrac-
tor are computed as 0.3626, 0.1187, 0.4286 and 0.3148
respectively and hence ranking order of the alternatives are
is X3  X1  X4  X2. Since the indication of the
best alternative is again X3 which is same as that of the
original decision-making problem, therefore it is confirmed
that the proposed method does not change the indication
of the best alternative when a non-optimal alternative is
replaced by another worse alternative. Hence the proposed
approach is valid under test criterion 1 established by
[26].

4.5.2 Validity test of proposed approach using test criterion
2 and test criterion 3

In order to test the validity of proposed method using test
criterion 2 and test criterion 3, original decision-making
problem is decomposed into a set of smaller MCDM
problems {X1, X2, X4}, {X1, X3, X4} and {X2, X3, X4}.
Following the steps of proposed methods, ranking X4 
X1  X2, X3  X4  X1 and X3  X4  X2 respectively

are obtained for these smaller subproblems. If ranking of
the alternatives of sub-problems are combined together, the
final ranking X3  X4  X1  X2 is obtained which is
identical to the ranking of un-decomposed MCDM problem
and exhibits transitive property. Hence the proposed method
is valid under test criterion 2 and test criterion 3 established
by [26].

5 Conclusion

In the present paper, an effective technique to aggregate
the preferences of the decision-maker has been presented
under the IMS environment where the rating is measured
on the scale of 1/9-9 rather than 0-1. For it, firstly some
new operational laws for aggregating the different IMNs
have been presented by overcoming the shortcoming of the
existing operations. Based on these laws, some series of the
aggregation operators such as IFMIWA, IFMIOWA, IFMI-
HWA, GIFMIWA, GIFMIOWA, and GIFMIHWA have
forwarded during the phase of the aggregation process.
Some of its desirable properties have also been investi-
gated in details. From the study, it has been observed that
the existing IMWA operator [29] can be derived from the
proposed operator under some special cases. Further, we
proposed the new method based on the proposed operators
to solve the decision-making problems in practical applica-
tions. Finally, we proved the effectiveness and feasibility of
proposed methods by some practical examples. In addition,
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we illustrate the advantages of the new method by com-
paring with the existing methods. In the further research,
we will apply improved operation rules of IMNs to more
aggregation operators such as Bonferroni mean operator,
Heronian mean operator. In addition, we will apply these
methods to solve the real decision making problems such
as pattern recognition, supply chain management, cluster
analysis.

Appendix

Proof Property 4 As αi, β ∈ IMNs, so

αi ⊕β =
〈

(1 + 2μi)(1 + 2μβ) − 1

2
,
2
{
1 − (1 − μiνi)(1 − μβνβ)

}

(1 + 2μi)(1 + 2μβ) − 1

〉

Therefore,

IFMIWA(α1 ⊕ β, α2 ⊕ β, . . . , αn ⊕ β) =
〈 n∏

i=1

{
(1 + 2μ1)(1 + 2μβ)

}ωi − 1

2
,

2

{
1 −

n∏
i=1

{
(1 − μiνi)(1 − μβνβ)

}ωi

}

n∏
i=1

{
(1 + 2μi)(1 + 2μβ)

}ωi − 1

〉

=
〈 n∏

i=1
(1 + 2μi)

ωi (1 + 2μβ) − 1

2
,

2

{
1 −

n∏
i=1

(1 − μiνi)
ωi (1 − μβνβ)

}

n∏
i=1

(1 + 2μi)ωi (1 + 2μβ) − 1

〉

=
〈 n∏

i=1
(1 + 2μi)

ωi − 1

2
,

2

{
1 −

n∏
i=1

(1 − μiνi)
ωi

}

n∏
i=1

(1 + 2μi)ωi − 1

〉
⊕ 〈μβ, νβ〉

= IFMIWA(α1, α2 . . . , αn) ⊕ β

Hence, IFMIWA(α1 ⊕ β, α2 ⊕ β, . . . , αn ⊕ β) =
IFMIWA(α1, α2 . . . , αn) ⊕ β.

Proof of Property 6: Since αi = 〈μi, νi〉 ∈ IMNs for
i = 1, 2, . . . , n. Therefore, for β > 0, we have

βαi =
〈

(1 + 2μi)
β − 1

2
,

2
{
1 − (1 − μiνi)

β
}

(1 + 2μi)β − 1

〉

Therefore,

IFMIWA(βα1, βα2, . . . , βαn) =
〈 n∏

i=1

(
1 + 2 (1+2μi)

β−1
2

)ωi − 1

2
,

2

{
1 −

n∏
i=1

(1 − μiνi)
βωi

}

n∏
i=1

(
1 + 2 (1+2μi)

β−1
2

)ωi − 1

〉

=
〈 n∏

i=1

(
(1 + 2μi)

β
)ωi − 1

2
,

2

{
1 −

n∏
i=1

(1 − μiνi)
βωi

}

n∏
i=1

(
(1 + 2μi)β

)ωi − 1

〉

=
〈
(

n∏
i=1

(1 + 2μi)
ωi

)β

− 1

2
,

2

{
1 −

(
n∏

i=1
(1 − μiνi)

ωi

)β
}

(
n∏

i=1
(1 + 2μi)ωi

)β

− 1

〉

= β

〈 n∏
i=1

(1 + 2μi)
ωi − 1

2
,

2

{
1 −

n∏
i=1

(1 − μiνi)
ωi

}

n∏
i=1

(1 + 2μi)ωi − 1

〉

= βIFMIWA(α1, α2 . . . , αn)



Generalized interaction aggregation operators in intuitionistic fuzzy multiplicative preference environment 2135

Hence, IFMIWA(βα1, βα2, . . . , βαn) =
βIFMIWA(α1, α2 . . . , αn)

Proof of Property 6: As αi = 〈μαi
, ναi

〉 and β =
〈μβi

, νβi
〉(i = 1, 2, . . . , n) be two collections of IMNs, then

αi ⊕ βi =
〈

(1 + 2μαi
)(1 + 2μβi

) − 1

2
,
2
[
1 − (1 − μαi

ναi
)(1 − μβi

νβi
)
]

(1 + 2μαi
)(1 + 2μβi

) − 1

〉

Therefore,

IFMIWA(α1 ⊕ β1, α2 ⊕ β2, . . . , αn ⊕ βn)

=
〈 n∏

i=1

(
1 + 2

(1+2μαi
)(1+2μβi

)−1
2

)ωi − 1

2
,

2

[
1 −

n∏
i=1

{
(1 − μαi

ναi
)(1 − μβi

νβi
)
}ωi

]

n∏
i=1

(
1 + 2

(1+2μαi
)(1+2μβi

)−1
2

)ωi − 1

〉

=
〈 n∏

i=1
{(1 + 2μαi

)(1 + 2μβi
)}ωi − 1

2
,

2

[
1 −

n∏
i=1

{
(1 − μαi

ναi
)(1 − μβi

νβi
)
}ωi

]

n∏
i=1

{(1 + 2μαi
)(1 + 2μβi

)}ωi − 1

〉

=
〈 n∏

i=1
(1 + 2μαi

)ωi

n∏
i=1

(1 + 2μβi
)ωi − 1

2
,

2

[
1 −

n∏
i=1

(1 − μαi
ναi

)ωi

n∏
i=1

(1 − μβi
νβi

)ωi

]

n∏
i=1

(1 + 2μαi
)ωi

n∏
i=1

(1 + 2μβi
)ωi − 1

〉

=
〈 n∏

i=1
(1 + 2μαi

)ωi − 1

2
,

2

[
1 −

n∏
i=1

(1 − μαi
ναi

)ωi

]

n∏
i=1

(1 + 2μαi
)ωi − 1

〉
⊕
〈 n∏

i=1
(1 + 2μβi

)ωi − 1

2
,

2

[
1 −

n∏
i=1

(1 − μβi
νβi

)ωi

]

n∏
i=1

(1 + 2μβi
)ωi − 1

〉

= IFMIWA(α1, α2 . . . , αn) ⊕ IFMIWA(β1, β2 . . . , βn)

Hence, IFMIWA(α1 ⊕ β1, . . . , αn ⊕ βn) =
IFMIWA(α1, . . . , αn) ⊕ IFMIWA(β1, . . . , βn)
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