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Abstract Gene selection methods available have high com-
putational complexity. This paper applies an 1-norm support
vector machine with the squared loss (1-norm SVMSL)
to implement fast gene selection for cancer classification.
The 1-norm SVMSL, a variant of the 1-norm support vec-
tor machine (1-norm SVM) has been proposed. Basically,
the 1-norm SVMSL can perform gene selection and clas-
sification at the same. However, to improve classification
performance, we only use the 1-norm SVMSL as a gene
selector, and adopt a subsequent classifier to classify the
selected genes. We perform extensive experiments on four
DNA microarray data sets. Experimental results indicate
that the 1-norm SVMSL has a very fast gene selection speed
compared with other methods. For example, the 1-norm
SVMSL is almost an order of magnitude faster than the 1-
norm SVM, and at least four orders of magnitude faster than
SVM-RFE (recursive feature elimination), a state-of-the-art
method.
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1 Introduction

Microarray technology can simultaneously access the
expression level of thousands of genes for DNA, which
can be used for identifying and classifying cancer diseases
[6, 16, 19, 20, 26, 27, 36, 37, 39]. Many methods have
been applied to cancer classification, such as support vec-
tor machines(SVMs) [4, 16], and k nearest neighbor (kNN)
[4, 19]. Generally, a DNA microarray data set consists of
a large number of genes and a relatively small number of
samples for cancer classification. Among these genes, not
all of them are useful for cancer classification tasks. To find
the useful genes in the gene expression data, it is necessary
to implement gene selection or feature selection for cancer
classification based on gene expression data.

Many gene selection method have been proposed, such
as genetic algorithm-based methods [19, 26], and SVMs-
based methods [4, 10, 12, 16–18, 38, 46]. In this paper,
we focus on the gene selection methods based on SVMs.
An embedded feature selection algorithm based on SVMs
was proposed in [18], which can adaptively identify impor-
tant features through introducing data driven weights, and
simultaneously implement classification and gene selection.
However, this method requires adjusting more parameters,
and its performance largely depends on the parameters. The
�2 − �0 SVM, a variant of SVM, can be applied to feature
selection [31]. How to design the objective function based
on the standard SVM is the key and difficult issue of this
kind of algorithm.

Lee and Leu proposed a hybrid feature selection algo-
rithm based on SVM for microarray data analysis [17].
Specifically, this method uses the genetic algorithm to gen-
erate a number of subsets of genes, the chi square test to
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select a proper number of the top-ranked genes for data
analysis and SVM to verify the efficiency of the selected
genes. Weston et al. proposed the wrapper feature selection
algorithm based on SVM, which finds useful genes by min-
imizing bounds on the leave-one-out error using gradient
descent [38].

Guyon et al. proposed SVM-RFE (recursive feature elim-
ination) feature selection algorithm, which is the most rep-
resentative gene selection algorithm based on SVMs [16].
Duan et al. presented a new gene selection method based on
SVM-RFE, called MPSVM-RFE. At each step, MPSVM-
RFE trains multiple linear SVMs on subsamples of training
data and computes the feature ranking scores from statistical
analysis of the weight vectors [10]. To deal with multi-
class cancer classification tasks, a multi-class SVM-RFE
(MSVM-RFE) [46], multiple SVM-RFE (MPSVM-RFE)
[40] and a multiple support vector data description recursive
feature elimination (MSVDD-RFE) [4] have been devel-
oped. Once gene selection is achieved, a classifier should
be applied subsequently. Although SVM-RFE methods can
select useful genes for cancer classification, the computa-
tional complexity of these methods are very high when the
gene number is huge.

Fortunately, the 1-norm SVM can be applied to perform
gene selection fast [12] and feature selection for conjoint
analysis [22]. The 1-norm SVM is a variant of SVM [2,
23, 43, 45, 47]. It is well-known that the objective func-
tion of SVM consists of 2-norm regularization penalty
and the hinge loss [13, 29, 34, 35]. The 1-norm SVM
is to simultaneously minimize the 1-norm regularization
penalty and the hinge loss. Since the 1-norm regulariza-
tion penalty as a substitution of the 0-norm regularization
penalty can also induce a sparse solution, it has shown that
the 1-norm SVM has a better sparse representation than
SVM [43].

Fung and Mangasarian used the Newton method to mini-
mize an exterior penalty problem constructed from the dual
problem of the 1-norm SVM, which is called NLPSVM, and
applied NLPSVM to gene selection [12]. Since NLPSVM
with the linear kernel directly picks up the useful genes
and does not use the recursive feature elimination scheme,
NLPSVM is much faster than SVM-RFE methods. In addi-
tion, NLPSVM can can classify microarray data in its own
way. As a variant of the 1-norm SVM, the 1-norm SVM
with a squared loss (1-norm SVMSL) was proposed in [42].
Since the 1-norm SVMSL uses orthogonal matching pursuit
(OMP) to find an approximate solution, its training speed
is very fast. It is the approximate solution that would cause
loss on the classification performance.

To fast select gene and achieve better classification per-
formance, this paper designs a cancer classification frame-
work. The 1-norm SVMSL is first used to select useful
genes, and then a subsequent classifier is applied on the

reduced data. We perform extensive experiments on DNA
microarray data sets.

The rest of the paper is organized as follows. In Section 2,
we address related work on gene selection based on SVMs.
Section 3 gives the framework of this paper. Experimental
results on the real-world data sets are given in Section 4.
Section 5 concludes this paper.

2 Related work

This section introduces gene selection methods based on
SVMs. We discuss SVM-RFE and the 1-norm SVM,
respectively. Generally, cancer classification can be sim-
ply described as follows. Given a set of training samples
X = {(xi , yi)}ni=1, where xi ∈ R

D denotes the gene expres-
sion of a patient, yi ∈ {−1, +1} is the label of xi , D is the
number of genes (or the dimension of samples), and n is
the number of samples, we try to find genes from this train-
ing set which are useful for discriminating cancer diseases.
In different datasets, the label yi of xi has different mean-
ings. In the Breast Cancer dataset [33], for example, the
label “+1” means “non-relapse” and the label “-1” means
“relapse”.

2.1 SVM-RFE

Support vector machine, the state of the art learner in
machine learning and pattern recognition, is famous for its
good generalization performance, sparse model representa-
tion, and nonlinear learning ability [13, 29, 34, 35].

As a classifier, SVM requires a set of training samples X,
and solves the following primal optimization problem:

min
w,b,ξ

1

2
‖w‖22 + C

n∑

i=1

ξi (1)

subject to yi

(
wT xi + b

)
≥ 1 − ξi,

ξi ≥ 0, i = 1, · · · , n

where ξi is the slack variable, ‖ · ‖ denotes the 2-norm of
a vector, C > 0 is the regularization factor which controls
the balance between the empirical risk and the capacity of
SVM, and w and b are respectively the weight vector and
the threshold in the hypothesis function

f (x) = wT x + b (2)

where w = [w1, w2, · · · , wD]T . As long as we get w and
b, we can assign a label for any sample x using

f ∗(x) = sign (f (x)) = sign
(
wT x + b

)
(3)

where sign(·) is the sign function.
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To implement gene selection for cancer classification,
SVM-RFE was proposed in [16]. In a sequential backward
elimination way, SVM-RFE iteratively deletes redundant
genes and retains useful genes. In each iteration, SVM-
RFE trains a linear SVM model with the reserved genes,
and deletes a gene according to weight scores w2

j , j =
1, · · · , D. The weight score for gene j is cj = w2

j . The
higher cj , the greater the importance of the j th gene is.
The detail algorithm for SVM-RFE is shown in Algorithm 1
[16]. Note that the order of elements in R is very impor-
tant in Step 2(d). The last element in R means that the
corresponding gene has the highest score and is the most
important one.

A novel gene selection method, MPSVM-RFE was pro-
posed based on SVM-RFE [10]. In each iteration, MPSVM-
RFE computes the ranking scores from a statistical analysis
of the weight vectors in multiple linear SVMs trained on
original training subsets. CV (cross-validation) is adopted
to resample the training data. Thus, the computational com-
plexity of MPSVM-RFE is much higher than SVM-RFE.

( )

2.2 1-norm SVM

Since the 1-norm SVM has sparsity, the linear 1-norm
SVM can be used for feature selection or variable selec-
tion [3]. As we know, there are some different LP forms
for the 1-norm SVM [2, 8, 23, 24, 43, 45, 47]. How-
ever, these forms are proved to be essentially equivalent
while selecting proper parameters. Here we introduce the
LP form presented in [43], which can be solved by the

simplex method, the interior-point method, NLPSVM [12],
the column generation Newton (CGN) method [44] and the
row-column generation (RCG) method [41]. Among these
methods, NLPSVM is relatively fast in the linear case. CGN
and RCG were proposed for improving the training speed in
the nonlinear case.

Consider the training sample set of two classes X =
{(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ R

D and yi ∈
{1, −1}. The 1-norm SVM is to simultaneously minimize
the 1-norm regularization penalty and the hinge loss, which
can be expressed as a linear programming problem. The
primal problem of the 1-norm SVM is:

min
D∑

j=1

(
α+

j + α−
j

)
+ σ

(
β+ + β−) + C

n∑
i=1

γi

s.t. yi

[
xT
i

(
α+ − α−) + (

β+ − β−)] ≥ 1 − γi

β+, β− ≥ 0, γi ≥ 0, i = 1, · · · , n

α+
j , α−

j ≥ 0, j = 1, · · · , D

(4)

where C > 0 is the regularization factor, σ > 0 is a small

constant, α+ = [
α+
1 , · · · , α+

D

]T
, α− = [

α−
1 , · · · , α−

D

]T
,

β+ ∈ R and β− ∈ R are model coefficients for the 1-norm
SVM, and γ = [γ1, · · · , γ�]T ∈ R

n is a loss vector.
Naturally, (4) could be rewritten in matrix form

minu cT u
s.t. Au ≥ b

u ≥ 0
(5)

where the variable vector u = [(α+)T , (α−)T , β+,

β−, γT ]T , c = [
1T , 1T , σ, σ, C1T

]T
, b = 1, the constraint

coefficient matrix A = [
DyX,−DyX, y, −y, I

]
, X ∈ R

n×D

is the sample matrix in which each sample is a row vec-
tor, y = [y1, y2, · · · , yn]T , Dy is the diagonal matrix with
the diagonal line of y, and 1 and I are the column vector
of all ones and the identity matrix with the appropriate size,
respectively.

The decision function of the linear 1-norm SVM takes
the form:

f ∗(x) = sign
((

α+ − α−)T x + (β+ − β−)
)

= sign
(

αT x + β
)

(6)

where α = α+ − α− and β = β+ − β−.
Once the problem (5) is solved, we can get α and β.

Since most elements in α are zero, gene selection is auto-
matically implemented by searching nonzero coefficients in
α. If αj �= 0, then the j gene is selected.

The 1-norm SVM solved by NLPSVM is much faster
than SVM-RFE when dealing with gene selection since it
does not require a recursive process. The complexity of each
iteration in NLPSVM is O(min(n,D)3) when applying the
Sherman-Morrison-Woodbury identity equation, where n is
the number of samples and D is the number of genes.
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3 Framework of the proposed method

The classification framework based on the 1-norm SVMSL
is shown in Fig. 1, where the linear SVM is taken as an
illustration of subsequent classifiers, X is the given training
sample set, and X′ is the reduced training sample set. We
first introduce the 1-norm SVMSL, and then respectively
discuss gene selection and classification stages.

3.1 1-norm SVMSL

Given a training set X = {(xi , yi)}ni=1 with x ∈ R
D , our

goal is to select d genes from D ones with d << D in the
stage of gene selection. The 1-norm SVMSL is applied to
select the d genes.

By replacing the hinge loss with the squared loss and
ignoring σ , we can rewrite (4) and obtain the optimization
problem for the 1-norm SVMSL:

min
∥∥α+∥∥

1+
∥∥α−∥∥

1+σ
(
β+ + β−) + C

∥∥1 − Dy (Xα + β)
∥∥2
2

s.t. β+ ≥0, β− ≥ 0, α+ ≥ 0, α− ≥ 0 (7)

where ‖·‖1 denotes the 1-norm of a vector. The standard
matrix formulation of (7) can be expressed as

min
u

τ‖u‖1 + 1
2 ‖c − Au‖22

s.t. u ≥ 0
(8)

where u = [
(α+)T , (α−)T , β+, β−]T

, A = [
DyX,−Dy

X, y, −y], c = 1, and τ > 0 is a non-negative real parame-
ter which has the same role as the parameter C in both SVM
and the 1-norm SVM.

In sparse signal reconstruction, the problem (8) is equiv-
alent to both the least absolute shrinkage and selection
operator (LASSO), and the quadratically constrained lin-
ear problem (QCLP) under some conditions [1]. Thus,
orthogonal matching pursuit (OMP) which has been applied
to approximately solve QCLP [7, 9, 32] can also be
used to approximately solve the 1-norm SVMSL. In addi-
tion, OMP needs only the parameter d instead of τ in
solving (8).

3.2 Gene selection and classification

When the problem (8) is solved approximately by using
OMP, we can get the coefficient vector vector α. Similar
to NLPSVM, the 1-norm SVMSL can automatically select
genes. However, since the solution to the 1-norm SVMSL
is only an approximate one, the classification performance
obtained by directly using α is not consistent with one gen-
erated by an exact solution. The experimental results in [44]
also show that the performance of approximate algorithms
could be better or worse than that of exact algorithms.

To avoid this situation, we can use a subsequent classi-
fier to classify the reduced dataset, such as support vector
machine, and nearest neighbor. As shown in Fig. 1, the
framework shows the training and test processes, which are
respectively discussed as follows.

The training process is given in Algorithm 2, which
requires training both the 1-norm SVMSL and the linear
SVM. Let X = {(xi , yi)}ni=1 denote the given training sam-
ple set. Assume that we need to select d genes from D ones,
where d << D. The 1-norm SVMSL is first trained by
using X and then outputs the selected gene subset S with
|S| = d. According to the subset S, we can select useful
genes and generate a new training set X′ = {(x′

i , yi)}ni=1,
where x′

i ∈ R
d . The subsequent classifier, for example the

linear SVM, is trained by using X′.
For an unseen sample x, we first reduce it to x′ employing

S and then apply the trained model on x′ to assign a class
label for x.

( )

Fig. 1 Classification framework
based on 1-norm SVMSL
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Fig. 2 Average recall vs. gene number with the linear SVM on the
Lung cancer dataset

4 Results and discussions

This section discusses experimental results of the proposed
method on cancer classification using gene expression data
and compares it with classical gene selection methods, such
as SVM-RFE.

4.1 Experiment settings

Four public gene microarray datasets available are used
to validate the performance of these compared methods,
including Leukemia-ALLAML [14], Lung Cancer [15],
Central Nervous System (CNS) dataset [25], and Prostate
Cancer [28]. These four datasets can be downloaded from
http://datam.i2r.a-star.edu.sg/datasets/krbd/. All data here
are normalized such that each gene has mean 0 and variance
1 according to the way mentioned in [11].

Since a subsequent classifier is required, we here provide
two classifiers, including SVM, and the nearest neighbor
(NN) to observe the performance of the 1-norm SVMSL.
The compared methods include SVM-RFE+SVM/NN [16],
SVDD-RFE+SVM/NN [4], the 1-norm SVM [12, 43], the

1-norm SVMSL [42], the 1-norm SVM+SVM/NN, and
the proposed 1-norm SVMSL+SVM/NN. Since the 1-norm
SVM is similar to the 1-norm SVMSL, SVM or NN could
be subsequent to it. Thus, we have the compared method, the
1-norm SVM+SVM/NN. Note that there are many methods
for solving the 1-norm SVM, we choose two ways, or the
simplex method and the Newton method. The 1-norm SVM
with the simplex method is an exact solution one, and with
the Newton method is an approximate one. For simplicity,
the 1-norm SVM with the simplex method is still denoted
by the 1-norm SVM. The 1-norm SVM with the Newton
method is NLPSVM proposed in [12].

All these gene selection methods use the linear kernel.
The regularization parameter C for SVM-RFE is selected
from the set {0.5, 1, 2, 10, 100}, for SVDD-RFE from the
set {1/n, 0.1, 0.5, 1}, and for 1-norm SVM from the set
{0.5, 1, 2, 10, 100} according to the empirical evidence.
The regularization parameter is approximately selected by
using 3-fold cross validation on the training set and the
corresponding classifiers. For example, C for SVM-RFE is
selected by using SVM. For the 1-norm SVMSL, the only
parameter is d which determines the selected gene number.

We use recalls to evaluate the performance of these
methods. The recall of the j th class is defined as

Recallj = T Pj

T Pj + FNj

(9)

where T Pj and FNj are the number of correctly classified
samples and the number of incorrectly classified samples in
class j , respectively.

All programs are written in MATLAB or/and C. Both
SVM and SVDD are implemented by using the LIBSVM
package [5], the 1-norm SVM is implemented by using
GLPK package [21], NLPSVM is implemented by using the
code provided in [12]. In addition, the 1-norm SVMSL is
solved by using OMP in the SparseLab package [30]. All
numerical experiments are performed on a personal com-
puter with a 2.93GHz Intel(R) Core(T)2 Duo CPU and 2G
bytes of memory. This computer runs on Windows 7, with
MATLAB 7.10 compiler installed.

Table 1 Comparison of gene
selection methods with SVM
on the Lung cancer dataset

Method # Gene ADCA recall(%) MPM recall(%) Average recall (%) CPU time (s)

None+SVM Full(12533) 99.25 100.00 99.63 0.3276

SVM-RFE+SVM 111 100.00 100.00 100.00 1.1509×103

SVDD-RFE+SVM 183 96.27 100.00 98.13 270.2028

1-norm SVM 24 97.76 100.00 98.88 0.7488

1-norm SVM+SVM 24 98.51 100.00 99.25 0.7644

NLPSVM 33 97.76 93.33 95.55 1.2948

NLPSVM+SVM 33 97.01 100.00 98.51 1.3416

1-norm SVMSL 3 97.76 100.00 98.88 0.0164

1-norm SVMSL+SVM 3 98.51 100.00 99.25 0.0195

http://datam.i2r.a-star.edu.sg/datasets/krbd/
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Fig. 3 Average recall vs. gene number with NN on the Lung cancer
dataset

4.2 Lung cancer

Lung cancer consists of 181 tissue samples of which 31
samples are malignant pleural mesothelioma (MPM), and
150 adenocarcinoma(ADCA) of the lung. The training set
contains 32 of them, 16 MPM and 16 ADCA. The remain-
ing 149 samples are used for test, with 15 MPM and 134
ADCA. Each sample is described by 12533 genes.

4.2.1 SVM classifier

On the training set, we determine the parameter for SVM-
RFE C = 10, for SVDD-RFE C = 1, and for the 1-norm
SVM, NLPSVM and the 1-norm SVMSL C = 2. Note
that SVM-RFE and SVDD-RFE can rank genes, but the
1-norm SVMSL and the 1-norm SVM can not. However, 1-
norm SVMSL has a free parameter d which can represent
the number of selected genes. Thus, we can select the last
d genes in R for the first two methods and set different d

for the 1-norm SVMSL. Let d vary from 1 to 400, which
follows the experiment setting in [46]. The average recall
vs. d for the three methods is shown in Fig. 2.

When d is small, say d < 20, the 1-norm SVMSL is
better than SVM-RFE and SVDD-RFE. When d > 25,
the performance of the 1-norm SVMSL is unchanged. In
addition, the maximum selected gene number is 29 for the 1-
norm SVMSL on the Lung cancer dataset. Thus, the 1-norm
SVMSL has a stable performance when d ≥ 29. The 1-
norm SVM automatically determines the number of selected
genes which is the number of non-zero coefficients in its
model. On this dataset, 24 genes are selected by the 1-norm
SVM, and 33 by NLPSVM.

Table 1 lists the best average performance and the corre-
sponding gene number and CPU time for all these methods,
where CPU time includes gene selection, classifier training
and test. Observation on Table 1 indicates that the 1-norm
SVMSL can very quickly pick up genes, and the use of the
subsequent classifier can also improve the average recall
from 98.99% to 99.25%. Actually, for the 1-norm SVM-
like methods, the use of SVM improves their classification
performance. The 1-norm SVMSL is almost four orders of
magnitude faster than SVM-RFE, three orders faster than
SVDD-RFE, two orders faster than NLPSVM, and one
order faster than the 1-norm SVM. In addition, note that the
number of useful genes is relatively small for the 1-norm
SVMSL, only three.

4.2.2 NN classifier

The subsequent classifier used here is NN. Similary, let
d vary from 1 to 400 for three methods, SVM-RFE,
SVDD-RFE and the 1-norm SVMSL. The average recall
vs. d is shown in Fig. 3. We can see that the 1-norm
SVMSL has good average recall when d is small, say
d < 10.

Table 2 lists the best average performance and the corre-
sponding gene number and CPU time for all these methods,
where CPU time includes gene selection and classifica-
tion process. Since the 1-norm SVM, NLPSVM and the
1-norm SVMSL can implement gene selection and classifi-
cation at the same time, their results are the same as those

Table 2 Comparison of gene
selection methods with NN on
the Lung cancer dataset

Method # Gene ADCA recall(%) MPM recall(%) Average recall (%) CPU time (s)

None+NN Full(12533) 93.33 97.76 95.55 0.4836

SVM-RFE+NN 114 100.00 100.00 100.00 1.1509×103

SVDD-RFE+NN 105 100 86.57 93.28 270.1965

1-norm SVM 24 97.76 100.00 98.88 1.0920

1-norm SVM+NN 24 100.00 98.51 99.25 1.0920

NLPSVM 33 97.76 93.33 95.55 1.3260

NLPSVM+NN 33 93.33 97.01 95.17 1.3260

1-norm SVMSL 3 97.76 100.00 98.88 0.0116

1-norm SVMSL+NN 4 100 96.27 98.13 0.0120
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Table 3 Genes selected by the
1-norm SVMSL on the Lung
cancer dataset

Index Gene ID Official symbol Description

7249 23194 FBXL7 F-box and leucine-rich repeat protein 7 [Homo sapiens (human)]

10817 5080 PAX6 Paired box 6 [Homo sapiens (Human)]

2521 1212 CLTB Clathrin, light chain B [Homo sapiens (human)]

7388 3710 ITPR3 Inositol 1,4,5-trisphosphate receptor, type 3 [Homo sapiens (human)]

Table 4 Average correlation
coefficient and distribution of
best gene subsets on the Lung
cancer dataset

Method # Gene pair ρ̄ Coefficient distribution (%)

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

SVM-RFE 6150 0.4732 2.83 25.45 53.01 17.92 0.79

SVDD-RFE 16653 0.1956 57.94 31.45 9.35 1.23 0.04

1-norm SVM 276 0.4879 2.17 18.48 51.09 27.17 1.09

NLPSVM 528 0.4392 3.98 32.20 47.54 16.29 0.00

1-norm SVMSL 3 0.1476 66.67 33.33 0.00 0.00 0.00
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Fig. 4 Average recall vs. gene number on the Leukemia-ALLAML dataset

Table 5 Comparison on the
Leukemia-ALLAML dataset Method # Gene AML recall(%) ALL recall(%) Average recall (%) CPU time (s)

None+SVM Full(7129) 71.43 100.00 85.71 0.078

None+NN Full(7129) 90.00 57.14 73.57 0.0468

SVM-RFE+SVM 16 100.00 100.00 100.00 365.4999

SVM-RFE+NN 5 100.00 100.00 100.00 365.4951

SVDD-RFE+SVM 175 85.71 100.00 92.86 89.6128

SVDD-RFE+NN 1 85.00 78.57 81.79 89.6079

1-norm SVM 22 92.86 100.00 96.43 0.7332

1-norm SVM+SVM 22 85.71 100.00 92.86 0.7644

1-norm SVM+NN 22 100.00 85.71 92.86 0.7332

NLPSVM 36 71.43 100.00 80.71 0.8268

NLPSVM+SVM 36 85.71 100.00 92.86 0.8268

NLPSVM+NN 36 95.00 57.14 76.07 0.8268

1-norm SVMSL 2 92.86 95.00 93.93 0.0154

1-norm SVMSL+SVM 4 90.86 100.00 96.43 0.0170

1-norm SVMSL+NN 4 95.00 92.86 93.93 0.0156
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Table 6 Genes selected by the
1-norm SVMSL on the
Leukemia-ALLAML dataset

Index Gene ID Official symbol Description

4847 7791 ZYX Zyxin [Homo sapiens (human)]

1779 4353 MPO Myeloperoxidase [Homo sapiens (Human)]

1710 7389 UROD Uroporphyrinogen decarboxylase [Homo sapiens (human)]

2205 1523 CUX1 Cut-like homeobox 1 [Homo sapiens (human)]

in Table 1. Unfortunately, the use of NN can not improve
the classification performance as we expect. Only for the
1-norm SVM, NN improves its classification performance.
Obviously, the rank about the CPU time is the same as the
previous experiment.

4.2.3 Selected genes by the 1-norm SVMSL

On the Lung cancer dataset, the 1-norm SVMSL can at most
select 29 genes based on the training set. However, from
Tables 1 and 2, we can see that only three or four genes
are enough for discriminating ADCA and MPM, 3 for the
SVM classifier and 4 for the NN classifier. Table 3 shows
the information on four selected genes, where the first three
genes are only for SVM. These genes are protein coding
genes from homo sapiens, or human.

Gene selection methods aim to select genes which are
less correlated to each other to reduce the redundancy. Sta-
tistical methods offer a way to measure a linear correlation
between genes. For any gene pair (Gi, Gj ), we can compute
the correlation coefficient between them. Namely,

ρij = Cov(Gi, Gj )√
D(Gi)D(Gj )

(10)

where Cov(·, ·) denotes the covariance function, and D(·)
denotes the variance function and 0 ≤ ρij ≤ 1. Gi is
linearly uncorrelated to Gj if and only if ρij = 0.

Based on Table 1, we check the linear correlation of
selected genes corresponding to the best performance. To
see the coefficient distribution, we discrete the correla-
tion coefficient into five intervals [0.0, 0.2), [0.2, 0.4),
[0.4, 0.6), [0.6, 0.8) and [0.8, 1), and compute the prob-
ability in the corresponding interval. Table 4 gives the

coefficient distribution and average correlation coefficient,
which is defined as

ρ̄ = 2

d(d − 1)

d−1∑

i=1

d∑

j=i+1

ρij (11)

The number of Gene pair in Table 4 is equal to d(d − 1)/2
and the detail value for d is given in Table 1. The correlation
coefficients for the 1-norm SVMSL are less than 0.4, which
indicates that this method can select less correlated genes
indeed. For Table 2, we have the similar conclusion.

In summary, we have the following conclusions based on
the experimental results on the Lung cancer dataset:

– Although SVM-RFE +SVM/NN has the best average
recall, which is slightly superior to the 1-norm SVMSL
+SVM/NN, the speed of the 1-norm SVMSL is greatly
superior to SVM-RFE. In addition, the 1-norm SVMSL
+SVM/NN achieves its best performance with a small
number of genes, which is useful for speeding the test
process and data storage.

– Compared with SVDD-RFE, the 1-norm SVMSL has
an advantage over both speed and performance.

– The 1-norm SVMSL has a similar performance to the
1-norm SVM and a much better performance than
NLPSVM. However, the 1-norm SVMSL needs less
time for selecting genes than these two methods.

– As the subsequent classifier, SVM is much better than
NN because SVM improves the average recall of the
1-norm SVMSL.

– The genes selected by the 1-norm SVMSL are mostly
less correlated. Some gene pairs selected by other meth-
ods have high correlation. For example, 0.79 % gene
pairs in SVM-RFE have large correlation coefficients
which locates in the interval [0.8, 0.9).

Table 7 Average correlation
coefficient and distribution of
best gene subsets on the
Leukemia-ALLAML dataset

Method # Gene pair ρ̄ Coefficient distribution (%)

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

SVM-RFE 120 0.4324 6.67 32.50 40.00 17.50 3.33

SVDD-RFE 15225 0.2990 37.07 32.50 20.53 8.84 0.82

1-norm SVM 231 0.3690 16.02 37.66 34.63 9.52 2.16

NLPSVM 630 0.3957 10.63 37.30 39.84 11.75 0.48

1-norm SVMSL 6 0.1641 0.00 100.00 0.00 0.00 0.00
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Fig. 5 Average recall vs. gene number when taking SVM as the classifier

4.3 Leukemia-ALLAML

Leukemia-ALLAML dataset has 72 samples belonging to
two classes, or ALL (Acute Lymphoblastic Leukemia) and
AML (Acute Myeloid Leukemia). The training set consists
of 38 bone marrow samples (27 ALL and 11 AML), over
7129 probes from 6817 human genes. In addition, 34 test
samples are provided, with 20 ALL and 14 AML.

d varies from1 to 400.The average recall vs.d obtained by
SVM-RFE, SVDD-RFE and the 1-normSVMSL is shown in
Fig. 4.Wehave the similar conclusion as before. The 1-norm
SVMSL achieves its best performance when d is small.

Table 5 shows the best average performance and the cor-
responding gene number and CPU time for all these meth-
ods. Observation on Table 5 also implies that the 1-norm
SVMSL can select gene subsets fast. SVM-RFE has the
best average recall among all the methods, followed by the
1-norm SVMSL+SVM and the 1-norm SVM. In addition,
NN can not improve the performance of the 1-norm SVM,

NLPS-VM and the 1-norm SVMSL, but SVM can improve
the performance of both NLPSVM and the 1-norm SVMSL.

On this dataset, the 1-norm SVMSL can at most select
32 genes based on the training set. Among the 32 genes,
four genes are enough for discriminating ALL and AML.
Table 6 shows the information on the four genes. The first
two genes, ZYX and MPO are often presented in visualiza-
tions, see http://www.biolab.si/supp/bi-cancer/projections/
info/leukemia.htm.

Now, we validate the linear correlation of best gene genes
which means subsets with highest average recall obtained
by SVM. Table 7 lists the coefficient distribution and aver-
age correlation coefficient. The correlation coefficients for
the 1-norm SVMSL are all between 0.2 to 0.4, which shows
that the genes selected by the 1-norm SVMSL are not
strongly correlated.

Experimental conclusions on the Leukemia-ALLAML
dataset are consistent with those on the Lung cancer dataset.
We do not discuss more.

Table 8 Comparison on the
CNS dataset Method # Gene Failure recall(%) Survivor recall(%) Average recall (%) CPU time (s)

None+SVM Full(7129) 100.00 18.18 59.09 0.0936

SVM-RFE+SVM 73 100.00 45.45 72.73 479.52

SVDD-RFE+SVM 137 88.89 54.55 71.72 96.44

1-norm SVM 30 88.89 27.27 58.08 0.7020

1-norm SVM+SVM 30 88.89 27.27 58.08 0.7020

NLPSVM 159 33.33 63.64 48.48 0.9516

NLPSVM+SVM 159 100.00 18.18 59.09 0.9516

1-norm SVMSL 3 88.89 36.36 62.13 0.0153

1-norm SVMSL+SVM 3 88.89 45.45 67.17 0.0173

http://www.biolab.si/supp/bi-cancer/projections/info/leukem ia.htm
http://www.biolab.si/supp/bi-cancer/projections/info/leukem ia.htm
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Table 9 Comparison on the
Prostate tumor dataset Method # Gene Prostate recall(%) Normal recall(%) Average recall (%) CPU time (s)

None+SVM Full(12600) 100 8.00 54.00 0.4992

SVM-RFE+SVM 4 100.00 92.00 96.00 4.46×103

SVDD-RFE+SVM 195 100.00 92.00 96.00 496.08

1-norm SVM 51 100.00 52.00 76.00 2.6364

1-norm SVM+SVM 51 100.00 36.00 68.00 2.6364

NLPSVM 87 100.00 88.00 94.00 5.1012

NLPSVM+SVM 87 100.00 24.00 62.00 5.1012

1-norm SVMSL 2 100.00 84.00 92.00 0.2103

1-norm SVMSL+SVM 2 100.00 100.00 100.00 0.2142

4.4 More datasets

In the following, we perform experiments on another
two gene expression datasets, including CNS and Prostate
tumor. The two datasets are described as follows:

– CNS dataset contains 60 patient samples, 21 are sur-
vivors (alive after treatment) and 39 are failures (suc-
cumbed to their disease). There are 7129 genes in the
dataset. The training set consists of the first 10 survivors
and 30 failures, the other 11 survivors and 9 failures are
testing points.

– Prostate tumor dataset has a training set which contains
52 prostate tumor samples and 50 non-tumor (labeled as
”Normal”) prostate samples with around 12600 genes.
An independent set of testing samples is also prepared,
which is from a different experiment and has a nearly
10-fold difference in overall microarray intensity from
the training data. Besides, we have removed extra genes

contained in the testing samples. There are 25 tumor
and 9 normal samples in the test set.

As showed above, NN does not outperform SVM. Thus,
we only consider SVM as the subsequent classifier. The
setting of parameters is the same as before.

The average recall vs. d obtained by SVM-RFE, SVDD-
RFE and the 1-norm SVMSL is shown in Fig. 5. If
the selected gene number is big enough, SVDD-RFE
can obtained good performance on the CNS and Prostate
datasets. For the 1-norm SVMSL, its best performance still
can be achieved when d is small.

Tables 8 and 9 show the experimental results on the
two datasets, respectively. If we do not perform gene selec-
tion, the average recall obtained by SVM is very low on
both datasets. SVDD-RFE is compared to SVM-RFE when
SVDD-RFE selects more genes. On the two datasets, the
1-norm SVMSL+SVM is much better than other 1-norm
SVM-like methods.
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Fig. 6 Correlation coefficient distribution
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The correlation coefficient between selected genes is also
shown in Fig. 6. Similarly, the linear correlation between
genes selected by the 1-norm SVMSL is very low on both
the CNS and Prostate tumor datasets.

5 Conclusions

This paper proposes a new strategy for cancer classifica-
tion based on gene expression data. A fast gene selection
way is implemented by using the 1-norm SVMSL. The 1-
norm SVMSL is an variant of the 1-norm SVM. Although
the 1-norm SVMSL can perform gene selection and classi-
fication at the same time, we use OMP to approximate its
solution which may be not so exact to perform classifica-
tion. Thus, a subsequent classifier is used to discriminating
genes selected by the 1-norm SVMSL. In theory, any clas-
sifier dealing with cancer classification can be used as the
subsequent classifier. Experimental results shows SVM is a
proper one.

In our experiments, we compare the 1-norm SVMSL
with SVM-RFE, SVDD-RFE, the 1-norm SVM and
NLPSVM on four datasets. SVM-RFE outperforms other
methods on classification performance in three of four
datasets, but it takes a long time to rank genes, say more than
1,000 sec. for 12533 genes. Note that the 1-norm SVMSL
is at least four order of magnitude faster than SVM-RFE.
In addition, the 1-norm SVMSL+SVM has an acceptable
performance by reference to SVM-RFE+SVM. Compared
to the 1-norm SVM and NLPSVM, the 1-norm SVMSL is
almost an order of magnitude faster than it. On four datasets,
the 1-norm SVMSL is better than or compared to both the
1-norm SVM and NLPSVM. In addition, we test the linear
correlation between the selected genes. Among these gene
selection methods, the linear correlation is the weakest for
the 1-norm SVMSL. In other words, genes selected by the
1-norm SVMSL are not redundant and less correlated.

It is notable that the 1-norm SVMSL only needs a small
number of genes to achieve its best performance, which
would contribute to fast test and storage. However, we can
not determine how many genes we should select, or deter-
mine the value of d in the 1-norm SVMSL. If we select
all which the 1-norm SVMSL generates, we can not guar-
antee the classification performance, especially in case of
the Prostrate tumor dataset. In the future, we try to find a
way to determine the optimal gene number for the 1-norm
SVMSL.
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