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Abstract Feature selection can sort out useful features
to obtain good performance when dealing with high-
dimensional data. Feature selection methods based on sup-
port vector data description (SVDD) have been proposed
for one-class classification problems: SVDD-radius-recur-
sive feature elimination (SVDD-RRFE) and SVDD-dual-
objective-recursive feature elimination (SVDD-DRFE).
However, both SVDD-RRFE and SVDD-DRFE use only
one-class samples even given a multi-class classification
task, and suffer from high computational complexity. To
remedy it, this paper extends both SVDD-RRFE and
SVDD-DRFE to binary and multi-class classification prob-
lems using multiple SVDD models, and proposes fast fea-
ture ranking schemes for them in the case of the linear
kernel. Experimental results on toy, UCI and microarray
datasets show the efficiency and the feasibility of the pro-
posed methods.
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1 Introduction

Classification problems exist extensively in human activi-
ties. People can differentiate various groups of objects by
their features. Sometimes features are too many to neatly
distinguish an object since redundant features would con-
fuse human cognition. Advanced artificial technologies can
be introduced into a classification process. Even so, infor-
mation acquisition demands the extra cost of space and time.
In that case, an approach like feature selection can assist
in simplifying the features. Feature selection is frequently
applied to classification problems with high-dimensional
data in which each feature denotes a separate dimension
[12, 35]. For high-dimensional data, features involve three
categories: relevant, irrelevant and redundant [22]. Feature
selection aims at obtaining a relevant feature subset by elim-
inating irrelevant and redundant features from given original
data. Compared with utilizing all features, feature selection
can achieve a similar or superior classification performance
and have a lower computational complexity [2, 14, 27].

Dash and Liu divided feature selection methods into
four fundamental processes: generation procedure, evalua-
tion function, stopping criterion and validation procedure
[6]. The first two processes count as the key ones among
the four processes. The generation procedure can be one
of three types, complete, heuristic and random generation
[17, 25]. With the advantages of fast setting up models
and simple implementation, the heuristic generation is often
broached, such as sequential backward selection (SBS) [23]
and sequential forward selection (SFS) [20].

The evaluation function could be a function of the mea-
surement of distance, information, dependency, consistency,
or classifier error rate on data, where the last measurement is
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frequently used in SBS, SFS and their extensions. Based on
the evaluation function, two methods regularly appear in the
researches of feature selection: wrapper and filter methods
[6, 21]. The approaches using the classification error rate as
the evaluation function are referred to wrapper ones. Alter-
natively, filter methods pick up features via statistics, for
instance, the mean or variance of measurements. Generally
speaking, wrapper methods can gain advanced classification
performance compared to filter methods. The reason is that
wrapper methods work with the assist of selectable classi-
fiers and filter methods ignore classifiers when processing
data. However, at the cost of the classification accuracy,
filter methods can quickly obtain the final feature subset
throughout the heuristic algorithms [33, 34, 37]. In addi-
tion, embedded methods have been proposed [5, 37]. It is
known that feature selection in embedded methods is incor-
porated as a lot part of training process, which considers the
empirical risk of given data. Conversely, the test process of
embedded methods is dependent on the optional classifier
itself.

There have been some beneficial attempts to combine
feature selection with the-state-of-art learner, support vec-
tor machines (SVMs). Weston et al. proposed a wrapper
method combining SVM with feature selection [32]. Owing
to good generalization performance of SVM and the out-
standing experimental results, similar wrapper methods
have been discussed [4, 16, 30]. SVM-RFE (recursive fea-
ture elimination) is one of significant SVM-based embed-
ded methods [15, 31]. SVM-RFE behaves well in binary
classification problems. To make SVM-RFE applicable to
multi-class classification problems, multi-class SVM-RFE
(MSVM-RFE) methods have been proposed in [36] and
[28]. Zhou and Tuck considered the linear kernel case [36],
while Shieh and Yang gave the nonlinear feature selection
[28]. Actually, MSVM-RFE treats a multi-class classifica-
tion problem as multiple binary classification ones, where
an SVM is used to solve a binary classification problem.
In the linear case, the weight vectors obtained by multiple
SVMs are summed as the feature weights. Then MSVM-
RFE would remove the feature with the minimal weight
coefficient, which is the most unimportant feature. This pro-
cess is repeated until all features are ranked. In the nonlinear
case, the ranking criterion considers the difference between
the dual objective with all remained features and the dual
objective with removing one remained feature, which leads
to a situation of high computational complexity. In theory,
the nonlinear MSVM-RFE has a much higher computa-
tional complexity than the linear MSVM-RFE does even if
both methods adopt the linear kernel and would result in the
same feature ranking.

With the purpose of settling the abnormal data detec-
tion problems, Jeong et al. applied support vector data

description (SVDD) to feature selection and proposed
two methods, SVDD-radius-recursive feature elimination
(SVDD-RRFE) and SVDD-dual-objective-recursive feature
elimination (SVDD-DRFE) [18]. Both algorithms build up
a compact SVDD model to select the required features with
only one-class samples. The criterion rule of SVDD-RRFE
is related to the radius of an SVDD model, and that of
SVDD-DRFE to the dual objective function. However, both
SVDD-RRFE and SVDD-DRFE suffer from high computa-
tional complexity since both methods consider the nonlinear
kernel. Pursuing the rapid feature selection in cancer classi-
fication using gene expression data, Cao et al. presented a
multiple SVDD-RFE (MSVDD-RFE) method in the linear
case [3]. MSVDD-RFE independently constructs multiple
SVDD models and selects feature subsets according to the
direction energy of model centers. A final feature subset can
be obtained by merging these feature subsets. Experimen-
tal results provided in [3] show that MSVDD-RFE is much
faster than both SVDD-RRFE and SVDD-DRFE. However,
MSVDD-RFE could not get a final feature ranking since it
generates multiple feature rankings. Thus, we do not know
which feature is the most important one for the task at hand
even if we have the final feature subset.

In this paper, two new fast feature selection methods
based on the radius and the dual-objective ranking criteria
are proposed for one-class, binary and multi-class classifica-
tion problems, called fast multiple SVDD-RRFE (FMSV
DD-RRFE) and fast multiple SVDD-DRFE (FMSVDD-
DRFE). Compared to SVDD-RRFE and SVDD-DRFE,
FMSVDD-RRFE and FMSVDD-DRFE can address not
only one-class problems but also binary or multi-class
classification problems. For one-class classification tasks,
FMSVDD-RRFE has the same feature ranking as SVDD-
RRFE, while FMSVDD-DRFE has the same result as
SVDD-DRFE. However, FMSVDD-RRFE and FMSVDD-
DRFE can faster rank features. For binary or multi-class
classification, the proposed methods require training two
or more SVDD models on which we can calculate the
ranking score criteria for all features. The computational
complexity of both FMSVDD-RRFE and FMSVDD-DRFE
is similar to MSVDD-RFE proposed in [3].

This paper has two contributions. First, we provide
speed schemes for computing radius and dual-objective
ranking scores under the condition of using linear kernel,
respectively. Second, based on the fast schemes, we extend
the application of SVDD-RRFE and SVDD-DRFE to multi-
class classification including binary classification tasks and
develop FMSVDD-RRFE and FMSVDD-DRFE. The rest
of the paper is organized as follows. Section 2 gives a
brief presentation to related work of SVDD and SVDD-
based feature selection. The new algorithms are introduced
in Section 3. Section 4 discusses experimental results on
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the UCI database and microarray datasets, and Section 5
provides summaries and conclusions.

2 Related work

This section discusses the related works. We simply
describe SVDD and three previous SVDD-based feature
selection methods [3, 18]. We assume that the data show
variances in all feature directions.

2.1 Support vector data description

Inspired by SVM, Tax and Duin put forward SVDD to
detect novel data or outliers [29]. SVDD can construct a
closed hypersphere border surrounding the target data. Out-
liers are rejected outside the boundary. In other words, the
hypersphere model can separate the normal (target) data and
novel points. No limited to one-class problems, SVDD is
also applied in dealing with multi-classification problems
[24].

Let
{
xi |xi ∈ R

D, i = 1, . . . , n
}

be the set of target train-
ing data, where D is the number of features and n is the
number of target samples. The principle of SVDD divid-
ing the target samples from others can be interpreted as the
optimization of a convex quadratic programming:

min R2 + C
n∑

i=1
ξi

s. t. ||xi − a||2 ≤ R2 + ξi, ξi ≥ 0, i = 1, · · · , n

(1)

where R is the radius of the hypersphere, a means the center
of the hypersphere, ξi is a slack variable, and C > 0 is the
penalty factor which controls the balance between the vol-
ume of the model and the number of data outside the model.
An unseen sample x̄ would be judged as a novel point if it
satisfies

||x̄ − a||2 > R2. (2)

By introducing the Lagrange multiplier technology, we
can derive the dual programming of (1):

max
α

n∑

i=1
αixT

i xi −
n∑

i=1

n∑

j=1
αiαjxT

i xj

s.t.
n∑

i=1
αi = 1, 0 ≤ αi ≤ C, i = 1, · · · , n,

(3)

where αi is the Lagrange multiplier. The hypersphere cen-
ter a and radius R can be calculated with αi , respectively.
Namely, we have

a =
n∑

i=1

αixi (4)

and

R2(xsv) = ‖xsv − a‖2 (5)

where xsv represents the support vector (SV) whose coeffi-
cient satisfies 0 < αsv < C.

2.2 SVDD-RRFE

SVDD discriminates between normal objects and outliers
for establishing a boundary (hypersphere) as compact as
possible while the radius of the hypersphere refers to the
compact description of the boundary. Thus, the size of
radius is very important in SVDD. SVDD-RRFE considers
the radius R as its ranking criterion [18].

Let SV be the set of support vectors (SVs) and Jr be the
average of R2(xsv) on all SVs. Then Jr can be defined as
follows:

Jr = ∑

xsv∈SV

R2(xsv)
|SV |

= 1
|SV |

∑

xsv∈SV

(xT
svxsv − 2

n∑

i=1
αixT

i xsv

+
n∑

i=1

n∑

j=1
αiαjxT

i xj )

(6)

Let J k
r be the average of R2(xk

sv), where xk
sv means xsv

without feature k.

J k
r = ∑

xsv∈SV

R2(xk
sv

)

|SV |

= 1
|SV |

∑

xsv∈SV

((xk
sv)

T xk
sv − 2

n∑

i=1
αi(xk

i )
T xk

sv

+
n∑

i=1

n∑

j=1
αiαj (xk

i )
T xk

j )

(7)

SVDD-RRFE aims at removing feature p which makes
the radius ranking score (Jr − J

p
r ) minimal. Namely,

p = arg min
k=1,··· ,D(Jr − J k

r ) (8)

If J k
r approaches to Jr , then the difference between them

is small, which means the effect of the feature k is tiny. In
this way, the feature with the smallest (Jr − J k

r ) should be
eliminated.

2.3 SVDD-DRFE

Different from the radius ranking criterion, SVDD-DRFE
takes the dual objective function as the ranking criterion
[18]. Let Jd be the dual objective function of SVDD. Then,

Jd =
n∑

i=1
αixT

i xi −
n∑

i=1

n∑

j=1
αiαjxT

i xj (9)
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Let J k
d be the dual objective function of SVDD without

feature k. Then,

J k
d =

n∑

i=1
αi(xk

i )
T xk

i −
n∑

i=1

n∑

j=1
αiαj (xk

i )
T xk

j (10)

Aiming at removing the worst feature k, SVDD-DRFE
should take the smallest (Jd − J k

d ) as the dual-objective
ranking score. However, SVDD-DRFE proposed in [18] is
to remove feature k with the largest (Jd − J k

d ). In theory,
if a feature is completely useless, it should not signifi-
cantly change the dual objective. Thus, J k

d should be very
approached to Jd in this situation. Therefore, the worst
feature p should conform with:

p = arg min
k=1,··· ,D(Jd − J k

d ) (11)

In this paper, we take (11) as the ranking criterion of SVDD-
DRFE.

2.4 Multiple SVDD-RFE

MSVDD-RFE was proposed in [3], which considers the
center of the hypersphere as the ranking criterion. Let the
center of an SVDD model be a = [a1, a2, · · · aD]T . In
MSVDD-RFE, |ai | indicates the average magnitude in the
i-th direction with respect to the origin, and (ai)

2 measures
the distribution energy of data in the i-th direction. The i-th
feature seems compacte when (ai)

2 is small. For a multi-
class classification problem, MSVDD-RFE requires train-
ing multiple hypersphere models. For each class, MSVDD-
RFE trains an SVDD and ranks features. With the solution
to (3) and (4), the center of the j -th SVDD model can be
expressed as:

aj =
[
a

j

1 , a
j

2 , · · · aj
D

]T
(12)

where j = 1, 2, · · · , c, and c is the number of classes.
When processing the j -th class, MSVDD-RFE regards fea-
ture k with the smallest energy as the worst feature. Namely,

k = arg min
p=1,··· ,D

(
a

j
p

)2
. (13)

In MSVDD-RFE, we need to determine the remained
feature number in advance. For each one-class problem,
MSVDD-RFE can get a remained or ranked feature sub-
set. A final feature subset is generated by combing these
remained features. However, we can not tell which is the
most important in the final feature subset. In other words,
the final feature subset is not ranked one.

3 Proposed methods

As mentioned before, SVDD-based feature selection meth-
ods for one-class problems take the hypersphere radius and
the dual objective of SVDD as the ranking criteria, and show
their good performance on some datasets [18]. However,
these methods suffer from high computational complexity
for considering kernel functions when computing ranking
scores. MSVDD-RFE can fast select features when only the
linear kernel is applied [3]. However, MSVDD-RFE could
not give a final feature ranking.

To get a final feature ranking for classification tasks and
improve the speed of computing ranking scores, this section
proposes two fast methods based on the radius and the dual-
objective criteria in the case of linear kernel, respectively.

3.1 Fast multiple SVDD-RRFE

Consider the radius ranking criterion. The size of the
radius and the position of center determine the hyper-
sphere of SVDD, and also determine the performance
of SVDD. Thus, it is reasonable to make the radius as
a ranking criterion. In the following, we first present a
fast SVDD-RRFE (FSVDD-RRFE) method for computing
radius ranking scores with the linear kernel and then propose
FMSVDD-RRFE based on FSVDD-RRFE.

3.1.1 Fast SVDD-RRFE

Let the set of target training data be
{
xi|xi ∈ R

D, i = 1, . . . , n
}
,

where D is the number of features and n is the number
of target samples. We list the computational complexity
of SVDD-RRFE under the situation with the linear kernel
in Table 1, where D′ is the number of the current feature
subset and SV is the set of SVs in the current iteration.
To remove the worst feature from the current feature
subset, SVDD-RRFE requires calculating Jr in (6) and
J k

r , k = 1, · · · , D′ in (7). The computational complexity
of Jr is O(|SV |3D′), and that of J k

r is O(|SV |3(D′ − 1)).
Totally, the computational complexity of feature selection
is O(|SV |3D′2) for SVDD-RRFE in the current iteration.

Table 1 Comparison of computational complexity in an iteration

Method Current dimensionality Computational complexity

SVDD-RRFE D′ O(|SV |3D′2)
FSVDD-RRFE D′ O(|SV |D′)
SVDD-DRFE D′ O(|SV |2D′2)
FSVDD-DRFE D′ O(|SV |2D′)
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To reduce the computational complexity, we propose a
theorem on calculating the radius ranking score. Let the
ranking score be JRk = Jr − J k

r .

Theorem 1 Given the center a of the hypersphere and the
set of support vectors SV obtained by SVDD with the linear
kernel, the radius ranking score can be computed as

JRk =
∑

xsv∈SV

(
x2
(sv,k) − 2x(sv,k)ak + a2

k

)

|SV | (14)

where x(sv,k) is the k-th component of the support vector
xsv , and ak is the k-th component of the center a.

The proof of Theorem 1 is given in Appendix A. Accord-
ing to Theorem 1, we can construct a speeded algorithm for
SVDD-RRFE. Moreover, the computational complexity of
FSVDD-RRFE is O(|SV |D′) in an iteration, which is much
smaller than that of the original algorithm SVDD-RFE.
Table 1 lists the comparison of computational complexity.

3.1.2 FMSVDD-RRFE

Based on the fast algorithm proposed above, we discuss
the extension of SVDD-RRFE to binary and multi-class
classification.

For a c-class classification problem, assume that there is
a set of training samples X = {xi , yi}ni=1 where xi ∈ R

D ,
yi ∈ {1, 2, · · · , c} denotes the class label of xi , D and n are
the number of features and samples, respectively.

Let Xj be the set of training samples in the j -th class.
Then we have X = ∪c

j=1Xj . For the j -th class, we use Xj

to train an SVDD and get the corresponding center aj and
support vector set SV j . Totally, there are c SVDD models.
To find the worst feature by using all c SVDD models, we
redesign the radius ranking score in (14) as follows:

JRk =
c∑

j=1

∑
xsv∈SV j

(
x2
(sv,k) − 2x(sv,k)a

j
k + (a

j
k )2

)

|SV j | (15)

If JRp is the smallest one among JRk, k = 1, · · · , D′, then
feature p should be removed from the current feature set.
Thus, FMSVDD-RRFE concerns all classes when remov-
ing the worst features. Algorithm 1 displays the process of
eliminating features in FMSVDD-RRFE. Roughly speak-
ing, FMSVDD-RRFE removes the feature with the smallest
ranking score in each iteration. In doing so, we can have a
feature ranking at last.

Algorithm 1 FMSVDD-RRFE

Input: -class training samples x 1 with x and

1 .

Output: Ranked feature list .

1. Initialize: The selected feature subset 1 and

the ranked feature list .

2. Repeat until :

(1). Let 1 and ranking scores 0 ;

(2). Generate which is the training set of the -th class

and only consists of features in ;

(3). Train an SVDD with to get the center a and the SVs

set ;

(4). Compute the ranking scores for each feature :

x
2 2 2

(16)

(5). If , let 1 and go to Step 2(2); Otherwise

continue;

(6). Find the feature with the smallest ranking score:

argmin (17)

(7). Update the ranked feature list by adding the index of

feature into it,

(18)

(8). Update the selected feature subset by removing the

index of feature from it,

(19)

3.2 Fast multiple SVDD-DRFE

Similar to the radius ranking criterion, the dual-objective
ranking criterion is also reasonable since it requires maxi-
mizing the objective function to find an SVDD model. Here,
we also provide a speeded algorithm for computing the dual-
objective ranking scores, and then present a fast multiple
SVDD-DRFE method based the speeded algorithm.

3.2.1 Fast SVDD-DRFE

The computational complexity of SVDD-DRFE with the
linear kernel is also given in Table 1. Similarly, SVDD-
DRFE first needs to compute Jd in (9) and J k

d , k =
1, · · · , D′ in (10), and then finds the worst feature p accord-
ing to the dual-objective ranking criterion (11). The compu-
tational complexity of Jd is O(|SV |2D′), and that of J k

d is
O(|SV |2(D′ − 1)). Totally, the computational complexity
of feature selection is O(|SV |2D′2) for SVDD-DRFE in the
current iteration.

We also give a theorem on computing the dual-objective
ranking score in the following. Let the dual-objective rank-
ing score be JDk = Jd − J k

d .
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Theorem 2 Given the optimal solution αi, i = 1, · · · , n to
the dual objective (3) in the linear case, the dual-objective
ranking score can be computed as

JDk =
∑

xsv∈SV

αsvx
2
(sv,k) −

∑

xsv∈SV

∑

xsv′ ∈SV

αsvαsv′x(sv,k)x(sv′,k) (20)

where SV is the set of support vectors, xsv,k is the k-th com-
ponent of the support vector xsv , and αsv , the corresponding
coefficient of xsv , is a component of the optimal solution.

The proof of Theorem 2 is shown in Appendix B.
According to Theorem 2, a fast SVDD-DRFE method can
be constructed. Moreover, the computational complexity of
FSVDD-DRFE is O(|SV |2D′) in an iteration, which is also
greatly smaller than that of SVDD-DRFE.

Table 1 compares the computational complexity of four
algorithms. Obviously, FSVDD-RRFE has the lowest com-
plexity among four algorithms, and followed by FSVDD-
DRFE. According to Table 1, SVDD-DRFE is faster than
SVDD-RRFE. In other words, the speeded scheme on
SVDD-RRFE is more effective than that on SVDD-DRFE,
which will be proved by experiments later.

3.2.2 FMSVDD-DRFE

Based on the proposed speeded algorithm, we develop a new
fast feature selection algorithm for binary and multi-class
classification problems.

For a c-class classification problem, FMSVDD-DRFE
also requires training c SVDD models. Let Xj be the set of
training samples in the j -th class. For the j -th class, we use
Xj to train an SVDD and get the solution α

j
i , i = 1, · · · , n.

The support vector set SV j = {αj
i |αj

i > 0, i = 1, · · · , n}.
To find the worst feature by using all c SVDD models, we
rewrite the dual-objectives ranking score in (20) as follows:

JDk =
c∑

j=1

∑

xsv∈SV j

α
j
svx

2
(sv,k)

−
c∑

j=1

∑

xsv∈SV j

∑

xsv′ ∈SV j

α
j
svα

j

sv′x(sv,k)x(sv′,k) (21)

If JDp is the smallest one among JDk, k = 1, · · · , D′,
then feature p should be removed from the current feature
subset. FMSVDD-DRFE considers all classes and removes
the feature with the smallest ranking score JDk in an itera-
tion. Algorithm 2 shows the process of feature selection in
FMSVDD-DRFE which can give a feature ranking finally.

Algorithm 2 FMSVDD-DRFE

Input: -class training samples x 1 with x and

1 .

Output: Ranked feature list .

1. Initialize: The selected feature subset 1 and

the ranked feature list .

2. Repeat until :

(1). Let 1 and ranking scores 0 ;

(2). Generate which is the training set of the -th class

and only consists of features in ;

(3). Train an SVDDwith to get model coefficients

1 and the SVs set ;

(4). Compute the ranking scores for each feature :

x

2 (22)

x x

(5). If , then 1 and go to Step 2(2); Otherwise

continue;

(6). Find the feature with the smallest ranking score:

argmin (23)

(7). Update the ranked feature list by adding the index of

feature into it,

(24)

(8). Update the selected feature subset by removing the

index of feature from it,

(25)

3.3 Connection to other SVDD-based feature selection
methods

Presently, three existing SVDD-based feature selection
methods, SVDD-RRFE [18], SVDD-DRFE [18], and
MSVDD-RFE [3], correspond to three ranking criteria: the
radius, the dual-objective and the center.

Similar to SVDD-RRFE, the proposed FMSVDD-RRFE
uses the radius ranking criterion. Both FMSVDD-RRFE
and SVDD-RRFE can process one-class classification prob-
lems. In this case, FMSVDD-RRFE has the same ranking
result as SVDD-RRFE according to Theorem 1. But most
of all, FMSVDD-RRFE is much faster than SVDD-RRFE
when performing feature selection. Table 1 shows the com-
putational complexity of the two methods when dealing
with one-class classification problems.

Compared to SVDD-DRFE, the proposed FMSVDD-
DRFE utilizes the same ranking criterion. When dealing
with one-class tasks, FMSVDD-DRFE has the same results
as and a much faster speed than SVDD-DRFE. The for-
mer can be validated by Theorem 2, and the latter can be
observed from Table 1.
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MSVDD-RFE uses the center ranking criterion which
is different from both FM-SVDD-RRFE and FMSVDD-
DRFE. The three multiple SVDD methods can address one-
class, binary and multi-class tasks. MSVDD-based methods
use the samples belonging to the same class to train an
SVDD model. However, MSVDD-RFE considers a fea-
ture ranking only for one class instead of for all classes
and generate multiple feature rankings. On the contrary,
both FMSVDD-RRFE and FMSVDD-DRFE can give a
unique feature ranking for all classes. In addition, the three
MSVDD-based methods have a similar computational com-
plexity which includes two parts: training c SVDD models
for c-class tasks, and computing ranking scores. Obviously,
the complexity of training SVDD models is exactly the same
to each other. The computational complexity of computing
ranking score in MSVDD-RFE is O(|SV |D′) in an iteration
when considering one-class tasks. While the computational
complexities of FMSVDD-RRFE and FMSVDD-DRFE are
O(|SV |D′) and O(|SV |2D′), respectively. Generally, SV

is only a small part of training samples. When D′ is large
enough, |SV | could be ignored.

4 Comparative performance analysis

To validate the performance of our proposed algorithms
(FMSVDD-RRFE and FM-SVDD-DRFE), we compare
them with other SVDD-based methods mentioned above.
All numerical experiments are performed on a personal
computer with a 3.4GHz Intel Core and 4G bytes of mem-
ory. This computer runs Windows 7, with Matlab R2013a.

4.1 Simulated datasets

The goal of this experiment is to validate that the speeded
algorithms can improve the speed of feature ranking. We
generate two simulated datasets, Dataset A and Dataset B.
Dataset A only contains one-class data, and Dataset B con-
sists of two-class data. In the following, we describe the
experimental results on the two datasets, respectively.

4.1.1 Dataset A

We use Dataset A to validate that the proposed speeded
algorithms have the same feature ranking and a faster rank-
ing speed compared to the original ones when applying
these algorithm to one-class tasks. For Dataset A, we first
randomly generate two-dimensional data with a uniform
distribution on the interval [0, 1] and then add noise fea-
tures which are m-Gaussian distributions with zero mean
and a variance 0.01, where m takes value in the set
{21, 22, · · · , 212}. In other words, the feature number in
Dataset A is m + 2. The number of training samples is 50.

The compared methods are FMSVDD-RRFE,
FMSVDD-DRFE, SVDD-RRFE, and SVDD-DRFE.
Actually, FMSVDD-RRFE is FSVDD-RRFE, and
FMSVDD-DRFE is FSVDD-DRFE since only one SVDD
model is needed. Let C = 0.5 for all four methods here.
We perform 10 runs for each m, and report the average fea-
ture ranking time in Fig. 1. Note that the logarithmic base
10 scale is used for the Y-axis. Naturally, all four meth-
ods spend much time ranking feature with the increase of
feature number. The curves in Fig. 1 lead to the same con-
clusion as Table 1 shows. When the feature number is much
larger than the sample number, SVDD-RRFE has the high-
est computational complexity, followed by SVDD-DRFE.
For example, when m = 210, the average ranking time of
SVDD-RRFE is 637.75 second, SVDD-DRFE 432.27 sec-
ond, FMSVDD-DRFE 8.11 second, and FMSVDD-RRFE
3.58 second. In this case, the proposed methods are two
orders of magnitude faster than the old ones.

Now, we observe the ranked features. Without loss of
generality, let m = 24. Then, Dataset A has 18 features
where the first two features are useful and the rest ones are
noise. By randomly generating data, we perform 10 trials.
The ranked feature indices in one trial are listed in Table 2.
Experimental results of the other nine trials are similar to the
one listed in Table 2. From the ranking sequences obtained
by four methods, the first two features are correctly ranked
in front of the sequence. In addition, as we expected that
FMSVDD-RRFE has the same ranking as SVDD-RRFE,
and FMSVDD-DRFE as SVDD-DRFE. In order words,
our algorithms speed both SVDD-RRFE and SVDD-DRFE
without changing their performance.

4.1.2 Dataset B

We use Dataset B to validate that the proposed meth-
ods could get better feature ranking for binary (or
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Fig. 1 Feature ranking time vs. feature number on Dataset A
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Table 2 Feature ranking of different methods on Dataset A

Method Feature ranking

SVDD-RRFE 1,2,8,16,5,3,13,14,15,6,7,18,10,9,12,11,4,17

FMSVDD-RRFE 1,2,8,16,5,3,13,14,15,6,7,18,10,9,12,11,4,17

SVDD-DRFE 1,2,8,16,3,5,13,15,14,7,6,18,4,11,10,17,9,12

FMSVDD-DRFE 1,2,8,16,3,5,13,15,14,7,6,18,4,11,10,17,9,12

multiple-class) classification problem than the original ones
do. For Dataset B, we generate two-class samples in the
12-dimensional data space, the class centers of which are
located at [0, · · · , 0]T (class one) and [1, · · · , 1]T (class
two), respectively. Similar dataset was tested in [16, 18].
The ith feature of all samples is independently drawn from
the Gaussian distribution with the standard deviation 0.2 ×
1.2i−1. For each class, 250 samples are randomly gen-
erated for training and 250 ones for test. The compared
methods are FMSVDD-RRFE, FMSVDD-DRFE, SVDD-
RRFE, and SVDD-DRFE. Let C = 0.5 for all four
methods here. We treat class one as the normal data when
applying SVDD-RRFE and SVDD-DRFE. Totally, there are
500 training samples for FMSVDD-RRFE and FMSVDD-
DRFE. For all four methods, the number of test samples is
500.

In one trial, feature rankings obtained by four methods
are listed in Table 3. In fact, the smaller the feature index
is, the more important the feature in Dataset B is. From
Table 3, we can see that feature six is ranked in the third
place by FMSVDD-DRFE, and in the sixth place by SVDD-
DRFE. Similarly, feature five is ranked in the fifth place by
FMSVDD-RRFE, and in the sixth place by SVDD-RRFE.
In other words, our methods could provide better feature
ranking and result better classification performance.

To compare the classification performance of these four
methods, we take support vector machine (SVM) with the
linear kernel as the classifier and use the F1-measure to
measure classification performance. In SVM, let the regu-
larized parameter be 10, which is an empirical value. The
F1-measure is a statistic that can evaluate the accuracy of
model by combining precision and recall:

F1 = 1

c

c∑

j=1

2 × Precisionj × Recallj

P recisionj + Recallj
(26)

Table 3 Feature ranking of different methods on Dataset B

Method Feature ranking

SVDD-RRFE 12,11,10,7,9,5,4,8,6,3,2,1

FMSVDD-RRFE 12,11,9,10,5,7,4,6,8,1,3,2

SVDD-DRFE 12,11,10,7,9,6,8,5,2,4,1,3

FMSVDD-DRFE 12,11,6,9,5,10,4,7,1,8,3,2
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Fig. 2 Average F1 measure vs. feature number on Dataset B

where Precisionj = T Pj

T Pj +FPj
and Recallj = T Pj

T Pj +FNj
,

FPj is the number of misclassified j th samples, T Pj is
the number of true j th ones, and FNj is the number of
misclassified non-j th samples.

The average classification performance on 10 runs
obtained by SVM is shown in Fig. 2. Obviously, FMSVDD-
DRFE is always the best, followed by FMSVDD-RRFE.
These results lead to a conclusion that FMSVDD-RRFE and
FMSVDD-DRFE are more effective than SVDD-RRFE and
SVDD-DRFE on Dataset B, which is consistent with the
results listed in Table 3.

4.2 Microarray datasets

Microarray datasets describe the differential expression
genes and have extensive and thorough gene expressive
quantity [11], which would be accompanied by terrible com-
putation. Feature selection methods seek the appropriate
features to solve the above conflict effectively. Four public
available microarray datasets are used to validate the perfor-
mance of our proposed method, and summarized in Table 4
including Small Round Blue Cell Tumor (SRBCT) of Khan
et al. [19], Leukemia-ALLAML of Golub et al. [13], Cen-
tral Nervous System (CNS) dataset of Pomeroy et al. [26],
and Lung Cancer of Bhattacharjee et al. [1].

Table 4 Description of three datasets

Dataset # Class # Feature #Training
sample

#Test
Sample

SRBCT 4 2308 63 20

Leukemia-ALLAML 2 7129 38 34

CNS 2 7129 40 20

Lung Cancer 5 12600 54 149
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In these datasets, all genes are expressed as numerical
values at different measurement levels. Since the value is
related to the value of genes, we normalize each gene on the
interval [0, 1] so that all genes can be measured on the same
scale.

Four classification performance indices are used here,
including F1-measure (26), recall, precision, and accuracy,
which are respectively defined by

Recall = 1

c

c∑

j=1

Recallj (27)

Precision = 1

c

c∑

j=1

Precisionj (28)

and

Accuracy = 1

n′
c∑

j=1

T Pj (29)

where n′ is the number of test samples.

4.2.1 SRBCT

The SRBCT dataset contains 83 samples belonging to four
classes, or Ewing family of tumors (EWS), neuroblas-
toma (NB), Burkitt lymphoma (BL) and rhabdomyosar-
coma (RMS). Each sample has 2308 genes. The training set
has 63 samples, including 23 EWS, 20 RMS, 12 NB and 8
BL. The test set contains 6 EWS, 6 RMS, 6NB and 3 BL.
This dataset could be downloaded from http://www.biolab.
si/supp/bi-cancer/projections/info/SRBCT.htm.

We compare our methods with SVDD-RRFE [18],
SVDD-DRFE [18], MSVM-RFE [36], and MSVDD-RFE
[3] on this dataset. In these feature selection methods, the
parameter C has a vital influence on experimental results.
Here, we use 5-fold cross validation to select the param-
eter C. The parameter C for all SVDD-based methods
take values in the set {0.2, 0.5, 1}, for SVM-based meth-
ods take values in the set {1, 10, 100}. Both SVDD-RRFE
and SVDD-DRFE require only one-class samples. In the
SRBCT dataset, there are 23 training samples in class EWS
which is taken as the target class in our experiments.

After we get the feature ranking list, we deal with the top
400 features in the list. We show the classification perfor-
mance from the top 1 to 400 features on the SRBCT dataset
in Fig. 3, where SVM with the linear kernel is the sub-
sequent classifier. When the feature number is small (say
less than 40), MSVM-RFE, MSVDD-RFE and FMSVDD-
RRFE have a rather good performance compared to the
rest methods. SVDD-DRFE performs worst among these
six methods. Since FMSVDD-DRFF is proposed based on
SVDD-DRFE, FMSVDD-DRFE is not so good. Although
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Fig. 3 Comparison of classification performance (a) F1-measure (b)
Recall, (c) Precision (d) Accuracy vs. top feature number on the
SRBCT datasets
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Table 5 Performance comparison on SRBCT

Performance SVDD-RRFE SVDD-DRFE MSVDD-RFE MSVM-RFE FMSVDD-RRFE FMSVDD-DRFE

Feature number 114 202 92 3 11 282

F1-measure (%) 100.00 85.90 100.00 100.00 100.00 100.00

Recall (%) 100.00 87.50 100.00 100.00 100.00 100.00

Precision (%) 100.00 90.62 100.00 100.00 100.00 100.00

Accuracy (%) 100.00 85.00 100.00 100.00 100.00 100.00

Ranking time (sec.) 761.24 647.72 19.50 86.44 22.56 20.19

FMSVDD-DRFE is bad, it is still much better than SVDD-
DRFE. Similarly, FMSVDD-RRFF is proposed based on
SVDD-RRFE and much better than SVDD-RRFE.

The best performance obtained by these methods is given
in Table 5, where feature number is determined by the
values of best F1-measure of these methods. The other
three performance indices recall, precision and accuracy
are determined according to the selected feature number.
All methods achieve good classification performance except
for SVDD-DRFE. FMSVDD-RRFE requires less genes to
implement perfect classification than SVDD-RRFE.

The feature ranking time on the training set is also listed
in Table 5. We can see that MSVDD-RFE, FMSVDD-
RRFE and FMSVDD-DRFE have a comparable ranking
time, which supports the analysis in Section 3.3, or the three
MSVDD-RFE methods have similar computational com-
plexity. SVM-RFE is slow by comparison. In addition, both
SVDD-RRFE and SVDD-DRFE are much slower than other
methods.

4.2.2 Leukemia-ALLAML

The Leukemia-ALLAML dataset has 72 samples belonging
to two classes, or ALL (Acute Lymphoblastic Leukemia)
and AML (Acute Myeloid Leukemia). The training set con-
sists of 38 bone marrow samples (27 ALL and 11 AML),
over 7129 probes from 6817 human genes. In addition, 34
test samples is provided, with 20 ALL and 14 AML. This
dataset could be downloaded from http://datam.i2r.a-star.
edu.sg/datasets/krbd/Leukemia/ALLAML.html.

Since both SVDD-RRFE and SVDD-DRFE took a long
time to rank feature on the Leukemia-ALLAML dataset,
we replace them by FSVDD-RRFE and FSVDD-DRFE,
respectively. In theory, FSVDD-RRFE has the same fea-
ture list as SVDD-RRFE, and FSVDD-DRFE as SVDD-
DRFE. But FSVDD-RRFE and FSVDD-DRFE are much
faster than SVDD-RRFE and SVDD-DRFE, respectively.
For FSVDD-RRFE and FSVDD-DRFE, 27 ALL are taken
as the target samples. Parameter setting is the same as that
in the SRBCT dataset.

We report the best performance obtained by six meth-
ods in Table 6. These results lead to similar conclusions as
those on the SRBCT dataset. FMSVDD-RRFE can achieve
the best classification performance as well as MSVDD-RFE
and MSVM-RFE. FMSVDD-RRFE is much better than
FSVDD-RRFE, and FMSVDD-DRFE better than FSVDD-
DRFE. Note that FSVDD-RRFE and FSVDD-DRFE have
a faster ranking speed since the two methods deal with only
one-class samples.

4.2.3 More datasets

The CNS dataset contains 60 patient samples, 21 are
survivors (alive after treatment) and 39 are failures (suc-
cumbed to their disease). There are 7129 genes in
the dataset. The training set consists of the first 10
survivors and 30 failures, the other 11 survivors and
9 failures are testing points. The CNS dataset could
be downloaded from http://datam.i2r.a-star.edu.sg/datasets/
krbd/NervousSystem/NervousSystem.html.

Table 6 Performance comparison on Leukemia-ALLAML

Performance FSVDD-RRFE FSVDD-DRFE MSVDD-RFE MSVM-RFE FMSVDD-RRFE FMSVDD-DRFE

Feature number 30 30 28 145 10 8

F1-measure (%) 96.93 79.84 100.00 100.00 100.00 93.93

Recall (%) 96.43 78.57 100.00 100.00 100.00 93.93

Precision (%) 97.62 88.46 100.00 100.00 100.00 93.93

Accuracy (%) 97.06 82.35 100.00 100.00 100.00 94.12

Ranking time (sec.) 171.74 214.69 346.04 554.18 339.64 346.29

http://datam.i2r.a-star.edu.sg /datasets/krbd/Leukemia/ALLAML.html
http://datam.i2r.a-star.edu.sg /datasets/krbd/Leukemia/ALLAML.html
http://datam.i2r.a-star.edu.sg/datasets/krbd/ NervousSystem/ NervousSystem. html
http://datam.i2r.a-star.edu.sg/datasets/krbd/ NervousSystem/ NervousSystem. html
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This Lung Cancer dataset has a total of 203 snap-
frozen lung tumors and normal lung. The 203 speciments
include 139 samples of lung adenocarcinomas (labeled
as ADEN), 21 samples of squamous cell lung carcino-
mas (labeled as SQUA), 20 samples of pulmonary car-
cinoids (labeled as COID), 6 samples of small-cell lung
carcinomas (labeled as SCLC) and 17 normal lung sam-
ples (labeled as NORMAL). Each sample is described by
12600 genes. The first 20 ADEN, 10 SQUA, 10 COID, 4
SCLC, and 10 NORMAL are taken as the training sam-
ples, and the rest are the test ones. This dataset could
be downloaded from http://datam.i2r.a-star.edu.sg/datasets/
krbd/LungCancer/LungCancer-Harvard1.html.

For the CNS dataset, 30 failures are the target samples
in FSVDD-RRFE and FSVDD-DRFE. For the Lung Can-
cer dataset, ADEN is selected as the target class. Since four
performance indices F1-measure, recall, precision and accu-
racy are coincident according to Tables 5 and 6, we only give
the best F1-measure performance in Table 7. First, we have
a conclusion that FMSVDD-RRFE is equal to or better than
FSVDD-RRFE, and FMSVDD-DRFE is always better than
FSVDD-DRFE. On the CNS dataset, although FSVDD-
DRFE is the worst, FMSVDD-DRFE achieves the best per-
formance 79.80% among six methods. FMSVDD-RRFE,
FSVDD-RRFE and MSVDD-RFE are next to FMSVDD-
DRFE. On the Lung Cancer dataset, MSVDD-RFE achieves
the best 95.18%, followed by FMSVDD-RRFE.

In a nutshell, FMSVDD-RRFE and FMSVDD-DRFE
can get not only a better classification performance but
also a faster feature ranking speed than SVDD-RRFE
and SVDD-DRFE on four microarray datasets, respec-
tively. FMSVDD-RRFE has a comparable classification
performance with MSVM-RFE and MSVDD-RFE on four
datasets. FMSVDD-DRFE only behaves well on the CNS
dataset.

4.3 UCI database

This section considers the datasets where the sample num-
ber is much greater than the feature number. We perform
experiments on eight datasets from the UCI database [9],
Breast, Wine, Wdbc, Vowel, Vehicle, Soy, Waveform, and

Table 7 Comparison of F1-measure (%) obtained by six methods

Method CNS Lung Cancer

FSVDD-RRFE 70.00 88.70

FSVDD-DRFE 64.91 84.65

MSVDD-RFE 70.00 92.62

MSVM-RFE 64.91 95.18

FMSVDD-RRFE 70.00 93.40

FMSVDD-DRFE 79.80 91.11

Segment datasets. The description on these eight datasets
is shown in Table 8. These datasets are normalized so that
their features range in the interval [0, 1]. For each dataset,
we randomly split it into two subsets for training and test,
respectively. The training set contains 2/3 of the samples of
each class, and the test set contains the remaining 1/3. The
split process is repeated 10 times for each dataset.

We also compare the proposed FMSVDD methods with
other four feature selection methods, SVDD-RRFE, SVDD-
DRFE, MSVDD-RFE and MSVM-RFE. The parameter
C for all SVDD-based methods take values in the set
{0.1, 0.5, 1}, for SVM-based methods take values in the
set {1, 10, 100}. We use 5-fold cross validation to select
the parameter C and the optimal feature number on the
training set for all compared methods. Note that, for both
SVDD-RRFE and SVDD-DRFE, only one-class samples
are supported. We choose the class with the largest number
of samples, or randomly choose the target class when each
class has the same number of samples.

We report the average classification performance of these
methods on 10 test subsets in Tables 9, 10, 11 and 12, where
SVM with the linear kernel is the subsequent classifier
and the bold values are the best ones among the compared
methods. From Tables 9-12, we can see that these four per-
formance indices are consistent with each other, which also
shows that the performance of algorithms is stable even for
imbalanced data. For example, the ratio of sample numbers
between two classes is almost 2 : 1 in the Breast dataset. It is
obvious that MFSVDD-RRFE achieves the best F1-measure
in five out of eight datasets. FMSVDD-RRFE outperforms
both SVDD-RREF and MSVM-RFE in seven out of eight
data sets, and both SVDD-DRFE and MSVDD-RFE in all
eight datasets. In addition, FMSVDD-DRFE is better than
both SVDD-RRFE and MSVDD-RFE in seven out of eight
datasets, SVDD-DRFE in all eight datasets, and MSVM-
RFE in five out of eight datasets. FMSVDD-DRFE only
outperforms FMSVDD-RRFE on the Vehicle dataset.

In summary, FMSVDD-RRFE and FMSVDD-DRFE are
always better than SVDD-RRFE and SVDD-DRFE when
addressing the binary or multi-class tasks where the sample

Table 8 Description on eight UCI Datasets

Dataset # Attribute # Sample # Class

Breast 9 699 2

Wdbc 569 30 2

Wine 13 178 3

Vowel 10 660 12

Vehicle 18 846 4

Soy 208 289 17

Waveform 21 5000 3

Segment 19 2310 7

http://datam.i2r.a-star.edu.sg/datasets/krbd/LungCancer/LungCancer -Harvard1.html
http://datam.i2r.a-star.edu.sg/datasets/krbd/LungCancer/LungCancer -Harvard1.html
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Table 9 Average accuracy of eight UCI Datasets

Dataset SVDD-RRFE SVDD-DRFE MSVDD-RFE MSVM-RFE FMSVDD-RRFE FMSVDD-DRFE

Breast 96.36±0.75 96.36± 1.14 96.41±0.86 96.26±0.78 96.65± 0.60 96.46± 0.98

Wdbc 97.94±1.23 97.82± 1.28 97.88± 1.37 97.30±1.28 98.06±1.21 98.00±1.44

Wine 95.34±3.05 95.86±2.18 95.86± 3.65 96.55±3.63 97.24±2.18 96.20± 2.41

Vowel 79.23± 2.09 79.09±2.32 76.80± 1.38 79.09±2.32 79.19±2.06 79.19± 2.05

Vehicle 77.62 ± 2.46 77.66 ±2.31 77.30 ± 2.50 76.83 ± 2.91 77.70 ±2.17 77.82±2.73

Soy 95.69± 2.82 95.03± 2.75 95.16± 3.03 95.69±2.50 95.95± 2.57 95.42± 2.85

Waveform 86.71± 0.64 86.76 ± 0.65 86.82± 0.51 86.70±0.55 86.90 ± 0.61 86.86±0.63

Segment 93.93± 0.81 93.90 ± 0.75 94.01 ± 0.67 94.17 ± 0.70 94.05±0.87 94.01±0.72

Table 10 Average recall of eight UCI Datasets

Dataset SVDD-RRFE SVDD-DRFE MSVDD-RFE MSVM-RFE FMSVDD-RRFE FMSVDD-DRFE

Breast 96.14±1.01 95.97± 1.37 96.11±1.22 95.96±1.09 96.42± 0.86 96.18± 1.16

Wdbc 97.68±1.59 97.55± 1.62 97.63± 1.76 96.84±1.51 97.77±1.50 97.69±1.70

Wine 95.68±2.80 96.30±1.89 96.34± 3.46 96.79±3.43 97.49±1.98 96.59± 2.25

Vowel 79.22± 2.09 79.09±2.32 76.80± 1.38 79.09±2.32 79.19±2.06 79.19± 2.05

Vehicle 77.96± 2.42 78.00±2.28 77.65± 2.46 77.18± 2.86 78.04 ±2.15 78.16±2.59

Soy 95.69± 2.82 95.03± 2.75 95.16± 3.03 95.69±2.50 95.95± 2.57 95.42± 2.85

Waveform 86.68± 0.64 86.74 ± 0.65 86.79± 0.51 86.67±0.55 86.88 ± 0.62 86.84±0.63

Segment 93.93± 0.81 93.90 ± 0.75 94.01 ± 0.67 94.17 ± 0.70 94.05±0.87 94.01±0.72

Table 11 Average precision of eight UCI Datasets

Dataset SVDD-RRFE SVDD-DRFE MSVDD-RFE MSVM-RFE FMSVDD-RRFE FMSVDD-DRFE

Breast 95.87±0.84 96.01± 1.34 96.00±0.91 95.83±0.88 96.21± 0.70 96.04± 1.21

Wdbc 97.93±1.11 97.79± 1.19 97.84± 1.22 97.36±1.27 98.08±1.16 98.03±1.45

Wine 95.44±2.81 95.98±1.97 95.98± 3.26 96.80±3.41 97.23±2.08 96.26± 2.13

Vowel 79.72± 1.80 79.58±2.01 77.25± 1.20 79.58±2.01 79.69±1.77 79.69± 1.77

Vehicle 77.11± 2.62 77.15±2.46 76.75± 2.59 76.12± 3.07 77.20 ±2.38 77.36±2.81

Soy 96.31± 2.44 95.79± 2.35 95.88± 2.67 96.42±2.08 96.58± 2.18 96.15± 2.43

Waveform 86.73± 0.63 86.78 ± 0.65 86.83± 0.51 86.71±0.55 86.93 ± 0.61 86.88±0.62

Segment 93.97± 0.77 93.93 ± 0.73 94.05± 0.65 94.26 ± 0.72 94.11±0.89 94.06±0.73

Table 12 Average F1-measure values of eight UCI Datasets

Dataset SVDD-RRFE SVDD-DRFE MSVDD-RFE MSVM-RFE FMSVDD-RRFE FMSVDD-DRFE

Breast 95.98±0.83 95.97± 1.27 96.03±0.97 95.87±0.87 96.30± 0.67 96.09± 1.09

Wdbc 97.78±1.34 97.66± 1.40 97.72± 1.51 97.08±1.39 97.91±1.32 97.85±1.57

Wine 95.47±2.82 95.98±2.02 96.06± 3.38 96.71±3.49 97.26±2.10 96.34± 2.23

Vowel 79.06± 2.05 78.96±2.23 76.53 ± 1.40 78.96 ±2.23 79.04±2.03 79.04± 2.03

Vehicle 77.30 ± 2.64 77.32 ±2.48 76.95 ± 2.64 76.34 ± 3.07 77.38 ±2.35 77.54±2.82

Soy 95.56± 2.99 94.88± 2.91 95.04± 3.218 95.54 ±2.69 95.83± 2.73 95.25± 3.04

Waveform 86.67± 0.65 86.72 ± 0.66 86.78 ± 0.52 86.66 ±0.56 86.86 ± 0.62 86.82±0.63

Segment 93.89 ± 0.833 93.87 ± 0.78 94.00 ± 0.66 94.16 ± 0.77 94.04±0.93 93.99±0.78

Table 13 The mean rank of
six methods on 12 datasets SVDD-RRFE SVDD-DRFE MSVDD-RFE MSVM-RFE FMSVDD-RRFE FMSVDD-DRFE

3.7500 5.0833 3.6667 3.7500 1.7917 2.7917
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Table 14 Friedman tests with the corresponding post-hoc tests

CD0.10 SVDD-RRFE SVDD-DRFE MSVDD-RFE MSVM-RFE FMSVDD-RRFE FMSVDD-DRFE

FMSVDD-RRFE 1.9583 3.2917 1.8750 1.9583 0 1.0000

FMSVDD-DRFE 0.9583 2.2917 0.8750 0.9583 −1.0000 0

number is much greater than the feature number, respec-
tively. The main reason is that proposed methods incor-
porate the information from all classes instead of one
class. Compared to methods utilizing all class information
(both MSVDD-RFE and MSVM-RFE), FMSVDD-RRFE
and FMSVDD-DRFE also have superiority.

4.4 Statistical comparison over multiple datasets

In this subsection, we perform statistical tests on multiple
data sets for comparing different algorithms. In the follow-
ing, we conduct the Friedman test with the corresponding
post-hoc tests, which is a non-parametric equivalence of the
repeated-measures analysis of variance (ANOVA) under the
null hypothesis that all the algorithms are equivalent and so
their ranks should be equal [10]. The Friedman test is car-
ried out to test whether all the algorithms are equivalent. If
the test result rejects the null hypothesis, i.e., these algo-
rithms are equivalent, we can proceed to a post-hoc test, or
the Bonferroni-Dunn test [8]. The performance of pairwise
classifiers is significantly different if the corresponding
average ranks differ by at least the critical difference

CD = qα

√
j (j + 1)

6T
(30)

where j is the number of algorithms, T is the number of
data sets, the critical values qα can be found in [10], and the
subscript α is the threshold value. Generally, let α = 0.1
and q0.10 = 2.326 [7]. In detail, we have j = 6 and T =
12 (including four microarray and eight UCI datasets), then
CD = 1.7765.

Table 13 lists the mean rank of six feature selection
algorithms, SVDD-RRFE, SVDD-DRFE, MSVDD-RFE,
MSVM-RFE, FMSVDD-RRFE and FMSVDD-DRFE. We
can see that FMSVDD-RRFE lists the top, followed by
FMSVDD-DRFE. Table 14 shows the Friedman test results.
According to the results in Table 14, we find that the differ-
ences between FMSVDD-RRFE and other algorithms are
greater than the critical difference 1.7765 except FMSVDD-
DRFE. Thus, FMSVDD-RRFE is significantly better than
the other four methods. Similarly, FMSVDD-DRFE is just
significantly better than SVDD-DRFE.

5 Summaries and conclusions

Recent developments of feature selection have achieved
outstanding simulated results along with favorable time
complexity. Promotion in the SVDD-based methods brings
with it some meaningful study. This paper develops two
new fast feature selection methods based on multiple sup-
port vector data description, called FMSVDD-RRFE and
FMSVDD-DRFE. The proposed methods can address not
only one-class classification tasks, but also binary and
multi-class ones. When dealing with one-class problems
and using the linear kernel, FMSVDD-RRFE is a fast ver-
sion of SVDD-RRFE and FMSVDD-DRFE is a speeded
version of SVDD-DRFE. The facts are proved by Theo-
rem 1 and Theorem 2, respectively. Extensive experiments
are performed to validate the performance of the proposed
methods. On eight UCI datasets, both FMSVDD-RRFE
and FMSVDD-DRFE behave well. On four microarray
datasets, the performance of FMSVDD-RRFE is compared
to that of the state-of-the-art feature selection methods,
MSVM-RFE and MSVDD-RFE. More importantly, the fea-
ture ranking time of SVDD-RRFE and SVDD-DRFE is
greatly reduced by our proposed methods when addressing
high-dimensional datasets, which is supported by the exper-
imental results of the simulated Dataset A and the SRBCT
dataset.

The proposed methods are improved versions of SVDD-
based methods with the linear kernel. Thus, our proposed
methods are used only with the linear kernel, which means
that they could not perform nonlinear feature selection. In
the future, we will consider the improvement of nonlinear
kernels, such as radius basis function (RBF) kernel.
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Appendix

A. Proof of Theorem 1

Proof Assume that a linear SVDD model has been trained.
Then we can get the center a of the hypersphere, and the set
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of support vectors SV . Substituting Jr (6) and J k
r (7) into

the radius ranking score JRk , we have

JRk = Jr − J k
r

=
∑

xsv∈SV

R2 (xsv)

|SV | −
∑

xsv∈SV

R2
(
xk
sv

)

|SV | (31)

where xsv ∈ R
D is a support vector, and xk

sv =
[x(sv,1), · · · , x(sv,k−1), x(sv,k+1), · · · , x(sv,D)]T ∈ R

D−1.
According to (31), it is necessary to find

the difference R2(xsv) − R2(xk
sv). Let ak =

[a1, · · · , ak−1, ak+1, · · · , aD] ∈ R
D−1. Then, we have

R2(xsv) − R2(xk
sv)

= ‖xsv − a‖2 − ‖xk
sv − ak‖2

= xT
svxsv − 2xT

sva + aT a − (32)
(
(xk

sv)
T xk

sv − 2(xk
sv)

T ak + (ak)T ak
)

Since

xT
svxsv − (xk

sv)
T xk

sv = x2
(sv,k) (33)

xT
sva − (xk

sv)
T ak = x(sv,k)ak (34)

and

aT a − (ak)T ak = a2
k (35)

we substitute (33), (34) and (35) into (32), and get

R2(xsv) − R2(xk
sv) = x2

(sv,k) − 2x(sv,k)ak + a2
k (36)

Then, substituting (36) into (31), the radius ranking score
can be rewritten as:

JRk = 1

|SV |
∑

xsv∈SV

(
x2
(sv,k) − 2x(sv,k)ak + a2

k

)
(37)

This completes the proof of Theorem 1.

B. Proof of Theorem 2

Proof Assume that a linear SVDD model has been trained.
Then we can get the coefficients αi, i = 1, · · · , n of the
hypersphere, and the set of support vectors SV = {αi |αi >

0, i = 1, · · · , n}. Substituting Jd (9) and J k
d (10) into the

dual-objective ranking score JDk , we have

JDk = Jd − J k
d

=
n∑

i=1

αixT
i xi −

n∑

i=1

n∑

j=1

αiαjxT
i xj − (38)

n∑

i=1

αi(xk
i )

T xk
i −

n∑

i=1

n∑

j=1

αiαj (xk
i )

T xk
j

Since

xT
i xi − (xk

i )
T xk

i = x2
(i,k) (39)

and

xT
i xj − (xk

i )
T xk

j = x(i,k)x(j,k) (40)

we substitute (39) and (40) into (38), and get

JDk =
n∑

i=1

αix
2
(i,k) −

n∑

i=1

n∑

j=1

αiαjx(i,k)x(j,k) (41)

Since only support vectors contribute to computing (41), we
rewrite (41) as follows:

JDk =
∑

xsv∈SV

αsvx
2
(sv,k) − (42)

∑

xsv∈SV

∑

xsv′ ∈SV

αsvαsv′x(sv,k)x(sv′,k)

This completes the proof of Theorem 2.
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