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Abstract When self-interested agents plan individually,
interactions that prevent them from executing their actions
as planned may arise. In these coordination problems, game-
theoretic planning can be used to enhance the agents’
strategic behavior considering the interactions as part of the
agents’ utility. In this work, we define a general-sum game
in which interactions such as conflicts and congestions are
reflected in the agents’ utility. We propose a better-response
planning strategy that guarantees convergence to an equi-
librium joint plan by imposing a tax to agents involved
in conflicts. We apply our approach to a real-world prob-
lem in which agents are Electric Autonomous Vehicles
(EAVs). The EAVs intend to find a joint plan that ensures
their individual goals are achievable in a transportation sce-
nario where congestion and conflicting situations may arise.
Although the task is computationally hard, as we theoreti-
cally prove, the experimental results show that our approach
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outperforms similar approaches in both performance and
solution quality.
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1 Introduction

In some real-life planning problems, agents need to act
strategically in order to achieve their goals. This is the
case, for instance, of two agents that plan to simultane-
ously use a one-capacity resource, thus provoking a conflict
between their plans at execution time. Instead, the con-
struction of a coordinated plan would allow the agents to
anticipate the conflict and build a joint plan with a better-
utility outcome for both. In Multi-Agent Planning (MAP)
with self-interested agents, decisions about what action to
execute or when to execute an action are conditioned by
possibly conflicting interests of the agents. We propose to
address this problem with game-theory, the study of math-
ematical models of negotiation, conflict and cooperation
between rational and self-interested agents [34]. Game-
theoretic techniques are particularly suitable to the problem
of designing a strategy (the agent’s decision making model)
that individual agents can use while negotiating – an agent
will aim to use a strategy that maximizes its own individual
welfare [17].

When agents that have their own incentives are involved
in a MAP problem, there is a need for a stable solution plan,
a plan from which none of the agents is willing to deviate
during execution because otherwise it would only imply a
loss of utility to some of them. In coalitional planning, self-
interested agents create coalitions in order to share resources
and cooperate on goal achievement because joining forces
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turns out to be more beneficial for reaching their goals [3,
8, 13]. Hence, in cooperative game-theoretic models such
as coalitional planning, self-interested agents build their
plans on the basis of a cooperative behavior and exploita-
tion of synergies with the other agents. This breaches the
principle of independence if the agents wish to maintain
their autonomy. In contrast, when agents plan autonomously
in a strictly-competitive setting, the problem is known as
adversarial planning, and it is commonly modeled as a
zero-sum game [34]. In these problems, agents try to pre-
vent others from reaching their goals since each agent’s
gain of utility is exactly balanced by the losses of the other
agents [2, 7].

However, some MAP problems do not fit as coalitional
or adversarial planning. Between these two game-theoretic
planning settings, there is a large number of problems in
which self-interested agents work independently on their
planning problem (no coalition formation) and the joint exe-
cution of their plans is not regarded as a strict competition.
In non-strictly competitive settings, agents have conflicting
but also complementary interests and they are willing to
cooperate with the aim of finding a solution that benefits all
of them. The middle ground between coalitional and adver-
sarial planning is a largely unstudied problem, which we
will refer to as non-cooperative MAP. This type of problems
are modeled as non-zero-sum or general-sum games, where
the winnings and losses of all agents do not add up to zero
and win-win situations can be reached by seeking a com-
mon solution that accommodates the local solutions of all
agents. In other words, although agents are self-interested
and non-cooperative, they also wish to achieve a stable
(equilibrium) joint plan that ensures their plans are exe-
cutable (by avoiding any conflict). Some real-life problems
that involve agents sharing resources to accomplish their
plans or the coordination of traffic flow to avoid collisions
embody non-cooperative MAP scenarios.

Finding stable multi-agent plans can be done with the
Best-Response Planning (BRP) proposed in [19]. This
approach solves congestion planning games through an
iterative plan-improvement process that initiates with an
executable initial joint plan. Since the initial joint plan may
use synergies between agents’ plans, agents will be com-
pelled to stick to some actions, which may be against their
strategic behavior and private interests. Additionally, due
to this agent dependency, convergence to an equilibrium
is not guaranteed. Other techniques such as plan merging
would solve the problem of conflict interactions [35], but,
likewise, making use of synergies is not compliant with self-
interested agents that plan autonomously in scenarios with
competitive relationships. The theoretical approach in [20]
presents a combination of two games that computes all the

existing equilibria of a joint plan, where a conflict between
two plans entails −∞ utility for all agents. In [20], the
strategies of the agents are limited to a given subset of plans,
congestion situations are not considered and the complex-
ity of the task renders the calculation of all the equilibria
intractable. All in all, there does not exist computational
proposals in the non-cooperative MAP literature that syn-
thesize a joint plan while strategically resolving conflicts
and congestion interactions among the agents’ plans.

In this work, we present the Better-Response Planning
Strategy (BRPS), a game-theoretic non-cooperative MAP
approach that finds a joint plan for a set of self-interested
agents in problems with congestion and conflicting situa-
tions. In BRPS, agents adapt their plans to the other agents’
plans in an iterative cost-minimization process in which the
interactions among the agents imply a cost rise that is mod-
eled in a single individual agent’s cost function. We consider
both congestion and conflicts as part of the agents’ cost
functions. This way, agents are incentivized to avoid con-
flicts by applying the so-called taxation schemes [25, 36],
in which a third party taxes agents incurring conflicts to
guarantee the feasible execution of the agents’ plans.

BRPS is a general-purpose non-cooperative MAP
approach capable of solving different planning problems.
Particularly, we designed an Electric Autonomous Vehicles
(EAV) [24] domain to perform a comprehensive experimen-
tal evaluation of our approach. In this domain, agents are
electric self-driving taxi companies in a smart city. Since
EAVs are regarded as rational and self-interested entities,
conflicting plans including vehicles attempting to reach a
charger at the same time can be avoided by coordinating the
actions of their plans. Thus, agents can opt for visiting other
locations before the charger or waiting until the charger is
available, depending on the impact of each strategy in their
utility values. Ultimately, the objective is to find a solution
that accommodates all the local solutions and allows agents
to achieve their goals with the maximum utility possible.

This work is organized as follows. Next section presents
the planning problem in which all elements that affect the
agents’ utility are defined. Section 3 formalizes the plan-
ning problem as a game-theoretic approach, the Interaction
Planning Game (IPG), and we show the complexity of the
task as well as under which conditions the IPG is a potential
game. In Section 4, we present BRPS, the better-response
planning strategy to solve the IPG, and we analyze the con-
vergence to equilibrium solutions. Section 5 introduces the
EAVs domain which features both conflicts and congestion.
In Section 6, we show an application example of BRPS in
the EAVs domain and different experimental results, includ-
ing a comparative with the BRP approach of [19]. The last
section presents the conclusions.
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2 Planning framework

A MAP task consists of a set, AG, of n rational self-
interested planning agents where each agent i synthesizes
a plan πi to accomplish its individual planning task. The
utility that πi reports to agent i may be jeopardized at exe-
cution time due to the interactions with the actions of the
other plans. Thus, agents are willing to reach an equilibrium
that guarantees their best possible solution jointly with the
others’.

For the sake of clarity, we briefly name all of the agents
costs that will be used in this section: the cost of an agent
plan is costP ; the cost of solving congestion or conflicts by
delaying the execution of plan actions is defined as costS;
costG represents the cost of being in congestion, and costU

is the cost of being in conflict.
A MAP task is modeled as deterministic planning prob-

lem in a fully-observable environment. The world consists
of a set of state variables (V) each associated to a finite
domain (Dv, v ∈ V). A variable takes a value of its domain
through a variable assignment (v := d, d ∈ Dv). A state S

is a total variable assignment over V . Each agent has its own
view of the world which may be totally or partially shared
with the other agents.

Definition 1 The planning task of an agent i ∈ AG is a
tuple T i = 〈V i , I i ,Ai ,Gi〉, where V i is the set of state
variables known to agent i; I i is the initial state over V i ; Ai

is a finite set of actions over V i describing the performable
operations by agent i; and Gi a formula over V i describing
the goals of the agent.

A planning action of Ai is a tuple αi = 〈pre(αi),

eff (αi), cost (αi)〉, where pre(αi) and eff (αi) are par-
tial variable assignments that represent the preconditions
(atomic formulae of the form v = d) and effects (atomic
effects of the form v := d) of αi , respectively; and cost (αi)

is a numeric value that denotes the cost of executing αi . An
action αi is executable in a state S if pre(αi) ⊆ S. Execut-
ing αi in S leads to a new state S′ as a result of applying
eff (αi) over S.

Given two agents i and j , Gi and Gj will not contain
antagonist goals since it would be otherwise an adversarial
planning task. On the other hand, Gi and Gj are gener-
ally disjoint sets (Gi ∩ Gj = ∅) because the goal formula
(v = d) are defined over different sets of variables, V i and
Vj , respectively. Even though agents could share one same
variable, this is not typically the case for agents that solve
independent planning tasks. Agents are assumed to solve
their assigned goals individually without any assistance or
synergy.

Agents develop solutions for their own tasks in the form
of partial-order plans.

Definition 2 A partial-order plan of an agent i ∈ AG is a
pair πi = 〈X i , ≺〉, where X i ⊆ Ai is a nonempty subset of
the actions of agent i and ≺ is a strict partial order on X i .

Every strict partial order is a directed acyclic graph. Two
unordered actions αi

j and αi
k of a plan πi are executable in

any order. Moreover, αi
j and αi

k could also be executed in
parallel if the agent has the capability to do so. The set of
topological sorts of πi determines a discrete time step for
the actions in πi . Particularly, the time step of an action αi

in πi is set as the earliest time over every topological sort
of πi . Accordingly, the time step assigned to each action in
πi is consistent with the set of orderings ≺ of πi . The finish
time of a plan πi is defined as the last time step t at which
any action of πi is scheduled.

The utility of πi is measured as the utility that achiev-
ing Gi reports to i. Since two different plans that achieve Gi

will bring i the same utility, agents will use the cost of exe-
cuting a plan, denoted as costP (πi), to differentiate plans.
The term costP (πi) measures two aspects:

– Cost of the actions in πi . cost (αi),∀αi ∈ πi denotes
a monetary cost, a cost in terms of resources necessary
to carry out the action or any other cost measure that
diminishes the benefit of achieving Gi with πi .

– Finish time of πi . For some agents, achieving the goals
sooner or later will have a different impact in the agent’s
utility. If two plans have the same action cost, agents
will most likely prefer the one that finishes earlier.

The particular evaluation of the action cost and finish
time of πi will depend on the context, infrastructure and
individuality of i. costP (πi) weights all the relevant param-
eters to agent i, representing how costly is for i to execute πi .

Definition 3 A joint plan is a tuple Π = 〈π1, π2, . . .

πn, ≺AG〉 where ≺AG is a set of inter-agent orderings over
the actions of the partial-order plans of the n agents.

We use the notation Π−i = 〈π1, . . . , πi−1, πi+1, . . . ,

πn〉 to denote the joint plan of all agents but i. Given πi and
Π−i , the aim of agent i is to integrate πi in Π−i and come
up with a joint plan Π .

2.1 Cost of integrating a plan in a joint plan

Ideally, executing πi along with Π−i would only charge
costP (πi) to agent i. However, integrating πi in Π−i may
cause interactions (conflicts or congestions) between the
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actions in πi and the actions in Π−i and solving these inter-
actions make agents incur an additional cost. The purpose
of agent i is to examine how costly it is to integrate πi in
Π−i is.

Conflict Interactions A conflict interaction is a situation
between the plans of two agents in which executing an
action of one agent in some specific order may prevent the
other one from executing one of its actions.

In a partial-order plan, a particular type of precedence
relation α ≺ β exists if a supporting effect of α (v :=
d ∈ eff (α)) is used to satisfy a precondition of β (v =
d ∈ pre(β)). We will denote such a causal relationship as
α ≺〈v,d〉 β.

Definition 4 Let πi, πj be two plans of agents i and j ,
respectively, in a joint plan Π . A conflict is defined as a
tuple c = 〈γ i, αj , βj 〉 where αj ≺〈v,d〉 βj ∈ πj and
γ i ∈ πi such that v := d ′ ∈ eff (γ i), and it does not hold
γ i ≺AG αj or βj ≺AG γ i .

Definition 4 states a situation in which agent i jeop-
ardizes the execution of πj (outgoing conflict for i) and,
inversely, πj is affected by agent i (incoming conflict for
j ). Under a partial-order planning paradigm, this interaction
is interpreted as the action γ i is threatening the causal link
αj ≺〈v,d〉 βj ; likewise, it amounts to an inconsistent effect
and an interference mutually exclusive relationships [11].
That is, in order to avoid this conflict interaction γ i cannot
be executed after αj and before βj nor at the same time than
αj or βj .

Both agents can adopt the role of conflict solvers. A con-
flict c = 〈γ i, αj , βj 〉 is a solvable conflict by agent i (resp.
j ) by setting βj ≺AG γ i (resp. γ i ≺AG αj ) as long as the
newly introduced precedence relation is consistent with the
sets ≺ and ≺AG of πj (resp. πi). Note that an agent is only
allowed to insert orderings that keep the plan of the other
agent unaltered. Agents seek their own benefit but not at
the cost of provoking conflicts to others because this would
have a negative impact in all the involved agents.

Integrating πi in Π−i implies that agent i must succes-
sively analyze its incoming and outgoing conflicts with the
rest of agents. When an incoming ordering ≺AG is set to an
action γ i of πi , the time step of γ i and its successors must
be now re-calculated over every topological sort that com-
prises the sets ≺ and ≺AG of πi . Consequently, the finish
time of πi can be delayed, which will cause an impact in the
integration cost of agent i. The delay cost caused by solving
the inter-agent conflicts is included in costS(πi, Π−i ).

Our approach also accounts for unsolvable conflicts and
charges the agent accordingly in order to encourage the

agent to deviate from such a conflicting situation and to
select a strategy that guarantees a feasible joint plan, if
possible:

– An unsolvable incoming conflict 〈γ j , αi, βi〉 of agent
i compromises the feasibility of πi and agent i will
receive a cost penaltyi .

– An unsolvable outgoing conflict 〈γ i, αj , βj 〉 of agent
i affects the feasibility of πj . In a general-sum and
non-strictly competitive game, an agent is taxed if its
plan provokes an unsolvable conflict. We use a taxa-
tion scheme [25, 36] that imposes taxi to agent i for
obstructing the execution of the plan of another agent j .

The cost of a joint plan with unsolvable conflicts must
surpass the cost of a plan with no conflicts or with solv-
able conflicts because it is the worst outcome for any agent.
Consequently, the value of penaltyi and taxi should be a
sufficiently large value that makes πi be a non-affordable
strategy to encourage agent i to deviate from πi . Both
penaltyi and taxi are set to a value cci that exceeds the cost
of the worst possible conflict-free joint plan. In practice,
calculating cci is computationally prohibitive so penaltyi

and taxi are assigned a large integer constant CONF COST.
Note that cci is not set to ∞ because we need to count
the number of conflicts to assure convergence to an equi-
librium with better-response dynamics, as we will explain
in the next sections. Thereby, agent i will be charged with
cci · |U |, where |U | is the number of unsolvable conflicts.
We will denote such a cost by costU(πi, Π−i ).

Congestion interactions A congestion game is defined by
players and resources, and the utility of the player depends
on the resources and the number of players choosing the
same resource [29]. In our case, certain items in V are
defined as resources or congestible elements (R) so that a
congestion is produced when two or more actions associated
to the same time step define a formulae v = d, v ∈ R in
their preconditions. Moreover, the cost of a congestion may
differ across the agents involved in it since each agent has
its individual cost function, which makes our approach more
realistic. Given R = {r1, . . . , rm}, we define Ci

r : N → R

as the cost function of resource r for agent i accordingly
to the number of times that r is simultaneously used in a
joint plan. N : J × N × R → N returns the number of
actions that use resource r at time t in a given joint plan
Π ∈ J (where J is the set of all possible joint plans).
Therefore, the congestion cost incurred by agent i is defined
as costG(πi, Π−i ) = ∑finish(Π)

t=0

∑
r∈R Ci

r (N (Π, t, r)).
Given an action αi scheduled at time t that uses resource

r , the congestion is avoidable by agent i by setting a prece-
dence relation λ ≺AG αi with all the actions λ in congestion
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with αi . The possible delay cost caused by this relation in
the finish time of πi is accumulated in costS(πi, Π−i ) as
well. Therefore, we define as costG(πi, Π−i ) the cost of
the non-resolved congestion interactions of πi .

Finally, the total cost of integrating πi into Π−i is:

costT otal(πi, Π−i ) = costP (πi) + costG(πi, Π−i )

+costS(πi, Π−i )

+costU(πi, Π−i ) (1)

The net utility that a plan πi reports to agent i will be the
utility of achieving Gi minus costT otal(πi, Π−i ).

Note that costT otal(πi) computes the cost of realiza-
tion of πi along with the plans of the other agents and this
is the only factor that drives the agents’ decision-making
since all individuals in a game-theoretic setting are aimed
to a strategy that maximizes their own individual welfare.
Social cost factors such as trust and reputation are used
to assess the cost of decisions other than purely economic
impact. Particularly, how trustworthy an agent is when exe-
cuting a plan could have an impact in the cost assessment
of the agents. However, this is not applicable in this context
because, as we will see in Section 4, the formal game-
theoretic properties guarantee that no agent will deviate
from a stable joint solution plan. Social cost factors are
applicable in other type of negotiation frameworks such as
argumentation-based approaches.

Definition 5 A solution joint plan for the planning tasks⋃
i∈AG T i of all agents in AG is a conflict-free joint plan

Π∗ where costU(πi, Π−i ) = 0, ∀i ∈ AG. If this condition
holds then it is guaranteed that Π∗ achieves

⋃
i∈AG Gi .

3 Interaction planning game

An Interaction Planning Game (IPG) is a general-sum game
to solve the problem of multiple self-interested agents all
wanting to execute their plan in the same environment. In a
general-sum game, agents’ aggregate gains and losses can
be less or greater than zero, meaning that agents do not try
to minimize the others’ utilities. In the IPG, agents are self-
interested but not strictly competitive so the aim of an agent
is to seek a plan which does not provoke a conflict with
the other agents’ plans. Otherwise, this would negatively
affect its utility as well as the others’ utilities. Specifically,
a conflict between two or more plans will render the plans
non-executable, which is the worst possible outcome for
the agents because it prevents them from fulfilling their
planning tasks.

An agent i solves its task T i by generating a plan πi with
actions from Ai that achieves its goals in Gi .

Definition 6 An Interaction Planning Game (IPG) is a
tuple 〈AG, T , u〉, where:

– AG = {1, . . . , n} is a set of n rational self-interested
planning agents.

– T = ⋃
i∈AG T i is a multi-agent planning task in which

each agent i has to solve its own task T i .
– u = (u1, . . . , un) where ui : πi, Π → R is a real-

valued payoff function for agent i defined as the utility
of a plan πi that solves task T i when it is integrated in
a joint plan Π = 〈π1, . . . , πi−1, πi, πi+1, . . . , πn〉.

An IPG solution must be a joint plan such that the indi-
vidual solution of each agent within the joint plan cannot
be improved; otherwise, agents would keep on altering the
“solution”, thus leading to instabilities and conflicts during
the plan execution. Our goal by modeling this as a game
is to guarantee a stable solution in which no agent has a
reason to change its strategy. Then, the aim of each agent
in the IPG is to select its best-utility strategy according to
the strategies selected by the others; that is, all agents must
be in best response in an IPG solution, which by definition
is a Nash Equilibrium (NE) (see [30, Chapter 3] for more
information).

Definition 7 An IPG solution is a conflict-free solution
joint plan Π∗ (as defined in Def. 5) which is a NE of the
IPG.

The complexity of finding a NE in the IPG is PPAD-
hard (Polynomial Parity Arguments on Directed graphs)
[27] since computing a NE, even in a 2-player game, is
PPAD-complete [5] unless P = NP . However, there are
some exceptions in which for some restricted games, such
as zero-sum games, a NE can be computed in polynomial
time using linear programming [30, Chapter 4].

Theorem 1 Computing a NE for an IPG is PPAD-hard even
for single-action plans.

Proof The idea of this proof is to use a reduction from
general-sum finite games. For this class of games, any strat-
egy of a player/agent i can be translated in polynomial time
to a task T i of the IPG. This is done by mapping the strate-
gies of any general-sum game to single-action plans of the
IPG. Now, a NE of the IPG can be translated in polyno-
mial time to a NE of the equivalent general-sum finite game,
since the strategies and outcomes are the same.

From this we can conclude that even if generating plans
for individual agents is easy (single-action plans), finding a
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stable solution is PPAD-hard. In the general case, planning
in propositional STRIPS is PSPACE-complete [4] and cost-
optimal planning has proven even more difficult to solve in
practice [1].

Theorem 2 IPG is PSPACE-hard even with just one agent.

Proof The sketch of this proof is to make a reduction from
single-agent planning to an IPG. Let us take any single-
agent planning problem which can be represented as a
planning task T i of an agent i. We can construct an instance
of an IPG with task T i and AG = {i}. Then, solving this
IPG is only about computing single-agent plans that solve
T i .

Monderer and Shapley [23] found a more general class
than congestion games named potential games. A game is
potential if there is a function on the strategies of players
such that each change in a player’s strategy changes the
function value in the same way as the player’s change in
utility. For such a potential function, each local optimum is
a Pure strategy Nash Equilibrium (PNE). In contrast to an
exact potential function, an ordinal potential function does
not track the exact change of utility of the players but it
tracks the direction of such change.

For the IPG, we define the following ordinal potential
function which maps every strategy profile or joint plan to a
real value:

Φ(Π) =
∑

i∈AG
costT otal(πi, Π) (2)

Any unsolvable conflict causes a huge cost increase cc

to the involved agents (a penalty to the affected agent, and
a tax to the provoking agent). Since this cost increase is
the constant value CONF COST , which is higher than the
cost of any conflict-free plan, it is straightforward to see
that agents will always avoid unsolvable conflicts if they
can do so. No agent can benefit from being in an unsolvable
conflict or provoking it to improve its individual cost, no
matter their individual cost functions. In other words, a con-
flict increases the cost of the involved agents as well as the
potential function Φ. Therefore, regarding unsolvable con-
flicts and how they are taxed in the IPG, the potential game
property always holds.

Usually, congestion games have a universal cost func-
tion which expresses the congestion caused by the use of
the resources of the game. These games are potential if
congestion affects all agents similarly. When agents have
individual payoff functions, a game is not potential anymore
as it is proven in [22]. Since switching strategies usually
means a change in plan costs, it may be profitable for an
agent to change its plan to a much cheaper one that intro-
duces more congestion to others. Under these conditions,

the potential game property cannot hold because the poten-
tial function is unable to track the improvement of the agent
if the losses of the other agents are not compensated. Agents
in the IPG have individual costs that affect them differently
for their plans (costP ), for solving congestion or conflicts
(costS), and for congestion (costG).

However, the IPG is a potential game if one of these
two sufficient conditions are accomplished: (a) congestion
is costless, or (b) agents plans cost are null and congestion
affects all agents similarly.

Theorem 3 The IPG is a potential game with its associated
ordinal potential function Φ if for all agents in AG:

(a) congestion is costless (costG = 0), or
(b) the cost of executing a plan is null (costP = 0) and

congestion affects all agents similarly.

Proof The ordinal potential function Φ maps every strat-
egy profile to a real value and it satisfies the fol-
lowing potential game property: Given a joint plan
Π = 〈π1, . . . , πi

x, . . . , πn〉, if and only if πi
y

is an alternate plan/strategy for agent i, and Π ′ =
〈π1, . . . , πi

y, . . . , π
n〉 �= Π , then Φ(Π) − Φ(Π ′) > 0 and

ui(πi
y, Π

′) − ui(πi
x, Π) > 0. In other words, if the current

state of the game is Π , and an agent i switches its strategy
from πi

x to πi
y , the improvement of i is tracked by Φ.

Regarding congestion, in the case (a) in which conges-
tion is not considered, it is straightforward to see that any
utility improvement of an agent by switching its plan will
be reflected in the potential function Φ and it would not
cause any cost increase to other agents. In the case (b),
congestion affects all agents similarly and the cost of exe-
cuting any individual plan is null. Hence, an agent incurring
in a congestion is as much affected as the other involved
agents, and similarly, if an agent avoids a congestion, the
other involved agents also increase their utility. Therefore,
the potential game property holds in both cases (a) and (b)
regarding congestion.

Unsolvable conflicts imply a cost increase of cc to the
involved agents, which is higher than any conflict-free plan
cost.

If an agent i improves its utility by avoiding a conflict,
then the potential function Φ will decrease 2cc, once for
each of both agents involved in the avoided conflict. Note
that any modification of a plan (increase in costS by solving
a conflict) or switching to another plan to avoid a conflict
always implies a cost decrease for the involved agents which
is tracked by Φ. Hence, the potential game property always
holds regarding conflicts in both case (a) and (b).

For potential games, convergence to PNE by best/better
response is guaranteed [23]. Although the IPG is not always
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a potential game, it still shares many similarities. We make
an analysis of convergence of the IPG in Section 4.3. In
Section 6, we describe experimental results that aim to eval-
uate convergence properties by better-response dynamics in
a concrete domain that do not meet the conditions from the
above Theorem 3. Note that the IPG is designed to be appli-
cable to a wide range of real problems and this is the reason
why we considered all the elements in the cost functions of
the agents, which makes our model more complete.

4 Better-response planning strategy

In this section, we explain the Better-Response Planning
Strategy (BRPS) applied to the IPG, the search process of
BRPS, the convergence of BRPS to a Pure strategy Nash
Equilibrium (PNE), and we present a discussion about the
complexity of the BRPS in the IPG.

4.1 BRPS process

Better-response dynamics draw upon the properties defined
for best-response dynamics. Particularly, we know that any
finite potential game [23] will converge with best-response
dynamics to a PNE regardless of the cost functions (e.g.,
they do not need to be monotonic). Moreover, it is not
even necessary that agents best respond at every step since
best-response dynamics will still converge to a PNE in a
finite number of steps as long as agents deviate to a bet-
ter response [30, Chapter 6]. Additionally, a better-response
strategy can be implemented by an agent by randomly sam-
pling another plan until one is found with less cost than
the current plan’s, and this does not require the agent to
know the cost of every plan in its search space [10]. In
our planning context, we use better response instead of best
response since agents do not need to find the best plan at
each iteration, which may be computationally intractable.

Our BRPS is a process in which each agent i iteratively
revises its plan πi

x in the joint plan Π , and switches to
another plan πi

y which integrated in Π−i reports i a utility
better than πi

x . Before starting the process, an empty joint
plan Π = ∅ and an arbitrary order between the agents in
AG are established. During the process, agents must bet-
ter respond in each iteration. If an agent i is not able to

come up with a better-cost plan, it does not change its plan.
When no agent modifies its plan within a complete iteration
because none of them can better respond, BRPS has reached
a convergence point in which the current joint plan is a PNE.

Let us take a simple IPG example with two agents (1
and 2) and four plans per agent (π1

1 to π1
4 ; and π2

1 to
π2

4 ). Table 1 represents an IPG example in its normal-form
in which costP (π1

1 ) = costP (π2
1 ) = 1, costP (π1

2 ) =
costP (π2

2 ) = 2, costP (π1
3 ) = costP (π2

3 ) = 3, and
costP (π1

4 ) = costP (π2
4 ) = 4. The cells in Table 1 show

the utilities of the 16 joints plans that result from combining
the four plans of each agent. The terms cc1 and cc2 denote
the cost of the penalty/tax charged to agent 1 and 2, respec-
tively, for the unsolvable conflicts in the joint plans. Table 1
shows 7 solution joint plans, four of which displayed in
bold are PNE. If BRPS obtains the joint plan 〈π1

4 , π2
4 〉 with

utilities (−4,−4) at some point of the process, we can say
BRPS has reached convergence because no agent is able to
come up with a better plan without conflicts given the plan
of the others and so the utility of none of the agents can be
improved. The joint plan 〈π1

4 , π2
4 〉 is PNE but it is not Pareto

Optimal (PO) whereas the rest of PNE plans are all PO.
Consequently, better-response dynamics cannot guarantee
PO solutions.

From the agents perspective, the BRPS process works as
follows:

– An arbitrary order of agents in AG is established.
BRPS incrementally builds an initial joint plan,
Π = 〈∅, . . . ,∅〉, Π = 〈π1,∅, . . . ,∅〉, Π =
〈π1, π2,∅, . . . ,∅〉 and so on following the established
order. This construction follows a similar procedure as
explained below except that agent i has no previous
upper cost bound.

– In one iteration, agent i performs the following steps:

1. it analyzes the cost of its current plan πi
x in the

joint plan as specified in (1) and sets upperi =
costT otal(πi

x, Π
−i ).

2. it starts a planning search process to obtain a differ-
ent plan, say πi

y , that achieves Gi . During search, a
tree, where nodes represent an incrementally inte-
gration of the actions of πi

y within Π−i , is created.
Every node is evaluated according to (1) and if
the cost is greater or equal than upperi then the

Table 1 Two agents with
conflicts example π2

1 π2
2 π2

3 π2
4

π1
1 −2cc1−1, −2cc2−1 −cc1−1, −cc2−2 −1, −3 −cc1−1, −cc2−4

π1
2 −cc1−2, −cc2−1 −2, −2 −2, −3 −cc1−2, −cc2−4

π1
3 −3, −1 −3, −2 −3, −3 −cc1−3, −cc2−4

π1
4 −cc1−4, −cc2−1 −cc1−4, −cc2−2 −cc1−4, −cc2−3 −4, −4

PNE in bold



A better-response strategy for self-interested planning agents 1027

node is pruned. Otherwise, when the node already
holds all of the actions of the plan πi

y and if
costT otal(πi

y, Π
−i ) < upperi , then the search

stops because a better response has been found. In
this case, Π ′ = 〈π1, . . . , πi

y, . . . , π
n〉 is returned.

3. in case the search space is exhausted and no better
plan is found (we note plans are pruned by upperi),
agent i does not change its plan πi

x in Π since i is
in best response.

– When no agent in AG modifies its plan in a com-
plete iteration, better-response dynamics has reached a
convergence point and the current joint plan is a PNE.

4.2 Search procedure

In BRPS, each agent i implements an individual A* search
procedure that progressively generates better responses; i.e.,
individual plans that solve its task T i , and integrates them
into the current joint plan. In one BRPS iteration, agent
i calculates upperi = costT otal(πi

x, Π
−i ) as the cost

of its current proposal in the joint plan, removes πi
x , and

autonomously launches an A* search to find and integrate a
better response, πi

y , into the joint plan. The root node of the
search tree contains a joint plan which is defined as the com-
position of Π−i and an empty partial-order plan of agent i:
πi

y0
= 〈X i = ∅, ≺〉. We will denote such a combination as

Π−i ◦ πi
y0

.
At each level of the search tree, a node incorporates

one action over its parent node and inter-agent conflicts are
solved, if possible. Given the root node Π−i ◦ πi

y0
, its suc-

cessor nodes will contain Π−i ◦ πi
y1

, where πi
y1

= 〈X =
{αi

1}, ≺〉; a successor of Π−i ◦πi
y1

will be Π−i ◦πi
y2

, where

πi
y2

= 〈X = {αi
1, α

i
2}, ≺〉; and so on until a node which

contains Π−i ◦ πi
y is found. In other words, each node

of the tree successively adds and consistently supports a
newly added action until a node that contains a complete
plan πi

y that achieves Gi is found. Note that the inter-agent
orderings inserted in each node do not introduce any syner-
gies between agents since, as explained in Section 2, these
elements are merely used for conflict resolution.

The search is aimed at finding a plan for agent i with-
out conflicts with the other agents’ plans. The procedure
finishes once a conflict-free better response is found. If the
agent finds a node that contains an element in conflict, the
search keeps running until a conflict-free plan is found or
the search space is exhausted. During search, the upperi

cost bound is used to prune nodes that would not yield a
solution better than the current one.

The heuristic search of BRPS draws upon some particu-
lar planning heuristics [33] that enable agents to accelerate
finding a conflict-free outcome. Assuming that the current
plan of agent i in a joint plan is πi and that the best-cost

plan of agent i integrated in Π−i has a total cost of C	, i

might need as many iterations as costT otal(πi, Π−i )−C	

to reach the optimal solution, improving one unit cost at
each iteration. However, the combination of heuristic search
and the upper cost bound helps guide the search towards a
better-response outcome very effectively.

4.3 Convergence to an equilibrium

Better-response dynamics in an IPG may converge to a PNE
joint plan which might possibly contain conflicts. In this
section, we analyze the type of conflicts that lead to this
situation and we show that in the absence of this type of con-
flicts, BRPS converges to an IPG solution. We also analyze
convergence in the non-potential version of the IPG.

Every potential game has at least one outcome that is a PNE,
and better-response (or best-response) dynamics always con-
verges to a PNE in any finite potential game [30, Chapter
6], [26, Chapter 19].

Corollary 1 Better-response dynamics of an IPG always
converges to a PNE if the potential game property holds.

As we explained in Theorem 3, the potential game prop-
erty with the potential function Φ only holds under some
assumptions. However, even without these assumptions, and
considering the cost functions of the agents as defined in (1)
(costT otal, where the agents consider their own plans, con-
gestions, unsolved conflicts, and delays of solvable conflicts
and/or congestions), the IPG with better-response dynamics
will converge to a PNE in most cases.

4.3.1 Convergence to conflict-free joint plans

In some problems, a joint plan with conflicts can be a PNE
of the IPG and better-response dynamics could converge to
this non-executable PNE joint plan. This happens in a multi-
symmetric unsolvable situation among (at least) two agents
which have a symmetric unsolvable conflict, and none of
them has a better response that improves ui or uj due to the
existence of conflicts.

Definition 8 There exists a Multi-Symmetric Unsolvable
Situation (MSUS) between two agents i and j in an IPG if
the following two conditions hold:

1. there exists a symmetric unsolvable conflict between a
plan πi and every plan of j that solves T j , and

2. there exists a symmetric unsolvable conflict between a
plan πj and every plan of i that solves T i

In contrast to an unsolvable IPG (that would be the
case when every plan of i contains a symmetric unsolvable
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I

c2

c3

l1

l3

l2

l4

Ag1
Ag2

Fig. 1 Multi-symmetric unsolvable situation example

conflict with every plan of j and vice versa), a MSUS states
there is (at least) an IPG solution for the game but none of
the agents is able to unilaterally find a better response if
they get stuck in symmetric unsolvable conflicts. We note
that, whereas a MSUS is defined between a pair of agents, it
can affect any number of agents. However, the presence of
a single MSUS between two agents is a sufficient condition
to endanger the convergence to an IPG solution if agents get
stuck in the specific plans involved in the MSUS.

Figure 1 shows a problem with a MSUS. Two agents, 1
and 2, are placed in location I and want to get to F . Agent
1 can only traverse solid edges and agent 2 dashed edges
(except I −c1 which can be traversed by both agents). Loca-
tions c1, c2 and c3 can only be visited by one agent at a
time, being permanently unavailable afterwards. Each edge
has unitary cost. Agent 1 has two plans π1

1 and π1
2 with

costs costP (π1
1 ) = 3 and costP (π1

2 ) = 4, correspond-
ing to its inner and outer path, respectively. Similarly, agent
2 has two plans π2

1 and π2
2 corresponding to its inner and

outer path, respectively, with costs costP (π2
1 ) = 3 and

costP (π2
2 ) = 4. If both agents use their best plans, π1

1 and
π2

1 , they will cause a symmetric unsolvable conflict at c1. If
agent 2 switches to π2

2 , another symmetric unsolvable con-
flict will appear at c2. In the same way, if agent 1 switches
to π1

2 , the symmetric unsolvable conflict will occur at c3.
The only IPG solution is composed of π1

2 and π2
2 , in which

agents traverse the outer paths of Fig. 1. This reveals that a
better-response process can get trapped in a joint plan with
conflicts which is PNE. This happens because a symmet-
ric unsolvable conflict is only solvable through a bilateral
cooperation, and in case of a MSUS like this, any alterna-
tive plan of one of the two agents also provokes a symmetric
unsolvable conflict.

The strategies and utilities of this example are repre-
sented in Table 2, which is the normal-form of the IPG and
includes all of the joint plans. A cell represents the utility of

Table 2 Multi-symmetric unsolvable situation

π2
1 π2

2

π1
1 −2cc1−3,−2cc2−3 −2cc1−3, −2cc2−4

π1
2 −2cc1−4, −2cc2−3 −4,−4

PNE in bold

each agent in the joint plan formed by the plans of the cor-
responding row and column. The existence of a conflict in
a joint plan entails a loss of utility of −cci units. If one of
the agents (or both) initiate the better-response process with
their first plan, BRPS will converge to the non-executable
joint plan with utilities (−2cc1 − 3, −2cc2 − 3), which is
a PNE. This happens because none of the agents is able to
unilaterally improve its utility by switching to another plan.
The utilities of the agents can only be improved if they bilat-
erally switch to π1

2 and π2
2 , respectively. However, this can

never happen in a sequential better-response dynamics.
It should be noted that a MSUS is unlikely to occur in

real-world problems as it features a very restricted scenario
with several and fairly particular conflicts. As shown in the
example of Fig. 1, the two agents block each other, not only
for a plan but for all possible alternative plans since they
only could reach a conflict-free joint plan through a bilat-
eral plan switch. Hence, once these situations are identified,
where BRPS could end up in a non-executable PNE, we can
assure that in the absence of MSUS, if BRPS converges to a
PNE it will be an IPG solution.

Corollary 2 Better-response dynamics in an IPG without
any multi-symmetric unsolvable situation always converges
to a PNE if the potential game property holds, which is an
IPG solution (conflict-free joint plan).

As shown in Corollary 1, the IPG is a potential game
(under some assumptions) with an associated ordinal poten-
tial function Φ of (2) that guarantees convergence to a
PNE with better-response dynamics. Thus, in the absence
of MSUSs, agents will never get blocked in a symmet-
ric conflict since, if an agent cannot solve it, the other
involved agent will address the conflict. Therefore, agents
will progressively reduce their costs by solving conflicts and
improving their utility until converging to a PNE which is
an IPG solution (conflict-free joint plan). In other words,
if a game does not present MSUSs, only conflict-free joint
plans can be PNE. Additionally, in the absence of MSUS,
if BRPS converges to a PNE in the non-potential version of
the IPG, then the PNE will be an IPG solution.

4.3.2 Convergence in the non-potential IPG version

Better-response (or best-response) dynamics in the IPG may
cycle only by the combination of the individual agent’s
plan’s cost and congestion cost. For instance, if an agent
i improves its cost by switching its plan to one that pro-
vokes a congestion to other agents, and the cost decrease of
i does not compensate the cost increase of the other agents
in congestion (reflected by Φ), the potential game property
is broken. When the IPG is no longer a potential game, sit-
uations like the example we described may provoke cycles
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and better-response dynamics would never converge. How-
ever, it is not really common to find domains in which such
cycles appear easily, as we will show in the experiments of
Section 6.

To analyze what happens in the non-potential IPG ver-
sion, in which all the cost elements of costT otal are
considered, we turn to the concept of a sink equilibrium
[12].

We define a state graph G = (V , E), where V are the
states of the game (strategy profiles or joint plans Π in
the IPG), and E are better or best responses, that is, an
agent i has an arc from one state Π to another state Π ′
if it has a better/best response from Π to Π ′. The evo-
lution of game-play is modeled by a random path in the
state graph, similarly to extensive-form games with com-
plete information. Such a random path may converge or
may not converge to a PNE, but it surely converges to a
sink equilibrium (which may be or may not be a PNE). If
we contract the strongly connected components of the state
graph G to singletons, then we obtain an acyclic graph.
The nodes with out-degree equal to zero are named sink
nodes, that is, nodes with no out-going arcs in G. These
nodes correspond to states of sink equilibria since random
best/better-response dynamics will eventually converge to
one of those (and will never leave it) with probability arbi-
trarily close to 1 [12]. Therefore, we announce the following
proposition:

Proposition 1 Random better(best)-response dynamics in
an IPG without any multi-symmetric unsolvable situation
will eventually converge to a sink equilibrium, which is a
conflict-free joint plan.

Proof Similarly to Corollary 2, in the absence of MSUSs,
agents will progressively reduce their costs by solving con-
flicts and improving their utility until converging to a sink
equilibrium because they would never get blocked in a sym-
metric conflict. A sink equilibrium is always a conflict-free
joint plan since, in an IPG without MSUSs, all the conflicts
of a joint plan can be avoided. Only conflict-free joint plans
can be sink equilibria, so convergence to them is guaran-
teed. However, a sink equilibrium is not necessarily an IPG
solution so it is not necessarily either a NE solution.

Although a sink equilibrium is not as strong as a PNE, we
remark that, in most cases, random better-response dynam-
ics may converge to a sink equilibrium which may be also
a PNE. This is an important result in the IPG because
even without the potential property which guarantees con-
vergence, we can almost assure convergence. Furthermore,
in the absence of MSUSs, the equilibrium achieved will
always be a conflict-free joint plan. All these promising
results will be reflected in the experiments of Section 6.

4.4 Complexity of better response in an IPG

In this subsection, we discuss the complexity of using
better-response dynamics in an IPG, considering both the
planning complexity and the complexity of computing a NE
in a potential game.

The class of Polynomial Local Search problems (PLS) is
an abstract class of all local optimization problems which
was defined by [18]. Examples of PLS-complete problems
include traveling salesman problem, or maximum cut and
satisfiability. Finding a NE in a potential game is also PLS-
complete if the best response of each player can be com-
puted in polynomial time [9]. Moreover, the lower bound on
the speed of convergence to NE is exponential in the num-
ber of players [14]. This is a lower complexity than finding
a NE in a general-sum game as the IPG which is PPAD-hard
as we showed in Theorem 1.

While these are good news for the IPG in general, we
note that computing a strategy for an agent implies plan-
ning, which is PSPACE-complete in the general case [4], as
we pointed out in Theorem 2. However, planning complex-
ity can be lower for some planning domains as it is shown by
[15]. Specifically, while bounded (length) plan existence is
always NP-complete, non-optimal plans can be obtained in
polynomial time for a transport domain without fuel restric-
tions (i.e., LOGISTICS, GRID, MICONIC-10STRIPS,
and MICONIC-10-SIMPLE). In contrast, optimal plan-
ning is always NP-complete. This is one of the reasons why
our BRPS approach uses better-response dynamics instead
of best-response dynamics because in terms of planning
complexity it is easier to compute a non-optimal plan with
satisficing planning.

Nevertheless, the inclusion of the IPG in the PLS class is
not possible unless we are able to guarantee a best response
in polynomial time. In our BRPS approach, only a better
response (non-optimal plan) can be computed in polyno-
mial time. Then, we need to guarantee that a sequence of
better responses leads the game to a NE. In this sense,
a bounded jump improvement [6] must be guaranteed in
order to ensure PLS-completeness of the IPG with the BRPS
approach.

Proposition 2 Computing a PNE of an IPG, in its poten-
tial game version, using better-response dynamics is PLS-
complete if non-optimal plans can be computed in polyno-
mial time and a better response minimum improvement is
guaranteed.

Proof Let us take a standard transport domain without
fuel restrictions like LOGISTICS, GRID, MICONIC-10-
STRIPS, or MICONIC-10-SIMPLE, for which a non-
optimal plan can be computed in polynomial time, as
specified in [15]. If we use a satisficing planner which
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computes non-optimal solutions, and the planning agents
always have a minimum jump improvement in their better
responses, then achieving a PNE which is an IPG solution is
in PLS.

This is a good result since it guarantees that for some spe-
cific planning domains, the complexity of solving this plan-
ning and game-theoretic problem is PLS-complete, which is
much better than common PSPACE-completeness of plan-
ning and PPAD-completeness of computing a NE for any
general-sum game.

5 Case study: electric autonomous taxis in a Smart
city

In this section, we present a case study in which various
autonomous taxi companies (agents) seek their own benefit
without necessarily jeopardizing the plans of other taxi com-
panies in the context of a clean, coordinated and harmonic
smart city. We designed an Electric Autonomous Vehicle
(EAV) domain with two main purposes in mind: a) dealing
with a challenging problem in the near future and b) testing
a planning domain for self-interested agents which consider
both congestion and conflicts.

The EAV domain resembles the popular game ‘Battle of
the Sexes’, where a player receives a reward which depends
on how much preferable one activity is to the player plus an
additional reward if the other player also chooses the same
activity; i.e., if the activities of both players are coordinated.
However, coordinating the interests of autonomous agents
(plans of electric self-driving taxi companies) in a collective
environment (the city) brings about situations of congestion
and negative interactions between the actions of the agents
(e.g., conflicts for the usage of a particular resource) which
may render the plans unfeasible.

In order to properly motivate our EAV case study, Fig. 2
shows the area covered by a number of taxi companies in
a European city. The route of a taxi is determined by the
streets (black edges) it traverses. A street is defined by the
two junctions (gray circular nodes) it connects. Across
the city, there are several chargers (green squares) in
which the taxis recharge their batteries.

A taxi company agent must coordinate its fleet of
taxis to provide transport services to passengers that
are located in different junctions and want a ride to spe-
cific destinations. A company agent plans the routes of its
taxis on the network map of streets in order to deliver the
passengers in a cost-optimal way. Since energy manage-
ment is a critical aspect of electrical vehicles, the course of
action of a taxi company must include the necessary stops
to recharge the batteries of its taxi fleet in the available
chargers across the smart city.

This EAV domain was encoded with an extended version
of the MAP language introduced in [31] that incorporates
explicit support of congestion interactions. Agents or taxi
companies individually plan the routes of their taxis by
applying a set of planning actions:

– (drive ?t - taxi ?j1 ?j2 - junction ?l1
?l2 - level): The taxi drives from junction
?j1 to junction ?j2 reducing its battery level
from ?l1 to ?l2.

– (charge ?t - taxi ?j - junction ?ch -
charger ?n - network ?cl ?ml - level):
The taxi ?t enters the charger ?ch in network
?n from junction ?j and charges its battery from
its current level, ?cl, to its maximum capacity, ?ml.

– (leave-charger ?t - taxi ?ch - charger
?j - junction): Thetaxi ?t leaves thecharger
?ch and goes back to junction ?j.

– (pick-up-passenger ?t - taxi ?p - pass-
enger ?j - junction): The passenger ?p
waiting at junction ?j gets into the empty taxi
?t.

– (drop-passenger ?t - taxi ?p - passenger
?j - junction): The passenger ?p leaves the
taxi ?t at his/her destination ?j.

A charger is accessible by a single taxi at a time.
Since taxis act in the same environment, a charging sta-
tion occupancy conflict occurs when a taxi comes across
an occupied charger. In this case, the company agent
can either forward the taxi to a different charger (i.e.
modify its plan), or make it wait until the occupying taxi
leaves the charger (i.e. delaying the charge action to
avoid the conflict).

Congested traffic flow directly affects the cost of the
taxis’ actions. We identify two different types of congestion:

– Traffic jam congestion. If several taxis drive simul-
taneously through a street between two junctions,
traffic in such street will become less fluid, resulting
in a traffic congestion. Consequently, the cost associ-
ated to the drive action of each taxi will increase.
Agents should then consider traffic congestion when
selecting the routes of their taxis.

– Electricity network congestion. When taxis intend
to recharge their batteries simultaneously at different
chargers of the same electricity network, prices will
raise due to a peak demand, also leading to an electric-
ity shortage. Thus, company agents will be penalized
if they get involved in an electricity network congestion.

In this scenario, where concurrent actions of self-
interested agents can provoke congestions and conflicts, the
best individual plan of an agent may not be the course of
action that maximizes its utility in a joint plan. Moreover,
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Fig. 2 Smart city map example

a conflict makes the involved plans non-executable. There-
fore, agents are willing to give up their best individual plan
for the sake of a safe joint plan that guarantees a stable
execution of all the involved parties.

5.1 BRPS problem example

In order to illustrate the behavior of BRPS when solving a
planning problem with self-interested agents, Fig. 3 shows
a simple example based on the EAV domain. This exam-
ple features three taxi companies, Company1, Company2,
and Company3, each of them having a single vehicle (t1,
t2 and t3) and one passenger to transport (p1, p2 and
p3). There are four connected junctions j1 to j4 and two
chargers c1 and c2 in the same electricity network n1
which are accessible from j1 and j2, respectively (see
Fig. 3). Taxis t1 and t3 start at junction j1, and t2 starts
at j2. The batteries of the taxis are initially empty (level
l0), and their maximal capacity is l2.

In this problem, the cost of an individual plan,
costP (πi), is obtained as the sum of the costs of the actions
in πi . We assume unitary costs for all actions except for the
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Fig. 3 Problem example representation

drive actions, whose cost depends on the length of the
street, as shown in the edges of Fig. 3. The cost of integrat-
ing a plan in a joint plan, costS(πi, Π−i ), includes the cost
of possible delays to avoid conflicts and congestion. The
cost of a delay is measured as the difference in the num-
ber of time steps between the finish time of πi in isolation
and when πi is integrated in Π−i multiplied by a constant.
This constant depends on the impact of a delay on each
agent, which in turn may depend on whether or not a pas-
senger is waiting for the taxi. For the sake of simplicity, we
will assume a constant value of 5 units to all agents. The
cost of a congestion is linear with the number of congested
actions returned by the function N (Π, t, r), for any agent
i and resource r; i.e., if two actions use the same resource
simultaneously, the involved agents get a cost rise of 2; if
three actions are involved, then the cost rise is 3, and so
on. Additionally, we set cci = 10000 to obtain the value of
costU(πi, Π−i ). Despite the above specifications, we note
that the IPG cost functions can be individually customized
to each agent accordingly to its preferences.

Table 3 shows the best individual plan of each com-
pany. The goal of Company1 and Company3 is to carry
a passenger (p1 and p3, respectively) from j1 to j4,
while the goal of Company2 is to transport p2 from j3
to j4. The costs of these optimal plans are: costP (π1

1 ) =
costP (π2

1 ) = costP (π3
1 ) = 8. We will compare these

plans, which maximize the individual utility (minimize the
cost) of each company agent, with the final plans integrated
in the solution joint plan.

As explained in Section 4, an order between the agents
is established. We will assume Company1 goes first, fol-
lowed by Company2 and then Company3. The initial joint
plan is built in the first iteration of BRPS, starting from
Π = ∅, and no upper cost bound for any agent.
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Table 3 Individual agents’ plans

t Company1 (π1
1 ) Company2 (π2

1 ) Company3 (π3
1 )

0 charge t1 j1 c1 n1 l0 l2 charge t2 j2 c2 n1 l0 l2 charge t3 j1 c1 n1 l0 l2

1 leave-charger t1 c1 j1 leave-charger t2 c2 j2 leave-charger t3 c1 j1

2 pick-up-passenger t1 p1 j1 drive t2 j2 j3 l2 l1 pick-up-passenger t3 p3 j1

3 drive t1 j1 j3 l2 l1 pick-up-passenger t2 p2 j3 drive t3 j1 j3 l2 l1

4 drive t1 j3 j4 l1 l0 drive t2 j3 j4 l1 l0 drive t1 j3 j4 l1 l0

5 drop-passenger t1 p1 j4 drop-passenger t2 p2 j4 drop-passenger t3 p3 j4

Costs costP (π1
1 ) = 8 costP (π2

1 ) = 8 costP (π3
1 ) = 8

• Iteration 1:

– Company1 generates its plan π1
1 with

costT otal(π1
1 , Π−1) = 8 (see Table 3). The

current joint plan is Π = 〈π1
1 ,∅,∅〉.

– Company2 puts forward π2
1 and integrates

it in Π , which causes two congestion inter-
actions. An electricity network congestion is
present at t = 0 since t1 and t2 are using
chargers c1 and c2, which are both connected
to the same electricity network n1. Moreover,
a traffic jam congestion arises at t = 4 since
both taxis use the road from j3 to j4. Solving
a congestion entails a delay of one time step in
the finishing time of the agent multiplied by 5.
If Company2 solves the congestion at t = 0
with one time-step delay, it will be also solv-
ing the congestion at t = 4 since the whole
plan is delayed one time unit. Then, solving the
two congestion interactions is a total cost of 5.
However, remaining in congestion (cost rise of
2 per congestion) is less costly for Company2
than solving the two congestion interactions.
Thus, the cost of integrating π2

1 in Π−2 is the
sum of the individual plan cost plus the con-
gestion cost; that is, costT otal(π2

1 , Π−2) =
8 + 2 + 2 = 12. The resulting joint plan is
Π = 〈π1

1 , π2
1 ,∅〉.

– Company3 integrates π3
1 in Π and finds out

that t3 causes a conflict to t1 due to the
simultaneous use of c1. Company3 addresses
the conflict through an inter-agent ordering
that delays the execution of its plan two
time steps. This outcome is preferable for
Company3, because being in a planning con-
flict would report it a significantly higher cost.
Therefore, the cost for Company3 is the
sum of the cost of π3

1 plus the delay cost,
costT otal(π3

1 , Π−3) = 8+2∗5 = 18. At this
point: Π = 〈π1

1 , π2
1 , π3

1 〉.

• Iteration 2:

– Company1 examines the cost of π1
1 in Π and

finds out that it is higher than expected due
to the two congestions with Company2; i.e.,
costT otal(π1

1 , Π−1) = 8 + 2 + 2 = 12.
Subsequently, Company1 runs the search pro-
cedure with an upper cost bound upper1 =
12, synthesizing π1

2 , a plan that traverses the
street between j2 and j4. This plan is a bet-
ter response because costT otal(π1

2 , Π−1) =
9 + 2 = 11. Despite the fact that traversing the
street j2-j4 is more costly than j3-j4, π1

2
allows Company1 to avoid the congestion in
j3-j4, which results in a better-cost outcome.
We note that t1 does not avoid the electric-
ity network congestion with t2 because it is
unable to do so. Then, the resulting joint plan
is Π = 〈π1

2 , π2
1 , π3

1 〉.
– Company2 examines the cost of its plan π2

1 ,
costT otal(π2

1 , Π−2) = 8 + 2 = 10. The cost
of π2

1 is reduced thanks to the introduction of
π1

2 by Company1, which addresses a conges-
tion that affected Company1 and Company2,
thus benefiting both agents. Company2 exe-
cutes the search process with upper2 = 10 and
it does not find a better response after exhaust-
ing the search space. Therefore, Company2
maintains its initial plan π2

1 and the joint plan
remains unchanged, Π = 〈π1

2 , π2
1 , π3

1 〉.
– Company3 analyzes its plan, which has

the same cost as in the previous iteration,
costT otal(π3

1 , Π−3) = 8 + 2 ∗ 5 =
18. Company3 is unable to obtain a better
response, and thus, it maintains π3

1 . Hence,
Π = 〈π1

2 , π2
1 , π3

1 〉.
• Iteration 3:

– Company1 checks the cost of its plan,
costT otal(π1

2 , Π−1) = 9 + 2 = 11, and
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it does not find a better plan after searching.
Since Company1 does not changes its plan,
either will Company2 and Company3. Given
that no agent changed its plan in a complete
iteration, BRPS converges to the current joint
plan Π , which is an IPG solution.

Table 4 shows the final plans of the three agents in the
joint plan Π . The electricity network congestion at t = 0 is
shown in italics. In the IPG solution, the plan of Company1
is 3 units more costly than its initial individual plan due
to the electricity network congestion, and also because it
changed its initial route and switched to a different plan.
Company2 also experienced a cost rise of 2 units due
to the congestion with Company1. Finally, the plan of
Company3 is 10 units more costly than its best individual
plan because of a delay of two time steps that avoids a con-
flict with Company1. This coordinated solution satisfies
all agents since they are in a PNE, and thus, any unilateral
deviation will jeopardize the execution of their plans.

We must note that a different order of the agents, for
instance if Company3 was ordered before Company1,
would give rise to a different solution joint plan because
Company3 would be the first to occupy the charger c1.

6 Experimental results

In this section, we test the performance of BRPS through
a set of problem instances of the EAV domain presented
in Section 5. We provide some details of the BRPS imple-
mentation, including a brief discussion about the underlying
MAP technologies it uses, in Section 6.1. Next, Section 6.2
analyzes the experimental results, comparing the perfor-
mance of BRPS against the state-of-the-art BRP approach
[19]. In Section 6.3, we analyze the strategic behavior
adopted by the agents with the better-response dynamics
of BRPS. Finally, Section 6.4 provides a comprehensive
analysis of the results obtained by each BRPS agent.

6.1 BRPS implementation details

BRPS is implemented on top of a modified version of
the MH-FMAP satisficing planner [33]. BRPS draws upon
the features of MH-FMAP, including its multi-agent data
structures, the communication infrastructure and message
passing protocols among agents, the privacy model [32],
and the heuristic functions [33]. As it was mentioned in
Section 5, we designed an extension to the PDDL-based1

MAP language presented in [31] to include explicit support
of congestion interactions.

1PDDL: Planning Domain Description Language [21]

An agent i of BRPS uses MH-FMAP to individually syn-
thesize the plan (response) that will be integrated in the
current joint plan Π−i . The search of an agent is efficiently
guided by a) the cost of its previous response, which is used
as a threshold to prune parts of the tree; and b) the heuris-
tics of MH-FMAP, which have been adapted to deal with the
cost functions of the agents. Moreover, the BRPS search of
an agent can return a plan with unsolved conflicts.

6.2 Comparative evaluation of BRPS and BRP
in the EAV domain

In non-cooperative MAP, particularly in game-theoretic
planning, there are hardly available domain-independent
frameworks. One notable exception is the Best-Response Plan-
ning (BRP)2 approach presented in [19]. BRP is a game-theo-
retic planning approach with the following characteristics:

1. It is specifically designed to compute equilibria in
congestion games.

2. It requires an initial conflict-free joint plan which is
computed offline by a cooperative MAP solver; i.e., the
plan is calculated regardless the private incentives of
the agents and synergies among the agents’ plans may
appear.3 The joint plan comprises one plan per agent
that achieves the corresponding goals.

3. It is an iterative plan improvement model wherein agents
best respond to the plans of the other agents while
maintaining the conflict-free structure of the joint plan.

4. It applies best response instead of better response, which
entails a more costly plan generation for the agents.

5. It is proved to be useful for improving an initial congested
conflict-free joint plan, thus increasing the utility of the
agents in scenarios that feature congestion interactions.

These features reveal that BRP and BRPS show a similar
behavior and so they are comparable. We created a synthetic
benchmark of the EAV domain that includes 25 multi-agent
problems of growing complexity. Table 5 shows the problem
setup of this benchmark. The columns of Table 5 indicate
the number of company agents, taxis and passengers per
company, as well as the number of junctions and chargers,
and the battery capacity of the taxis.

As shown in Table 5, the number of company agents per
problem ranges between 2 and 6: the first 5 problems, p1-2
to p5-2, include two agents; the next 5 problems, from p6-
3 to p10-3, feature 3 agents, and so on. In each 5-problem

2We used optimal Fast-Downward [16] as the underlying individual
planner for BRP agents, since it was the best-performing setting in our
tests.
3Due to implementation limitations of BRP, it is not possible to
use a cooperative MAP solver as stated in [19]. Therefore, we used
the satisficing LAMA planner [28], which performed better than
Fast-Downward to compute the initial conflict-free joint plan.
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Table 4 Resulting IPG solution joint plan Π

t Company1 (π1
2 ) Company2 (π2

1 ) Company3 (π3
1 )

0 charge t1 c1 n1 l0 l2 charge t2 c2 n1 l0 l2 –

1 leave-charger t1 c1 j1 leave-charger t2 c2 j2 –

2 pick-up-passenger t1 p1 j1 drive t2 j2 j3 l2 l1 charge t3 c1 n1 l0 l2

3 drive t1 j1 j2 l2 l1 pick-up-passenger t2 p2 j3 leave-charger t3 c1 j1

4 drive t1 j2 j4 l1 l0 drive t2 j3 j4 l1 l0 pick-up-passenger t3 p3 j1

5 drop-passenger t1 p1 j4 drop-passenger t2 p2 j4 drive t3 j1 j3 l2 l1

6 – – drive t1 j3 j4 l1 l0

7 – – drop-passenger t3 p3 j4

Costs costT otal(π1
2 , Π−1) = 9 + 2 = 11 costT otal(π2

1 , Π−2) = 8 + 2 = 10 costT otal(π3
1 , Π−3) = 8 + 2 ∗ 5 = 18

block, the parameters of the task are adjusted to progres-
sively increase the difficulty of the problems. For example,
p1-2 includes 2 taxis, 2 passengers per agent, and 4 junc-
tions, while p5-2 presents 4 taxis and 5 passengers per agent,
as well as a much larger street map of 12 junctions. Other
key parameters of the domain, such as the number of charg-
ers and maximum battery capacity of the taxis, are scaled up
along with the number of junctions.

Table 5 Problem setup of the benchmark of test for the electric
autonomous taxis domain

Companies Taxis Passengers Junctions Chargers Battery

p1-2 2 2 2 4 1 4

p2-2 2 2 3 6 2 6

p3-2 2 3 3 8 2 8

p4-2 2 3 4 10 3 10

p5-2 2 4 5 12 3 12

p6-3 3 2 2 4 1 4

p7-3 3 2 3 6 2 6

p8-3 3 2 4 6 2 6

p9-3 3 3 3 8 2 8

p10-3 3 3 4 10 3 10

p11-4 4 2 2 4 1 4

p12-4 4 2 3 6 2 6

p13-4 4 2 4 6 2 6

p14-4 4 2 3 8 2 8

p15-4 4 3 3 8 2 8

p16-5 5 2 2 4 1 4

p17-5 5 2 3 6 2 6

p18-5 5 2 4 6 2 6

p19-5 5 2 3 8 2 8

p20-5 5 3 3 8 2 8

p21-6 6 2 2 4 1 4

p22-6 6 2 3 6 2 6

p23-6 6 2 4 6 2 6

p24-6 6 2 3 8 2 8

p25-6 6 3 3 8 2 8

The experimental results for both approaches are summa-
rized in Table 6.4 The first three columns of each planner
refer to the number of actions, finish time, and cost of the
solution joint plans. The next two columns show the num-
ber of iterations and computation time required by each
approach to synthesize the solution joint plans. The dagger
symbol (†) indicates that a solution was not found within
the given time limit. The cost values used in the function
costT otal of BRPS are the values shown in the example
of Section 5.1. Similarly, BRP was configured to apply the
same costs values as BRPS, except for the cost of unsolved
conflicts (costU ), which is ignored in BRP as it always
works with a conflict-free joint plan.

The computation time of the problems in Table 6 are
mainly determined by the complexity of the street map, the
number of taxis and task goals (passengers to transport)
per agent. This can be observed in each block of tasks,
where the resolution of a problem is generally more time-
consuming than the previous problems of the block. The
computation time grows exponentially in the last problems
of each block as they represent the most complex maps in
the number of junctions, taxis and passengers. For this rea-
son, convergence to an IPG solution requires significantly
larger computation times in these problems.

Despite the complexity of some of the problems, our
BRPS approach solves the complete benchmark, generating
solution plans of up to 87 actions. BRP, however, is only
able to solve 6 problems within the time limit, being unable
to attain any problem of the fifth block. In summary, BRPS
reaches 100% coverage, while BRP only solves 24% of the
benchmark problems, which proves that our approach scales
up significantly better than BRP.

Regarding computation time, BRPS is in general one
order of magnitude faster than BRP, with the only exception of
problem p6-3. We must further note that the results of BRP
in Table 6 do not reflect the time needed for the calculation

4All the tests were conducted on a single machine with an Intel Core
i7-3770 CPU at 3.40GHz and 8 GB RAM. Each test was run within a
time limit of 1800 seconds.
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Table 6 Experimental results
for different problem setups of
the EAV domain with random
order between agents

BRP BRPS

Acts Fh Cost Iters Time Acts Fh Cost Iters Time

p1-2 16 9 22 2 2.84 16 9 22 2 0.66

p2-2 23 13 49 2 38.29 23 10 34 3 35.58

p3-2 † 25 8 36 2 286.99

p4-2 † 37 12 49 2 483.67

p5-2 † 41 8 54 3 954.38

p6-3 26 10 40 2 5.42 27 11 38 3 1.79

p7-3 40 18 93 2 408.68 40 11 58 2 31.87

p8-3 † 48 16 66 3 239.06

p9-3 † 39 6 58 2 223.17

p10-3 † 48 14 67 3 749.68

p11-4 37 12 84 2 14.63 41 10 72 3 5.01

p12-4 † 54 15 78 3 118.83

p13-4 † 57 12 80 3 439.04

p14-4 † 54 12 80 3 658.39

p15-4 † 50 11 74 3 1052.07

p16-5 43 14 78 2 24.32 43 14 78 3 5.38

p17-5 † 74 17 110 2 278.69

p18-5 † 68 16 94 3 251.46

p19-5 † 62 12 94 3 222.00

p20-5 † 64 11 96 2 1167.65

p21-6 † 61 13 100 4 29.93

p22-6 † 71 11 106 3 202.26

p23-6 † 87 14 122 3 1665.96

p24-6 † 80 15 118 3 1761.50

p25-6 † 72 12 108 3 1643.19

of the initial conflict-free joint plan, a time-consuming task
that is not required in BRPS. All in all, we can conclude that
BRPS clearly outperforms BRP in terms of computation
time.

BRP only needs 2 iterations to converge to a solution in
6 of the problems, while BRPS takes one more iteration in
some of these problems. This is explained because starting
the search process from a conflict-free plan facilitates reach-
ing a solution, while BRPS needs to run as many iterations
as number of agents to build the first joint plan. Addition-
ally, better-response dynamics may take more iterations to
converge since agents do not necessarily propose the best
possible response at each iteration. Despite the downside to
a slow convergence, BRPS exhibits a significantly shorter
computation time per iteration than BRP, which results in
a superior performance and scalability. BRPS was able to
converge to a solution in all the problems of the benchmark
since better-response dynamics rarely get into a cycle, as
pointed out in Section 4.3.

BRPS proves to be particularly efficient at optimizing the
finish time of the solution joint plans. Even though many
of the solution plans contain a large number of actions,

the finish time of such plans never exceeds 17 time units,
which proves that our approach excels at enforcing paral-
lelism among the company agents’ actions. In other words,
the company agents in BRPS use their available taxis in
a concurrent and efficient manner, effectively minimizing
finish time and cost. This is also supported by the partial-
order reasoning mechanism of the planner MH-FMAP [33].
In contrast, the BRP plans finish later because the planner
used by a company agent to calculate a plan does not par-
allelize the actions of its taxis. This has also a direct impact
in the cost of the joint plans of BRP, making the execution
of such plans require more time steps.

In general, almost all BRP plans have a significantly
higher cost than the solutions of BRPS. For example, in
problem p2-2, BRP obtains a solution joint plan of 49 cost
units, while BRPS yields an IPG solution of 34 cost units.
Similarly, the cost of BRP for the problem p7-3 is 93 com-
pared to the 58 cost units of BRPS. Again, these differences
are mainly due to the fact that the type of planner used by the
agents in BRP does not enable parallelizing the plan actions;
this results in a later finish time, which in turn penalizes the
cost of the solution plans.
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We can also observe in Table 6 that the cost values and
number of actions do not generally scale up and this is spe-
cially notable in problems that feature similar cost values
but a significantly different number of actions; e.g., the solu-
tion plan to problem p21-6 has 61 actions and 100-unit cost
whereas the solution to p25-6 has 72 actions and 108-unit
cost. Aside from the fact that the cost of the drive actions
range between 2 and 3 units, unlike the rest of actions that
have unitary costs, problems like p21-6 occur in smaller
size cities (fewer junctions and chargers) and so it is more
likely to have congestion and conflict interactions. Conse-
quently, problems that happen is smaller cities tend to have
a relatively higher cost due to the more frequent appear-
ance of congestions and the introduction of delays to avoid
congestions or battery charging conflicts.

In summary, despite the notable complexity of the EAV
benchmark, which results in solution plans of more than
40 actions in most cases, our BRPS approach exhibits an
excellent behavior, outperforming BRP in all the evaluated
metrics:

1. Coverage: BRPS solves the complete benchmark within
the given time limit, while BRP only solves 6 of the
simplest problems of the benchmark (24% coverage).

2. Execution time: Despite better-response converge
more slowly than best-response, BRPS is one order of
magnitude faster than BRP in almost all cases.

3. Finish time: The underlying MAP machinery of BRPS
efficiently enforces parallelism among the agents’
actions, keeping the finish time of the solution plans
below 18 time units in all cases.

4. Cost: The cost of the solutions plans is significantly lower
in BRPS than in BRP. The lack of parallelism in the BRP
penalizes the plan cost notably, while our approach
ensures the generation of robust parallel plans where
the taxis of a company agent act in parallel whenever
possible.

All in all, the experimental results prove that BRPS sig-
nificantly outperforms the state-of-the-art BRP approach in
both sheer performance and plan quality, thus emerging
as the current top-contending technique in non-cooperative
MAP.

6.3 Analyzing the strategic behavior of the BRPS agents

This section analyzes the strategic behavior adopted by the
BRPS agents accordingly to the configuration of their cost
functions. We do not present a comparative evaluation with
the strategic behavior of agents in BRP because the cooper-
ative nature of the initial joint plan of BRP would render the
comparison not meaningful. More specifically, the behavior
of agents in BRP, which must best respond to a coopera-
tive solution by maintaining the conflict-free structure of the

plan, limit the choice of action of the agents as to satisfying
their own private interests.

For this analysis, we used the problem example pre-
sented in Section 5.1 and depicted in Fig. 3 except that the
battery level of the taxis is 1 (level l1). The default order-
ing of the agents during the better-response dynamics of
BRPS is Company1- Company2-Company3. We tested
this problem in six different settings that modify the agents’
cost functions. The columns of Table 7 show the number of
actions, finish time, and cost of the plans of each company
agent in the six different settings.

In the following, we analyze the six configurations used
in this experiment and the results summarized in Table 7:

– Setting 1: This is the original setting of the problem as
presented in Section 5.1, where the cost of a delay of
one time step is 5. The solution plan for this setting is
shown in Table 4. As explained in Section 5.1, there is
an electricity network congestion between Company1
and Company2 because they are using two charg-
ers connected to the same electricity network at t=0.
Company3 is delayed two time steps because it must
wait for the charger c1 to be released released by
Company1.

– Setting 2: In this setting, the cost of a delay of one
time step is 1. The rest of the costs are as in setting 1.
The solution joint plan for this setting is the same as in
setting 1. However, the plan of Company3 has a lower
cost (10 cost units) because it benefits from the unitary
delay cost.

– Setting 3: In this case, the cost of a delay of one time
step is 30 for the three agents, while the rest of costs
remain as in setting 1. Again, the only affected agent is
Company3, which does not change its plan, but reports
a total cost of 68 units because of the higher cost of a
delay.

– Setting 4: In this configuration, we defined a 10-unit
cost for driving through street j3-j4, keeping the
rest of costs unaltered with respect to setting 1. The
plan of Company2 still uses street j3-j4 to take the
passenger to the goal destination. The best solution for

Table 7 Strategic behavior analysis for different cost functions

Company1 Company2 Company3

Setting Act Fh Cost Act Fh Cost Act Fh Cost

1 6 6 11 6 6 10 6 8 18

2 6 6 11 6 6 10 6 8 10

3 6 6 11 6 6 10 6 8 68

4 6 6 11 6 6 18 6 8 19

5 6 6 8 7 8 15 6 10 28

6 6 10 28 7 8 15 6 6 8
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Company2 would be to take a longer path through
streets j3-j2 and j2-j4 because this would report a
lower cost than using street j3-j4. However, since it
is not possible to charge the battery with a passenger
on the taxi, and the maximum capacity of the battery
is limited to 2 units, Company2 cannot take this alter-
native route. Regarding Company3, its taxi waits for 2
time steps until taxi1 finishes charging the battery at
c1, and then, it takes the paths j1-j2 and j2-j4 to
avoid the more costly street j3-j4.

– Setting 5: This setting increases the congestion cost
as follows: a 2-agent congestion reports the involved
agents a 12-unit cost; a 3-agent congestion entails a
13-unit cost, and so on. The rest of costs remain as
in setting 1. The IPG solution obtained with this set-
ting is shown in Table 8. This joint plan presents
several differences with respect to the solution of set-
ting 1 that concern Company2 and Company3. In
this solution, taxi2 of Company2 drives from j2
to j1 to charge its battery at t=2, once taxi1 leaves
charger c1. This explains the 15-unit cost reported by
Company2, which is slightly higher than Company1’s
cost. Company2 makes this decision to prevent taxi1
and taxi2 from charging their batteries simultane-
ously at chargers c1 and c2, which would cause a
network congestion. Then, taxi2 drives to j3 to pick
up its endowed passenger and transports him to j4.
Therefore, the finish time and cost increase reported by
Company2 in this setting is explained by the additional
action that drives taxi2 to charger c1, and the sub-
sequent 1-time-step delay. Finally, Company3 reports
a higher cost than the rest of agents (28 units), because
it waits for 4 time steps until the charger c1 becomes
available.

The high cost of congestions in this setting forces the
agents to introduce delays to charge the batteries of their
taxis in a sequential order. Consequently, the agent that

revises first its plan in the first iteration (Company1) is
favored since the best option for the subsequent agents
is to delay their activities until the first agent releases a
key resource (in this case, the charger c1).

– Setting 6: This setting maintains the costs of set-
ting 5, but the ordering of the agents in BRPS is
reversed; that is, Company3 goes first, followed by
Company2 and Company1. As expected, the results
are also reversed with respect to setting 5: in this case,
Company3 presents no delay in its execution while
Company1 does. Company2 keeps the same solution
plan and cost as in setting 5.

In these experiments, we can observe that agents design
their strategies (plans) to optimize cost according to the
specification of their cost functions. Agents try to find the
lowest-cost plan taking into account their own cost func-
tions and the plans of the other agents. Moreover, agents
avoid the most costly situations if they are able to do so. For
instance, if remaining in a congestion entails a cost higher
than escaping from it by delaying actions, agents will opt
for delaying the execution of their actions. All in all, we
can conclude that, as expectedly, agents in BRPS follow a
strategic behavior regarding their cost functions.

6.4 Influence of the order of BRPS agents

In this section, we analyze whether the order of agents in BRPS
affect the cost of an agent’s plan with respect to its best
individual plan as a stand-alone agent. Figure 4 shows the
results when an agent is the first one (agent-first) in the
arbitrary order of the BRPS process, when it is the last one
(agent-last) or when its position is randomly chosen (agent-
random). We show the average increment in the number of
actions, finish time and cost of a specific agent for all problems
of Table 6 with respect to the best individual plan of the agent,
which is computed exhausting the search space of the agent.

Table 8 Resulting IPG solution joint plan Π for setting 5

t Company1 (π1
2 ) Company2 (π2

1 ) Company3 (π3
1 )

0 charge t1 c1 n1 l1 l2 drive t2 j2 j1 l1 l0 –

1 leave-charger t1 c1 j1 – –

2 pick-up-passenger t1 p1 j1 charge t2 c1 n1 l0 l2 –

3 drive t1 j1 j3 l2 l1 leave-charger t2 c1 j1 –

4 drive t1 j3 j4 l1 l0 drive t2 j1 j3 l2 l1 charge t3 c1 n1 l1 l2

5 drop-passenger t1 p1 j4 pick-up-passenger t2 p2 j3 leave-charger t3 c1 j1

6 – drive t2 j3 j4 l1 l0 pick-up-passenger t3 p3 j1

7 – drop-passenger t2 p2 j4 drive t3 j1 j3 l2 l1

8 – – drive t1 j3 j4 l1 l0

9 – – drop-passenger t3 p3 j4

Costs costT otal(π1
1 , Π−1) = 8 costT otal(π2

3 , Π−2) = 10 + 1 ∗ 5 = 15 costT otal(π3
1 , Π−3) = 8 + 4 ∗ 5 = 28
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Fig. 4 Average increment in
percentage of actions, finish
time and cost of one agent in the
IPG solution with respect to its
best individual plan, when it
goes first, last, or random in the
BRPS order
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According to Fig. 4, we can observe that the order of the
agent has a significant impact in the results. The best results
are for agent-first since this is the agent that first reaches
the charger, compelling the other agents to use alternative
plans or introduce a delay. This is also reflected in the num-
ber of actions of agent-first, which only increases 1.33%
w.r.t. the number of actions of its best individual plan. On
the other hand, the finish time increases slightly and the cost is
7.65% higher because of the unavoidable congestions. In the
case of agent-last or agent-random, the number of actions
only increases 3.3% while the finish time and cost rise
notably (21% increase in the cost of agent-last). The differ-
ence between agent-first and agent-last lies in the number
of conflicts the agent needs to solve delaying its execution.

We can conclude that the arbitrary order of the agents
clearly impacts the results of BRPS. The first agent is clearly
favored over the others, while a random order seems a fairer
option. Another interpretation within an arbitrary order in a
blackboard system is that the agent that communicates its
plan first is in a more advantageous position. Nonetheless,
BRPS is designed to solve problem sets rather than a single
problem. Thereby, selecting a random order in each problem
would balance the agents’ costs across the whole problem set.

7 Conclusions and future work

Non-cooperative MAP can be seen as a problem that lies
in between coalitional and adversarial planning, a field that
has been hardly explored. The approach presented in this
paper addresses this type of problems in which agents wish
to make their interests prevail but also need to coordinate
their strategic behavior with the others.

We defined a general-sum game in which self-interested
planning agents consider interactions (conflicts and con-
gestions) as part of their cost, as well as the cost of their
own plans. Since taxation schemes are applied to conflicts,

agents are incentivized to avoid them. The inclusion of
individual cost functions for the agents induces a strate-
gic behavior and a more realistic representation of self-
interested planning agents for real-world problems.

Regarding the potential version of the IPG, we showed
that convergence to a PNE is always guaranteed with
better/best-response dynamics. When congestion interac-
tions and the individual cost of a plan are considered, the
IPG is a non-potential game. However, better/best-response
dynamics will converge to a PNE in most cases, or other-
wise they can still converge to a sink equilibrium. We also
proved that any equilibrium is an IPG solution (conflict-free
joint plan) in the absence of multi-symmetric unsolvable
situations.

We analyzed the complexity of using better-response
dynamics in an IPG and concluded that, non-optimal plans
can be computed under some conditions. This is much less
costly than computing the best response or optimal plan
because agents do not need to explore all their strategies.
Additionally, computing a NE is also a hard task, but using
better-response dynamics may reduce the complexity of
such task. For these reasons, we showed promising results
towards PLS-completeness under some assumptions.

We experimentally compared our BRPS against BRP,
one of the few available frameworks that present the same
kind of strategic and cooperative behavior. The results show
that BRPS clearly outperforms BRP in terms of computation
time and quality of the PNE joint plans. The main advan-
tages of BRPS with respect to BRP that we have shown
through this work can be summarized as follows:

• As opposite to BRP, which follows a best-response
scheme, BRPS is based on better-response dynamics.
Better response (non-optimal plan) can be computed
in polynomial time in many domains (i.e., transport
domains without fuel restrictions), while synthesizing
best responses (optimal plans) is always NP-complete
[15].
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• Unlike the centralized approach of BRP, BRPS relies
on fully-distributed multi-agent technologies, which
brings several advantages:

– preservation of the agents’ privacy: BRPS
does not depend on a centralized planning
entity with access to all the problem infor-
mation. Guaranteeing the agents’ privacy is
critical in a context where agents are self-
interested. Hence, BRPS is a more realistic
non-cooperative MAP approach than BRP.

– self-sufficiency: BRPS does not require an
external input of a conflict-free joint plan.
BRP, in contrast, must be initially fed with
a conflict-free plan to run the best-response
dynamics. Moreover, given the cooperative
nature of this plan, the strategic behavior of the
agents is not adequately reflected and agents
are restricted to improve their plans on the
basis of this conflict-free plan. However, in
BRPS, agents compute a solution from scratch,
calculating progressively an equilibrium solu-
tion that meets their interests.

– non-cooperative behavior: in BRPS syner-
gies among the agents’ plans are not allowed.
This ensures a non-cooperative behavior
because agents cannot use the effects of the
others’ plans to achieve their own goals.
Allowing synergies, as in BRP, yields a depen-
dency between the agents’ plans which must
be maintained throughout in order to avoid
conflicts. This exceedingly limits the strate-
gic behavior of the agents as it is against the
self-interested nature of the agents.

• Despite the use of complex multi-agent machinery, the
better-response dynamics of our approach have been
heavily optimized. As a result, BRPS scales up notably
better than BRP, yielding significantly lower computa-
tion times.

Despite its superior performance against BRP, the results
prove that BRPS is a costly procedure, which limits its
applicability to tasks with a relatively low number of
agents. Therefore, as future work, we intend to work on
the optimization of the algorithms in order to improve the
scalability of BRPS.
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