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Abstract Hesitant fuzzy sets were introduced by Torra
to efficiently address situations in which the membership
degree of an element in a set is expressed by several differ-
ent values. However, there is a large shortcoming in hesitant
fuzzy sets—the serious loss of information. Therefore, in
this paper, we improve upon hesitant fuzzy sets by imple-
menting a probabilistic hesitant fuzzy set (PHFS). Then, we
introduce some new basic operations on the probabilistic
hesitant fuzzy elements (PHFEs) using the Frank t-conorm
and t-norm. Based on these proposed operations, we further
develop probabilistic hesitant fuzzy weighted arithmetic and
geometric aggregation operators. The desired properties and
the relationships among them are investigated in detail.
In addition, an approach to multi-attribute group decision
making (MAGDM) is investigated on the basis of the new
operators. Finally, a numerical example of public company
efficiency evaluation is provided to illustrate the application
and validity of the proposed approach.
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1 Introduction

Fuzzy set theory, proposed by Zadeh [39], has been success-
fully applied in various fields. Due to rapid development of
human beings, socioeconomic environments have become
more and more complicated. Several extensions of the fuzzy
sets have been developed for different applications, includ-
ing socioeconomic applications, such as type-2 fuzzy sets
[11, 19, 37], type-n fuzzy sets [11], interval-valued fuzzy
sets [7, 24], fuzzy multisets [18], intuitionistic fuzzy sets
(IFS) [1–4, 6, 14, 16, 20], interval-valued intuitionistic
fuzzy sets [26, 35, 40], linguistic fuzzy sets [33, 34] and
hesitant fuzzy sets (HFS) [5, 13, 17, 23, 25, 27].

The HFS is intended to take into account the possible
membership degrees of x in set A, such as 0.2 and 0.3. It
does not attempt to handle a margin of error or a possibil-
ity distribution, in contrast with from IFS and type-2 fuzzy
sets. As stated by Torra [21–23], an HFS can be very useful
for characterizing an assessment covering different opinions
of experts instead of aggregating them to analyze multiple
attribute group decision making (MAGDM) problems. In
other words, all possible opinions should be considered. For
example, when an assessment is profiled by {0.2, 0.3}, it
cannot be replaced by any value limited to [0.2, 0.3] unless a
decision maker specifies an aggregated value to represent the
assessment through his or her preference [28–30, 38, 41].

Although an HFS can characterize possible membership
degrees of x into the setA in a discrete way, it may lose some
original information. Let us reconsider MAGDM problems
with several experts. Suppose that a decision maker provides
assessments of alternatives for each attribute for a MAGDM
problem by considering the opinions of five experts. Given
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that an assessment {0.2, 0.3} is provided by the decision
maker based on the opinions of the five experts, some
important original information cannot be exposed. The
assessment cannot differentiate the following three situa-
tions: (1) one expert supports 0.2 and the others favor 0.3;
(2) three experts prefer 0.2 and the others prefer 0.3; and (3)
three experts provide input of 0.2, one expert specifies 0.3,
and the other one has no opinion. In other words, the hesitant
fuzzy assessment is not sufficient to reveal original infor-
mation about how the decision maker derives the decision
based on the opinions of the five experts. In general, a com-
bination of the relative importance of the five experts and
the opinions of the five experts can fully indicate the original
information concerning the hesitant fuzzy assessment. For
example, on the condition that the decision maker uses the
opinions of the five experts to provide the assessment and
the five experts are equally important, two possible mem-
bership degrees should be assigned different probabilities in
the above three situations. That is, the probabilities of 0.2 or
0.3 arising in real cases should be the indication of experts
who support 0.2 or 0.3. Using this assumption, the proba-
bilities of 0.2 and 0.3 for the above three conditions can be
deduced, which are {0.2, 0.8}, {0.6, 0.4}, and {0.75, 0.25},
respectively.

In this paper, we extend the HFS to sufficiently indi-
cate original information about assessments, henceforth
referred to as the probabilistic hesitant fuzzy set (PHFS).
Two dimensions are involved in a PHFS, i.e., the possi-
ble membership degree of x in set A and its probability of
occurring. The original information regarding how to create
hesitant fuzzy assessments can be profiled by the probabili-
ties of possible membership degrees in the assessments. The
probabilities guarantee the handling of each possible mem-
bership degree in the assessments, which is consistent with
the original view of Torra [23] about the HFS. Basic opera-
tions of hesitant fuzzy assessments should also be extended
in the context of a PHFS. Motivated by the idea that the
framework of the t-conorm and t-norm can be used to unify
various operations of hesitant fuzzy assessments [42], we
define the generalized operations on PHFEs based on the
Frank t-conorm and the t-norm and discuss their proper-
ties. The frameworks follow the operational principles of
hesitant fuzzy information [32] and the independence prin-
ciple of probability information [8]. These operations are
then applied to develop weighted arithmetic and geomet-
ric aggregation operators on PHFEs. We then analyze the
monotonicity of the arithmetic and geometric aggregation
operators with respect to a parameter in the Frank t-conorm
and the t-norm and reveal the relationship between the arith-
metic and geometric aggregation operators. With a view to

comparing two PHFEs, their score functions are designed
via a combination of the mean and variance of possible
membership degrees.

The rest of this paper is organized as follows. In
Section 2, we review some basic concepts related to the
PHFS. Section 3 introduces the PHFS, the basic Frank oper-
ations of PHFSs and score functions of PHFEs. In Section 4,
based on these new Frank operational rules on PHFSs, we
present some probabilistic hesitant fuzzy Frank aggrega-
tion operators. Section 5 develops an approach to MAGDM
in the probabilistic hesitant fuzzy information environment.
In Section 6, an efficiency evaluation problem is presented
to verify the proposed method, and a sensitivity analysis
is provided. Finally, some conclusions and future research
possibilities are given in Section 7.

2 Preliminaries

This section is devoted to describing the basic definitions
and notions of the hesitant fuzzy set (HFS). Then, the basics
of probability theory and the concept of the Frank t-conorm
and t-norm are reviewed.

2.1 Hesitant fuzzy set

In this subsection, we review the basic concepts of HFSs
and their basic operations.

Definition 1 [23] Let X be a reference set, then an HFS on
X is in terms of a function that when applied to X returns a
subset of [0, 1].

To be easily understood, Xia and Xu [31] expressed the
HFS by the mathematical symbol:

E = {< x, hE(x) > |x ∈ X} , (1)

where hE(x) is a set of different values in [0,1], representing
the possible membership degrees of the element. For conve-
nience, Xia and Xu [31] called h = hA(x) a hesitant fuzzy
element (HFE).

The following comparison rules were also defined by Xia
and Xu [31] for HFEs.

Definition 2 For an HFE h, s(h) = 1
l

∑
γ∈h γ is called the

score function of h, where l is the number of elements in h.
For two HFEs h1 and h2, if s(h1) = s(h2), then h1 = h2; if
s(h1) > s(h2), then h1 > h2.
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2.2 Basics of probability theory

In researching random events, we need to know what can
occur and the probability of each event. The probability of
a random event can be denoted by a value in [0, 1]. We
usep(A) to represent the possibility of event A.

Definition 3 [8] Let A and B be two random events, they are
mutually independent if and only if p(AB) = p(A)p(B).
Generally,A1,A2, ... ,An are called nmutually independent
events (n ≥ 3), if for any k(1 < k ≤ n), 1 ≤ i1 < ... <

ik ≤ n, p(Ai1Ai2 ...Aik ) = p(Ai1)p(Ai2)...p(Aik ).

Definition 4 [8] Suppose in n repetitions of a random trial,
event A happens nA times. Then, the ratio nA

n
is called the

frequency of A, which is denoted by fn(A). fn(A) should
satisfy the following properties:

(1) 0 ≤ fn(A) ≤ 1;
(2) fn(�) = 1;
(3) A1, A2, ..., An are two-two incompatible, if

fn(
n⋃

k=1
Ak) =

n∑

k=1
fn(Ak).

2.3 T-conorm and t-norm

An important notion in fuzzy set theory is that of the t-
norm and t-conorm that are used to define a generalized
intersection and union of fuzzy sets [10].

Definition 5 [9, 15] A function T : [0, 1]2 → [0, 1] is called
a t-norm if it is commutative, associative, non-decreasing
and T (1, x) = x, for all x ∈ [0, 1].

Definition 6 [9, 35] A function S: [0, 1]2 → [0, 1] is called
a t-conorm if it is commutative, associative, non-decreasing
and S(0, x) = x, for all x ∈ [0, 1].

As stated by Xia et al. [32], a strictly decreasing function
g : [0, 1] → [0, +∞] such that g(1) = 0 can be used
to create a strict Archimedean t-norm T (xy) = g1(g(x) +
g(y)) and its dual t-conorm S(xy) = h1(h(x) + h(y)) such
that h(x) = g(1x). Different types of g were introduced by
Xia et al. [32] to generate different Archimedean t-norms
and t-conorms. The Frank t-conorm and t-norm are defined
as follows.

Definition 7 Let g(t) = log( r−1
rt−1 ), r > 1, then h(t) =

g(1 − t) = log( r−1
r1−t−1

), r > 1, and the Frank t-conorm and
t-norm are defined as follows:

SF
r (x, y) = 1− logr (1+ (r1−x − 1)(r1−y − 1)

r − 1
), r > 1,

(2)

T F
r (x, y) = logr (1 + (rx − 1)(ry − 1)

r − 1
), r > 1. (3)

3 Probabilistic hesitant fuzzy sets (PHFSs)

In this section, we propose PHFSs to be an extension of
HFSs. Some generalized operations of PHFEs are defined
based on the Frank t-norm and t-conorm. Furthermore, score
functions are designed for ranking PHFEs.

3.1 Probabilistic hesitant fuzzy set

Because the possibility of each value is not given when
defining the membership as a set of possible values, we pro-
pose that a PHFS sufficiently describes original information
as follows:

Definition 8 Given a fixed set X ={x1, x2, ..., xn}, a PHFS
is defined as

E = {< xi, Hi(x)|xi ∈ X >}, (4)

in which Hi(x) =
{

⋃

(h,p)∈Hi(x)

(h,p)

}

, h is a value in

[0,1], denoting the membership degree of xi . p is the cor-
responding probability of h, denoting the intensity of the
membership degree. All the possible arrays (h, p) constitute
a PHFS.

Definition 9 Given a PHFS expressed by E = {<
xi, Hi(x)|xi ∈ X >}, we call H = { ⋃

(h,p)∈H(x)

(h,p)} a

PHFE, where 0 ≤ h ≤ 1, 0 ≤ p ≤ 1 and
∑

p =1.

Example 3.1 Suppose ten experts are invited to evaluate an
industry index using fuzzy elements. Four of them assign
the number 0.8, two experts are sure that 0.7 is suitable,
two experts give the value 0.6, and the other two provide
0.5.

The evaluation of the index is normally represented by
a hesitant fuzzy element {0.5, 0.6, 0.7, 0.8}. Notably, the
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HFE only collects all of the possible values, and each value
provided only means that it is a possible value, but its impor-
tance is unknown [36]. Remarkably, the importance of any
value is considered to be the same as the others. Obviously,
this does not conform to the original information.

However, the information used to perform the
evaluation is clearly depicted by a PHFE H =
{(0.5, 0.2), (0.6, 0.2), (0.7, 0.2), (0.8, 0.4)}. Each mem-
bership degree with its corresponding possibility correctly
reveals the original decision-making information.

To analyze the possibility of the membership degree in
the PHFSs, we suppose that pi (i = 1, 2, ..., n) satisfies the
following assumption.

Let pi (i = 1, 2, ..., n) be the possibility of hi (i =
1, 2, ..., n) in (4). To analyze and integrate the PHFEs, it is
required that

p(hihj ) = p(hi)p(hj ),∀i �= j, i, j = 1, 2, ..., n, (5)

and

p(h1h2...hk) = p(h1)p(h2)...p(hk), (1 < k ≤ n). (6)

3.2 Probabilistic hesitant fuzzy operational laws

In this subsection, some operations on PHFEs based on the
Frank t-norm and t-conorm are introduced. Some relations
among these operations are then analyzed.

Definition 10 Let H , H1 and H2 be three PHFEs, then

(1)

H1 ⊕ H2 =
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2

{(S(γ1, γ2), p1p2)}
=

⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2{
(h−1(h(γ1) + h(γ2)), p1p2)

}
;

(2)

H1 ⊗ H2 =
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2

{(T (γ1, γ2), p1p2)}
=

⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2{
(g−1(g(γ1) + g(γ2)), p1p2)

}
;

(3)

λH =
⋃

γ∈H,p∈H

{
h−1(λh(γ )), p

}
, λ > 0;

(4)

Hλ =
⋃

γ∈H,p∈H

{
(g−1(λg(γ )), p)

}
, λ > 0.

Based on the Frank t-conorm and t-norm, let g(t) =
log( r−1

rt−1 ), r > 1; we then have

(1)

Hc =
⋃

γ∈H,p∈H
{(1 − γ, p)} ;

(2)

λH =
⋃

γ∈H,p∈H

{

(1 − logr (1 + (r1−γ − 1)λ

(r − 1)λ−1
), p)

}

,

λ > 0, r > 1;

(3)

Hλ =
⋃

γ∈H,p∈H

{

(logr (1 + (rγ − 1)λ

(r − 1)λ−1
), p)

}

,

λ > 0, r > 1;

(4)

H1 ⊕ H2 =
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2

{

(1 − logr (1 + (r1−γ1 − 1)(r1−γ2 − 1)

r − 1
), p1p2)

}

,

r > 1;

(5)

H1⊗H2 =
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2

{

(logr (1 + (rγ1 − 1)(rγ2 − 1)

r − 1
), p1p2)

}

,

r > 1.

Furthermore, the relationships among the above opera-
tional laws are given by Theorem 1.

Theorem 1 Let H , H1 and H2 be three PHFEs. Then

(1) H1 ⊕ H2 = H2 ⊕ H1;
(2) H1 ⊗ H2 = H2 ⊗ H1;
(3) λ(H1 ⊕ H2) = λH1 ⊕ λH2;
(4) (H1 ⊗ H2)

λ = Hλ
1 ⊗ Hλ

2 ;
(5) λ1H ⊕ λ2H = (λ1 + λ2)H ;
(6) Hλ1 ⊗ Hλ2 = Hλ1+λ2 .
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Proof Properties (1) and (2) clearly hold.

(3)

λ(H1 ⊕ H2) = λ
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2
{
(h−1(h(γ1) + h(γ2)), p1p2)

}

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2
{
(h−1(λh(h−1(h(γ1) + h(γ2)))), p1p2)

}
,

λH1 ⊕ λH2 =
⋃

γ1∈H1,p1∈H1

{
(h−1(λh(γ1)), p1)

}

⊕
⋃

γ2∈H2,p2∈H2

{
(h−1(λh(γ2)), p2)

}

=
⋃

γ1∈H1,p1∈H1,γ2∈H2,p2∈H2
{
(h−1(h(h−1(λh(γ1)))

+h(h−1(λh(γ2)))), p1p2)
}

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2
{
(h−1(λ(h(γ1) + h(γ2))), p1p2)

}

(4)

(H1 ⊗ H2)
λ =

[⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2
{
(g−1(g(γ1) + g(γ2)), p1p2)

}]λ

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2{
(g−1(λg(g−1(g(γ1) + g(γ2)))), p1p2)

}

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2{
(g−1(λ(g(γ1) + g(γ2))), p1p2)

}

Hλ
1 ⊗ Hλ

2 =
⋃

γ1∈H1,p1∈H1

{
(g−1(λg(γ1)), p1)

}

⊗
⋃

γ2∈H2,p2∈H2

{
(g−1(λg(γ2)), p2)

}

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2{
(g−1(g(g−1(λg(γ1)))

+g(g−1(λg(γ2)))), p1p2)
}

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2{
(g−1(λ(g(γ1) + g(γ2))), p1p2)

}
.

Similarity, (5) and (6) can be confirmed.

3.3 Score functions for PHFE

As with hesitant fuzzy elements, score functions of PHFEs
are available for ranking the assessments. In the following,

we design score functions of BHF assessments which are
profiled by BHFEs

3.3.1 Basic score functions

Motivated by the score functions for hesitant fuzzy elements
proposed by Farhadinia [12], we extend them to the PHFS
environment.

Definition 11 Let H = {(h1, p1), (h2, p2), ..., (hn, pn)}
be a PHFE, in which

∑n
i=1pi = 1. The following functions

can be considered as score functions for the PHFE:

1. The arithmetic-mean score function:

Sam(H) =
∑n

i=1
hipi (7)

2. The geometric-mean score function:

Sgm(H) =
n∏

i=1

h
pi

i (8)

3.3.2 Variance-arithmetic-mean score function

The aforementioned score functions provide a feasible
method for comparing PHFEs. However, the score functions
are not appropriate in some situations.

For example, suppose that there are two PHFEs {(0.2,
0.5), (0.4, 0.5)} and {(0.1, 0.5), (0.5, 0.5)}, which have
the same score of 0.3 calculated using the arithmetic-mean
score function. In other words, their mean cannot be used to
estimate which one is better. From a statistical point of view,
this problem may be due to not considering the variance of
possible membership degrees, which measures the spread
or dispersion of membership degrees. Thus, we develop
the arithmetic-mean score function based on a measure of
variance.

Definition 12 Given H ={(h1, p1), (h2, p2), ..., (hn, pn)},
its variance-arithmetic-mean score function is defined as

S(H) = h̄(1 − δ2), (9)

where h̄ = ∑n
i=1 hipi , δ2 = ∑n

i=1(hδ(i) − h̄)2pδ(i), 0 <

hδ(1) < hδ(2) < ... < hδ(n) ≤ 1.

Theorem 2 Let H = {(h1, p1), (h2, p2), ..., (hn, pn)} be
a PHFE, then the variance-arithmetic -mean score function
denoted by S(H) = h̄(1 − δ2) satisfies:

(1) S(H) > hδ(1),
(2) S(H) < hδ(n).
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Proof First, we prove S(H) > hδ(1). Since

S(H) − hδ(1) = h̄(1 −
∑n

i=1
(hδ(i) − h̄)2pδ(i)) − hδ(1)

= (h̄ − hδ(1)) − h̄
∑n

i=1
(hδ(i) − h̄)2pδ(i)

> (h̄ − hδ(1)) −
∑n

i=1
(hδ(i) − h̄)2pδ(i)

= (
∑n

i=1
hδ(i)pδ(i) − hδ(1))

−
∑n

i=1
(hδ(i) − h̄)2pδ(i)

=
∑n

i=1
(hδ(i) − hδ(1))pδ(i)

−
∑n

i=1
(hδ(i) − h̄)2pδ(i)

=
∑n

i=1
[(hδ(i) − hδ(1)) − (hδ(i) − h̄)2]pδ(i)

>
∑n

i=1
[(hδ(i) − hδ(1))

2 − (hδ(i) − h̄)2]pδ(i)

=
∑n

i=1
(h2δ(i) + h2δ(1) − 2hδ(i)hδ(1) − h2δ(i)

−h̄2 + 2hδ(i)h̄)pδ(i)

=
∑n

i=1
(h2δ(1) − 2hδ(i)hδ(1) − h̄2

+2hδ(i)h̄)pδ(i)

=
∑n

i=1
(hδ(1) − h̄)(hδ(1) + h̄ − 2hδ(i))pδ(i)

= (hδ(1) − h̄)
∑n

i=1
(hδ(1) + h̄ − 2hδ(i))pδ(i)

= (hδ(1) − h̄)(
∑n

i=1
hδ(1)pδ(i)

+
∑n

i=1
h̄pδ(i) −

∑n

i=1
2h

δ(i)
pδ(i))

= (hδ(1) − h̄)(hδ(1) + h̄ − 2h̄)

= (hδ(1) − h̄)2 > 0

Thus, S(H) > hδ(1) is proven.
Since S(H) ≤ h̄, S(H) < hδ(n) clearly holds.

4 Probabilistic hesitant fuzzy Frank aggregation
operators and their relationship

In this section, we propose two new probabilistic hesitant
fuzzy Frank aggregation operators, including a probabilistic
hesitant fuzzy Frank weighted average (PHFFWA) operator
and a probabilistic hesitant fuzzy Frank weighted geomet-
ric (PHFFWG) operator. Then, we discuss the monotonicity
of the PHFFWA and PHFFWG operators with respect to r .
We further analyze the relationships between the PHFFWA
operators and the PHFFWG operators.

4.1 Probabilistic hesitant fuzzy Frank weighted average
operator

Definition 13 Let Hi(i = 1, 2, .., n) be a collection of
PHFEs, w = (w1, w2, ..., wn)

T be the weight vector of
Hi(i = 1, 2, ..., n) with wi ∈ [0, 1], i = 1, 2, · · · , n and∑n

i=1wi = 1. Then, the probabilistic hesitant fuzzy Frank
weighted average (PHFFWA) operator is defined as follows:

PHFFWA(H1, H2, ..., Hn) = w1H1⊗w2H2⊗· · ·⊗wnHn.

(10)

Theorem 3 Let Hi(i = 1, 2, .., n) be a collection of
PHFEs. Then, the aggregate value of the PHFFWA operator
is also a PHFE, and

PHFFWA(H1, H2, ..., Hn) =
⋃

γi∈Hi,pi∈Hi

{

(1 − logr (1 + r − 1
∏n

i=1(
r−1

r1−γi −1
)wi

),
∏n

i=1
pi)

}

. (11)

Proof Equation (11) can be proved by mathematical induc-
tion on n as follows.

For n =2, we have:

PHFFWA(H1, H2) = w1H1 ⊕ w2H2

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2

{
(h−1(h(h−1(w1h(γ1))) + h(h−1(w2h(γ2)))), p1p2

}

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2

{
(h−1(w1h(γ1) + w2h(γ2)), p1p2)

}

=
⋃

γ1∈H1,γ2∈H2,p1∈H1,p2∈H2

{

(1 − logr (1 + r − 1

( r−1
r1−γ1−1

)w1( r−1
r1−γ2−1

)w2
), p1p2)

}

.
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Suppose (11) holds for n = k,that is

PHFFWA(H1, H2, ..., Hk)

= w1H1 ⊕ w2H2

⊕... ⊕ wkHk

=
⋃

γi∈Hi,pi∈Hi
{

(h−1(

k∑

i=1

wih(γi)),
∏k

i=1
pi)

}

=
⋃

γi∈Hi,pi∈Hi⎧
⎨

⎩
(1 − logr (1 + r − 1

∏k
i=1(

r−1
r1−γi −1

)wi

),
∏k

i=1
pi)

⎫
⎬

⎭
.

Then, when n = k+1, we have

PHFFWA(H1, H2, ..., Hk, Hk+1)

= w1H1 ⊕ w2H2 ⊕ ... ⊕ wkHk ⊕ wk+1Hk+1

=
⋃

γi∈Hi,pi∈Hi

{

(h−1(

k∑

i=1

wih(γi)),
∏k

i=1
pi)

}

⊕
⋃

γk+1∈Hk+1,pk+1∈Hk+1

{
(h−1(wk+1h(γk+1))), pk+1)

}

=
⋃

γi∈Hi,pi∈Hi

{

(h−1(h(h−1(

k∑

i=1

wih(γi)))

+h(h−1(wk+1h(γk+1)))),
∏k+1

i=1
pi)

}

=
⋃

γi∈Hi,pi∈Hi
{

(h−1(

k∑

i=1

wih(γi)) + (wk+1h(γk+1))),
∏k+1

i=1
pi)

}

=
⋃

γi∈Hi,pi∈Hi

{

(h−1(

k+1∑

i=1

wih(γi)),
∏k+1

i=1
pi)

}

=
⋃

γi∈Hi,pi∈Hi⎧
⎨

⎩
(1 − logr (1 + r − 1

∏k+1
i=1 ( r−1

r1−γi −1
)wi

),
∏k+1

i=1
pi)

⎫
⎬

⎭
,

i.e., (11) holds for n = k+1. Thus, (11) holds for all n.

Now, let us discuss a special situation of the PHFFWA
operator with respect to r .

Corollary 1 If r → 1, then the PHFFWA operator
reduces to the probabilistic hesitant fuzzy weighted average
(PHFWA) operator, which is defined as follows:

PHFWA(H1, H2, ..., Hn)

=
⋃

γi∈Hi,pi∈Hi

{
(1 −

∏n

i=1
(1 − γi)

wi ,
∏n

i=1
pi)

}
.(12)

Proof By Definition 7, we have h(t) = g(1-t) =
log( r−1

r1−t−1
), r > 1, 0 < t < 1, then

limr→1h(t) = limr→1 log(
r − 1

r1−t − 1
)

= limr→1 − log(
r1−t − 1

r − 1
) = − log(1 − t).

Similar to the proof of Theorem 3, we have

PHFWA(H1, H2, ..., Hn)

= n⊕
i=1

wiHi =
⋃

γi∈Hi,pi∈Hi
{

(h−1(

n∑

i=1

wih(γi)),
∏n

i=1
pi)

}

=
⋃

γi∈Hi,pi∈Hi{
(1 −

∏n

i=1
(1 − γi)

wi ,
∏n

i=1
pi)

}
.

Corollary 2 Let Hi(i = 1, 2, .., n) be a collection of
PHFEs, then the membership degree dimension of the PHF-
FWA operator is monotonically decreasing with respect to
r .

Proof We prove the monotonicity of h(t) and h−1(t) with
respect to the parameter r , respectively.

Since h(t) = log( r−1
r1−t−1

), r > 1, 0 < t < 1, then we
have

∂h(t)

∂r
= r1−t − 1

r − 1
.
(r1−t − 1) − (1 − t)r−t (r − 1)

(r1−t − 1)2

= (1 − t)r−t + tr1−t − 1

(r − 1)(r1−t − 1)
.

Let f1(r) = (1 − t)r−t + tr1−t − 1, r > 1, 0 < t < 1,
then f ′

1(r) = t (1 − t)(r − 1)r−t−1 > 0. It follows that
f1(r) is a monotonically increasing function. Thus, f1(r) =
(1 − t)r−t + tr1−t − 1 > f1(1) = 0.

As r − 1 > 0, r1−t − 1 > 0, therefore, ∂h(t)
∂r

=
(1−t)r−t+tr1−t−1

(r−1)(r1−t−1)
> 0. Thus, h(t) is monotonically increas-

ing with respect to the parameter r .
In addition, since h−1(t) = 1 − g−1(t) = 1 −

log( r−1+et

et
)

log r
, r > 1, 0 < t < 1, then

∂g−1(t)

∂r
=

log r

r−1+et − log(r−1+et )−t
r

(log r)2

= r log r − (r − 1 + et ) log(r − 1 + et ) + t (r − 1 + et )

r(r − 1 + et )(log r)2
.
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Let f2(r) = r log r − (r −1+ et ) log(r −1+ et )+ t (r −
1 + et ), r > 1, 0 < t < 1, then

f ′
2(r) = log r − log(r − 1 + et ) + t = log(

r

r − 1 + et
)

+ log et = log(
ret

r − 1 + et
).

Since ret − (r + 1 − et ) = (r − 1)(et − 1) > 0,
then f ′

2(r) > 0. It follows that f2(r) is a monotonically
increasing function.

So, f2(r) = r log r − (r −1+ et ) log(r −1+ et )+ t (r −
1 + et ) > f2(1) =0.

While r(r −1+et )(log r)2 > 0, thus ∂g−1(t)
∂r

> 0. There-
fore, h−1(t) = 1 − g−1(t) is a monotonically decreasing
function with respect to r .

Because h(t) is monotonically increasing and h−1(t) is
monotonically decreasing with respect to r , we can deduce

h−1(
n∑

i=1
wih(γi)) = 1− logr (1+ r−1∏n

i=1(
r−1

r1−γi −1
)wi

) is mono-

tonically decreasing with respect to r , which completes the
proof.

4.2 Probabilistic hesitant fuzzy Frank weighted
geometric operator

Definition 14 Let Hi(i = 1, 2, .., n) be a collection of
PHFEs, w = (w1, w2, ..., wn)

T be the weight vector of
Hi(i = 1, 2, ..., n) with wi ∈ [0, 1], i = 1, 2, · · · , n

and
∑n

i=1wi = 1. Then, the probabilistic hesitant fuzzy
Frank weighted geometric (PHFFWG) operator is defined
as follows:

PHFFWG(H1, H2, ..., Hn) = H
w1
1 ⊗ H

w2
2 ⊗ · · · ⊗ Hwn

n .

(13)

Theorem 4 Let Hi(i = 1, 2, ..., n) be a collection of
PHFEs, then the aggregated value by the PHFFWAG oper-
ator is also a PHFE, and

PHFFWG(H1, H2, ..., Hn) (14)

=
⋃

γi∈Hi,pi∈Hi

{

(logr (1 + r − 1
∏n

i=1(
r−1

rγi −1 )
wi

),
∏n

i=1
pi)

}

.

Similar to the proof of Theorems 3 and 4 can be obtained.
Now, let us discuss a special situation of the PHFFWG

operator with respect to r .

Corollary 3 If r → 1, then the PHFFWG operator
reduces to the probabilistic hesitant fuzzy weighted geomet-
ric (PHFWG) operator, which is defined as follows.

PHFWG(H1, H2, ..., Hn) =
⋃

γi∈Hi,pi∈Hi{
(
∏n

i=1
(γi)

wi ,
∏n

i=1
pi)

}
. (15)

The proof of Corollary 3 is similar to that of Corollary 1.

Corollary 4 Let Hi(i = 1, 2, .., n) be a collection of
PHFEs. Then, the membership dimension of the PHFFWG
operator is monotonically increasing with respect to r .

Proof We prove the monotonicity of g(t) and g−1(t) with
respect to r , respectively.

Since g(t) = log( r−1
rt−1 ), r > 1, 0 < t < 1, we have

∂g(t)

∂r
= rt − 1

r − 1
.
(rt − 1) − trt−1(r − 1)

(rt − 1)2

= (1 − t)rt + trt−1 − 1

(r − 1)(rt − 1)
.

Let f1(r) = (1 − t)rt + trt−1 − 1, r > 1, 0 < t < 1,
then f ′

1(r) = t (1 − t)(r − 1)rt−2 > 0, which means that
f1(r) is a monotonically increasing function, and we have
f1(r) = (1 − t)rt + trt−1 − 1 > f1(1) =0. Since r − 1 >

0, rt − 1 > 0, then ∂g(t)
∂r

= (1−t)rt+trt−1−1
(r−1)(rt−1) > 0. Therefore,

g(t) is monotonically increasing with respect to r .
As is demonstrated in corollary 2, g−1(t)

is monotonically increasing with respect to r .
Because g(t) and g−1(t) are both monotoni-
cally increasing with respect to r , we can deduce

g−1(
n∑

i=1
wig(γi)) = logr

(

1 + (r − 1)
(∏n

i=1(
r−1

rγi −1 )
wi

)−1
)

is monotonically increasing with respect to r . This
completes the proof of Corollary 4.

4.3 Relationship between PHFFWA operator
and PHFFWG operator

The aggregated value computed using the PHFFWA oper-
ator is always larger than or at least equal to that by the
PHFFWG operator, which is demonstrated in the following.

Lemma 1 Suppose that H = {(hi, pi)}(i = 1, 2, ..., n) is a
PHFE such that 0≤ hi ≤ 1,

∑n
i=1pi = 1, then the variance

arithmetic-mean score function denoted by S(H) = h̄(1 −
δ2) where h̄ = ∑n

i=1hipi and σ(h)2 = ∑n
i=1(hi − h̄)2pi

is monotonically increasing with respect to hi .
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Proof Let F(h1, h2, ...,hn) = S(H); it is clearly a multi-
variate function. For any variable hi such that hi ≥ h̄, we
have

∂F

∂hi

= pi(1 −
∑n

i=1
(hi − h̄)

2
pi) − 2h̄(hi − h̄)(1 − pi)pi

= pi(1 −
∑n

i=1
h2i pi −

∑n

i=1
h̄2pi + 2

∑n

i=1
hipih̄

−2h̄(hi − h̄)(1 − pi))

≥ pi(1 −
∑n

i=1
h2i pi + h̄2 − 2h̄(hi − h̄))

= pi(1 −
∑n

i=1
h2i pi + h̄2 − 2h̄(hi − h̄)(1 − pi))

= pi(1 + 3h̄2 −
∑n

i=1
h2i pi − 2h̄hi)

≥ pi(1 + 3h̄2 − 3h̄).

For the functionW(x) = 3x2−3x+1 such that 0≤ x ≤1,
it is known that ∂W

/
∂x < 0 if 0 ≤ x < 0.5, ∂W

/
∂x = 0

if x = 0.5, and ∂W
/
∂x > 0 if 0.5 < x ≤ 1. Thus, we

can infer that W(x) ≥ W(0.5) = 0.25, thus deducing that
∂F

/
∂hi ≥ 0.25p > 0.

On the other hand, for any variable hi such that hi <

h̄∂F
/
∂hi > 0 clearly holds. As a whole, F(h1, ...hn) is a

monotonically increasing function with respect to hi (∀hi ∈
H), which completes the proof.

Theorem 5 Given a probabilistic hesitant fuzzy decision
matrix Q = (Hij )m×n and attribute weight vector w =
(w1, w2, ..., wn)

T for a MAGDM problem, the score of the
aggregated value for PHFFWA (Hi1, Hi2, ..., Hin) is larger
than that of PHFFWG (Hi1, Hi2, ..., Hin), i.e.,

S(PHFFWA(Hi1, Hi2, ..., Hin))

≥ S(PHFFWG(Hi1, Hi2, ..., Hin)), (16)

which is independent of r for r ∈ (1, +∞).

Proof Corollaries 2 and 4 indicate that S(PHFFWA(Hi1,

Hi2, ..., Hin)) and S(PHFFWG(Hi1, Hi2, ..., Hin)) are
monotonically decreasing and increasing with respect to r ,
respectively. Thus, (16) can be transformed into

lim
r→∞ S(PHFFWA(Hi1, Hi2, ..., Hin))

≥ lim
r→∞ S(PHFFWG(Hi1, Hi2, ..., Hin)).

This can be further converted into

lim
r→∞(1 − logr (1 + r − 1

∏n
i=1(

r−1
r1−γi −1

)wi
))

≥ lim
r→∞(logr (1 + r − 1

∏n
i=1(

r−1
rγi −1 )

wi
)).

We can reason from L’Hopital’s rule that

I1 = lim
r→+∞(1 − logr (1 + r − 1

∏n
i=1(

r−1
r1−γi −1

)wi
))

≥ lim
r→+∞(1 − logr (1 + r

∏n
i=1(

r

r1−γi
)wi

))

= lim
r→∞(1 − logr (1 + r1−

∑n
i=1wiγi ))

= lim
r→+∞

log r

(1+r
1−∑n

i=1wiγi )

log r

= lim
r→+∞

1 + r1−
∑n

i=1γiwi

r

·1 + r
∑n

i=1wiγi − r(1 − ∑n
i=1wiγi)r

∑n
i=1wiγi

(1 + r
∑n

i=1wiγi )2

= lim
θ→∞

∑n
i=1wiγi(1 − ∑n

i=1γiwi)r
−∑n

i=1wiγi

(1 − ∑n
i=1γiwi)r

−∑n
i=1wiγi

=
∑n

i=1
γiwi,

I2 = lim
r→+∞(logr (1 + r − 1

∏n
i=1(

r−1
rγi −1 )

wi
))

≤ lim
r→+∞(logr (1 + r

∏n
i=1(

r
rγi )

wi
))

= lim
r→+∞(logr (1 + r

∑n
i=1wiγi ))

= lim
r→+∞

log(1 + r
∑n

i=1wiγi )

log r

= lim
r→+∞

∑n
i=1wiγir

∑n
i=1wiγi−1

1+r
∑n

i=1wiγi

1
r

= lim
r→∞

∑n
i=1wiγir

∑n
i=1wiγi

1 + r
∑n

i=1wiγi

=
∑n

i=1
γiwi.

As a result, I1 ≥ I2. The conclusion in (16) is verified
for any r ∈ (1, +∞).



962 F. Jiang, Q. Ma

5 A MAGDM approach with probabilistic hesitant
fuzzy information

In this section, the probabilistic hesitant fuzzy Frank aggre-
gation operators and the variance arithmetic-mean score
function are used to address the MAGDM problem in a
probabilistic hesitant fuzzy information environment.

The MAGDM problem in probabilistic hesitant fuzzy
information can be described as follows:

Let X = {x1, x2, ..., xm} be a discrete set of alterna-
tives, C = {c1, c2, ..., cn} be a collection of n attributes
with the weight vector w = (w1, w2, ..., wn)

T such that
wj ∈ [0, 1] , (j = 1, 2, ..., n) and

∑n
i=1wi = 1. Let A =

(Hij )m×n be a probabilistic hesitant fuzzy decision matrix,
where Hij = ⋃

γij ∈hij
{(γij , pij )} is a PHFE, which is a set

of all the possible values that the alternative xi ∈ X can take
with respect to attribute cj ∈ C according to the decision
maker.

Normally, there are both benefit attributes and cost
attributes in MAGDM problems. We utilize the proba-
bilistic hesitant fuzzy operational laws to transform the
cost attributes into benefit attributes. For a probabilistic
hesitant fuzzy decision matrix Q = (Hij )m×n, we have

Hij =
{

Hij , for benefit attribute cj
(Hij )

c, for cost attribute cj
, i = 1, 2, ..., m, j =

1, 2, ..., n.
Then, we utilize the PHFFWA (or PHFFWG) operator and

the variance arithmetic- mean score function to propose an
approach forMAGDM,where the following steps are involved.

Step 1 The decision makers give their evaluations of alter-
native xi ∈ X with respect to attributes cj ∈ C,
which are expressed by PHFEs Hij (i = 1, 2, ..., m, j =
1, 2, ..., n).

Step 2 Transform the decision matrix Q = (Hij )m×n

into a normalized matrix Q̂ = [Ĥij ]m×n by using the
complementary operation of the PHFEs (see Definition
10).

Step 3 Aggregate all probabilistic hesitant fuzzy values
Ĥij (j = 1, 2, ..., n) using the PHFFWA operator (or
PHFFWG operator).

Step 4 Utilize the variance arithmetic-mean score func-
tion in Definition 12 to calculate the score S(Hi) (i =
1, 2, ..., m).

Step 5 Rank all alternatives xi(i = 1, 2, ..., m) in terms of
S(Hi) (i = 1, 2, ..., m) in Step 4 and select the best one.

6 Application of the proposed approach
in efficiency evaluation problem

In this section, to show the applicability of the proposed
approach, we test our approach on the efficiency evaluation

problem, and then we compare our method with the existing
method of Zhang et al. [43].

There are six public companies to be investigated and
evaluated with regards to the transformation efficiency of
science and technological achievements: the Sun Create
Electronic Company (A1), the Changan Automobile Com-
pany (A2), Westone Information Industry Inc. (A3), the
East China Computer Company (A4), the GCI Science and
Technology Company (A5) and the Lida Optical and Elec-
tronic Company (A6). With the help of ten experts from
the commission, government and a collaborative univer-
sity, the decision maker evaluated these companies based
on seven attributes. Two of them were input attributes, the
input of technical staff (c1) and research spending (c2).
The others were output attributes, the number of inven-
tion patents (c3), sales revenue of new products (c4), the
labor productively level (c5), promotion of employment
(c6), and waste disposal rates (c7). After studying docu-
ments concerning the seven attributes during the evalua-
tion the process, the decision maker specified that w =
(0.1, 0.12, 0.15, 0.18, 0.16, 0.15, 0.14)T .

Step 1: The decision maker evaluates the six compa-
nies Ai(i = 1, 2, 3, 4, 5, 6) based on the attributes
cj (j = 1, 2, 3, 4, 5, 6, 7) and constructs a probabilis-
tic hesitant fuzzy decision matrix Q = [Hij ]m×n =
[⋃ (hij , pij )]m×n. The decision matrix Q = [Hij ]6×7

is transformed into a normalized matrix Q̂ = [Ĥij ]6×7,
which is shown in Table 1.

Step 2: The decision maker specifies r = 2 based on
his preference. By using the BHFFWA operator in (9),
the aggregated assessments of the six companies Ai(i =
1, 2, 3, 4, 5, 6) are produced but are not presented to save
space.

Step 3: The following can be derived from the aggregated
assessments of the six companies and Definition 12:

Step 4: A rank-order of the six companies can be
deduced from S(Ĥi)(i = 1, 2, · · · , 6) and Definition 11,
A2 �A3 �A5 �A1 �A6 �A4 to determine that Changan
Automobile Company (A2) is the best one.

Similarly, under the condition of r = 2, and using the
PHFFWG operator in (11), the application of the PHFFWG
operator leads to S(Ĥi)(i = 1, 2, 3, 4, 5, 6) = (0.5514,
0.5077, 0.5617, 0.5284, 0.5664, 0.4721). The results of the
evaluation are converted into A2 �A3 �A5 �A1 �A6 �A4

to determine the Changan Automobile Company (A2) is
the best one, which is consistent with the results generated

Table 1 The normalized matrix

S(Ĥ1) = 0.6025, S(Ĥ2) = 0.6964, S(Ĥ3) = 0.6437,

S(Ĥ4) = 0.5977, S(Ĥ5) = 0.6216, S(Ĥ6) = 0.6024.
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Fig. 1 The arithmetic scores of
the six companies with a
function of r

by the PHFFWA operator. Moreover, the scores of the six
companies are smaller. The causes of the difference will be
analyzed in the next subsection.

In the process of generating the above results, the param-
eter r in (9) and (12) was determined by the preference
of the decision maker. When different assessments are pro-
vided by the decision maker, different values for r will be
used. This may further result in a change to the solution to
the problem. The arithmetic and geometric score curves of
the six companies with respect to r are plotted in Figs. 1
and 2, respectively.

Figure 1 reveals that the arithmetic scores of the compa-
nies decrease as the value of r increases from 2 to 40 with

a step size of 0.5, which demonstrates Corollary 2. Figure 2
reveals that the geometric scores of the companies increase
as the value of r increases from 2 to 80 with a step size of
0.5, which validates Corollary 4. Furthermore, the scores of
the arithmetic aggregated assessment are larger than those
determined by the geometric operator no matter what the
value r is, which validates Theorem 5.

With the increase of r , which represents the preference
of the decision maker, the rank-ordering of the six compa-
nies may be different. However, when r is large enough,
such as 100, the rank-ordering becomes fixed with respect
to both the arithmetic scores and the geometric scores of
the six companies change only slightly. Furthermore, since

Fig. 2 The geometric scores of
the six companies as a function
of r
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there are fewer intersections in Fig. 1 compared with Fig. 2,
the solutions computed using the BHFFWA operator can be
considered to be more stable than those computed using the
BHFFWG operator with increasing r .

In what follows, we apply the PHFWA operator proposed
by Zhang et al. [43] to address the aforementioned problem.
The ranking result and effectiveness will be compared with
that determined by our proposed MAGDM approach. The
following steps are involved:

Step 1’: See Step 1.
Step 2’: Utilize the PHFWA operator proposed by Zhang

et al. [43] to derive the overall BHFEs Ĥi(i =
1, 2, · · · , 6) of the six public companies Ai , which are
also not presented to save space.

Step 3’: Based on the above overall BHFEs, Ĥi(i =
1, 2, · · · , 6) and Definition 12, we can calculate the score
functions S(Ĥi)(i = 1, 2, · · · , 6) as follows:

S(Ĥ1) = 0.5916, S(Ĥ2) = 0.6801, S(Ĥ3) = 0.6677,
S(Ĥ4) = 0.5745, S(Ĥ5) = 0.6039, S(Ĥ6) = 0.5930.

Step 4’: Since S(Ĥ2) > S(Ĥ3) > S(Ĥ5) > S(Ĥ6) >

S(Ĥ1) > S(Ĥ4), then the ranking of all the public com-
panies Ai(i = 1, 2, · · · , 6) is A2 � A3 � A5 � A6 �
A1 � A4, and the most desirable public company is the
Changan Automobile Company A2.

Through the above example, we find that compared with
the method developed by Zhang et al. [43] to rank the
companies and determine the most desirable company, our
proposed approach has some advantages.

(1) Comparing the six public company rankings derived
by our approach with that of Zhang et al. [43], we
find that the method of Zhang et al. [43] determined
a slightly different ranking of these companies. How-
ever, reviewing the original probabilistic hesitant fuzzy
decision matrix Q̂ = [Ĥij ]6×7, we find that most of
the attribute values of companyA1 are greater thanA6,
which means that the A1 is preferable to A6. There-
fore, our MAGDM approach is more rational than that
of Zhang et al. [43] in this case.

(2) In addition, we can consider a wide range of specific
operators, including the PHFFWA operator and the
PHFFWG operator. The parameter r can be viewed as
a measure of the decision maker’s attitude; therefore,
when people make a decision, they can choose a dif-
ferent parameter r depending on their attitude towards
risk.

7 Conclusion

In this paper, we introduced the concept of PHFS. In the
context of PHFSs based on the Frank t-conorm and t-norm,
some operational laws were presented. The score functions
of the PHFEs were designed to compare PHFEs. We devel-
oped some probabilistic hesitant fuzzy Frank aggregation
operators, including a PHFFWA operator and a PHFFWG
operator. In particular the monotonicity of the PHFFWA
operator and the PHFFWG operator with respect to the
parameter in Frank t-conorm and t-norm and their relation-
ship were discussed A new method for approaching the
MAGDM problem under probabilistic hesitant fuzzy infor-
mation environment was developed. This method confirms
the DMs’ original decision based on information to the
greatest extent possible. A numerical example was provided
to illustrate that the method is both valid and practical in
dealing with efficiency evaluation problems.

In the future, we plan to generalize the proposed prob-
abilistic hesitant fuzzy Frank aggregation operators to an
interval-valued PHFS environment, and investigate novel
operators. It is worth further research to construct the GDM
with granular computing techniques. Further research may
provide practical applications in many fields including digital
libraries, mobile internet, recommendation systems, sup-
plier selection, pattern recognition and medical diagnosis.
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