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Abstract Uncertainty measure in evidence theory supplies
a new criterion to assess the quality and quantity of knowl-
edge conveyed by belief structures. As generalizations of
uncertainty measure in the probabilistic framework, sev-
eral uncertainty measures for belief structures have been
developed. Among them, aggregate uncertainty AU and
the ambiguity measure AM are well known. However, the
inconsistency between evidential and probabilistic frame-
works causes limitations to existing measures. They are
quite insensitive to the change of belief functions. In this
paper, we consider the definition of a novel uncertainty mea-
sure for belief structures based on belief intervals. Based
on the relation between evidence theory and probability
theory, belief structures are transformed to belief inter-
vals on singleton subsets, with the belief function Bel and
the plausibility function Pl as its lower and upper bounds,
respectively. An uncertainty measure SU for belief struc-
tures is then defined based on interval probabilities in the
framework of evidence theory, without changing the theo-
retical frameworks. The center and the span of the interval is
used to define the total uncertainty degree of the belief struc-
ture. It is proved that SU is identical to Shannon entropy and
AM for Bayesian belief structures. Moreover, the proposed
uncertainty measure has a wider range determined by the
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cardinality of discernment frame, which is more practical.
Numerical examples, applications and related analyses are
provided to verify the rationality of our new measure.
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1 Introduction

With the sharply increasing interest in data fusion, espe-
cially for military applications, the evidence theory [3, 31],
also known as the Dempster-Shafer theory, or the D-S the-
ory for short, has attracted considerable attention for its
effectiveness in modeling and fusing uncertain information.
Its application has extended to many areas, such as pattern
classification [24, 26], clustering analysis [27], and decision
making support [2, 37]. Often presented as a generaliza-
tion of probability theory, the evidence theory outperforms
probability theory due to its capability in uncertainty reason-
ing regardless of the prior knowledge. In evidence theory,
the Dempster’s rule, which is famous for its commutativ-
ity and associativity, is used to combine belief functions.
Although Dempster’s combination rule is well-modeled the-
oretically, its lack of robustness is considered as a limitation
by researchers in this field. This is because counterintuitive
results are obtained in some cases, especially when there is
high conflict among bodies of evidence. So alternative rules
of combination have been proposed to improve classical
Dempster’s rule [7, 14, 25, 29].

Another issue involving in evidence theory is how to
measure the uncertainty of belief functions, which is sig-
nificant for processing and assessing evidence. Three main
types of uncertainty have been identified by Klir and Yuan
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[21]: fuzziness, discord, and non-specificity. Generally, a
fuzzy set represents fuzziness, a probability distribution rep-
resents only discord, and a classical set simply represents
non-specificity. Total uncertainty in evidence theory is mod-
eled by assigning a confidence value (being not necessarily
1) to the whole universe of discourse. This is impossible
in the probability-theory framework, due to the axiom of
additivity imposing that the probability of an event and the
probability of its complement must sum to 1. A consequence
is that a belief structure defined in the framework of evi-
dence theory can model both non-specificity and discord,
whereas only discord (and even a special kind of discord)
can be modeled by a probability distribution. Therefore, in
evidence theory, a belief structure (or equivalently a body
of evidence) conveys two types of uncertainty: discord and
non-specificity.

With the development of evidence theory, various kinds
of measures for discord, non-specificity, and the total uncer-
tainty including both of them have been proposed. The
discord measure [17], the strife [17], and the confusion [13]
were defined to measure the discord in evidence theory.
Dubois and Prade [9] generalized the Hartley entropy [12]
in the classical set theory to measure the non-specificity
degree of belief structure. Yager’s specificity measure [38]
and Korner’s specificity definition [23] can also be used to
induce non-specificity measures.

The existing total uncertainty measures are represented
by the aggregated measure (AU) [11, 28] and the ambi-
guity measure (AM) [15]. Following Maeda’s work [28],
Harmanec and Klir [11] proposed a measure of aggre-
gate uncertainty they named AU, which was defined in the
framework of evidential theory by aggregating the non-
specificity and discord. It has been proved that AU satisfies
the requirements proposed by Klir et al. [18]. However, it
is completive in computing, and insensitive to changes of
evidence. Moreover, these two types of uncertainty coex-
isting in evidence theory cannot be discriminated by AU.
In order to overcome the insensitivity problem, Klir and
Smith proposed a total uncertainty measure TU defined as
a linear combination of AU and non-specificity measure.
However, Jousselme et al. [15] claimed that TU measure
could not solve the problem of computing complexity. The
total uncertainty measure TU brings a new problem of deter-
mining the parameter δ, which is more subjective. So they
presented a new measure of aggregate uncertainty for ambi-
guity measure (AM) [15]. This ambiguity measure satisfies
all the requirements for general uncertainty measure. It can
also overcome some of the shortcomings of AU. So it has
been widely applied in evidence theory. However, AM mea-
sure is incapable of discriminating the uncertainty degrees
of different belief structures with identical pignistic prob-
ability distribution. Particularly, these two cases, i.e., total

ignorance and assigning equal basic probability mass to
each element in the universe, are potentially different from
each other, the uncertainty degrees of them are regarded as
identical by the AM measure, which is counterintuitive.

We can note that AU, AM, and TU all develop from Shan-
non entropy [32] in probability theory. They are defined
based on the conversion from the basic probability assign-
ment function (BPA) to probability distribution according
to some criteria or constraints. These measures are used to
quantify uncertainty by calculating the Shannon entropy of
the eliciting probability. Since they are not directly defined
in the framework of evidence theory, the information loss
caused by the conversion will bring limitations to these mea-
sures. Hence, they are all insensitive to the change of BBA.
These limitations to some extent reflect the inconsistency
between the framework of evidence theory and that of the
probability theory [39]. Therefore, to avoid these limitations
of traditional uncertainty measures, it is desirable to define
an uncertainty measure in the framework of evidence the-
ory, without the conversion from BPA to probability. As an
attempt to improve existing uncertainty measures, Deng [6]
has proposed Deng entropy to simplify the calculation of
uncertainty of BPAs by considering total non-specificity and
discord simultaneously.

In this paper, we analyze the uncertainty degree of BPA
based on belief intervals consisting of lower and upper prob-
abilities. We conclude that belief intervals convey both the
discord and the imprecision, which are corresponding to
the two parts in the uncertainty of BPA. So it is feasi-
ble to define a total uncertainty measure for a BPA base
on probability intervals. In order to agree with the well-
known Shannon entropy, we define the discord of belief
intervals by borrowing Shannon’s idea. The non-specificity
of probability interval is quantified by its span.

We notice that Yang and Han [39] have defined a
distance-based total uncertainty measure for BPA based on
belief intervals. Deng et al. [5] have improved this mea-
sure to avoid counter-intuitive results caused by it. They
defined the uncertainty measure by calculating the distance
between the belief intervals and the so-called most uncertain
interval. Although it can overcome some limitations in tradi-
tional uncertainty measures, the choice of distance measure
is still an open problem. Moreover, this uncertainty mea-
sure is not consistent with Shannon entropy when the BPA
reduces into the probability distribution. Since evidence
theory is usually regarded as the extension of probability
theory, it is necessary to define a unified uncertainty mea-
sure for both evidence theory and probability theory. Our
proposed uncertainty measure is competent enough to quan-
tify uncertainty degree in evidence theory and probability
theory simultaneously. Since there is no switch between
evidence theory and probability theory, it can overcome
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these limitations in traditional measures. It also has desired
properties including the probability consistency, the set
consistency, the ideal value range and the monotonicity. Fur-
thermore, the new uncertainty measure can provide more
rational results when compared with the traditional ones,
which can be supported by experimental results and related
analyses.

The rest of this paper is organized as follows. Section 2
gives a brief recall of the evidence theory, together with
introductions of interval-valued belief structure and oper-
ations on interval values. In Section 3, we briefly review
the existing uncertainty measure for precise belief structure.
A new uncertainty measure for interval-valued belief struc-
tures and its properties are proposed in Section 4. Numerical
experiments are given to illustrate the performance of the
proposed measure in Section 5. This paper is concluded in
Section 6.

2 Basics of evidence theory

Dempster-Shafer evidence theory was modeled based on a
finite set consisting of mutually exclusive elements, called
the frame of discernment denoted by � [3]. The power set
of �, denoted by 2�, contains all possible unions of the sets
in � including � itself. Singleton sets in a frame of discern-
ment � are called atomic sets because they do not contain
nonempty subsets. The following terminologies are central
in the Dempster-Shafer theory.

Let � = {θ1, θ2, · · · , θn} be the frame of discernment. A
basic probability assignment (BPA) is a function m: 2� →
[0,1], satisfying the two following conditions:

m(∅) = 0 (1)

∑

A⊆�

m(A) = 1 (2)

where ∅ denotes empty set, and A is any subset of �. Such
a function is also called a basic belief assignment by Smets
[33], and a belief structure (BS) by Yager [36]. The termi-
nology of belief structure will be adopted in this paper. For
each subset A ⊆ �, the value taken by the BPA at A is
called the basic probability mass of A, denoted by m(A).

A subset A of � is called the focal element of a belief
structure m if m(A) > 0. The set of all focal elements is
expressed by F = {A|A ⊆ �, m(A) > 0}.

A Bayesian belief structure (BBS) on � is a belief struc-
ture on � whose focal elements are atomic sets (singletons)
of �. A categorical belief structure is a normalized belief
structure defined as: m(A) = 1, ∀A ⊆ � and m(B) =
0, ∀B ⊆ �, B �= A. A vacuous belief structure on � is
defined as: m(�) = 1 and m(A) = 0, ∀A �= �.

Given a belief structure m on �, the belief function and
plausibility function which are in one-to-one correspon-
dence with m can be defined respectively as:

Bel(A) =
∑

B⊆A

m(B) (3)

P l(A) =
∑

B∩A�=∅
m(B) = 1 −

∑

B∩A=∅
m(B) (4)

Bel(A) represents all basic probability masses assigned
exactly to A and its smaller subsets, and P l(A) represents all
possible basic probability masses that could be assigned to
A and its smaller subsets. As such, Bel(A) and P l(A) can be
interpreted as the lower and upper bounds of probability to
which A is supported. So we can consider the belief degree
of A as an interval number BI (A) = [Bel(A), P l(A)].

Definition 1 [33] The pignistic transformation maps a
belief structure m to so called pignistic probability func-
tion. The pignistic transformation of a belief structure m on
� = {θ1, θ2, · · · , θn} is given by

BetP (A) =
∑

B⊆�

|A ∩ B|
|B|

m(B)

1 − m(∅)
, ∀A ⊆ � (5)

where |A| is the cardinality of set A.
In particular, given m(∅) = 0 and θ ∈ �, we have

BetP ({θ}) =
∑

θ∈B

m(B)

|B| , θ = θ1, . . . , θn, B ⊆ � (6)

Then we can get Bel(A) ≤ BetP (A) ≤ P l(A).

Definition 2 [3] Given two belief structures m1 and m2 on
�, the belief structure that results from the application of
Dempster’s combination rule, denoted as m1 ⊕ m2, or m12

for short, is given by:

m1⊕m2(A) =

⎧
⎪⎨

⎪⎩

∑
B∩C=A

m1(B)m2(C)

1− ∑
B∩C=∅

m1(B)m2(C)
, ∀A ⊆ �, A �= ∅

0 , A = ∅
(7)

3 Existing uncertainty measures for belief
structures

In evidence theory, there are two types of uncertainty,
namely, the discord and the non-specificity. Some defini-
tions of discord and non-specificity have been proposed
[39]. The discord measure and non-specificity measure are
also aggregated in different forms to measure the uncer-
tainty of belief structures [15].
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3.1 Measure of discord in belief structure

Shannon entropy is the classical measure of discord in
probability theory. It is defined as follows.

Definition 3 (Shannon entropy [32]) Let p = {pθ |θ ∈ �}
be a probability distribution defined on discernment frame
�. Then, the Shannon entropy is defined as:

S(p) = −
∑

θ∈�

pθ log2 pθ (8)

In evidence theory, measures of discord are defined
to describe the randomness (or discord or conflict) in a
BPA [15]. Several widely used definitions are listed below.
Despite their different names, they are all proposed for
measuring the discord part of the uncertainty in a belief
structure.

(1) Confusion measure [13]

Conf (m) = −
∑

A⊆�

m(A) log2(Bel(A)) (9)

(2) Dissonance measure [38]

Diss(m) = −
∑

A⊆�

m(A) log2(P l(A)) (10)

(3) Discord measure [18]

Disc(m) = −
∑

A⊆�

m(A) log2

⎡

⎣1 −
∑

B⊆�

m(B)
|B − A|

|B|

⎤

⎦

(11)

(4) Strife measure [17]

Stri(m) = −
∑

A⊆�

m(A) log2

⎡

⎣1 −
∑

B⊆�

m(B)
|A − B|

|A|

⎤

⎦

(12)

We can note that all of above measures are defined based
on Shannon entropy. Klir and Parviz have discussed these
definitions in [17], where more detailed information on
these measures can be found.

3.2 Measure of non-specificity for belief structure

In probability theory, belief is only assigned singleton sub-
sets of discernment frame. So there is merely discord type
uncertainty in the probabilistic framework. Compared with
probability theory, basic probability masses in evidence the-
ory may be focused on the subsets with more than one ele-
ment, which will bring the non-specificity type uncertainty
[10, 23]. Non-specificity means two or more alternatives

are left unspecified and represents an imprecision degree. In
classical set theory, the only measurable kind of uncertainty
is the non-specificity, which is related to its cardinality.
The Hartley measure is regarded as the standard measure of
non-specificity for classical sets.

Definition 4 (Hartley measure [12]) Let � be a frame of
discernment, and letA be any subset of�. Then, the Hartley
measure is defined as:

H(A) = log2(|A|) (13)

In evidence theory, non-specificity is only related to the
focal element whose cardinality is larger than one. Con-
sidering the basic probability mass on the focal elements,
researchers have defined some non-specificity measures [9,
23, 38]. The most commonly used non-specificity measure
for belief structures is developed from Hartley measure. It
is defined as [9]

NS(A) =
∑

A⊆�

m(A) log2(|A|) (14)

When the m is a Bayesian belief structure, i.e., it only
has singleton focal elements, NS(A) reaches the mini-
mum value 0. When m is a categorical belief structure, i.e.,
m(A) = 1, NS(A) = log2(|A|), which coincides with the
Hartley measure for classical sets. Specially, if m is a vacu-
ous belief structure, i.e., m(�) = 1, it reaches the maximum
value log2(|�|). This definition was proved to have unique-
ness by Ramer [30] and it satisfies all the requirements of
the non-specificity measure.

3.3 Total uncertainty measure in evidence theory

Based on these two kinds of uncertainty measures, Klir
andWierman gave some axiomatic requirements for general
uncertainty measure of belief structures [20]. Harmanec and
Klir [11] defined an aggregated uncertainty (AU) to quantify
the total uncertainty of a belief structure.

AU(m) = max

[
− ∑

θ∈�

pθ log2 pθ

]

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

pθ ∈ [0, 1], ∀θ ∈ �∑
θ∈�

pθ = 1

Bel(A) ≤ ∑
θ∈A

pθ ≤ 1 − Bel(Ā), ∀A ⊆ �

(15)

The definition of AU illustrates that it is the maximum Shan-
non entropy of all probability distributions under the con-
straints corresponding to the given BPA. Therefore, it is also
called as “upper entropy” [1]. It is can be seen as an aggre-
gated total uncertainty (ATU) measure, which captures both
non-specificity and discord. It can be proved that AU satis-
fies all the requirements for uncertainty measure in evidence
theory, including probability consistency, set consistency,
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value range, monotonicity, sub-additivity and additivity for
the joint BBA in Cartesian space [20]. So it is regarded as
a well-justified measure of uncertainty for Dempster-Shafer
theory. However, this measure is stuck with several short-
comings, i.e., high computing complexity, highly insensitive
to changes of evidence, and no distinction between the
two types of uncertainty (discord and non-specificity) [9].
In order to overcome the sensitivity problem, Klir and
Smith proposed a total uncertainty measure TU defined as
a linear combination of AU and non-specificity measure
N [19].

Definition 5 (Total Uncertainty [19]) Let m be a BPA
defined on a discernment frame �, then the total uncertainty
T U(m, δ) is a linear combination of the non-specificity
measure N(m) and AU(m) as follows:

T U(m, δ) = δAU(m) + (1 − δ)N(m) (16)

where δ ∈ [0, 1] is a constant, viewed as a discounting factor
of AU .

It can be proved that T U satisfies all the requirements for
uncertainty measure. However, Jousselme et al. [15] pointed
that TU measure could not solve the problem of computing
complexity, and bought a new problem with the choice of
the linear parameter δ. So they presented an alternative mea-
sure to AM for quantifying ambiguity of belief structures
[15].

Definition 6 (Ambiguity Measure [15]) Let � be a frame
of discernment with nelements, � = {θ1, θ2, · · · , θn}, and
let m be a BPA defined on �. An ambiguity measure AM
can be defined as:

AM(m) = −
∑

θ∈�

BetPm({θ}) log2 (BetPm({θ})) (17)

where BetPm is the pignistic probability distribution of m.
Besides satisfying all the requirements for general uncer-

tainty measures, the ambiguity measure also overcomes
some of the shortcomings of the AU measure. The AM
measure has been a popular uncertainty measure for belief
structures thanks to its good performance. However, it is
not sensitive to the change of belief structures, partic-
ularly, it cannot discriminate the uncertainty degrees of
different belief structures with identical pignistic probabil-
ity distribution. This will be demonstrated by the following
example.

3.4 Analysis on available total uncertainty measures

The traditional total uncertainty measures have their own
draw-backs. AM cannot satisfy the sub-additivity (for joint
BBA in Cartesian space) which has been pointed out by Klir

and Lewis [22]. Moreover, AM is criticized due to its logical
non-monotonicity [22]. Some examples will be presented
to analyze the performance of existing total uncertainty
measures.

Example 1 The discernment frame is denoted as � =
{θ1, θ2, θ3}. Two BPAs are given as:
m1({θ1, θ2})=1/3, m1({θ1, θ3})=1/2, m1({θ2, θ3})=1/6;
m2({θ1,θ2,θ3})=1/3, m2({θ1, θ3})=1/2, m2({θ2,θ3})=1/6.

The belief function and plausibility function of m1 and
m2 can be obtained as follows:

Bel1({θ1}) = 0, P l1({θ1}) = 5/6;
Bel1({θ2}) = 0, P l1({θ2}) = 1/2;
Bel1({θ3}) = 0, P l1({θ1}) = 2/3;
Bel1({θ1, θ2}) = 1/3, P l1({θ1, θ2}) = 1;
Bel1({θ1, θ3}) = 1/2, P l1({θ1, θ3}) = 1;
Bel1({θ2, θ3}) = 1/6, P l1({θ2, θ3}) = 1;
Bel1(�) = 1, P l1(�) = 1.

Bel2({θ1}) = 0, P l2({θ1}) = 5/6;
Bel2({θ2}) = 0, P l2({θ2}) = 1/2;
Bel2({θ3}) = 0, P l2({θ1}) = 1;
Bel2({θ1, θ2}) = 0, P l2({θ1, θ2}) = 1;
Bel2({θ1, θ3}) = 1/2, P l2({θ1, θ3}) = 1;
Bel2({θ2, θ3}) = 1/6, P l2({θ2, θ3}) = 1;
Bel2(�) = 1, P l2(�) = 1.

From these belief and plausibility functions, we can get:

Bel2(A) ≤ Bel1(A), P l2(A) ≥ P l1(A), ∀A ⊆ �.

The belief intervals corresponding to m1 and m2 can be
expressed by BI1(A) = [Bel1(A), P l1(A)] and BI2(A) =
[Bel2(A), P l2(A)], respectively. Then we have BI1(A) ⊆
BI2(A), ∀A ⊆ �. That is to say, all the belief intervals of
m1 can be contained by those corresponding belief inter-
vals of m2, which means that m2 has a higher level of
uncertainty. However, their corresponding AM and AU listed
below are counter-intuitive.

AM(m1) = 1.5546, AM(m2) = 1.5100;
AU(m1) = AU(m2) = log2 3 = 1.5850

We can see that AM decreases the total uncertainty of m2

in this example although there is a clear increment of uncer-
tainty of m2 compared with that of m1. The AU measure
does not bring any decrease on the uncertainty of m2, but it
generates two equal values, which is also counter-intuitive,
since the uncertainty degree of m2 should be higher than
that of m1.

Taking a closer examination of AU, we can note that AU
tries to find a probability to maximize the Shannon entropy.
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In this example, the Shannon entropy gets its maximum
value log23 = 1.5850 when the probability masses assigned
to all singletons are equal, i.e., p({θ1}) = p({θ2}) =
p({θ3}) = 1/3. Moreover, the uniform probability distri-
bution p(θ1) = p(θ2) = p(θ3) = 1/3 satisfies all the
constraints (shown in Eq. 15) established by Bel1, Pl1 and
Bel2, Pl2. Therefore, both AU1 and AU2 take the maximum
Shannon entropy value log23 =1.5850.

Example 2 Let � = {θ1, θ2, θ3, θ4} denote the discernment
frame. Three belief structures on � are given as:

m1(�) = 1;

m2({θ1, θ2}) = 0.5, m2({θ3, θ4}) = 0.5;

m3({θ1}) = m3({θ2}) = m3({θ3}) = m3({θ4}) = 0.25.

It is easy to get that BetPm({θ1}) = BetPm({θ2}) =
BetPm({θ3}) = BetPm({θ4}) = 0.25 for all of these be-
lief structures, i.e., they have the same pignistic probability
distribution. Therefore, their uncertainty degrees calculated
by AM are identical. We can also get AU(m1) = AU(m2) =
AU(m3) = 2. Intuitively, among these four belief structures,
m1 represents totally ignorance, so it is the most uncertain.
As for m3, the basic probability masses assigned to four
singleton focal elements are equivalent. m3 indicates that
the support degree of each element is certain, while other
two belief structures give interval probabilities for each ele-
ment. Hence, the uncertain degree of m3 should be the
smallest. However, the AM measure cannot discriminate the
differences hidden in the uncertainty of these three belief
structures.

As we can see above, both AM and AU are defined in
the framework of probability theory. They are calculated
by transforming a BPA to certain probability distribution.
Such a switch between different frameworks might cause
problems in representing the uncertainty in belief func-
tions. Since the belief functions theory is not a successful
generalization of the probability theory, there exists incon-
sistency between the two frameworks. Information loss may
be caused in such switch, which brings drawbacks to AM
and AU. In our work, we will design the uncertainty measure
of belief structures directly in the framework of evidence
theory as introduced in the next section.

4 Uncertainty measure based on interval
probabilities

4.1 Belief intervals and interval probabilities

In evidence theory, the belief interval [Bel(A), Pl(A)] can
be obtained based on the basic probability assigned to each

focal element. The belief intervals on all singletons can
be regarded as interval probability distribution on the dis-
cernment frame. To facilitate the following exposition, we
would like give some background knowledge about interval
probability distribution [8, 34, 35].

Definition 7 Let � = {θ1, θ2, · · · , θn} be the frame of
discernment, [ai, bi] (i = 1, 2, · · · , n) be n intervals with
0 ≤ ai ≤ bi ≤ 1. P(θi) = [ai, bi] (i = 1, 2, · · · , n)

constitute an interval probability distribution on� such that:

(1)
n∑

i=1
ai ≤ 1 and

n∑
i=1

bi ≥ 1;

(2)
n∑

i=1
bi − (bk − ak) ≥ 1and

n∑
i=1

ai + (bk − ak) ≤ 1∀k ∈
{1, · · · , n};

(3) p(H) = 0, ∀H /∈ �.

Theorem 1 For a belief structure m on the discern-
ment frame � = {θ1, θ2, · · · , θn}, all belief intervals
[Bel(θi), P l(θi)] (i = 1, 2, · · · , n) constitute an interval
probability distribution on �.

Proof Let Fj (j = 1, 2, · · · , N) be the focal elements of m,
F be the set of focal elements. Non-singleton focal elements
in F is expressed by B1, B2, · · · , Bq , q ≤ N . We can get
0 ≤ Bel(θi) ≤ P l(θi) ≤ 1 by definitions of belief function
and probability function.

(1) For a singleton θi ∈ �, Bel(θi) and m(θi) are identi-
cal. Then we have:

n∑

i=1

Bel(θi) =
n∑

i=1

m(θi) ≤
N∑

j=1

m(Fj ) = 1.

According to P l(θi) = ∑
Fj ∩θi �=∅

m(Fj ) = m(θi) +
∑

Bk∩θi �=∅
m(Bk), we can get:

n∑
i=1

P l(θi) =
n∑

i=1

(
m(θi) + ∑

Bk∩θi �=∅
m(Bk)

)

≥
n∑

i=1
m(θi) +

q∑
k=1

m(Bk) =
N∑

j=1
m(Fj ) = 1

.

(2) Given an arbitrary non-singleton focal elements Bj

satisfying Bj ∩ θk �= ∅, ∀θk ∈ �, we have ∃θi ∈ �,
θi �= θk , Bj ∩ θi �= ∅. So the following inequality
holds:

∑

i �=k

∑

Bj ∩θi �=∅
m(Bj ) ≥

q∑

j=1

m(Bj ).
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For ∀k ∈ {1, 2, · · · , n}, we have
∑

i �=k

P l(θi) =
∑

i �=k

⎛

⎝
∑

Fj ∩θi �=∅
m(Fj )

⎞

⎠

=
∑

i �=k

⎛

⎝m(θi) +
∑

Bj ∩θi �=∅
m(Bj )

⎞

⎠

=
∑

i �=k

m(θi) +
∑

i �=k

⎛

⎝
∑

Bj ∩θi �=∅
m(Bj )

⎞

⎠

≥
∑

i �=k

m(θi) +
q∑

j=1

m(Bj )

=
∑

m(Fj ) − m(θk)

= 1 − Bel(θk)

That is to say
n∑

i=1
P l(θi)−P l(θk) ≥ 1−Bel(θk) holds

for any k ∈ {1, 2, · · · , n}. So we get
n∑

i=1
P l(θi) −

(P l(θk) − Bel(θk)) ≥ 1, ∀k ∈ {1, 2, · · · , n}.
As such, for ∀k ∈ {1, 2, · · · , n}, we still have

∑
i �=k

Bel(θi)= ∑
i �=k

m(θi) = ∑
m(Fj ) − ∑

m(Bj ) − m(θk)

≤∑
m(Fj ) − ∑

Bj ∩θk �=∅
m(Bj ) − m(θk)

=1 − ∑
Fj ∩θk �=∅

m(Fj ) = 1 − P l(θk)

,

which means
n∑

i=1
Bel(θi) − Bel(θk) ≤ 1 − P l(θk)

holds for any k ∈ {1, 2, · · · , n}. Thus,
n∑

i=1
Bel(θi) +

(P l(θk) − Bel(θk)) ≤ 1, ∀k ∈ {1, 2, · · · , n}.
(3) p(H) = 0, ∀H /∈ � is straightforward.

So all belief intervals [Bel(θi), P l(θi)] (i =
1, 2, · · · , n) constitute an interval probability distribu-
tion over �.

On the basis of interval probabilities, we can measure
the uncertainty of belief structures. In an interval probabil-
ity distribution [Bel(θi), P l(θi)] over� = {θ1, θ2, · · · , θn},
its uncertainty degree can be represented by the interval as
analyzed below.

Case I: The most uncertain case is Bel(θi) = 0 and
Pl(θi) =1 for each θi ∈ �, i.e., the proba-
bility intervals of all elements are all equal to
[0,1]. The equal probability intervals indicate the
greatest discord degree, and the interval [0,1]
represents the largest non-specificity.

Case II: The clearest case is Bel(θk) = P l(θk) = 1 and
Bel(θi) = P l(θi) = 0 for i �= k. That is to say,

θk is assured to occur, while others are assured to
never occur.

Case III: When Bel(θi) = ai, P l(θi) = bi , ∀ai, bi ∈
[0, 1], the probability interval of θi is [ai, bi]. For
θi , the degree of non-specificity can be repre-
sented by its imprecision bi − ai . The degree of
discord is quantified by the relation between all
probability intervals.

Case IV: When Bel(θi) = P l(θi) = ai , ∀ai ∈ [0, 1],
n∑

i=1
ai = 1, the probability interval reduces to

a precise probability distribution. It means that
there is no imprecision and whether θi occurs or
not cannot be clearly determined.

Therefore, the information related to the uncertainty car-
ried by a probability interval includes both the discord
part and the non-specificity part, which coincides with
the construction of the BPA’s uncertainty. Thus, given a
BPA, we can fully utilize the information of the proba-
bility intervals to measure its total uncertainty. Then, how
to use the information of belief intervals? Given the inter-
val probability [Bel(θi), P l(θi)] � = {θ1, θ2, · · · , θn},
we can use the relationship between all central values
(P l(θi) + Bel(θi)) /2 to assess the discord degree, and use
the imprecision degree P l(θi) − Bel(θi) to measure the
non-specificity degree. Then, a new uncertainty measure for
belief structures can be constructed based on probability
intervals.

4.2 Interval probability-based uncertainty measure

As is mentioned previously, this belief interval is equivalent
to an interval probability distribution whose lower and upper
bounds are the belief function Bel and the plausibility func-
tion P l, respectively. For an interval probability distribution,
its uncertainty contains both discord and non-specificity.
The discord part represents the difference between the prob-
ability masses assigned to all propositions. In other words,
discord is determined by the distribution of all probabil-
ity masses. So we can use the Shannon entropy to quantify
the discord of interval probability distribution. Moreover,
interval values can be compared by comparing their central
values. Therefore, we can measure the discord of interval
probability distribution on the basis of Shannon entropy and
central probabilities. We have also pointed that the non-
specificity of interval probability can be quantified by its
imprecision degree, which is related to the span of interval
probability. So in the definition of uncertainty measure for
belief structure, both the Shannon entropy and the span of
the interval probability should be taken into account. Hence,
the interval probabilities-based uncertainty measure for a
belief structure can be defined as follow.
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Definition 8 Let m be a belief structure on the discernment
frame � = {θ1, θ2, · · · , θn}. The interval probabilities-
based uncertainty measure of m can be expressed as below:

SU(m) =
n∑

i=1

[
−Bel(θi) + P l(θi)

2
log2

Bel(θi) + P l(θi)

2

+P l(θi) − Bel(θi)

2

]
(18)

The newly proposed SU has no drawbacks as those of
AU and AM pointed out in Examples 1 and 2. Detailed
comparative analysis will be presented in Section 5.

Here, we provide an illustrative example to show the
calculation of SU.

Example 3 Suppose that the discernment frame is � =
{θ1, θ2, θ3}. A BPAm over� ism({θ1} )=0.2,m({θ1} )=0.1,
m({θ2, θ3} )=0.4, m(�) =0.3.

First calculate the belief function and plausibility func-
tion for singletons.

Bel({θ1}) = m({θ1}) = 0.2,

P l({θ1}) = m({θ1}) + m(�) = 0.5,

Bel({θ2}) = m({θ2}) = 0.1,

P l({θ2}) = m({θ2}) + m({θ2, θ3}) + m(�) = 0.8,

Bel({θ3}) = m({θ3}) = 0,

P l({θ3}) = m({θ2, θ3}) + m(�) = 0.7.

The probability intervals are:

BI ({θ1}) = [0.2, 0.5],
BI ({θ2}) = [0.1, 0.8],
BI ({θ3}) = [0, 0.7].

The total uncertainty of m can be calculated as:

SU(m)

=
3∑

i=1

[
−Bel(θi) + P l(θi)

2
log2

Bel(θi) + P l(θi)

2

+P l(θi) − Bel(θi)

2

]

= −0.35 log2 0.35 + 0.15 − 0.45 log2 0.45 + 0.35

−0.35 log2 0.35 + 0.35

= 2.4286

We find that the uncertainty degree of m is 2.4286, which
is greater than log2 3 = 1.585. It seems that the proposed
uncertainty measure violated the requirement about the
range of uncertainty degree [20]. In the flowing subsection,
we will discuss the range of the proposed SU.

4.3 Some properties of the proposed SU

Theorem 2 The uncertainty measure SU is probability
consistency, i.e., when m reduces to a Bayesian belief
structure, SU is identical to Shannon entropy.

Proof If m reduces to a Bayesian belief structure on � =
{θ1, θ2, · · · , θn}, m({θi}) = pi for i = 1, 2, · · · , n we can
get: Bel({θi}) = P l({θi}) = pi . So the interval probability
distribution reduces to a precise probability distribution over
� = {θ1, θ2, · · · , θn}.

Then it follows that

SU(m)

=
n∑

i=1

[
−Bel(θi) + P l(θi)

2
log2

Bel(θi) + P l(θi)

2

+P l(θi) − Bel(θi)

2

]

= −
n∑

i=1

Bel(θi) + P l(θi)

2
log2

Bel(θi) + P l(θi)

2

= −
n∑

i=1

pi log2 pi

Hence, SU is identical to the Shannon entropy.

Theorem 3 The range of measure SU is[0, |�|], where |�|
is the cardinality of �.

Proof For 0 ≤ x ≤ y ≤ 1, we can define a function f (x, y)

as:

f (x, y) = −x + y

2
log2

(
x + y

2

)
+ y − x

2

In order to obtain the maximum of f (x, y), we should
calculate the derivative:
∂f

∂x
=−1

2
log2

(
x + y

2

)
− 1

2 ln 2
−1

2
=−1

2
log2 [e (x + y)] ,

∂f

∂y
=−1

2
log2

(
x+y

2

)
− 1

2 ln 2
+1

2
=−1

2

[
log2

e (x+y)

4

]
.

Given 0 ≤ x ≤ y ≤ 1, 0 ≤ x + y ≤ 2 < e, we have:

1). ∂f
∂x

> 0 for x + y < 1
e
, ∂f

∂x
< 0 for x + y > 1

e
, and

∂f
∂x

= 0 for x + y = 1
e
;

2). ∂f
∂y

> 0 for x + y < 4
e
, ∂f

∂y
< 0 for x + y > 4

e
, and

∂f
∂y

= 0 for x + y = 4
e
.

Therefore, f (x, y) is not a monotone function on x or y.
The maximum of f can be obtained at the stationary point
or the bounds of (x, y). Moreover, ∂f

∂x
= 0 and ∂f

∂y
= 0

cannot hold simultaneously, i.e. the stationary point doesn’t
exist. Hence, we can get the maximum of f at three possible
positions: (0, 1), (0, 0), and (1,1).
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Since f (1, 1) = 0, f (0, 0) = 0, f (0, 1) = 1, we can get
fmax(x, y) = f (0, 1) = 1.

The graph of the function shown in Fig. 1 also illus-
trates fmax(x, y) = f (0, 1) = 1, which is identical to the
theoretical analysis.

Therefore, for a belief structure m on � =
{θ1, θ2, · · · , θn}, SU(m) can get its maximum value
SUmax(m) = n = |�|if and only if Bel(θi) = 0, P l(θi) =
1, for i = 1, 2, · · · , n. This case can be obtained iff m is a
vacuous belief structure.

Now, we are looking for the lower bound.
Since 0 ≤ Bet(θi) ≤ P l(θi) ≤ 1, we can have

− Bet(θi) + P l(θi)

2
log2

(
Bet(θi) + P l(θi)

2

)
= 0,

P l(θi) − Bet(θi)

2
≥ 0.

So SU(m) get its minimum by equaling the two functions
to 0 for allAi ∈ �, which indicates that the focal elements
of m are all singleton.

Then we have:

m(θi) = Bet(θi) = P l(θi) = 0 or

m(θi) = Bet(θi) = P l(θi) = 1.

Considering the condition that
n∑

i=1
m(θi) = 1, we can get:

m({θk}) = 1 and m({θi}) = 0, for i �= k, i.e., m

is a categorical belief structure.

Therefore, SU(m) can get its minimum when m is a
categorical belief structure.

Finally, we can get the range of SU is [0, |�|].
This theorem indicates that a vacuous BPA contains the

most uncertainty, while a categorical BPA with singleton
focal element has the least uncertainty, which coincides
with the intuitive analysis. It is worth noting that the range
of SU is identical to the axiomatic range of uncertainty
proposed by Deng [4], but different with Klir and Wier-
man’s requirement that the range of uncertainty measure
is[0, log2|�|] [20]. Klir has also mentioned that the range of
uncertainty for evidence is [0, N], where 0 must be assigned
to the unique uncertainty function that describes full

x

y

f (
x,
y)
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1

Fig. 1 Graph of f (x, y)

certainty and N depends on the cardinality of the universal
set involved and on the chosen unit of measurement [16]. It
is apparent that the range of our similarity measure satisfies
this requirement.

Theorem 4 If a BPA m is a categorical BPA focusing on A,
then the uncertainty of m is |A|.

Proof Suppose that mis a categorical BPA on � =
{θ1, θ2, · · · , θn} and m(A) =1. Without any loss of general-
ity, we can let A = {θ1, θ2, · · · , θk}, k ≤ n.

Then we can get the belief function and plausibility
function for each singleton:

Bel({θ1}) = Bel({θ2}) = · · · Bel({θk} = 0,

P l({θ1}) = P l({θ2}) = · · · P l({θk} = 1,

Bel({θk+1}) = Bel({θk+2}) = · · · Bel({θn} = 0,

P l({θk+1}) = P l({θk+2}) = · · · P l({θn} = 0.

So we can calculate the uncertainty of mas:
SU(m)

=
n∑

i=1

[
−Bel(θi) + P l(θi)

2
log2

Bel(θi) + P l(θi)

2

+P l(θi) − Bel(θi)

2

]

=
k∑

i=1

(
−1

2
log2

1

2
+ 1

2

)
= k = |A|

Hence, the uncertainty of m is identical to the cardinality
of A.

We notice that m(A) =1 says that A is assure to occur.
In such case, the belied structure m coincides with a clas-
sical set A. Since the set consistency in [20] is proposed
on the basis of Hartley measure, this theorem indicates that
the measure SU is not set consistent. However, we have in
mind that the uncertainty degree of a classical set is related
to its cardinality. So we can give the generalized form of
uncertainty measure for classical set A as:

U(A) = f (|A|) (19)

where f is an increasing function with respect to |A|.
In such sense, we can say our proposed uncertainty mea-

sure SU is set consistent. Considering the generalized form
of uncertainty measure for classical set, we call this set
consistency as generalized set consistency.

5 Comparative examples

Firstly, let us revisit Example 1. By Definition 8, we can
get that SU(m1) =2.5546, SU(m2) =2.6929. This indicated
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that m2 has a higher level of uncertainty, which is consistent
to previous intuitive analysis.

Then we reconsider Example 2, where the three belief
structures have the same pignistic probability. By Eq. (18),
we have SU(m1) = 4, SU(m2) = 3, SU(m3) = 2.
We can note that our proposed uncertainty measure SU is
competent to discriminate the different uncertainty level for
different belief structures, although they have the same pig-
nistic probability distribution. This result coincides with our
previous intuitive analysis.

In the sequel, examples presented in [39] are used for
reference.

Example 4 Let m be a belief structure in � = {θ1, θ2}. A
BPA is given as: m({θ1}) = a, m({θ2}) = b, m(�) = 1 −
a−b, a, b ∈ [0, 0.5]. Here, we calculate AU, AM, SU values

(AM) 

AU

(SU) 

Fig. 2 The change of total uncertainty measures in Example 4

corresponding to different values of a and b. The change
of AU, AM and SU values with the change of a and b are
illustrated in Fig. 2.

As shown in Fig. 2, AM reaches its maximum value when
a = b, regardless of the value of a and b. Because when
a = b, the pignistic probability is uniformly distributed, i.e.,
BetP({θ1}) = BetP({θ2}) = 1/2. This is counter-intuitive, as
analyzed in Example 2. The effect of total ignorance to the
uncertainty degree cannot be reflected by AM. For exam-
ple, m1({θ1}) = m1({θ2}) = 0.5 and m2({θ1}) = m2({θ2}) =
0.25, m2(�) = 0.5, there exists AM(m1) = AM(m2). Obvi-
ously, it is irrational to say that m1 and m2 have the same
degree of total uncertainty.

AU never changes with the change of a and b. The value
of AU is always log22 = 1. Since Bel({θ1}) = a, Pl({θ1})
= a + 1 − a − b = 1 − b, Bel({θ2}) = b, Pl({θ2}) = b +
1+ a − b = 1− a, the constraints for calculating AU in this
example are:

a ≤ p({θ1}) ≤ 1 − b, b ≤ p({θ2}) ≤ 1 − a.

In the calculation of AU, we try to find a probability dis-
tribution with the maximum Shannon entropy. Since a, b ∈
[0, 0.5], the uniformly distributed p({θ1}) = p({θ2}) = 0.5
always satisfies the constraints above. So no matter how
a and b change, p({θ1}) = p({θ2}) = 0.5 is always
taken when calculating AU. Hence, AU always equals to
log22 = 1. However, intuitively, the degree of uncertainty
should change with the change of a and b. So, AU cannot
well describe the degree of total uncertainty here.

In Fig. 2, we can see that SU brings out rational results. It
reaches the maximum when a=b=0, i.e., m(�) =1. When
a + b is fixed, the maximum values are reached if a = b

holds. For example, suppose that a + b = 0.3. The change
of SU value with respect to a is shown in Fig. 3. We can see
that SU get the maximum value when a = 0.15, i.e., a =
b = 0.15. Since the fixation of a + b indicates that m(�) =
1−(a+b) is fixed, the non-specificity part is fixed. The case
of a = b makes the discord part reach its maximum value.
Therefore, the maximum SU can be reached when a = b.

Similarly, in the case of a = b, the value of SU with the
change of a is shown in Fig. 4. We can see that when a = b,

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3
1.62

1.64

1.66

1.68

1.7

1.72

a

SU

Fig. 3 The change of SU when a + b =0.3



1682 X. Wang, Y. Song
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1
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2

a

SU

Fig. 4 The change of SU when a = b

the value of SU is decreasing with the increase of a. It is
shown that the uncertainty degree gets the maximum value
when a = b = 0. Since a = b indicates that the discord part
uncertainty is equal to 1, the value of SU is determined by
the non-specificity part uncertainty, which is related to the
basic probability assigned to �. So SU gets the maximum
value in the case of a = b = 0. This is consistent to intuitive.

Example 5 Suppose that the discernment frame is
� = {θ1, θ2, θ3} and a BPA over � is m(�) = 1. We make
changes to the BPA step by step. In each step, m(�) has
a decrease of � = 0.05 and each singleton mass m({θi}),
i = 1,2,3 has an increase of �/3. Finally, m(�) reaches
0 and m({θi}) = 1/3. We calculate total uncertainty mea-
sures including SU, AM, AU, at each step. The changes of
uncertainty values are shown in Fig. 5.

We can see that, the total uncertainty measures AU and
AM stay unchanged and they are always at the value log23.
Intuitively, when the mass assignments are transferred from
the full set � to those singletons, the uncertainty level
should decrease. Hence, the results of AU and AM are
counter-intuitive. The counter-intuitive results of AU and
AM are caused by their definitions based on some proba-
bilistic transformation from BPAs. In this example, for the
probabilistic transformation used in the calculation of AM
and AU, a uniformly distributed probability: P(θi) = 1/3,

i = 1, 2, 3, is applied. Therefore, AM and AU never change,
when the BPA changes from a vacuous BPA to a Bayesian
BPA in the final. As we can see in Fig. 4, our new mea-
sure SU can provide rational results. It becomes smaller and
smaller when the BPA changes from a vacuous one to a
Bayesian one. Therefore, it is inappropriate to define the
total uncertainty measure for belief structures by switching
the evidence theory framework to probability framework. It
should be better not to directly design the total uncertainty
measure in the framework of evidence theory. This is also
the motivation of our work in this paper.

Example 6 Suppose that the discernment frame is
� = {θ1, θ2, θ3} and a BPA over � is m(�) = 1. We make
changes to the BPA step by step. In each step, m(�) has a
decrease of � = 0.05 and the singleton mass m({θ1}) has
an increase of �. In the final step, m(�) = 0 and m({θ1})
= 1. We calculate total uncertainty measures including SU,
AM, AU, at each step. The change of uncertainty values are
shown in Fig. 6.

In this example, the BPA changes from a vacuous one to
a categorical one. As shown in Fig. 5, the total uncertainty
values calculated based on AU, AM and SU all become
smaller and smaller, which is intuitive. However, we note
that AU is not sensitive to the BPA’s change at the beginning
stage. This can be analyzed as following. Since constraint
for calculating AU is Bel({θ1}) ≤ p({θ1}) ≤ 1, the uni-
formly distributed p({θ1}) = p({θ2}) = p({θ3}) = 1/3
always satisfies the constraints above when if Bel({θ1}) =
m({θ1})≤1/3. So the uncertainty degree AU stays unchanged
in the first 6 steps. This has already been criticized by Jous-
selme et al. [15]. Although both AM and SU change with the
change of BPA in each step, we can see that the SU measure
is more sensitive to the change of BPA.

Example 7 Suppose that the discernment frame is � = {θ1,
θ2, θ3, θ4, θ5, θ6, θ7, θ8}. A BPA over � is m(�) = 1. We
make changes to the BPA step by step. In each step, m(�)

has a decrease of � = 0.05, and the mass assignment for

Fig. 5 The change of
uncertainty degree in Example 5
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Fig. 6 The change of
uncertainty degree in Example 6
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one focal element B with cardinality s<8 has an increase
of � = 0.05. In the final step, m(B) = 1. Here, we can set
s = 2, 4, 6, respectively. Given an s value, we repeat the
whole procedure of BPA change. Under the different s, we
investigate the changes of values for uncertainty measures
including SU, AM and AU.

For the convenience of comparison, we normalize the
uncertainty values in the interval [0,1]. The normalized
uncertainty measures corresponding to AU, AM and SU are
defined as following, respectively.

AU ′ = AU/ log2 n (20)

AM ′ = AM/ log2 n (21)

SU ′ = SU/n (22)

where n is the cardinality of discernment frame.
For different cardinality of B, the changes of values for

normalized uncertainty measures including SU ′, AU ′, and
AM ′ are shown in Fig. 7.

As shown in Fig. 7, the total uncertainty SU, AU, and AM
all decrease when more mass assignments are transferred to
B. Intuitively, when the mass assignments are transferred to
a focal element with smaller cardinality, the non-specificity
decreases faster. So a smaller s will bring a greater decrease
on the total uncertainty. Comparatively, AM is not sensi-
tive to the change of the BPA, since it is calculated based
on the pignistic probability, which changes slightly with
the change of BPAs. In Fig. 7, we can also see that in the
earlier steps, AU stays unchanged for different s. More-
over, with the increase of s, the unchanged stage of AU is
extended. The reason is analyzed as follows. At the begin-
ning, the BPA is a vacuous one, the uncertainty degree AU
can obtain its maximum value in the case of p({θi}) = 1/8,
i = 1, 2, · · · , 8. When more probability masses are trans-
ferred to B, from the constrains for the calculation of AU,
we can get that the uniformly distributed probability can be
used to calculate AU in the case of m(B) ≤ s/8. Then it
follows that AU=log28 = 3 always holds if N ≤ 2.5s, N is

the step number. Therefore, AU stays unchanged in the first
2.5s steps.

Example 8 Suppose that the discernment frame is � = {θ1,
θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10}. A BPA over � is m(�) =
1-a and m(A) = a, |A| = s ≤ 10. Given an a, and the ini-
tial |A|=1, we make changes to the BPA step by step. |A|
increases by 1 in each step. In the final, the BPA becomes a
vacuous one. We set a = 0.3, 0.5, 0.8, respectively. Given
an a value, we repeat the whole procedure of BPA change.
Under the different a, the changes of normalized uncer-
tainty measures including SU ′, AU ′ and AM ′ are shown in
Fig. 7.

As shown in Fig. 8, total uncertainty measures includ-
ing AU, AM, and our SU all increase with the change of
BPA at each step. This is intuitively reasonable, since the
increase of cardinality of A will make the non-specificity
increase. It can be noted that if a is given a larger value, they
will increase faster. Because with the increase of |A|, rela-
tively more mass assignments are transferred to a larger size
focal element. Figure 8 shows that AU stay unchanged in
when |A| is larger than a certain value. By the definition of
AU, we can get that when |A| ≥ 10a, AU get its maximum
value log210. Compared with our proposed SU, AM is not
sensitive to the BPA’s change.

From above illustrative examples, we can see that our
proposed uncertainty measure SU is more sensitive to the
change of BPAs. Due to the complicity of optimization algo-
rithm, the calculation burden of AU is heavier those of SU
and AM. Moreover, since our proposed uncertainty mea-
sure SU prevents the probabilistic switch of BPA, it is more
convenient for direct application.

6 Application of uncertainty measure SU

In this section, we apply our new total uncertainty measure
in the evaluation of sensors’ importance for identification
fusion to further show its rationality.
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Fig. 7 The change of total
uncertainty degree in Example 7
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A successful application of evidence theory is identifi-
cation fusion, which has received considerable attention in
both military and civilian areas [24, 26, 27]. In target iden-
tification, due to the limitation of sensors and interference
from environments, the information derived from different
sensors is usually imperfect. Hence, the target cannot be
identified by single sensor. It is necessary to fuse informa-
tion coming from multiple sensors to achieve better results.
Due to its flexibility in combination and ease of use by the

decision maker, evidence theory has been widely applied in
multi-sensor data fusion.

When fusing the information coming from different sen-
sors, it is necessary to access the importance of each sensor.
Generally, the importance of sensor is quantified by a
weighting factor, which is evaluated based on the similar-
ity (distance) between BPAs provided by different sensors
[7, 25]. If the BPA provided by a sensor is similar to others,
then it is supported by other sensors in a great degree, and
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Fig. 8 The change of
uncertainty degree in Example 8
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should be assigned a higher weighting factor. In our opin-
ion, the importance of a sensor is also determined by the
quality of the information it provided. We can suppose that
if the information has a lower uncertainty degree, the corre-
sponding sensor is more important. So the weighting factor
of a sensor is simultaneously determined by the similarity
degree between BPAs and the uncertainty degree of the BPA
corresponding to it. Here, we divide a sensor’s importance
into two parts, credibility and discriminability, which are
determined by similarity (distance) measure and uncertainty

measure, respectively. Intuitively, the sensor with smaller
total uncertainty measure should be better (have higher dis-
criminability). Hence, based on the uncertainty measure, we
can get the discriminability part importance degree of each
sensor. Considering the range of each uncertainty measure,
we can use the normalized uncertainty measures to calculate
the discriminability.

In a target recognition system based on multi-sensor, p

sensors S1, S2, · · · , Sp are employed to identify the target.
The BPAs obtained from these sensors arem1, m2, · · · , mp,
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which are defined over the discernment frame � =
{θ1, θ2, · · · , θn}. Then the relative discriminability of each
sensor can be calculated by:

Dj = 1 − U ′(mj )

p −
p∑

k=1
U ′(mk)

, j = 1, 2, · · · , p (23)

where U ′ is the normalized uncertainty measure for belief
structure.

Suppose that five sensors S1, S2, · · · , S5 are employed
to classify the identification of aerial targets. Three possi-
ble types of targets are Airplane, Helicopter, and Rocket.
denoted as A, H and R, respectively. So the discernment
frame � can be written as {A, H, R}. The sensor read-
ings on the classes are expressed by the BBAs detailed as
following:

m1({A}) = 0.5, m1({A, H }) = 0.3, m1({H,R}) = 0.2;
m2({A}) = 0.8, m2({A, R}) = 0.1, m2({H,R}) = 0.1;
m3({A}) = 0.6, m3({H }) = 0.2, m3({A, R}) = 0.2;
m4({A}) = 0.6, m4({A, H }) = 0.2, m4({H,R}) = 0.2;
m5({A}) = 0.8, m5({H }) = 0.1, m5({H,R}) = 0.1.

The normalized uncertainty values of each BPA calcu-
lated based on SU ′, AU ′ and AM ′ are shown in Table 1. We
can see that the uncertainty values calculated by our pro-
posed SU are different to each other. So the discriminability
of each sensor can be ranked as D2>D5>D4>D3>D1. For
uncertainty measure AU, it is shown that AU(m2) = AU(m5)

and AU(m3) = AU(m4). Hence, the discriminability degrees
of S2 and S5 are evaluated as equal, so it is with S3 and S4.
Table 1 also shows that the uncertainty measure AM is not
sensitive to the difference between of m3 and m4. Based on
AM, the discriminability of sensor S3 and S4 cannot be well
ranked.

For clarity, Table 2 presents the relative discriminability
degree derived from normalized uncertainty values. We find
that uncertainty measure SU can provide the discriminabil-
ity order of all sensors. The largest discriminability degree
is assigned to the sensor S2 by SU and AM, and the smallest
one is assigned to S1 by SU and AM. However, S3 and S4
get the same discriminability degree based on AM. Table 2
shows that AU assigns the largest discriminability to S2 and
S5, and the second largest one to S3 and S4. So it is diffi-
cult to determine the discriminability of each sensor based
on AU.

Table 1 Normalized uncertainty values for all BPAs

Measures m1 m2 m3 m4 m5

SU ’ 0.5787 0.3159 0.4523 0.4415 0.3281

AU ’ 0.9464 0.5817 0.8650 0.8650 0.5817

AM ’ 0.7799 0.4717 0.7298 0.7298 0.5579

Table 2 Relative discriminability of each sensor

Measures D1 D2 D3 D4 D5

SU ’ 0.1461 0.2373 0.1900 0.1937 0.2330

AU ’ 0.0462 0.3605 0.1164 0.1164 0.3605

AM ’ 0.1271 0.3052 0.1561 0.1561 0.2554

In summary, our proposed uncertainty measure SU can
be well applied in discriminability evaluation for identifica-
tion fusion based on multi-sensor, and it outperforms AM
and AU.

The relative discriminability can be used to evaluate the
importance of each sensor in information fusion. Consider-
ing the method proposed in [7], we can fuse the information
provided by five sensors by the modified Murphy’s combi-
nation rule [29]. The weighted average of all BPAs can be
given as:

m̄(X) =
5∑

i=1

Di · mi(X), X ⊆ � (24)

Based on the proposed uncertainty measure SU, we can
get the weighting factor of each sensor as:

w1 = 0.1461, w2 = 0.2373,
w3 = 0.1900, w4 = 0.1937, w5 = 0.2330.

So the weighted average BPA can be obtained as:

m̄({A}) = 0.68, m̄({H }) = 0.06,
m̄({A, H }) = 0.08, m̄({A, R}) = 0.06, m̄({H,R}) = 0.12.

Then we use the classical Dempster’s rule to combine
the weighted average BPA 4 times, which is the same as
Murphy’s approach [29]. The final result can be expressed
as:

m({A}) = 0.9965, m({H }) = 0.0030,
m({A, H }) = 0.0004, m({H,R}) = 0.0001.

Hence, the target is recognized as an Airplane. Reexa-
mining these BPAs provided by five sensors, we can note
that all of them assign the maximum probability mass to
the focus element {A}. This indicates that their fusion result
should also pointed to {A} as the identification of this target.
Fortunately, the combination rule based on our proposed
uncertainty measure and modified Murphy’ approach can
get reasonable result identical to intuitive analysis.

7 Conclusions

In this paper we mainly investigated the uncertainty mea-
sure of belief structures. An alternative uncertainty measure
is defined based on interval probabilities. We first critically
review existing uncertainty measures for belief structures.
Then we prove that the interval probability [Bel (·), Pl (·)]
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is an interval probability distribution. The presentation of
our uncertainty measure SU then follows. It has been proved
that SU is probability consistency. The range of SU is illus-
trated by both theoretical proof and numerical examples.
Although this wider range is different from that of existing
measures, it is determined by the cardinality of the discern-
ment frame, which is of great significance in the application
of uncertainty measure. Illustrative examples have reveals
that our proposed measure is more sensitive to the change
of belief structures than AM and AU. Furthermore, our
new measure can provide more rational results in practi-
cal applications such as the sensor evaluation. As for the
computational complexity of our proposal, we would like
compare it with AM and AU. Considering the expression
of SU and AM, we can notice that SU need some addition
and arithmetic average operations, which are also necessary
in the calculation of AM. But they are much simpler than
logarithm operation and nonlinear optimization. So we can
conclude that our proposed uncertainty measure will not
confront heavy computation burden.
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