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Abstract In Dempster-Shafer evidence theory, the pignistic
probability function is used to transform the basic probabil-
ity assignment (BPA) into pignistic probabilities. Since the
transformation is from the power set of the frame of discern-
ment to the set itself, it may cause some information loss.
The distance between betting commitments is constructed
on the basis of the pignistic probability function and is used
to measure the dissimilarity between two BPAs. However,
it is a pseudo-metric and it may bring unreasonable results
in some cases. To solve such problem, we propose a power-
set-distribution (PSD) pignistic probability function based
on the new explanation of the non-singleton focal elements
in the BPA. The new function is directly operated on the
power set, so it takes more information contained in the BPA
than the pignistic probability function does. Based on the
new function, the distance between PSD betting commit-
ments which can better measure the dissimilarity between
two BPAs is also proposed, and the proof that it is a met-
ric is provided. In order to demonstrate the performance
of the new distance, numerical examples are given to com-
pare it with three existing dissimilarity measures. Moreover,
its applications in combining the conflicting BPAs are also
presented through two examples.
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1 Introduction

Dempster-Shafer evidence theory is widely used in uncer-
tainty reasoning and decision making [1, 2]. Two BPAs
derived from distinct sources with a high similarity can be
combined by using Dempster’s combination rule and the
result is always reasonable. However, if they have a high dis-
similarity, a counterintuitive result which is unwished will
appear [3, 4]. This leaves us with the question of how to
determine whether there is a high dissimilarity between two
BPAs or not.

For a long time, the conflict coefficient denoted by k [2]
in Dempster’s combination rule has been regarded as the
only way to quantify the dissimilarity between two BPAs,
which is the mass of the combined BPA assigned to the
empty set before normalization. However, it is inappropri-
ate to use k as a quantitative measure of dissimilarity. In
[5], a research is particularly made to point out the weak-
ness of k, indicating that not all high values of k represent
a high dissimilarity between two BPAs. In recent years,
researchers have proposed many dissimilarity measures. In
[6, 7], a survey of the existing dissimilarity measures is
provided together with a classification of them, including
the composite distances [8, 9], the Minkowski family [10–
13], the inner product family [14, 15], the fidelity family
[16, 17], the information-based distances [18, 19] and the
two-dimensional distances [5].
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Among all the dissimilarity measures, the distance
between betting commitments proposed in [10] is the max-
imum difference between the pignistic probabilities trans-
formed from two BPAs. In [5], it is used together with the
conflict coefficient k to construct a two-dimensional mea-
sure to quantify the dissimilarity between two BPAs. Four
conditions in which Dempster’s combination rule should be
used are defined. As the distance between betting commit-
ments and the conflict coefficient k are complementary in
character, the performance of the two-dimensional measure
in guiding the use of Dempster’s combination rule is fea-
sible. However, the shortcomings in the distance between
betting commitments should not be ignored. It is judged as
a pseudo-metric in [6] because of its violation of the stan-
dard metric properties. In [20], some unreasonable results
obtained from it are pointed out and it is suggested to be
cautiously used. The essential component of the distance
between betting commitments is the pignistic probability
function proposed in [22], which is progressively used as
a probability measure for decision making in recent years
[23–25]. The pignistic probability function is used to trans-
form the BPA into pignistic probabilities. Since the trans-
formation is from the power set to the set, some information
contained in the BPA is lost. The loss of information may be
a cause of the shortcomings in the distance between betting
commitments. In order to make use of the information con-
tained in the BPA as much as possible, a distance directly
defined based on the power set is proposed by Jousselme
et al. in [11]. As it takes more information contained in the
BPA than many other measures, its performance is satisfac-
tory in most cases, and it is widely used in quantifying the
dissimilarity between two BPAs.

In this paper, the PSD pignistic probability function is
proposed, which can be regarded as an improvement of the
pignistic probability function. It is used to transform the
BPA into pignistic probabilities on the power set. And based
on it, the distance between PSD betting commitments is
proposed. The new distance is a metric and the relevant
proof is provided. Like the distance proposed by Jousselme
et al, the new distance works over the power set and takes
more information contained in the BPA. Numerical exam-
ples confirm that the results obtained from it are more
reasonable.

The rest of the paper is organized as follows. In Section 2,
the basic definitions in Dempster-Shafer evidence theory
and the standard metric properties are reviewed, the prop-
erty that the distance between betting commitments doesn’t
satisfy is also indicated. In Section 3, the definitions of the
PSD pignistic probability function and the distance between
PSD betting commitments are proposed. The proof that the
proposed distance is a metric one is provided through math-
ematical reasoning. In Section 4, the rationality of the new
distance is demonstrated by comparing it with three existing

dissimilarity measures. In Section 5, its applications in
combining the conflicting BPAs are presented through two
examples. In Section 6, the main contribution of this paper
is concluded.

2 Background

The background knowledge presented in this section
involves the following three main points: (1) the basic
definitions which are frequently used in Dempster-Shafer
evidence theory, (2) the geometrical interpretation of the
BPA, on the basis of which the dissimilarity between two
BPAs can be quantified by various distances, (3) the defini-
tion of the distance between betting commitments, and one
of the standard metric properties it doesn’t satisfy.

It should be noted that the BPAs in this paper are always
assumed to be derived from distinct sources.

2.1 Basics of Dempster-Shafer evidence theory

In Dempster-Shafer evidence theory, the notation � is used
to denote the frame of discernment, which is a non-empty
set with mutually exclusive and exhaustive elements. The
power set of �, denoted by 2�, consists of all the 2|�|
subsets of �.

Definition 2.1 (Basic probability assignment) [1]. Let � be
a frame of discernment, the subset of which is denoted by
A. The function m : 2� → [0, 1] is called a basic proba-
bility assignment (BPA) if it satisfies the two conditions as
follows:

m(∅) = 0 and
∑

A⊆�

m(A) = 1 (1)

For ∀A ⊆ �, m(A) is the basic probability mass of A,
which reflects the support degree that the evidence gives to
A. If m(A) > 0, A is called the focal element of �.

According to Definition 2.1, three one-to-one corre-
sponding functions were defined by G. Shafer [2], including
the belief function denoted by Bel(A), the plausibility
function denoted by P l(A) and the commonality function
denoted by Q(A). The calculation formulas of them are as
follows:

Bel(A) = ∑
B⊆A

m(B)

P l(A) = ∑
B∩A�=∅

m(B)

Q(A) = ∑
A⊆B

m(B)

(2)
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Definition 2.2 (Dempster’s combination rule) [1]. Let m1

and m2 be two BBAs on the frame of discernment �. The
combined BPA, denoted by m1⊕2, is defined as:

m1⊕2(A) =
{ 1

1−k

∑
B∩C=A

m1(B)m2(C), A �= ∅
0, A = ∅

(3)

with

k =
∑

B∩C=∅
m1(B)m2(C) (4)

where k is the mass of the combined BPA assigned to
the empty set before normalization, called the conflict
coefficient.

Definition 2.3 (Pignistic probability function) [21, 22]. Let
� = {θ1, θ2, ..., θn} be a frame of discernment, θi(1 ≤
i ≤ n) is the singleton element which belongs to �, m is a
BPA on �. The corresponding pignistic probability function
BetPm : � → [0, 1] of m is defined as:

BetPm(θi) =
∑

A⊆�

m(A)
|θi ∩ A|

|A| =
∑

θi∈A,A⊆�

m(A)

|A| (5)

where A �= ∅ and |A| is the cardinality of A. For B ⊆ �,

BetPm(B) = ∑
A⊆�

m(A)
|B∩A|

|A| or BetPm(B) = ∑
θi∈B

BetPm(θi)

(6)

The pignistic probability function transforms the BPA
into pignistic probabilities. Since the transformation is from
the power set of � to the set itself, some information is
lost. The computational process of the transformation can
be divided into two steps as follows.

Step 1: Distribute m(A) averagely to the singleton ele-
ments θj which belong toA, add up the values that
θj acquires to get BetPm(θj );

Step 2: For θk ∈ B, add up BetPm(θk) to get BetPm(B).

2.2 Geometrical interpretation of the BPA

The geometrical interpretation of the BPA makes it possi-
ble to measure the dissimilarity between two BPAs via a
distance, which is described clearly in [26, 27].

Definition 2.4 (Geometrical interpretation of the BPA). Let
� be a frame of discernment, m is a BPA on �, � is the

vector space which is generated from the subsets of �. The
corresponding vector of m in � can be defined as:

⇀
m = [m(A1), m(A2), ..., m(A2|�|)]T (7)

where Ai ⊆ �, i = 1, 2, ..., 2|�|,
2|�|∑
i=1

m(Ai) = 1.

After transforming two BPAs into vectors, researchers
can use different kinds of distances to measure the dissimi-
larity between them.

Based on the satisfaction degree of the standard metric
properties, Jousselme and Maupin [6] judged the existing
distances into four groups: metric, pseudo-metric, semi-
metric and non-metric. The standard metric properties are
as follows:

Definition 2.5 (Standard metric properties). Let � be a
vector space. If the function d : � × � → R satisfies the
following properties for ∀A, B, C ∈ �, it is called a metric.

(p1) Non-negativity: d(A, B) ≥ 0;
(p2) Symmetry: d(A, B) = d(B, A);
(p3) Definiteness: d(A, B) = 0 ⇔ A = B;
(p4) Triangle inequality: d(A, B) ≤ d(A, C) + d(B, C).

In [6], (p3) is divided into (p3)′ and (p3)′′, which are as
follows:

(p3)′ Reflexivity: d(A, A) = 0;
(p3)′′ Separability: d(A, B) = 0 ⇒ A = B.

If a function d satisfies all the properties except for (p3)′′,
it is called a pseudo-metric. A semi-metric satisfies all the
conditions except for (p4). If d doesn’t satisfy (p1) and (p3)′,
it is called a non-metric.

2.3 Distance between betting commitments

Definition 2.6 (Distance between betting commitments).
Let m1 and m2 be two BBAs on the frame of discernment �,
BetPm1

and BetPm2
are the corresponding pignistic prob-

ability functions of them, respectively. Then the distance
between betting commitments is defined as:

dif BetP
m2
m1

= max
A⊆�

(|BetPm1
(A) − BetPm2

(A)|) (8)

Influenced by the pignistic probability function, the dis-
tance between betting commitments works over �. This
leads to the loss of information contained in the BPA. We
use dBet (m1 , m2) to denote dif BetP

m2
m1

in further detail
below.

dBet is judged as a pseudo-metric in [6], which means
that it doesn’t satisfies (p3)′′. Here we cite an example to
demonstrate it.
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Example 2.1 Let m1 and m2 be two BPAs on the frame of
discernment � = {θ1, θ2, θ3}, which are defined as follows:

m1 ({θ1}) = 1

3
, m1 ({θ2}) = 1

3
, m1 ({θ3}) = 1

3
;

m2 ({θ1, θ2, θ3}) = 1.

Then we have dBet (m1 , m2) = 0. However, it is obvi-
ous that m1 �= m2 . This example indicates that dBet doesn’t
satisfy (p3)′′.

As the proof that dBet satisfies the other properties is sim-
ilar with the proposed distance in Section 3, it will not be
listed here in addition.

3 The proposed function and distance

3.1 Power-set-distribution pignistic probability function

Example 3.1 Let m({θ1, θ2, θ3}) = 1 be a BPA on the frame
of discernment � = {θ1, θ2, θ3}, θi(1 ≤ i ≤ 3) is the single-
ton element in �. What’s the information contained in the
BPA?

The general explanation is as follows: Any of the singleton
elements in � may have a support degree of 1. Here, the
singleton elements refer to {θ1}, {θ2}, {θ3}. In [22], BetP

is proposed by Smets on the basis of this explanation.
When BetP is used to transform the BPA m({θ1, θ2, θ3}) =
1 into pignistic probabilities, the value of m({θ1, θ2, θ3})
is distributed equally among the singleton elements of
{θ1, θ2, θ3}. Since the transformation is from the power set
of � to the set itself, it leads to much information loss.

In order to reduce the information loss, the transforma-
tion should be modified to become a bijective mapping.
One practical way is to distribute the m value of the non-
singleton focal element among its non-empty subsets. In this
way, an improved pignistic probability function comes up.
It works over the power set of �, the information loss of
which is less than BetP . In this case, how to explain the
information contained in the BPA m({θ1, θ2, θ3}) = 1? The
explanation proposed by us is as follows: Any of the single-
ton and non-singleton elements may have a support degree
of 1. Here, the singleton and non-singleton elements refer to
{θ1}, {θ2}, {θ3}, {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, {θ1, θ2, θ3}.

As the improved function works over the power set of
�, we call it the power-set-distribution (PSD) pignistic
probability function. The definition of it is as follows:

Definition 3.1 (PSD pignistic probability function). Let
� be a frame of discernment, m is a BPA on �. The

corresponding power-set-distribution (PSD) pignistic prob-
ability function PBetPm : 2� → [0, 1] of m is defined as:

PBetPm(B) =
∑

A⊆�

m(A)
2|B∩A| − 1

2|A| − 1
(9)

where B denotes a subset of �, A �= ∅ and |A| is the
cardinality of set A.

3.2 Distance between PSD betting commitments

On the basis of Definition 3.1, the definition of the distance
between PSD betting commitments is proposed as follows:

Definition 3.2 (Distance between PSD betting commit-
ments). Let m1 and m2 be two BBAs on the frame of dis-
cernment�, PBetPm1

and PBetPm2
are the corresponding

PSD pignistic probability functions of them, respectively.
Then the distance between PSD betting commitments is
defined as:

dif PBetP
m2
m1

=max
A⊆�

(|PBetPm1
(A)−PBetPm2

(A)|)
(10)

Influenced by the PSD pignistic probability function,
the new distance works over the power set of �. It takes
more information contained in the BPA than dBet . We use
dPBet (m1 , m2) to denote dif PBetP

m2
m1

in further detail
below. dPBet is most applicable to the BPAs which contain
non-singleton focal elements. When dPBet is applied to the
BPAs which just contain singleton focal elements, the result
obtained from it is consistent with that of dBet .

3.3 Proof of the properties

dPBet is a metric as it satisfies all the standard metric
properties. We will prove these properties in this section.

Property 1 (Non-negativity) dPBet ≥ 0;

Proof This property is easy to prove via (10).

dPBet (m1 , m2)=max
A⊆�

(|PBetPm1
(A)−PBetPm2

(A)|) ≥ 0

Property 2 (Symmetry) dPBet (m1 , m2)= dPBet (m2 , m1);

Proof This is straightforward via (10).

dPBet (m1 , m2) = max
A⊆�

(|PBetPm1
(A) − PBetPm2

(A)|)
= max

A⊆�
(|PBetPm2

(A) − PBetPm1
(A)|)

= dPBet (m2 , m1)

Property 3′ (Reflexivity) dPBet (m1 , m1) = 0;
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Proof This property can be proved via (10).

dPBet (m1 , m1)=max
A⊆�

(|PBetPm1
(A)−PBetPm1

(A)|) = 0

Property 3′′ (Separability) dPBet (m1 , m2) = 0 ⇒ m1 =
m2 ;

Proof Suppose that m1 and m2 are two BPAs on the frame
of discernment � = {θ1, θ2, ..., θn}, which are detailed in

Table 1. Ai ⊆ � and Ai �= ∅. The total number of Ai is
2n − 1. All of them are in sequential order.

If dPBet (m1 , m2) = max
A⊆�

(|PBetPm1
(A) − PBetPm2

(A)|) = 0, we can get the following equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PBetPm1
(A1) − PBetPm2

(A1) = 0
PBetPm1

(A2) − PBetPm2
(A2) = 0

...

PBetPm1
(A2n−1) − PBetPm2

(A2n−1) = 0

By (9), we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2|A1∩A1|−1
2|A1|−1

x1 + 2|A1∩A2|−1
2|A2|−1

x2 + · · · + 2|A1∩A2n−1|−1

2|A2n−1|−1
x2n−1

)
−

(
2|A1∩A1|−1
2|A1|−1

y1 + 2|A1∩A2|−1
2|A2|−1

y2 + · · · + 2|A1∩A2n−1|−1

2|A2n−1|−1
y2n−1

)
= 0

(
2|A2∩A1|−1
2|A1|−1

x1 + 2|A2∩A2|−1
2|A2|−1

x2 + · · · + 2|A2∩A2n−1|−1

2|A2n−1|−1
x2n−1

)
−

(
2|A2∩A1|−1
2|A1|−1

y1 + 2|A2∩A2|−1
2|A2|−1

y2 + · · · + 2|A2∩A2n−1|−1

2|A2n−1|−1
y2n−1

)
= 0

.

.

.(
2|A2n−1∩A1|−1

2|A1|−1
x1 + 2|A2n−1∩A2|−1

2|A2|−1
x2+· · ·+ 2|A2n−1∩A2n−1|−1

2|A2n−1|−1
x2n−1

)
−

(
2|A2n−1∩A1|−1

2|A1|−1
y1+ 2|A2n−1∩A2|−1

2|A2|−1
y2+· · ·+ 2|A2n−1∩A2n−1|−1

2|A2n−1|−1
y2n−1

)
=0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2|A1∩A1|−1
2|A1|−1

(x1 − y1) + 2|A1∩A2|−1
2|A2|−1

(x2 − y2) + · · · + 2|A1∩A2n−1|−1

2|A2n−1|−1
(x2n−1 − y2n−1 ) = 0

2|A2∩A1|−1
2|A1|−1

(x1 − y1) + 2|A2∩A2|−1
2|A2|−1

(x2 − y2) + · · · + 2|A2∩A2n−1|−1

2|A2n−1|−1
(x2n−1 − y2n−1 ) = 0

.

.

.

2|A2n−1∩A1|−1
2|A1|−1

(x1 − y1) + 2|A2n−1∩A2|−1
2|A2|−1

(x2 − y2) + · · · + 2|A2n−1∩A2n−1|−1

2|A2n−1|−1
(x2n−1 − y2n−1 ) = 0

It is equivalent to the equation as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2|A1∩A1|−1
2|A1|−1

2|A1∩A2|−1
2|A2|−1

· · · 2|A1∩A2n−1|−1

2|A2n−1|−1

2|A2∩A1|−1
2|A1|−1

2|A2∩A2|−1
2|A2|−1

· · · 2|A2∩A2n−1|−1

2|A2n−1|−1
...

...
. . .

...

2|A2n−1∩A1|−1
2|A1|−1

2|A2n−1∩A2|−1
2|A2|−1

· · · 2|A2n−1∩A2n−1|−1

2|A2n−1|−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1 − y1
x2 − y2

...

x2n−1 − y2n−1

⎤

⎥⎥⎥⎦ = 0

⎡

⎢⎢⎢⎢⎣

2|A1∩A1| − 1 2|A1∩A2| − 1 · · · 2|A1∩A2n−1| − 1
2|A2∩A1| − 1 2|A2∩A2| − 1 · · · 2|A2∩A2n−1| − 1

...
...

. . .
...

2|A2n−1∩A1| − 1 2|A2n−1∩A2| − 1 · · · 2|A2n−1∩A2n−1| − 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1
2|A1|−1

0 · · · 0

0 1
2|A2|−1

· · · 0
...

...
. . .

...

0 0 · · · 1

2|A2n−1|−1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1 − y1
x2 − y2

...

x2n−1 − y2n−1

⎤

⎥⎥⎥⎦ = 0



A new distance between BPAs based on the power-set-distribution pignistic probability function 1511

Table 1 Two BPAs

A1 = {θ1} A2 = {θ2} . . . A2n−1 = {θ1, θ2, ..., θn}

m1 x1 x2 . . . x2n−1

m2 y1 y2 . . . y2n−1

We set

R =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2|A1∩A1|−1
2|A1|−1

2|A1∩A2|−1
2|A2|−1

· · · 2|A1∩A2n−1|−1

2|A2n−1|−1

2|A2∩A1|−1
2|A1|−1

2|A2∩A2|−1
2|A2|−1

· · · 2|A2∩A2n−1|−1

2|A2n−1|−1
...

...
. . .

...

2|A2n−1∩A1|−1
2|A1|−1

2|A2n−1∩A2|−1
2|A2|−1

· · · 2|A2n−1∩A2n−1|−1

2|A2n−1|−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

S =

⎡

⎢⎢⎢⎢⎣

2|A1∩A1| − 1 2|A1∩A2| − 1 · · · 2|A1∩A2n−1| − 1
2|A2∩A1| − 1 2|A2∩A2| − 1 · · · 2|A2∩A2n−1| − 1

...
...

. . .
...

2|A2n−1∩A1| − 1 2|A2n−1∩A2| − 1 · · · 2|A2n−1∩A2n−1| − 1

⎤

⎥⎥⎥⎥⎦

T =

⎡

⎢⎢⎢⎢⎢⎣

1
2|A1|−1

0 · · · 0

0 1
2|A2|−1

· · · 0
...

...
. . .

...

0 0 · · · 1

2|A2n−1|−1

⎤

⎥⎥⎥⎥⎥⎦

Then we can get R = ST and R

⎡

⎢⎢⎢⎣

x1 − y1
x2 − y2

...

x2n−1 − y2n−1

⎤

⎥⎥⎥⎦ = 0.

The positive definiteness of the Jaccard index matrix has
been presented in [28] by M. Bouchard. S is similar to the
Jaccard index matrix. Moreover, S is more complex, and
it is really difficult to demonstrate its positive definiteness
through mathematical proof. In the following, the results of
S are listed when n = 1, 2, 3, 4. After being diagonalized,
each of them becomes an identity matrix, which demon-
strates that S is a non-singular matrix when n = 1, 2, 3, 4.
As the dimension of S is 31 × 31 when n = 5 and it is still
growing, there is no need to list the results of S when n ≥ 5.
However, it can be determined that the matrix is still an
identity matrix after being diagonalized. The mathematical
proof of the positive definiteness is needed in the future work.

For n = 1, S = [1]; For n = 2, S =
⎡

⎣
1 0 1
0 1 1
1 1 3

⎤

⎦ diagonalized−−−−−−−−→
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ;

For n = 3, S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1 1 0 3 1 1 3
1 0 1 1 3 1 3
0 1 1 1 1 3 3
1 1 1 3 3 3 7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

diagonalized−−−−−−−−→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

For n = 4, S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
1 1 0 0 3 1 1 1 1 0 3 3 1 1 3
1 0 1 0 1 3 1 1 0 1 3 1 3 1 3
1 0 0 1 1 1 3 0 1 1 1 3 3 1 3
0 1 1 0 1 1 0 3 1 1 3 1 1 3 3
0 1 0 1 1 0 1 1 3 1 1 3 1 3 3
0 0 1 1 0 1 1 1 1 3 1 1 3 3 3
1 1 1 0 3 3 1 3 1 1 7 3 3 3 7
1 1 0 1 3 1 3 1 3 1 3 7 3 3 7
1 0 1 1 1 3 3 1 1 3 3 3 7 3 7
0 1 1 1 1 1 1 3 3 3 3 3 3 7 7
1 1 1 1 3 3 3 3 3 3 7 7 7 7 15

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

diagonalized−−−−−−−−→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Since S is a non-singular matrix. The rank of S is 2n − 1,
i.e., rank(S) = 2n − 1. Obviously, rank(T ) = 2n − 1. As
R = ST , we can get that rank(R) = 2n − 1.

Because that rank(R)=2n−1 andR

⎡

⎢⎢⎢⎢⎣

x1−y1

x2−y2

...

x2n−1−y2n−1

⎤

⎥⎥⎥⎥⎦
= 0,

it is available that

⎡

⎢⎢⎣

x1 − y1
x2 − y2

...

x2n−1 − y2n−1

⎤

⎥⎥⎦ = 0. That is to say:

x1 = y1, x2 = y2, . . . , x2n−1 = y2n−1. It is equivalent to
that m1 = m2 .

Property 4 (Triangle inequality)

dPBet (m1 , m2) ≤ dPBet (m1 , m3) + dPBet (m3 , m2);

Proof Suppose that there are three BPAs on the frame of
discernment �, which are denoted by m1 , m2 and m3 . The
corresponding PBetP of the three BPAs are detailed in
Table 2, where Ai ⊆ �(1 ≤ i ≤ n) and Ai �= ∅.

Assume that,

dPBet (m1 ,m2) = max
A⊆�

(

∣∣∣PBetPm1
(A) − PBetPm2

(A)

∣∣∣)
= |PBetPm1

(Ai)−PBetPm2
(Ai)|=|xi −yi |

.

It is certain that the following two inequations are
appropriate,

dPBet (m1 , m3) = max
A⊆�

(

∣∣∣PBetPm1
(A) − PBetPm3

(A)

∣∣∣)

≥
∣∣∣PBetPm1

(Ai) − PBetPm3
(Ai)

∣∣∣
= |xi − zi |

dPBet (m3 ,m2) = max
A⊆�

(

∣∣∣PBetPm3
(A) − PBetPm2

(A)

∣∣∣)

≥
∣∣∣PBetPm3

(Ai)−PBetPm2
(Ai)

∣∣∣=|zi −yi |

Then, we can get the inequation as follows,

dPBet (m1 , m3) + dPBet (m3 , m2) ≥ |xi − zi | + |zi − yi |≥ |xi − zi + zi − yi |= |xi −yi |=dPBet (m1 , m2)

Table 2 The corresponding PBetP of m1 , m2 and m3

A1 A2 . . . Ai . . . An

PBetPm1
(Ai) x1 x2 . . . xi . . . xn

PBetPm2
(Ai) y1 y2 . . . yi . . . yn

PBetPm3
(Ai) z1 z2 zi zn

That is,

dPBet (m1 , m2) ≤ dPBet (m1 , m3) + dPBet (m3 , m2).

Through the mathematical proof above, it is certain that
dPBet is a metric.

4 Numerical comparisons

In [11], a distance between two BPAs is proposed, which is
defined as:

dJ (m1 , m2) =
√
1

2

(
⇀
m1 − ⇀

m2

)T

D=
(

⇀
m1 − ⇀

m2

)
(11)

where
⇀
m is a 2|�|-dimensional column vector generated

from a BPA, D= is a 2|�| × 2|�|-dimensional matrix, the ele-

ments of D= are J (A, B) = |A ∩ B| / |A ∪ B|, A and B

are the subsets of �(we define |∅ ∩ ∅| / |∅ ∪ ∅| = 0). dJ is
proved to be a metric in [28]. It is widely used to measure
the dissimilarity between two BPAs.

In [15], a cosine similarity measure between two BPAs is
proposed, which is defined as:

Sim(m1, m2) = cos θ =
〈
⇀
m1,

⇀
m2

〉

∥∥∥
⇀
m1

∥∥∥
∥∥∥

⇀
m2

∥∥∥
(12)

where
⇀
m is a 2|�|-dimensional column vector generated

from a BPA, θ is the angle between
⇀
m1 and

⇀
m2,

〈
⇀
m1,

⇀
m2

〉

is the inner product of
⇀
m1 and

⇀
m2,

∥∥∥
⇀
m

∥∥∥ is the norm of
⇀
m.

cos θ is proved to be a semi-pseudo-metric in [28]. As cos θ

is a similarity measure, then the corresponding dissimilarity
measure can be defined as 1 − cos θ .

In this section, three examples are given to demonstrate
the performance of dPBet , including Example 4.1 (one of
the cases in Example 1 in [29]), Example 4.2 (Example 5,
Fig. 2 in [20]) and Example 4.3 (Example 1, Fig. 6 in [11]).
dPBet is compared with dBet , dJ and 1 − cos θ in these
examples, and each of them can be used to measure the
dissimilarity between two BPAs.

Example 4.1 Let m1 , m2 , m3 and m4 be four BPAs on the
frame of discernment � = {θ1, θ2, θ3}, which are defined as
follows:

m1 ({θ1}) = 1

3
, m1 ({θ2}) = 1

3
, m1 ({θ3}) = 1

3
;

m2 ({θ1, θ2, θ3}) = 1;

m3 ({θ1}) = 1

3
, m3 ({θ2}) = 1

3
, m3 ({θ1, θ2}) = 1

3
;

m4 ({θ1}) = 1.



A new distance between BPAs based on the power-set-distribution pignistic probability function 1513

For m1 and m2 , the results of dBet , dJ , 1 − cos θ and
dPBet are as follows:

dBet (m1 , m2) = 0; dJ (m1 , m2) = 0.5774; 1 −
cos θ = 0; dPBet (m1 , m2) = 0.2381.

Since m1 and m2 are not the same, the value of the dis-
similarity between them should not be 0. According to this,
both dBet (m1 , m2) = 0 and 1 − cos θ = 0 are counterin-
tuitive, while dJ (m1 , m2) = 0.5774 and dPBet (m1 , m2) =
0.2381 are acceptable.

Form1 andm3 , the results of dJ and dPBet are as follows:

dJ (m1 , m3) = 0.3333; dPBet (m1 , m3) = 0.3333.

It is obvious that m1 and m3 are not the same. Both
dJ (m1 , m3) = 0.3333 and dPBet (m1 , m3) = 0.3333 prove
this.

Form2 andm3 , the results of dJ and dPBet are as follows:

dJ (m2 , m3) = 0.5774; dPBet (m2 , m3) = 0.5714.

Since m1 and m3 are not the same, the dissimilar-
ity between m1 and m2 should not be the same as that
between m2 and m3 . But from the results, we can see that
dJ (m1 , m2) = dJ (m2 , m3) = 0.5774, which is counterintu-
itive. dPBet (m1 , m3) �= dPBet (m2 , m3) can reflect the dif-
ference between the two dissimilarities, which demonstrates
that dPBet is more reasonable than dJ .

Form1 andm4 , the results of dJ and dPBet are as follows:

dJ (m1 , m4) = 0.5774; dPBet (m1 , m4) = 0.6667.

As we can see, m4 is absolutely confident in θ1, while m1

and m2 can be considered both as very uncertain sources.
m1 has a full randomness, and m2 corresponds to the full
ignorant source. Although m1 and m2 are different in the
intrinsic nature of uncertainty, from a decision-making point
of view, the decision-maker is faced with the full uncer-
tainty for taking a decision. Intuitively, since both m1 and
m2 carry uncertainty and they yield to the complete inde-
terminacy in the decision-making problem, it is expected
that m1 is closer to m2 than to m4 . As dJ (m1 , m2) =
dJ (m1 , m4) = 0.5774 is counterintuitive, dJ doesn’t char-
acterize well the difference between these two very different
cases. As dPBet (m1 , m2) = 0.2381 < dPBet (m1 , m4) =
0.6667 is consistent with the analysis, dPBet characterize
well the difference.

To sum up, in this example, dPBet is more reasonable
than the other three dissimilarity measures.

Example 4.2 Let m1 and m2 be two BBAs on the frame of
discernment � = {θ1, θ2, θ3}, it is known that the number
of the non-empty subsets of � is 23 − 1 = 7. Here we set
m1 {θ3} = 1 and keep it unchanged. m2 is constantly chang-
ing from steps 1 to 20, which is as follows: in step 1, m2

is beginning with an identical distribution (the value is 17 ) of

the mass over the 7 non-empty subsets; from steps 2 to 20,
each step has an increase of � for m2({θ1, θ2, θ3}) together
with a decrease of �

6 for 6 other non-empty subsets(ensure
that the sum is 1). A value of 6

133 is assigned to � in order
to make sure that m2({θ1, θ2, θ3}) = 1 in step 20. The com-
parisons of dBet , dJ , 1− cos θ and dPBet in all the 20 steps
are detailed in Table 3 and illustrated in Fig. 1.

From steps 1 to 20, m1 {θ3} = 1 is kept unchanged, while
m2 {θ3} dips from 1

7 to 0. Intuitively, the distance between
m1 and m2 should increase gradually. In Fig. 1, dBet has an
invariable value of 0.6667, which mistakenly indicates that
m2 stay unchanged as m1 does. It is obviously unreason-
able, and it also demonstrates that dBet is a pseudo-metric
which doesn’t satisfy the (p3)′′in the standard metric prop-
erties. The values of 1−cos θ are acceptable from steps 1 to
19. However, m1 and m2 are not completely conflicting in
step 20, so the value of the dissimilarity should not be 1 in
step 20. According to this, 1− cos θ is faulty. Since both dJ

and dPBet are metrics, the values of them in all the 20 steps
increase gradually and are reasonable.

Example 4.3 Let � = {θ1, θ2, ..., θ20} be a frame of dis-
cernment. m1 and m2 are two BBAs on � defined as
follows:

m1 ({θ2, θ3, θ4}) = 0.05, m1 ({θ7}) = 0.05,

Table 3 Comparisons of the four dissimilarity measures

Step dBet dJ 1 − cos θ dPBet

1 0.6667 0.6172 0.6220 0.7415

2 0.6667 0.6236 0.6449 0.7476

3 0.6667 0.6305 0.6725 0.7537

4 0.6667 0.6380 0.7031 0.7598

5 0.6667 0.6460 0.7348 0.7658

6 0.6667 0.6546 0.7659 0.7719

7 0.6667 0.6636 0.7954 0.7780

8 0.6667 0.6730 0.8228 0.7841

9 0.6667 0.6830 0.8477 0.7902

10 0.6667 0.6933 0.8701 0.7963

11 0.6667 0.7041 0.8903 0.8024

12 0.6667 0.7152 0.9083 0.8084

13 0.6667 0.7267 0.9244 0.8145

14 0.6667 0.7386 0.9388 0.8206

15 0.6667 0.7509 0.9518 0.8267

16 0.6667 0.7634 0.9635 0.8328

17 0.6667 0.7762 0.9740 0.8389

18 0.6667 0.7894 0.9835 0.8450

19 0.6667 0.8028 0.9921 0.8511

20 0.6667 0.8165 1 0.8571
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Fig. 1 Comparisons of the four
dissimilarity measures

m1 (�) = 0.1, m1 (A) = 0.8;

m2(A
∗) = 1 with A∗ = {θ1, θ2, θ3, θ4, θ5} .

Here we set 20 steps. From steps 1 to 20, m2 is
unchanged, m1 is constantly changing as follows: in step
1, A is {θ1}; from steps 2 to 20, one more element θi(i =
2, 3, ...20) is added to A at each step. The comparisons of
dBet , dJ , 1− cos θ and dPBet in all the 20 steps are detailed
in Table 4 and illustrated in Fig. 2.

Table 4 Comparisons of the four dissimilarity measures

Steps dBet dJ 1 − cos θ dPBet

A ={θ1} 0.6060 0.7858 1 0.8177

A ={θ1, θ2} 0.5517 0.6866 1 0.7604

A ={θ1, θ2, θ3} 0.3733 0.5633 1 0.6456

A ={θ1,. . . ,θ4} 0.1950 0.4286 1 0.4161

A ={θ1,. . . ,θ5} 0.1250 0.1322 0.0115 0.1500

A ={θ1,. . . ,θ6} 0.2583 0.3883 1 0.4437

A ={θ1,. . . ,θ7} 0.3536 0.5029 1 0.7547

A ={θ1,. . . ,θ8} 0.4250 0.5705 1 0.8527

A ={θ1,. . . ,θ9} 0.4806 0.6187 1 0.9015

A ={θ1,. . . ,θ10} 0.5250 0.6553 1 0.9258

A ={θ1,. . . ,θ11} 0.5614 0.6844 1 0.9379

A ={θ1,. . . ,θ12} 0.5917 0.7081 1 0.9439

A ={θ1,. . . ,θ13} 0.6173 0.7274 1 0.9470

A ={θ1,. . . ,θ14} 0.6393 0.7444 1 0.9485

A ={θ1,. . . ,θ15} 0.6583 0.7592 1 0.9492

A ={θ1,. . . ,θ16} 0.6750 0.7658 1 0.9496

A ={θ1,. . . ,θ17} 0.6897 0.7839 1 0.9498

A ={θ1,. . . ,θ18} 0.7028 0.7944 1 0.9499

A ={θ1,. . . ,θ19} 0.7145 0.8042 1 0.94995

A ={θ1,. . . ,θ20} 0.7250 0.8123 1 0.94997

As can be seen from Fig. 2, the value of 1 − cos θ stays
unchanged at 1 from steps 1 to 4 and steps 6 to 20. Since
m1 and m2 are not completely conflicting in these steps, it is
obviously unreasonable. dBet , dJ and dPBet have a similar
variation trend in general. All three decrease when A tends
to A∗ from steps 1 to 4, and they reach their respective min-
imum values when A attains A∗ at step 5, then they rise as
A departs from A∗ in the remaining steps.

By analyzing, more information is acquired. From steps 3
to 8, the rangeability of dPBet is greater than that of dBet and
dJ , indicating that the sensibility of dPBet is better. From
steps 10 to 20, the rangeability of dPBet is smaller than that
of dBet and dJ , indicating that the sensibility of dPBet is
worse. The reason why this happens is as follows. The vari-
ation range of the dissimilarity is [0,1]. Steps 3 to 8 are
adjacent to step 5 (the minimum value), while steps 10 to 20
are away from step 5. From steps 3 to 8, the dissimilarity has
a large variation range which is from the minimum value to
1. From steps 10 to 20, as the dissimilarity has approached
its maximum value and is still rising, the variation range is
small. On one hand, the better sensibility from steps 3 to 8
enables dPBet to better measure the difference among these
steps. On the other hand, it makes dPBet approach its maxi-
mum value too quickly, which leads to the worse sensibility
from steps 10 to 20.

To summarize, dBet and 1− cos θ are not metrics, some-
times the results obtained from them are obviously unrea-
sonable. dJ and dPBet are metrics, the results obtained from
them are reasonable. When dPBet is compared with dJ , it
has both an advantage and disadvantage. The advantage is
that dPBet is more accurate than dJ in some cases (Example
4.1), and the sensibility of dPBet is better when the variation
range is large. The disadvantage is that the sensibility of it
is worse when the variation range is small. dPBet is a proper
measure for quantifying the dissimilarity between BPAs. As
it takes more information (works over the power set) than
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Fig. 2 Comparisons of the four
dissimilarity measures

many other dissimilarity measures, the performance of it is
better.

To demonstrate the superiority of dPBet further, dPBet

and dJ are compared through the applications in combining
the conflicting BPAs in Section 5.

5 Applications of the proposed distance

In this section, dPBet is used to replace 1 − cos θ and dJ in
two methods presented in [15] and [30], respectively. Both
of the methods are used for combining the conflicting BPAs.

After importing dPBet into the method in [15], Method 1
is generated, which is as follows:

Suppose that there are n(n ≥ 3) BPAs on the frame of
discernment �, mi(1 ≤ i ≤ n) and mj(1 ≤ j ≤ n) are used
to denote any two of them.

Step 1: Calculate the value of dPBet (mi, mj ), then the
corresponding similarity measure between mi and
mj can be obtained, which is defined as:

Sim(mi, mj ) = 1 − dPBet (mi, mj ) (13)

when i = j , it is obvious that Sim(mi, mj ) =
1. For ease of description, we use Sij to denote
Sim(mi, mj ) in further detail below.

Step 2: Use Sij to build the similarity measure matrix
(SMM), which is as follows:

SMM =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 S12 · · · S1j · · · S1n
S21 1 · · · S2j · · · S2n
...

...
...

...

Si1 Si2 · · · Sij · · · Sin

...
...

...
...

Sn1 Sn2 · · · Snj · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Step 3: Calculate the support degree of mi , which is
defined as:

Sup(mi) =
n∑

j=1,j �=i

Sij (15)

Step 4: Calculate the confidence degree of mi , which is
defined as:

ωi = Sup(mi)

max
1≤i≤n

[Sup(mi)]
(16)

Step 5: Modify the original BPAs mi via the following
equation to obtain the new BPAs m′

i :

m′
i (A) =

{
ωimi(A) A ⊂ �

1 − ∑
B⊂�

ωimi(B) A = � (17)

Step 6: Use Dempster’s combination rule to combine
the new BPAs m′

i , then the combined result is
obtained.

The example of fault diagnosis in [15] is quoted to show
the performance of Method 1. The details are as follows.

Example 5.1 Let � = {θ1, θ2, θ3, θ4} be a frame of discern-
ment, θi(1 ≤ i ≤ 4) represent the running conditions of the
equipment, including θ1 = {normal}, θ2 = {unbalance},
θ3 = {eccentricity} and θ4 = {baseloosening}. m1 , m2

and m3 are BPAs obtained from three sensors experimen-
tally, which are detailed in Table 5. It is known that some

Table 5 m1 , m2 and m3 obtained from three sensors

θ1 θ2 θ3 θ4 �

m1 0.0120 0.6954 0.0470 0.0435 0.2021

m2 0.0245 0.1027 0.6803 0.0503 0.1422

m3 0.0161 0.5251 0.2029 0.0404 0.2155
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Table 6 Results obtained from
different combination methods m⊕(θ1) m⊕(θ2) m⊕(θ3) m⊕(θ4) m⊕(�)

Dempster’s combination rule [1] 0.0083 0.6256 0.3178 0.0236 0.0247

Deng’s method (dJ ) [30] 0.0091 0.6611 0.2487 0.0264 0.0547

Wen’s method (cos θ) [15] 0.0096 0.6680 0.2280 0.0276 0.0668

Method 1 (dPBet ) 0.0092 0.6928 0.2149 0.0267 0.0564

interference is added to the second sensor, meaningm2 can’t
reflect the running conditions correctly.

Among the three BPAs, m2 is incorrect, m1 and m3 are
correct and they both assign most of their belief to θ2. Intu-
itively, the reasonable combined result of the three BPAs
should indicate that θ2 is most likely to happen. Four differ-
ent methods are used to combine the three BPAs, including
Dempster’s combination rule, Deng’s method (dJ is used),
Wen’s method (cos θ is used) and Method 1 (dPBet is used).
The results obtained from different combination methods
are detailed in Table 6.

As can be seen from Table 6, since all the combined
results obtained from four different methods give their
largest mass of belief to θ2, they are reasonable. Moreover,
Method 1 (dPBet is used) gives θ2 a larger mass of belief
than other three methods, it has a better convergence rate,
and the result of it is more convenient for decision making.

After importing dPBet into the method in [30], Method
2 is generated. The first three steps of it are the same as
Method 1. Step 4, Step 5 and Step 6 ofMethod 2 are as follows:

Step 4 of Method 2: Calculate the confidence degree of
mi , which is defined as:

ωi = Sup(mi)
n∑

i=1
Sup(mi)

(18)

Step 5 of Method 2: The modified average of the evi-
dence m′

i is given as:

m′
i (A) =

n∑

i=1

(ωi × mi) (19)

Step 6 of Method 2: Use Dempster’s combination rule to
combine m′

i n − 1 times.
The example in [30] is quoted to show the performance

of Method 2. The details are as follows.

Example 5.2 In a ballistic target identification system, there
are five sensors for judging the target. It is known that
the types of the target could be warhead, bait and frag-
ment. That is to say, the frame of discernment is � =
{A(warhead), B(bait), C(f ragment)}. Suppose the real
target is A, the BPAs obtained from the sensors are as
follows:

m1 (A) = 0.5, m1 (B) = 0.2, m1 (C) = 0.3;
m2 (A) = 0, m2 (B) = 0.9, m2 (C) = 0.1;
m3 (A) = 0.55, m3 (B) = 0.1, m3 (A, C) = 0.35;
m4 (A) = 0.55, m4 (B) = 0.1, m4 (A, C) = 0.35;
m5 (A) = 0.6, m5 (B) = 0.1, m5 (A, C) = 0.3.

Table 7 Results obtained from different combination methods

m1 , m2 m1 , m2 , m3 m1 , m2 , m3 , m4 m1 , m2 , m3 , m4 , m5

Dempster’s combination rule [1] m(A) = 0 m(A) = 0 m(A) = 0 m(A) = 0

m(B) = 0.8571 m(B) = 0.6316 m(B) = 0.3288 m(B) = 0.1404

m(C) = 0.1429 m(C) = 0.3684 m(C) = 0.6712 m(C) = 0.8596

Wen’s method (cos θ) [15] m(A) = 0 m(A) = 0.6373 m(A) = 0.9026 m(A) = 0.9631

m(B) = 0.8571 m(B) = 0.1436 m(B) = 0.0073 m(B) = 0.0011

m(C) = 0.1429 m(C) = 0.2191 m(C) = 0.0832 m(C) = 0.0260

m(AC) = 0.0070 m(AC) = 0.0098

Deng’s method (dJ ) [30] m(A) = 0.1543 m(A) = 0.7369 m(A) = 0.9484 m(A) = 0.9869

m(B) = 0.7469 m(B) = 0.1618 m(B) = 0.0120 m(B) = 0.0010

m(C) = 0.0988 m(C) = 0.0915 m(C) = 0.0310 m(C) = 0.0088

m(AC) = 0.0098 m(AC) = 0.0086 m(AC) = 0.0032

Method 2 (dPBet ) m(A) = 0.1543 m(A) = 0.7640 m(A) = 0.9520 m(A) = 0.9874

m(B) = 0.7469 m(B) = 0.1351 m(B) = 0.0095 m(B) = 0.0008

m(C) = 0.0988 m(C) = 0.0901 m(C) = 0.0296 m(C) = 0.0085

m(AC) = 0.0108 m(AC) = 0.0090 m(AC) = 0.0033
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The BPAs are combined in turn. First, m1 and m2 are
combined. Then one more BPA is added each time until all
of them are combined. The results obtained from different
combination methods are detailed in Table 7.

As can be seen from Table 7, although more BPAs which
support A take part in the combination constantly, Demp-
ster’s combination rule concludes that the target cannot be
A all the time. When the number of BPAs is more than 2,
such results are unreasonable. Because the majority BPAs
assign most of their belief toA, but only one BPA distributes
its largest mass of belief to B. Such unexpected behavior
shows that Dempster’s combination rule is risky to combine
conflicting BPAs. In the same circumstances, the results
obtained from other three methods indicate that the target is
most likely to be A, and they are reasonable. The difference
of the three methods is the convergence rate. As Method 2
(dPBet is used) gives A a larger mass of belief than the other
two methods, it has a better convergence rate, and the result
of it is more convenient for decision making.

To sum up, when dPBet is used in the methods for com-
bining the conflicting BPAs, the results of the new methods
(Method 1 and Method 2) are reasonable. Moreover, the
new methods have better convergence rates, which are more
convenient for decision making.

6 Conclusion

In this paper, the PSD pignistic probability function was
proposed, which transforms the BPA into pignistic prob-
abilities on the power set of the frame of discernment.
Compared with the pignistic probability function which
works over the frame of discernment, it takes more informa-
tion contained in the BPA. Based on the proposed function,
a new dissimilarity measure called the distance between
PSD betting commitments was defined. The new distance
is a metric, and the relevant proof was provided. In order
to demonstrate the performance of the new distance, we
compared it with three existing dissimilarity measures. Its
applications in combining the conflicting BPAs were also
presented. The results indicate that it is a better measure for
quantifying the dissimilarity between BPAs.

For the new distance, the disadvantage lies in the calcula-
tion burden, which will increase exponentially with the rise
of the singleton elements in �. But as its calculation burden
is at the same level as Jousselme’s distance, it is acceptable.
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