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Abstract In this study, a new hybrid algorithm, hDEBSA,
is proposed with the aid of two evolutionary algorithms,
Differential Evolution (DE) and Backtracking Search Opti-
mization Algorithm (BSA). The control parameters of
both algorithms are simultaneously considered as a self-
adaptation basis such that the values of the parameters
update automatically during the optimization process to
improve performance and convergence speed. To validate
the proposed algorithm, twenty-eight CEC2013 test func-
tions are considered. The performance results of hDEBSA
are validated by comparing them with several state-of-
the-art algorithms that are available in literature. Finally,
hDEBSA is applied to solve four real-world optimization
problems, and the results are compared with the other algo-
rithms, where it was found that the hDEBSA performance
is better than that of the other algorithms.

Keywords Global optimization algorithm · Backtracking
search optimization algorithm · Differential evolution ·
Hybrid algorithm · CEC2013

1 Introduction

Differential evolution (DE) [17] is a powerful evolutionary
algorithm that is also easy to implement. DE incorporates
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two control parameters, the scaling factor (F) and crossover
rate (CR), and its performance depends on the choice of
these two control parameters, which is why many authors
have studied and are still studying DE to obtain suitable
values of F and CR. Several of these studies are discussed
below:

SPDE [25] is based on self-adaptation of the F and CR
values, where the values of the control parameters are gen-
erated from a Gaussian distribution N (0, 1). In jDE [26],
self-adaptation of F and CR values are considered, where
the value of F is generated within the range [0.1, 1.0] with
probability τ1, and CR is generated within the range [0, 1]
with probability τ2. In JADE [27], the value of F is gen-
erated by a Cauchy distribution, whereas the value of CR
is generated using a normal distribution. In SaDE [28], the
value of F is calculated from a normal distribution with
mean of 0.5 and standard deviation of 0.3, denoted by N
(0.5, 0.3), and the CR value is calculated from a Gaus-
sian distribution; these F and CR values are applied to each
target vector. EPSDE [29] is based on the ensemble of mul-
tiple mutation strategies with multiple parameter settings
of control parameters during different stages of evolution.
CoDE [30] is based on the combination of three different
trial vector generation strategies associated with three dif-
ferent parameter settings of F and CR. In MPEDE [37], a
multi-population based ensemble of multiple strategies (i.e.,
“rand/1”, “current-to-rand/1”, and “current-to-pbest/1”) has
been proposed.

However, recently, researchers have studied several
hybrid algorithm that combines DE with other algorithms.
Examples of these hybrid algorithms include DE-PSO [19],
which is the combination of DE [17] and PSO [6, 15];
DESQI [18], a combination of DE and QA; BBDE [20],
a combination of bare bones PSO and differential evolu-
tion; DE/BBO [21], a combination of DE and BBO [24];
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GA-DE [22], a combination of GA [8] and DE; ABC-
DE [23], a combination of ABC [1] and DE; and CADE
[38], a combination of the cultural algorithms (CA) and
DE algorithm. Additional improved hybrid algorithms can
be found in [53–55]. In this work, a novel hybrid algo-
rithm, hDEBSA, is proposed by combining DE with a newly
proposed evolutionary algorithm, called the backtracking
search algorithm (BSA) [4, 39], where BSA is a population-
based nature-inspired optimization technique that utilizes
mutation, crossover, and selection operators during each
evolution to move each individual towards the global opti-
mum. Many researchers have improved the performance
of BSA with respect to the different self-adaptive strategy
designs [21, 39, 42] and hybridization [43–47], and these
versions of BSA are widely used to solve various complex
global optimization problems from a variety of fields, such
as antenna array synthesis [48], power systems optimization
[49], trusses structure [50], urban traffic network [51], and
surface wave analysis [52].

The aforementioned facts have motivated us to work fur-
ther work on DE and BSA, where we attempt to find a
new hybrid algorithm that combines the features of DE and
BSA. The primary contributions of this study are abridged
as follows:

i) A hybrid algorithm, i.e., hDEBSA, is proposed, which
uses the components of DE and BSA,

ii) A self-adaptation scheme for control parameters are
used in hDEBSA to improve the performance as well as the
convergence rate of the proposed algorithm,

iii) The proposed hDEBSA is applied to solve four real-
world optimization problems.

The remaining part of the paper is organized as follows:
Section 2 discusses the two components of hDEBSA, i.e.,
the basic DE and BSA. The proposed hDEBSA is presented
in Section 3. Section 4 presents the performance evaluation
of twenty-eight CEC 2013 test functions. Section 5 presents
the formulation of four real-world optimization problems,
the results, and a discussion of these optimization problems.
Finally, Section 6 summarizes the contribution of this study.

2 The basic DE and BSA algorithms

A brief description of the basic DE and BSA are given in
the following sub-sections:

2.1 Differential evolution algorithm

Differential evolution is a population-based evolutionary
algorithm, which incorporates two important algorithm spe-
cific control parameters. One is a weighting coefficient or
scaling factor (F), and the other is the crossover rate (CR).
The scaling factor (F) is used to generate new trial solutions

when executing the optimization process. The crossover
rate (CR) is used to determine how much of a trial solu-
tion should be adopted into the current solution. It has been
found that the performance of the DE algorithm depends on
the proper values of F and CR [2], and varying the values
of F and CR during the execution of the optimization pro-
cess can improve its performance [3]. In the DE algorithm,
the mutation operation is used in the current population
to produce a mutant vector, where the crossover operator
is used to produce the final form of the trial population;
the selection operator is used between the trial population
and target population to update the current population. By
repeated cycles of the mutation operator, crossover operator,
and selection operator, DE attempts to improve its perfor-
mance. A detailed description of the DE algorithm is given
in [17].

2.2 Backtracking search optimization algorithm

BSA is also a population-based stochastic evolutionary
algorithm and incorporates two algorithm specific control
parameters, i.e., the scaling factor (F) and mix rate (M).
BSA uses the historical population to identify the search
direction. The initial historical population is obtained by a
uniform random generation strategy within the search space.
BSA employs the one direction mutation strategy, which
is different from other evolutionary algorithms. During the
production of the trial population ‘Mutant’, parameter F
controls the amplitude of the search-direction matrix. Once
the mutant operation has ended, the crossover process is
used to produce the final form of the trial population. The
process of crossover strategy is divided into two steps. At
first, a binary integer-valued matrix (map) of size NP×D
(where NP = number of population and D = dimension
of the optimization problem) is calculated, which indicates
the individuals of ‘T’ (trial population) to be manipulated
using the relevant individuals of ‘P’ (current population).
Secondly, using the relevant individual to the mutant indi-
vidual, the relevant dimensions of the mutant individual are
updated. A detailed description of BSA is given in [4].

3 Proposed hDEBSA algorithm

The combination of one meta-heuristic optimization tech-
nique with other optimization techniques or the compo-
nent of any optimization technique is called a hybrid
meta-heuristic optimization technique. An efficient hybrid
algorithm enables more efficient behaviour and a higher
flexibility when dealing with real-world and large-scale
optimization problems.

However, the performance of any algorithm depends on
the choice of the proper values of its algorithm control
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parameters. DE incorporates two control parameters, F and
CR, and the performance of DE depends on the proper
choice of these to control parameters. Also, the performance
of BSA depends on F. A lower value of F permits a fine
search in small steps but is slow to converge, and a larger
value of F speeds up the search but reduces the exploration
capability.

Considering this fact, in this work, a hybrid algorithm,
called hDEBSA, is proposed by combining the two algo-
rithms, DE and BSA. Also, the control parameters are
considered on a self-adaptive basis. In hDEBSA, first, the
components of the DE algorithm are executed, and then the
components of BSA are executed. When executing the com-
ponent of the DE algorithm, the worst individual is updated

according to probability pi . The value of probability pi is
can be calculated by (1).

pi = ri

NP
(1)

Where NP is the population size, and ri is the ranking value
of each individual when the population is sorted from the
worst fitness to the best one. It may be noted here that (1)
is similar to the selection probability in DE with ranking-
based mutation operators [7, 11]. This selection strategy can
be defined as follows:

Is = i, if rand (0, 1) > pi, i = 1, 2, 3, . . . N (2)

Where Is is the selected individual and is optimized by DE.

Fig. 1 Pseudo code of the
proposed hDEBSA algorithm

Input:
NP: The number of individual in the population; D: Dimension of the problem; MAX_FES: Set the maximum function evaluations number;

ll1:D = lower limit; ul1:D = upper limit; = 0.4; = 0.95; = 0.3; = 0.9, = 0.45, = 2.0;

Initialization:
FOR i=1 to NP do

FOR j=1 to D

, = + (0,1) ( − ); % initialized population set;

End

( ) = ( ); %   Evaluate the fitness values of initial population P.

End

0 = max( ) ; 0 = min( );
FEs= NP; % Count the number of fitness evaluations %;

% Main loop %
WHILE (stopping criteria is not meet)

DO
= + − ( − )/( 0 − 0 ); % Calculate the scaling factor for DE;

= − ( − ) ( − )/( 0 − 0 );; % Calculate the crossover rate for DE;
= % Calculate the probability for update one individual;

= , (0,1) > , = 1,2,3, … . % is selected individual DE.

= 1 + ( 2 − 3); % Update individual by DE “DE/rand/1”mutation operator;

,
= {

, (0,1) <

,
%% Calculate the crossover operator for DE; j=1, 2, 3, … , D;

FEs=FEs+1; % Count the number of fitness evaluations %;

= ; % initialized historical population set;

%/ Selection operator-I

< , = ; ; % a, b rand(0,1);

= ( ) ; % changing the positions of two individuals in OldP; 

%/  Mutation operator

= − (0,1) ( − ) + (0,1) ( − )/( 0 − 0 ); % Calculate the scaling factor for BSA;

FOR i=1 to NP

= 0.5 (1 + (0,1)); % calculates the mixrate parameter;

,1: = ,1: + ( ,1: − ,1: ); % calculates the mutant vector;

%/  Crossover operator

map=zeros(popsize,D); 

if a < b, % where, a and b are uniformly distributed random number.

u=randperm(D); map(i,u(1:ceil( *rand*D)))=1; end

else

map(i,randi(D))=1; end

end

% Generation of trial population T;

,1: = ,1: ;

,1: = 1, ,1: = ,1: ; ; 

%/ Boundary control Operator

,1: < 1,1: ,1: > 1,1: ,

,1: = 1,1: + (0,1) ( 1,1: − 1,1: );

END FOR

FEs=FEs + NP; % Count the number of fitness evaluations %;

%/ Selection operator-II

FOR i=1 to NP

%/  Selection by competition between target vector and trial vector and evaluate the new trial vector.

( ) ≤ ( ) = , ( ) = ( );

( ) ≤ ( ) = , ( ) = ( );

;

;

END FOR

END WHILE LOOP

Output: The best individual with the minimum fitness function value in the population (for minimization problem); 
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Table 2 Counting the mean
performances result of
hDEBSA, is better than, less
than or equal to the other
compared algorithms (PSO,
DE, ABC, BSA, ABSA) on
CEC2013 real world
benchmark functions with 30
dimensions

Algorithms Better than Less than Equal to

(hDEBSA>Algorithms) (hDEBSA<Algorithms) (hDEBSA=Algorithms)

PSO 23 4 1

DE 23 3 2

ABC 18 2 8

BSA 23 3 2

ABSA 24 2 2

A detailed description of self-adaptive-based control
parameters setting and the proposed hDEBSA algorithm is
given below:

3.1 Scaling factor/ weighting coefficient (F) of the DE
algorithm

In the DE algorithm, the scaling factor (F) is used to pro-
duce a new set of the trial vector. It has been found that a
smaller value (less than 0.4) and a larger value (greater than
1.0) of F are occasionally effective [17]. Several researchers
have also observed that a large control parameter F reduces
the local optimum [12, 13]. Gämperle et al. [12] found that
F= 0.6 or 0.5 may be the proper initial value, whereas
Rönkkönen et al. [13] found it to be F = 0.9. According to
Rönkkönen et al. [13], the value of control parameter F lies
in the range 0.4–0.95. Varying the value of control parame-
ter F during the optimization process, one can improve the
performance of the DE algorithm [3, 17]. Thus, the modi-
fication of the scaling factor (F) can be defined by (3). For
clarity, instead of F, the variable is denoted FDE

FDE = F max
DE − (F max

DE − F min
DE ) ∗ f max

i − f min
i

f max
0 − f min

0

(3)

where F min
DE = 0.4 and F max

DE = 0.95;f max
0 and f min

0 are the
maximum and minimum fitness values of the initial popu-
lation, respectively; f max

i and f min
i are the maximum and

minimum fitness values of the population in the ith iteration,
respectively.

Table 3 Ranks obtained by Friedman’s test in which Bonferroni–
Dunn’s procedure was used as a post hoc procedure on the mean
performance of CEC2013 test function with dimension 30. The Fried-
man’s test was conducted based on the SPSS software

Algorithms Ranks

PSO 4.32

DE 3.39

ABC 2.89

BSA 4.02

ABSA 4.46

hDEBSA 1.91

3.2 Crossover rate (CR) of the DE algorithm

In DE, the crossover rate (CR) is used to produce the final
form of the trial vector set. It is used to determine how much
of a trial solution should be adopted into the current solution
as well as the DE scheme. This is one of the crucial ideas
behind DE for generating trial vectors [9, 16]. Researchers
have verified that a large CR speeds up convergence but
reduces the local search ability [12–14]. The value of CR =
0.1 is the proper initial choice, whereas a CR = 0.9 or 1.0
can improve the convergence speed [17]. The proper value
of CR can be between 0.3 and 0.9 [12]. When CR =1, the
number of the trial vectors may be reduced dramatically,
which may lead to immobility [10, 13]. By varying the value
of CR during the execution of the optimization process, one
can improve the performance of DE [3]. The modification
of the crossover rate (CR) can be defined by (4). Instead of
CR, it is written as CRDE

CRDE = CRmax
DE − (CRmax

DE − CRmin
DE) ∗ f max

i − f min
i

f max
0 − f min

0

(4)

where CRmin
DE = 0.3 and CRmax

DE = 0.9;f max
0 and f min

0 are
the maximum and minimum fitness values of the initial pop-
ulation, respectively; f max

i and f min
i are the maximum and

minimum fitness values of the population in the ith itera-
tion, respectively. Also, the value of another BSA control
parameter, i.e., the mixrate, is considered as

mixrateBSA = 0.3 ∗ (1 + rand(0, 1)) (5)

The pseudocode of the proposed hDEBSA algorithm is
presented in Fig. 1.

4 Performance evaluation on the CEC 2013 test
functions

To validate the performance of hDEBSA, twenty-eight
benchmark functions from the CEC 2013 special session
on real-parameter optimization [5] are considered. These
test functions consist of three different types of functions:
(i) unimodal functions F1–F5, (ii) basic multimodal func-
tions F6– F20, and (iii) composition functions F21– F28. A
detailed description of these twenty-eight test functions can
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be seen in [5]. For this study, the dimension (D) of each test
function is considered as 30 and 50. The algorithm is run
for 30 times with 3000 (for D = 30) and 5000 (for D = 50)
fitness evaluations (FEs) for a population size of 50. The

range of each test function is considered as [−100, 100].
The performance results are presented in terms of the mean
and standard deviation of each test function. For the statis-
tical analysis, the Friedman Rank Test is used to obtain the

Fig. 2 Convergence graph of
F1, F2, F3, F5, F12 and F13
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Table 5 Counting the mean
performances result of
hDEBSA, is better than, less
than or equal to the other
compared algorithms (CoDE,
DE/rand/2/bin, CLPSO,
CPSO-H, FI-PS, DE-PSO,
hDEBSA) on CEC2013 real
world benchmark functions
with 30 dimensions

Algorithms Better than Less than Equal to

(hDEBSA>Algorithms) (hDEBSA<Algorithms) (hDEBSA=Algorithms)

CoDE 25 1 2

DE/rand/2/bin 26 1 1

CLPSO 23 3 2

CPSO-H 17 9 2

FI-PS 22 4 2

DE-PSO 18 9 1

overall rank of all the algorithms using the mean results,
where the Bonferroni-Dunn approach is taken as a post hoc
procedure.

Table 1 shows the performance results of PSO [15], DE
[17], ABC [1], BSA [4], ABSA [31], and hDEBSA on the
twenty-eight benchmark functions of the CEC 2013 spe-
cial session on real-parameter optimization problems with
dimension 30. Table 2 shows the number of test functions
where the performance of hDEBSA is better than, worse
than, or similar to the compared algorithms. From Table 2,
it can be seen that hDEBSA performs better than PSO on
twenty-three test functions; DE on twenty-three test func-
tions; ABC on eighteen test functions; BSA on twenty-three
test functions, and ABSA on twenty-four test functions.
Table 3 shows the ranks obtained by the Friedman rank test
with respect to the mean performance of all algorithms for
each test functions. From Table 3, it is clear that the rank
of hDEBSA is the lowest. Therefore, it can be claimed that
hDEBSA performs better than the compared algorithms.
Several of the convergence graphs of hDEBSA are shown in
Fig. 2.

Table 4 shows the performance results of CoDE [30],
DE/rand/2/bin [18], CLPSO [32], CPSO-H [33], FI-PS [34],
DE-PSO [19], and hDEBSA on the twenty-eight benchmark
functions of the CEC 2013 special session on real-parameter
optimization problems with a dimension of 30. Table 5
shows the number of test functions where the performance
of hDEBSA is better than, worse than, or similar to the com-
pared algorithms. From Table 5, it is seen that hDEBSA
performs better than CoDE on twenty-five test functions;
DE/rand/2/bin on twenty-six test functions; CLPSO on
twenty-three test functions; CPSO-H on seventeen test func-
tions; FI-PS on twenty-two test functions, and DE-PSO on
eighteen test functions. Table 6 shows the ranks obtained by
the Friedman rank test with respect to the mean performance
of all algorithms of each test functions. From Table 6, it is
clear that the rank of hDEBSA is the lowest compared with
that of the other algorithms. Thus, it can be claimed that
hDEBSA performs better than the other algorithms.

Table 7 shows the performance results of CoDE [30],
EPSDE [29], DE/rand/2/bin [18], CLPSO [32], CPSO-H

[33], FI-PS [34], and hDEBSA on twenty-eight benchmark
functions of the CEC 2013 special session on real-parameter
optimization problems with a dimension of 50. Table 8
shows the number of occasions where the performance of
hDEBSA is better than, worse than, or similar to the other
algorithms. From Table 8, it is seen that hDEBSA performs
better than CoDE on twenty-six test functions; EPSDE on
fourteen test functions; DE/rand/2/bin on twenty-six test
functions; CLPSO on twenty five-test functions; CPSO-H
on nineteen test functions, and FI-PS on twenty-four test
functions. Table 9 shows the ranks obtained by the Fried-
man rank test with respect to the mean performance of all
algorithms for each test function and observed that the rank
of hDEBSA is the lowest compared with that of the com-
pared algorithms. Hence, it can be said that the performance
of hDEBSA is better than that of the other algorithms.

Table 10 compares the performance results obtained by
IBSA [38], MPEDE [39], I-SOS [40], SOS-ABF1 [41],
SOS-ABF2 [41], SOS-ABF1&2 [41], and hDEBSA on
twenty-eight CEC2013 test functions with dimension 50.
Table 11 shows the number of occasions where the mean
performance of hDEBSA is better than, worse than, or
similar to the other algorithms. From Table 11, it can be
observed that the performance of hDEBSA is better than

Table 6 Ranks obtained by Friedman’s test in which Bonferroni–
Dunn’s procedure was used as a post hoc procedure of CoDE,
DE/rand/2/bin, CLPSO, CPSO-H, FI-PS, DE-PSO, hDEBSA with
respect to the mean performance on CEC2013 test functions with
dimension 30

Algorithms Ranks

CoDE 4.07

DE/rand/2/bin 5.71

CLPSO 5.59

CPSO-H 3.41

FI-PS 4.20

DE-PSO 2.80

hDEBSA 2.21

The Friedman’s test was conducted based on the SPSS software
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Table 8 Counting the mean
performances result of
hDEBSA, is better than, less
than or equal to the other
compared algorithms (CoDE,
EPSDE, DE/rand/2/bin,
CLPSO, CPSO-H, FI-PS,
hDEBSA) on CEC2013 real
world benchmark functions
with 50 dimensions

Algorithms Better than Less than Equal to

(hDEBSA>Algorithms) (hDEBSA<Algorithms) (hDEBSA=Algorithms)

CoDE 26 0 2

EPSDE 14 12 2

DE/rand/2/bin 26 0 2

CLPSO 25 1 2

CPSO-H 19 7 2

FI-PS 24 1 3

IBSA on nineteen test functions, MPEDE on twenty-four
test functions, I-SOS on twenty-three test functions, SOS-
ABF1on fourteen test functions, SOS-ABF2 on fifteen test
functions, and SOS-ABF1&2 on nineteen test functions.
Table 12 shows the ranks obtained by Friedman rank test
with respect to the mean performances, where it is shown
that the rank of hDEBSA is the lowest. Hence, it may be
concluded that the performance of hDEBSA is better than
that of the other algorithms.

5 Formulation of the real-world optimization
problems

In this section, the formulation of four real-world prob-
lems and the performance results of these four optimization
problems are discussed.

5.1 Problem formulation

To apply the hDEBSA on real-world optimization prob-
lems, two real-world problems, namely the Gas Transmis-
sion Compressor Design problem and Optimal Capacity of
Gas Production facilities, are taken from [35] and another
two problems, the Frequency Modulation Sounds Parameter

Table 9 Ranks obtained by Friedman’s test in which Bonferroni–
Dunn’s procedure was used as a post hoc procedure of CoDE, EPSDE,
DE/rand/2/bin, CLPSO, CPSO-H, FI-PS, DE-PSO, hDEBSA with
respect to the mean performance on CEC2013 test functions with
dimension 50

Algorithms Ranks

CoDE 4.04

EPSDE 2.86

DE/rand/2/bin 5.95

CLPSO 5.29

CPSO-H 3.50

FI-PSO 4.29

hDEBSA 2.09

The Friedman’s test was conducted based on the SPSS software

Identification problem and the Spread Spectrum Radar
Polyphase Code Design, problem are taken from [36]. The
formulation of these real-world optimization problems are
presented below:

P1. Gas transmission compressor design problem

Minf (x) = 8.61 × 105 × x
1
2
1 × x2 × x

−2
3

3 ×
(
x2

2 − 1
)− 1

2

+3.69 × 104 × x3 + 7.72 × 108 × x−1
1

×x0.219
2 − 765.43 × 106 × x−1

1 (6)

Such that, 10 ≤ x1 ≤ 55, 1.1 ≤ x2 ≤ 2, 10 ≤ x3 ≤ 40;

P2. Optimal capacity of gas production facilities

Minf (x) = 61.8 + 5.72 × x1 × 0.2623

×
[
(40 − x1) × ln

( x2

200

)]−0.85 + 0.087

× (40−x1) × ln
( x2

200

)
+700.23 × x−0.75

2 (7)

Such that, x1 ≥ 17.5, x2 ≥ 200, 17.5 ≤ x1 ≤ 40, 300 ≤
x2 ≤ 600;

P3. Frequency modulation sounds parameter identifica-
tion problem:

In the modern sound system, the frequency-modulated (FM)
sound wave synthesis has an important role to generate the
target sound in the FM synthesizer. This optimization prob-
lem has six parameters, i.e., six dimensions given by X =
{a1, ω1, a2, ω2, a3, ω3}. The objective is to determine the
optimum values of these parameters in such a way that the
sound that is generated is similar to that of the target sound.
The sound waves, i.e., the estimated sound and the target
sound waves using these parameters, are given by:

y(t) = a1 sin(ω1tθ + a2 sin(ω2tθ + a3 sin(ω3tθ))) (8)

y0(t) = 1.0 × sin(5.0 × tθ + 1.5 × sin(4.8 × tθ

+2.0 sin(4.9 × tθ))) (9)
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Table 11 Counting the mean
performances result of
hDEBSA, is better than, less
than or equal to the other
compared algorithms (IBSA,
MPEDE, I-SOS, SOS-ABF1,
SOS-ABF2, SOS-ABF1&2
and hDEBSA) on CEC2013
real world benchmark
functions with 50 dimensions

Algorithms Better than Less than Equal to

(hDEBSA>Algorithms) (hDEBSA<Algorithms) (hDEBSA=Algorithms)

IBSA 19 7 2

MPEDE 24 2 2

I-SOS 23 4 1

SOS-ABF1 14 12 2

SOS-ABF2 15 11 2

SOS-ABF1&2 19 8 1

Table 12 Ranks obtained by Friedman’s test in which Bonferroni–
Dunn’s procedure was used as a post hoc procedure of IBSA, MPEDE,
I-SOS, SOS-ABF1, SOS-ABF2, SOS-ABF1&2 and hDEBSA with
respect to the mean performance on CEC2013 test functions with
dimension 50

Algorithms Ranks

IBSA 3.38

MPEDE 5.43

I-SOS 5.96

SOS-ABF1 3.25

SOS-ABF2 3.16

SOS-ABF1&2 4.07

hDEBSA 2.75

The Friedman’s test was conducted based on the SPSS software

respectively (where θ = 2π/100), where each parameter
is bounded by the range [−6.4, 6.35]. The fitness function,
i.e., the objective function for this optimization problem is
given by

f (
−→
X ) =

100∑
t=0

(y(t) − y0(t))
2 (10)

The optimum value, i.e., the minimum value of the fre-
quency modulation sound parameter identification opti-
mization problem isf (X∗) = 0.

P4. Spread spectrumradar polyphase code design problem:

The pulse compression technique is an important tech-
nique widely used to design a radar-system. The polyphase
compression code synthesis offers convenience and is eas-
ier to implement the digital processing technique. This
optimization problem is a continuous min–max global opti-
mization problem in continuous variables with numerous
local optima. Based on the properties of the aperiodic auto-
correlation function and the assumption of coherent radar
pulse processing in the receiver, the min–max model can be
defined as

Global min f (X) = max {ϕ1(X), ϕ2(X), .........ϕ2m(X)}
(11)

Table 13 Performance results
of P1 and P2 real world
optimization problems

Item Beightler and Phillips [35] DE BSA hDEBSA

P1. Performance results of DE, BSA and hDEBSA on gas transmission compressor design

X1 55 53.4467 53.4239 53.4478

X2 1.195 1.1901 1.19021 1.1901

X3 25.026 24.7186 24.6793 24.7191

f(X) 2.96455E+06 2.96438e+006 2.96438e+006 2.96438e+006

P2. Performance results of DE, BSA and hDEBSA on Optimal Capacity of Gas production facilities.

X1 17.5 17.5 17.5 17.5

X2 465 600 600 600

f(X) 173.76 169.8437 169.8437 169.8437

Boldface represents the best result among the compared algorithms
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Table 14 Best, Mean and SD
results of P3 and P4 real life
optimization problems
compared to state of the art
other algorithms

Function Best Median Worst Mean SD

P3 hDEBSA 1.37e+001 2.25e+001 2.43e+001 2.17e+001 2.37e+000

DE 1.54e+001 2.16e+001 2.41e+001 2.14e+001 1.86e+000

BSA 1.78e+001 2.35e+001 2.56e+001 2.29e+001 1.96e+000

P4 hDEBSA 1.50e+000 1.77e+000 2.12e+000 1.80e+000 1.47e-001

DE 1.69e+000 2.15e+000 2.33e+000 2.10e+000 1.57e-001

BSA 1.51e+000 1.86e+000 2.11e+000 1.84e+000 1.66e-001

Boldface represents the best result among the compared algorithms

where X={(x1, x2, x3, ..........xD) ∈ RD|0 ≤ xj ≤ 2π, j =
1, 2, 3, ......., D} and m = 2D−1, with

ϕ2i−1(X) =
D∑

j=i

cos

⎛
⎝

j∑
k=|2i−j−1|+1

Xk

⎞
⎠ , i = 1, 2, 3, .....D

(12)

ϕ2i (X) = 0.5 +
D∑

j=i+1

cos

⎛
⎝

j∑
k=|2i−j |+1

Xk

⎞
⎠ ,

i = 1, 2, 3, .......D − 1 (13)

ϕm+i (X) = −ϕi(X), i = 1, 2, 3, ......., m (14)

Here, the objective is to obtain the minimum value of
the module of the largest among the samples of the auto-
correlation function φ that are related to the complex envelope
of the compressed radar pulse at the optimal receiver output.

5.2 Result and discussion of the real-world problems

To analyze the performance of hDEBSA on four real-world
problems, the algorithm was run for 30 times with 5000 fit-
ness evaluations and 50 population sizes. Table 13 shows
the performance results of Beightler and Phillips [35], DE
[17], BSA [4], and hDEBSA for two real-world problems
(P1 and P2). From this table, it is seen that the performance
of DE, BSA, and hDEBSA are the same. The performance
of hDEBSA is better than that of Beightler and Phillips
[35]. Table 14 shows the performance results of DE, BSA,
and hDEBSA on real-world problems P3 and P4. From this
table, it is seen that for P3, the performance of hDEBSA
is better than that of BSA; for P4, the performance of
hDEBSA is better than that of DE and BSA.

6 Conclusion

In this paper, a hybrid algorithm hDEBSA is presented
using two popular optimization techniques, DE and BSA.
In hDEBSA, self-adaptation schemes for control parameters
are suggested, in which the value of control parameters vary

automatically during the optimization process. The pro-
posed hDEBSA is applied on twenty-eight CEC 2013 test
functions, two industrial engineering design problems, and
two real-world optimization problems for validation. The
obtained results were compared with several standard algo-
rithms, such as PSO, DE, ABC, BSA, and ABSA; several
improved variants of DE (CoDE, EPSDE, DE/rand/2/bin);
several improved variants of PSO (CLPSO, CPSO-H, FI-
PS), and also one hybrid algorithm DE-PSO were also used
as a comparison. The comparison results in terms of the
numerical result and statistical analysis show that the pro-
posed method is superior to the aforementioned algorithms
and thus, is acceptable. Hence, the proposed method may be
recommended to solve optimization problems in different
branches of humanities, science, and engineering.
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