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Abstract In financial distress analysis, the diagnosis of
firms at risk for bankruptcy is crucial in preparing to
hedge against any financial damage the at-risk firms stand
to inflict. Some pre-alarm signals that indicate a poten-
tial financial crisis exist when a firm faces a default risk.
Early studies on corporate bankruptcy prediction include
parametric and nonparametric approaches, such as artificial
intelligence (AI), for detecting pre-alarm signals. Among
nonparametric techniques, the methods involving support
vector machine (SVM) have shown potential in predict-
ing corporate bankruptcy. We propose a hybrid method that
combines data depths and nonlinear SVM for the prediction
of corporate bankruptcy. We employed data depth functions
to condense multivariate financial data with nonlinear and
non-normal characteristics into one-dimensional space. The
SVM method was introduced to classify the data points
on a depth versus depth plot (DD-plot). Based on data
set that records failed and non-failed manufacturing firms
in Korea over 10 years, the empirical results demonstrated
that the proposed method offers a higher level of accuracy
in corporate bankruptcy prediction than existing methods.
The proposed method is expected to provide a guidance in
corporate investing for investors or other interested parties.
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1 Introduction

External uncertainties that pose a threat to corporate survival
have increased drastically due to the protean environment
of the global economy. In the face of such uncertainties,
financial institutions are endeavoring to prepare sophisti-
cated countermeasures against delays or defaults on liability
fulfillment on the part of firms. The prediction of default
risks in firms by companies that are liable to pay is the aim
of financial institutions in order to minimize their capital
exposure to risks and to mitigate their own default risks. The
prediction of bankruptcy has been extensively studied in
finance and management literature for the last two decades
(Lee et al. [17]; Salcedo-Sanz et al. [32]; Min and Lee [26];
Li and Sun [18]; Tsai [35], to name a few). Bankruptcy pre-
diction has become even more important since the Basel
Committee on Banking Supervision (Basel II) established
borrowers’ risk rating as a key criterion for minimum cap-
ital requirements of banks. In general, when a firm faces
an inevitable default on liability fulfillment, there may exist
some symptoms or pre-alarm signals indicating a financial
crisis for the firm itself.

Early studies of bankruptcy prediction exploited para-
metric statistical techniques such as multiple discriminant
analysis (MDA) [2], logit model [29] and probit model
[41]. Strict assumptions for the statistical approaches (e.g.,
linearity, normality, and pre-existing functional forms relat-
ing criterion variables to predictor variables), however,
have limited the applications of these techniques in the
area of finance. To overcome this obstacle, nonparametric
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techniques such as artificial intelligence (AI) have been
employed since the late 1980s for the prediction of corporate
bankruptcy or financial distress. The AI techniques include
decision trees (DTs), artificial neural networks (ANNs),
genetic algorithms (GAs), and back-propagation networks
(BPNs). Odom and Sharda [28] first introduced an ANN
model to predict corporate bankruptcy. Tam and Kiang [34]
compared the performance of a neural network model with
the performances of linear discriminant models, logit mod-
els, the iterative dichotomiser 3 (ID3) algorithm, and the
k-nearest neighbor approach based on insolvent data of
commercial banks. They showed that the ANN provides the
most accurate and robust prediction results among the var-
ious methods. While a number of application studies have
reported the outstanding performance of ANNs, the mod-
els have difficulty in clearly explaining prediction results
due to the lack of explanatory power and capacity for gen-
eralization because of overfitting problems. Additionally,
ANNs require significant time and efforts to construct a best
architecture through multiple layers [16, 33].

As an alternative to ANNs, a method based on support
vector machine (SVM) has recently attracted special atten-
tion in the area of financial distress modeling. The SVM
has reported better classification results than parametric
statistical methods or other nonparametric techniques such
as ANNs and BPNs. Moreover, SVM can overcome the
overfitting problem via the concept of structural risk min-
imization. Häardle et al. [13] first introduced the SVM to
corporate bankruptcy prediction, comparing its performance
with ANN and MDA methods, as well as a learning vec-
tor quantization proposed by Fan and Palaniswami [10].
By mapping input variables onto a high-dimensional fea-
ture space, Min and Lee [26] showed that SVM transforms
complex problems of corporate bankruptcy prediction into
simpler ones, to which linear discriminant functions can
subsequently be applied. Häardle et al. [14] explored the
suitability of smooth SVMs in predicting corporate default
risk. They investigated how key factors such as selection of
appropriate accounting ratios, length of training period, and
structure of training samples influence prediction precision
for corporate bankruptcy. While SVM achieves an excellent
classification accuracy, a main disadvantage of the method
is difficulty in interpreting the modeling results.

In the last decade, a number of researchers have
actively developed hybrid approaches to predict corporate
bankruptcy. Hybrid approaches combine several classifi-
cation methods to secure greater accuracy than individual
(parametric or nonparametric) models. Min et al. [27] and
Ahn et al. [1] employed a genetic algorithm to design
an SVM-based technique for corporate bankruptcy pre-
diction. The selection of both SVM hyper-parameters and
input features was integrated into one learning process
in their genetic algorithm. Van Gestel et al. [38] applied

the Bayesian evidence framework [24, 37] to find hyper-
parameters for the least squares SVM.

In this article, we propose a hybrid method based on
data depth (DD) and SVM to improve the accuracy of
bankruptcy prediction for Korean firms. As a nonparametric
multivariate technique, DD estimates a representative value
from multivariate data which may possess nonlinear and
non-normal characteristics. The hybrid method (referred to
hereafter as DD-SVM) calculates the DD for annual finan-
cial ratios because the ratios are generally unlikely to follow
a multivariate normal distribution. Additionally, the method
applies nonlinear SVM to the DD plot, which presents the
depth values of the combined sample of both failed and
non-failed firms to classify a binary output variable. The
performance of DD-SVM is compared with other paramet-
ric methods or AI methods, including ANNs, in terms of
bankruptcy prediction accuracy.

The remainder of this paper is organized as follows.
Basic modeling ideas for predicting corporate bankruptcy
are presented in Section 2. The ideas are based mainly on the
introduction of nonlinear SVM to DD plots to classify failed
or non-failed firms. The research data and pre-analytical
results are given in Section 3. Section 4 presents an empir-
ical analysis of corporate bankruptcy prediction to demon-
strate the performance of the proposed method, along with
a comparison of the proposed method with other compet-
ing prediction models. Section 5 concludes this study and
discusses directions for future research.

2 The modeling of bankruptcy prediction

2.1 Data depth functions

The word “depth” was first used by Tukey [36] to depict
high-dimensional data, and the far reaching ramifications
of depth in ordering and analyzing multivariate data have
been elaborated in the works of Liu [21], Donoho and Gasko
[8], Liu et al. [22] and others. Data depth characterizes the
centrality of high-dimensional data with respect to a dis-
tribution or a multivariate sample. Viewed as a method of
dimension reduction, DD does not rely on link functions,
kernel functions, or other refined mappings, unlike related
methods such as principal components.

In order to form a general definition of a depth function,
Zuo and Serfling [42] defined a statistical depth function as
a bounded, non-negative mapping that satisfies four desir-
able properties: (1) affine invariance; (2) maximality at
center; (3) monotonicity relative to the deepest point; and
(4) vanishing at infinity. Affine invariance means that the
relative depth of a point should not depend on the underlying
coordinate system or the scales of the underlying measure-
ments. For a distribution with a uniquely defined center,
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maximality at center indicates that the depth function should
attain the maximum at this center. Monotonicity relative to
the deepest point means that, as a point moves from the
center outward, the corresponding depth should decrease
monotonically. Vanishing at infinity means that the depth
of a point approaches zero when its norm approaches infin-
ity. Among a number of DD functions possessing the above
properties, Mahalanobis depth, simplicial depth and Tukey’s
depth functions are the most popular.

2.1.1 Mahalanobis depth

Mahalanobis [25] introduced a distance function based on
Hotelling’s T 2 statistic (now called “Mahalanobis depth”).
Serving as the first DD concept, the Mahalonobis depth
measures how deep a point x ∈ R

p is with respect to a given
distribution G. The Mahalanobis depth function is given by

MD(G; x) = 1

1 + (x − μG)T �−1
G (x − μG)

, (1)

where μG and �G denote the mean vector and the covari-
ance of the reference distributionG, respectively. In general,
because G is unknown, the sample version of the Maha-
lanobis depth is obtained by replacingμG and�G with their
sample estimates x̄n and Sn, respectively, for multivariate
data set {x1, . . . , xn}.

2.1.2 Simplicial depth

Liu [21] introduced the concept of “simplicial depth”, which
is determined by counting simplices derived from n data
points. For a reference distribution G on R

p, the simplicial
depth of a data point x with respect to G is defined by

SD(G; x) = PG{x ∈ S[x1, . . . xp+1]}, (2)

where x1, . . . , xp+1 are independent observations from
G and S[x1, . . . , xp+1] is the simplex with vertices
x1, . . . , xp+1. In other words, S[x1, . . . , xp+1] is the set
of all points in R

p that are convex combinations of
{x1, . . . , xp+1}. The sample version of SD is obtained by
replacing G in SD(G; x) with Gn, or alternatively, by
computing the fraction of the sample random simplices
containing the point x as

SD(Gn; x)=
(

n

p+1

)−1 ∑
1≤i1<···<ip+1≤n

I(x∈S[xi1 ,...,xip+1 ]),

(3)

where I(·) is the indicator function. Liu [21] showed that
SD(G; x) is affine invariant, and that if G is absolutely con-
tinuous, then SD(Gn; x) converges uniformly and strongly
to SD(G; x) as n → ∞. we can confirm that x is contained

in the simplex S[xi1, . . . , xip+1] if x can be expressed as a
convex combination of {xi1 , . . . , xip+1}.

2.1.3 Tukey depth

Tukey [36] proposed a half-space depth which is now com-
monly called “Tukey depth”. The half-space depth is the
smallest proportion of data points contained on one side of
any hyperplane passing through a data point x, including
points lying on the hyperplane. That is, the Tukey depth is
defined as

T D(G; x) = inf
H

{PG(H)

: H is a closed half-space in Rp for x ∈ H }
with respect to the reference distribution G.

In bivariate data, for instance, the Tukey depth calculates
the smallest proportion of data points contained on one side
of any line (L) passing through x, including points lying on
the line itself. Following a method proposed by Rousseeuw
and Ruts [30], for example, two-dimensional Tukey depth
requires a vector connecting a fixed x to each member of the
reference sample x1, . . . , xn and then measures the angles
of these vectors with the positive x-axis. Instead of count-
ing the minimum number of points lying on one side of the
line passing through x and a reference sample, we can count
the minimum number of angles between the angle of L and
its opposite angle. With that, the empirical formula for the
Tukey depth of x is

T D(Gn; x) = 1

n
min

i
{min(ki, n − ki)},

where ki = ψ1(i) − ψ2(i) for ψ1(i) = #{j : 0 ≤ θj < θi +
π}, and ψ2(i) = #{j : 0 ≤ θj < θi}. Here, θi is the angle of
ui = (xi −x)/‖xi −x‖ for i = 1, . . . , n. We can assume 0 =
θ1 ≤ . . . ≤ θn < 2π and θn+1 = θ1 + 2π , θn+2, = θ2 + 2π ,
and so on. See Bae et al. [3] for the details on calculation of
the Tukey depth, along with simple examples.

In addition to these three popular data depths, there are
several other DD metrics, e.g., “convex hull peeling depth”
by Barnett [4], “likelihood depth” by Fraiman and Meloche
[11], “regression depth” by Rousseeuw and Jubert [31], and
“Lens depth” by Liu and Moddares [23], to name a few.

2.2 Depth vs. depth plot

The depth vs. depth plot (DD-plot), which was first intro-
duced by Liu et al. [22], is a useful analytical tool for
graphical comparisons of two multivariate distributions or
samples based on DD. For any two given multivariate
samples, the DD-plot represents the depth values of the
combined sample under the two corresponding empirical
distributions. The tool transforms the two multivariate sam-
ples in any dimension to a simple two-dimensional scatter
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plot. Li et al. [19] addressed some advantages of the DD-
plot in classification problems, including that the best sep-
arating curve in the DD-plot is determined automatically
by the underlying probabilistic geometry of the data, and
that classification outcomes can be easily visualized in two-
dimensional DD-plots. This is much simpler than tracking
classification outcomes in the original sample space of high-
dimensional multivariate data. In particular, the DD-plot is
robust against outliers and extreme values.

Let F and G be two distributions on R
p, and let D be

an affine-invariant depth. For two random samples drawn
from F and G, {x1, . . . , xn}(≡ X) and {y1, . . . , ym}(≡ Y),
respectively, the DD-plot is defined as

DD(F, G) = {(D(F ; x),D(G; x)) for all x ∈ R
p}, (4)

when F and G are known. If both F and G are unknown,
then the sample version of DD-plot is given by

DD(Fn, Gm) = {(D(Fn; x),D(Gm; x)), x ∈ {X ∪ Y}} .

(5)

Note that bothDD(F, G) andDD(Fn, Gm) are always sub-
sets of R2, no matter the size of the dimension p of the data.
If the two given distributions are identical (that is, F ≡ G),
then the resulting DD(F, G) is simply a line segment on
the 45◦ line in the DD-plot. Deviation patterns from this
straight line indicate a specific type of difference between
the two underlying distributions.

Figure 1 illustrates the DD-plot for simulated multivari-
ate data. Figure 1a shows the DD-plot for two samples (n =
m = 500) drawn from the standard bivariate normal distri-
bution. It can be observed that the data are scattered around
the 45◦ line in the plot. Figure 1b presents the DD-plot for
two samples (n = m = 500) with one drawn from the stan-
dard bivariate normal distribution and the other drawn from
the bivariate normal with mean (2, 0)T . All of the DD-plots
are constructed using the Mahalanobis depth. The DD-plot
shows quite clearly that the observations from two differ-
ent distributions scatter around the 45◦ line in a manner that

is almost symmetric. The 45◦ line can thus be used as the
separating line for two different samples in the DD-plot. Its
corresponding classification rule is simple in that we assign
x to F ifD(Fn; x) > D(Gm; x), and we assign x to G other-
wise. Note that the classifier in the DD-plot is conceptually
the same as the maximum depth classifier in the work of
Ghosh and Chaudhuri [12].

In general, however, high-dimensional observations do
not scatter symmetrically along a 45◦ line because they
have different dispersion structures as well as different loca-
tions. Hence, the linear classifier does not perform well. In
this study, we introduce a nonlinear support vector machine
(SVM) to classify failed firms and non-failed firms based
on the DD-plot.

2.3 The nonlinear support vector machine

The prediction of bankruptcy can be formulated as a two-
class classification problem. We apply the SVM approach to
bankruptcy prediction using real-life data for Korean man-
ufacturing companies, and compare the empirical results
of the SVM-based method with the results from other
prediction models.

A support vector machine, which was introduced from
statistical learning theory by Vapnik [39], is a powerful
classification method that provides better solutions to deci-
sion boundaries than can be obtained via traditional neural
networks. SVM uses a linear model to construct nonlinear
class boundaries through nonlinear mapping of input vec-
tors into a high-dimensional feature space. In general, the
linear model in the new space represents a nonlinear deci-
sion boundary in the original space. The SVM approach
implements the principle of structural risk minimization,
which aims to reduce the bounds of misclassification errors
by constructing an optimal separating hyperplane in a
high-dimensional feature space using quadratic program-
ming to find unique solutions. The application areas of
SVMs include text categorization, digital image identifica-
tion, handwriting recognition, function approximation and
regression, and time series forecasting.

Fig. 1 DD-plots for two
random samples drawn from (a)
an identical distribution and (b)
two different distributions (The
DD-plot is re-produced from
the example by Li et al. [19])
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Assuming that there are two-dimensional DD-predictors
(D(Fn; x),D(Gm; x)) ≡ y based on p financial ratios in
our bankruptcy classifier, the (bivariate) data-depth data of
predictor variables for the ith firm in the DD-plot can be
represented by the vector yi . The financial status of the ith
firm is denoted by zi ∈ {+1, −1}, where +1 represents
a non-failed firm and −1 represents a failed firm. Given
a training set D = {yi , zi}Ni=1 for constructing two paral-
lel bounding hyperplanes at opposite sides of a separating
hyperplane wT y + b = 0, where w is the weight vector
and b is the bias, the decision rule of SVM, which finds the
optimal hyperplane separating the binary decision classes,
is given for the linearly separable case as

z(y) = sign

(
N∑

i=1

zi(yT
i y) + b

)
. (6)

For the nonlinearly separable case, (6) is modified as follows:

z(y) = sign

(
N∑

i=1

ziK(yi , y) + b

)
, (7)

where K(yi , y) is defined as the kernel function which
performs nonlinear mapping between input space and a
(high-dimensional) feature space. Popular kernel functions
to construct the decision rules include the radial basis func-
tion (RBF) kernel K(yi , y) = exp(−σ‖y − yi‖2), where σ

is a tuning parameter; the linear kernel K(yi , y) = yT
i y; the

polynomial kernel K(yi , y) = (γ + yT
i y)

d with degree d

and a tuning parameter γ (≥ 0); and the multilayer percep-
tron (MLP) kernel K(yi , y) = tanh(γ1 + γ2yT

i y). Note that
the MLP kernel is not positive semi-definite for all choices
of the tuning parameter γ1 and γ2.

Most of classification problems are, however, linearly
(or nonlinearly) non-separable, thus it is generally not pos-
sible to find a hyperplane that can differentiate between
“failed” and “non-failed” examples without mistakes. By
allowing a certain level of misclassification, the soft margin
method introduces slack variables measuring the degree of
misclassification of yi , and a cost constant C which weights
the importance of classification errors vis-à-vis the mar-
gin width. The solution of the primal problem to find the
optimal separating hyperplane is generally obtained after
constructing the Lagrangian. The dual problem of finding
an optimal separating hyperplane, along with the kernel
function K(yi , y), is re-written as the following quadratic
programming problem:

arg min
α

Q(α) = 1

2

N∑
i,j=1

αiαj zizjK(yi , yj ) −
N∑

i=1

αi,

s.t.
N∑

i=1

αizi = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . , N,

for the constant C with respect to the Lagrange multi-
pliers α ≡ (α1, . . . , αN)T . Under the dual formulation,
the two-class classification problem via implementation of
the optimal separating hyperplane in the feature space is
determined by the nonlinear SVM classifer as

z(y) = sign

(
N∑

i=1

αiziK(yi , y) + b

)
. (8)

Note that data instances corresponding to non-zero αi’s are
called support vectors. If the bias term b is implicitly a part
of the kernel function, as in the case of the RBF kernel, then
(8) is reduced to

z(y) = sign

⎛
⎝number of SVs∑

j=1

αjzjK(y, yj )

⎞
⎠ .

Among the big issues in SVM, the selection of appropri-
ate values of parameters plays an important role in building
a bankruptcy prediction model with high prediction accu-
racy and stability. The choice of the parameter C is very
important. A large value of C permits the optimization to
find a large margin, whereas a small value of C, which
allows a small margin, results in a large number of sup-
port vectors. If the value of C is chosen to be unnecessarily
large, the margin becomes narrow and the constructed clas-
sification model may fail to classify new objects properly,
although the training set is separated well. Banz et al. [6]
used a value of C = 5, however, there are no general rules
to guarantee the best parameter values for application prob-
lems. Lin [20] provided a systematic method for selecting
parameter values for SVMs by adapting the sampling the-
ory concept into a Gaussian filter. In corporate bankruptcy
prediction, Min and Lee [26] proposed a grid-search tech-
nique using five-fold cross-validation to determine optimal
parameter values of C and σ in the RBF kernel function of
the SVM. Min et al. [27] and Wu et al. [40] used genetic
algorithm to optimize the values of the parameters C and σ

with the RBF kernel in SVM. Van Gestel et al. [38] intro-
duced Bayes’ formula to the inference of the RBF kernel
parameter σ in the least squares SVM.

3 Research data

The sample of firms for analysis herein consists of manufac-
turing firms in the Korea Composite Stock Price Index 2000
(KOSPI 2000) from 2000 to 2013. The manufacturing firms
of interest were extracted from the Korea Listed Companies
Association (KLCA). The KLCA also provides financial
information related to the firms through audit reports from
external auditors. This research studies 144 firms that have
filed bankruptcy petitions in Korea in the 21st century
with the main objective of taking into account corporate
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management risks, and excludes cases of irresistible liabil-
ity failures from structural risks such as abrupt economic
crises (e.g., the bailout from the International Monetary
Fund (IMF) in 1997). Originally, corporate failure has been
defined as bankruptcy, default on bonds, overdrawing of a
bank account, or non-payment of a preferred stock dividend
[5]. For simplicity, however, we restricted the definition of
corporate failure in this study to only corporate bankruptcy.
For the same period, we selected 144 ‘non-failed’ firms
randomly from all solvent firms. A failed firm was paired
with a non-failed firm in a similar industry, which deals
with similar products, with similar capitalization, and with
similar values of assets. The one-to-one matching ratio is
a potential cause of oversampling problems [41]. However,
in order to highlight the effects of key financial ratios on
the likelihood of corporate bankruptcy, a matched sample
of non-failed firms was selected. We only selected medium-
sized and large-sized firms with property amounts of at least
$10 billion. The failed and non-failed data were arbitrarily
split into two subsets: about 80% of the data was used for a
training set and 20% for a validation set for k-fold cross val-
idation. The training data was used to build the bankruptcy
prediction model using the data depth and SVM. The pre-
diction model was verified by the validation data which was
not utilized to construct the model.

The KLCA reported 111 financial ratios representing
profitability, stability, activity, and productivity with respect
to individual firms. Out of them, we selected 53 significant
ratios using two-sample t-test between failed firms and non-
failed firms. The selected financial ratios, which are sum-
marized in Table 1, were used to build a prediction model
for classifying failed or non-failed firms. We analyzed the
financial data on individual firms for 10 years preceeding
bankruptcy (or survival up to 2013) to examine the existence
of chronological trends in corporate bankruptcy.

3.1 Multivariate normality test

Existing parametric distress models have been constructed
under the assumption of (multivariate) normality. However,
empirical results have shown that, in practice, most financial
ratios violate the normality assumption, thereby justify-
ing the introduction of nonparametric techniques. First, we
assessed the normality of financial ratios using the Henze-
Zirkler’s test statistic [15]. The Henze-Zirkler test statistic
for multivariate normality is given by

THZ = 1

n

n∑
i,j=1

e− ξ2

2 Aij − 2(1 + ξ2)−p/2
n∑

j=1

e
− ξ2

2(1+ξ2)
Aj

+n(1 + 2ξ2)−p/2,

where p is the number of variables, ξ = √
2
−1

(n(2p + 1)/4)−(p+4), Ai = (xi − x̄)T S−1(xi − x̄) is the

Table 1 Financial ratios included in the bankruptcy prediction model

Category Financial ratios

Profitability Cost of sales to net sales

Operating ratio

Non-operating income ratio

Financial expenses to sales

Ratio of expenditure to revenue

Financial expenses to total expenses

Accumulated depreciation ratio

ratio of interest burden

Interest paid ratio

Financial expense to total borrowings

Accumulated earning to stockholder’s equity

Additional paid in capital and retained
earnings to stockholdersequity

Reserve ratio

R & D investment ratio

Stability Ratio of current assets to gross assets

Inventories to current assets

Current assets to non-current assets

Non-current assets to total assets

Ratio of net worth to total capital

Ratio of net worth to borrowed capital

Bank for international settlements capital ratio

Non-current assets to stockholder’s equity
& non-current liabilities

Cash ratio

Raw materials to total manufacturing costs

Ratio of selling credit to inventories

Receivables to merchandise & finished goods

short-term borrowings to total borrowings

Non-current liabilities ratio

Net working capital to total assets

Total borrowing & bonds payable to total assets

Total borrowing & bonds payable to total liabilities

Reserves to total assets

Reserves to capital stock

Current assets to net sales

Operating capital to net sales

Cash flow to liabilities

Cash flow to total assets

Cash flow to net sales

Financial expenses to net income to operating income

Activity Net worth turnover ratio

Capital stock turnover

Turn-over ratio of borrowing capital

trade payable turnover period

Inventories to net sales

Goods in process turnover ratio
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Table 1 (continued)

Category Financial ratios

Account Receivable Collection Period

Net working capital turnover

Productivity Value added per employee

Machinery & equipment per employee

liabilities & stockholder’s equity per employee

Ratio of value added to liabilities & stockholder’s
equity

Ratio of value added to tangible fixed assets

Ratio of value added to net sales

Mahalanobis distance of the ith observation to the cen-
troid, Aij = (xi − xj )

T S−1(xi − xj ) is the Mahalanobis
distance between the ith and j th observations, and ξ is a
smoothing parameter. If the data are (multivariate) normally
distributed, then the test statistic is approximately log-
normally distributed, with mean and variance respectively
corresponding to

E[THZ] = 1 − (1 + 2ξ2)−p/2

×
{
1 + pξ2

(1 + 2ξ2)
+ p(p + 2)ξ4

2(1 + 2ξ2)2

}
, and

Var[THZ] = 2(1 + 4ξ2)−p/2 + 2(1 + 2ξ2)−p

×
{
1 + 2pξ4

2(1 + 2ξ2)2
+ 3p(p + 2)ξ8

4(1 + 2ξ2)4

}

−4ω−p/2
{
1 + 3pξ4

2ω
+ p(p + 2)ξ8

2ω2

}
,

where ω = (1 + ξ2)(1 + 3ξ2). Using the log-normal distri-
bution parameters, the Wald test statistic can be applied to
test the significance of multivariate normality. The Henze-
Zirkler test was implemented by an MVN package in R
software for assessing multivariate normality. The results of
multivariate normality testing of corporate financial ratios
for 10 years are summarized in Table 2. The periods rep-
resent the years prior to bankruptcy for failed firms and
survival years for non-failed firms. All of the p-values
derived from the Henze-Zirkler test were very close to zero,
thus leading us to conclude that the data set did not satisfy
the multivariate normality assumption.

4 Analytical results

To predict the bankruptcy of manufacturing firms in Korea,
this study was conducted according to the following steps:

1) Reduction of the number of multi-dimensional financial
ratios by DD.

2) Plotting of the values of DD into a DD-plot.
3) Classification of the DD in the DD-plot using nonlinear

SVM.

We compared the performance of the proposed method
with other bankruptcy prediction models in the existing
literature. The hit ratio of classification was used as an indi-
cator to evaluate the predictive accuracy of each models.
In addition, Type I error (defined as the probability that
a firm predicted not to fail will, in fact, fail) and Type II
error (defined as the probability that a firm predicted to fail
will not, in fact, fail) were also included in the evaluation
criteria.

4.1 Computing data depths

The preliminary analysis shows that the financial ratios of
Korean manufacturing firms deviate from the multivariate
normality assumption. Instead of parametric approaches,
therefore, we introduce nonparametric methods based
mainly on DD functions to predict bankruptcy among sam-
ple manufacturing firms in Korea. Three types of DD were
applied to reduce the high-dimensional financial ratios: the
Mahalanobis depth, the simplicial depth, and the Tukey
depth. For failed firms xi (i = 1, 2, . . . , 144) and non-
failed firms yi (i = 1, 2, . . . , 144), 53 financial ratios
were condensed into one-dimensional measure of DD, with-
out any distributional assumption. For example, Fig. 2
presents the depth values resulting from the Mahalanobis
measure for both failed and non-failed firms for 10 years.
Figure 2 does not show any remarkable difference between
the two groups in a scatter plot. We could find similar trend
with respect to the other two depth measures. In general,
because computing the Tukey depth for dimensions higher
than three is intractable using the method by Rousseeuw
and Ruts [30], we can use the random approximation
algorithm introduced by Cuesta-Albertos and Nieto-Reyes
[7], which is computationally efficient in high-dimensional
data-sets.

Table 2 Multivariate normality tests for financial ratios of the sampling firms in Korea

Period 1 2 3 4 5 6 7 8 9 10

Non-failed firms 1.002 1.001 1.001 1.002 1.001 1.001 1.001 1.004 1.002 1.011

Failed firms 1.023 1.055 1.031 1.101 1.011 1.013 1.009 1.095 1.072 1.072
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Fig. 2 Plot of the Mahalanobis
depth values (+: failed firms, ◦:
non-failed firms)
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4.2 Plotting via DD-plot

A DD-plot can serve as a simple diagnostic tool for visual
comparison between two samples of any dimension. Distri-
butional differences (e.g., changes of location, scale, skew-
ness or kurtosis) may present different graphical patterns
in DD-plots. We drew the DD-plots based on the three
measures of DD. For example, the DD-plots based on the
Mahalanobis depth for 10 years are given in Fig. 3. In com-
paring failed and non-failed firms, the scatter plots in Fig. 3a
and b present any separable differences between the two
groups. Note that the failed firms scatter at the bottom of
the DD-plot at two years prior to bankruptcy, representing a

location shift from the group of non-failed firms. However,
this separation trend decreased gradually at five (Fig. 3c)
and six years (Fig. 3d) prior to bankruptcy or survival. At
nine (Fig. 3e) and ten years (Fig. 3f) (prior to bankruptcy or
survival), the resultingDD(F, G) were scattered on the 45◦
line in the DD-plot. This means that the distributions of the
two groups are almost the same.

In summary, the use of DD-plots is likely to separate any
firms encountering imminent bankruptcy from financially
healthy firms.Accordingly, in the next step, we tried to classify
failed firms and non-failed firms via the nonlinear SVM,
based on the values of DD on the DD-plot. Because simi-
lar trends were observed when we employed different depth
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Fig. 3 DD-plot based on the
Mahalanobis depths (+: failed
firms, ◦: non-failed firms)
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measures (i.e., simplicial and Tukey depths), we illustrate
the classification results of nonlinear SVM based mainly on
the Mahalanobis depth.

4.3 Classifying via the nonlinear SVM

In the context of the corporate bankruptcy classification prob-
lem, we introduced nonlinear SVM to a two-dimensional
data-set on the DD-plot (called “DD-SVM”). This study
employed three kernel functions for nonlinear SVM, includ-
ing the RBF, polynomial, and MLP kernel functions. The
effectiveness of SVM techniques depends on the proper

selection of a kernel function, the parameters of the selected
kernel function, and the soft margin parameter C.

For example, there are two parameters associated with
the RBF kernels, namely, a tuning parameter σ and C.
In general, it is not known beforehand which values of
C and σ are the best for any given problem. Conse-
quently, some kinds of model selection approaches must
be employed. After conducting a grid-search for the train-
ing set according to an approach by Erdogan [9], the best
combination of σ and C values was selected by the search
algorithm with exponentially growing sequences using five-
fold cross-validation such as σ ∈ {2−15, 2−13, . . . , 21, 23}
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Table 3 Grid-search results using the RBF kernel function for the first year prior to bankruptcy or survival

σ

C 23 21 2−1 2−3 2−5 2−7 2−9 2−11 2−13 2−15

2−5 0.4655 0.8620 0.8448 0.74137 0.4655 0.4655 0.4655 0.4655 0.4655 0.4655

2−3 0.9310 0.9310 0.9137 0.8620 0.7586 0.4827 0.4655 0.4655 0.4655 0.4655

2−1 0.9482 0.9310 0.9310 0.9137 0.8793 0.7586 0.4827 0.4655 0.4655 0.4655

21 0.9310 0.9482 0.9310 0.9310 0.9137 0.8793 0.7586 0.4827 0.4655 0.4655

23 0.8965 0.9482 0.9655 0.9310 0.9310 0.9137 0.8620 0.7586 0.4827 0.4655

25 0.8793 0.9310 0.9482 0.9655 0.9310 0.9310 0.9137 0.8448 0.7586 0.4827

27 0.8793 0.9137 0.9137 0.9655 0.9310 0.9310 0.9310 0.9137 0.8448 0.7586

29 0.8448 0.8965 0.9310 0.9655 0.9482 0.9310 0.9310 0.9310 0.9137 0.8448

211 0.8793 0.9137 0.9137 0.9482 0.9655 0.9482 0.9310 0.9310 0.9310 0.9137

213 0.8793 0.9137 0.9137 0.9310 0.9655 0.9482 0.9310 0.9310 0.9310 0.9310

215 0.8103 0.8793 0.8965 0.9310 0.9655 0.9655 0.9310 0.9310 0.9310 0.9310

and C ∈ {2−5, 2−3, . . . , 213, 215}. For the first year prior
to bankruptcy (or the first year of survival), Table 3 shows
that the optimal values of the parameters (σ, C) in the RBF
kernel (even if they are not unique) report a prediction accu-
racy of 96.55% for the validation set. In the polynomial
kernel function, the best prediction performance for the first
year prior to bankruptcy (or survival) was obtained at values
of d = 3, γ = 2−3, and C = 25, yielding a predic-
tion accuracy of 96.55%. For the MLP kernel function, the
best prediction results for the first year prior to bankruptcy
(or survival) were obtained at parameter (γ1, γ2, C) val-
ues of (2−5, 1, 25) and (2−7, 1, 27), yielding a prediction
accuracy of 91.38%. With the results of our analysis, we
confirmed that the prediction performance of nonlinear SVM
is sensitive to the kernel parameters and the upper bound C.

Table 4 summarizes the results of the prediction of cor-
porate bankruptcy in Korea over 10 years. We compared the
prediction powers of the DD-SVM with the prediction pow-
ers of nonlinear SVM based on 53 financial ratios. Overall,
the DD-SVM outperforms nonlinear SVM in terms of pre-
diction accuracy for corporate bankruptcy. As shown in
Table 4, it was noted that the prediction accuracy resulting
from DD-SVMs drastically decreases after seven years prior
to bankruptcy. The RBF kernel of the DD-SVM produces

the best prediction performance for 10 years. Prediction
powers from the polynomial kernel are comparable with
those from the RBF kernel. However, the polynomial ker-
nel requires more hyperparameters (the polynomial degree
d) than the RBF kernel, and under-fitting and over-fitting
problems can occur when d is poorly selected. Thus, we
selected the RBF kernel to compare with other traditional
approaches in the prediction of bankruptcy among Korean
firms. Figure 4 presents the classification results using the
RBF kernel in nonlinear SVM on a DD-plot based on the
Mahalanobis depth. Note that all of the SVM analyses were
conducted using R kernlab package.

We compared the prediction powers of the DD-SVM
with other traditional bankruptcy prediction methods. The
bankruptcy classifiers considered in the comparison stud-
ies are the logistic regression, multiple discriminant analysis
(MDA), and artificial neural network (ANN). The logit
model in the logistic regression was employed to investi-
gate the relationship between binary response and financial
ratios without the assumption of multivariate normality.
The regression parameters were estimated using the max-
imum likelihood (ML) method. The final logit models for
10 years were selected using the stepwise selection method.
We introduced MDA to derive a linear combination of 53

Table 4 Comparisons of prediction accuracy between DD-SVM and SVM

Kernel 1 2 3 4 5 6 7 8 9 10

RBF DD-SVM 0.9655 0.9655 0.8966 0.9483 0.8793 0.9138 0.7586 0.6724 0.6034 0.6724

SVM 0.8444 0.8103 0.7414 0.7759 0.7241 0.6724 0.6897 0.6379 0.6897 0.7069

Polynomial DD-SVM 0.9655 0.9655 0.8793 0.9483 0.8793 0.9138 0.7586 0.6724 0.5862 0.5517

SVM 0.8276 0.8103 0.7586 0.7586 0.7759 0.6724 0.6724 0.7069 0.6897 0.7069

MLP DD-SVM 0.9138 0.9483 0.8621 0.9310 0.8621 0.8966 0.7586 0.6724 0.5690 0.5517

SVM 0.8103 0.7931 0.7759 0.7586 0.7931 0.6897 0.6552 0.7069 0.7241 0.7414
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Fig. 4 SVM classification
results using the RBF kernel
function. Filled circles and
triangles represent support
vectors (�: failed firms, ◦:
non-failed firms)

financial ratios that best discriminates between failed and
non-failed firms. The ANN model in this study employed
a three-layer connected back-propagation. Following the
approach in Min and Lee [26], after fixing the number
of layers to one, we varied the number of hidden nodes
(8, 12, 16, 24, 32) at learning epochs of 100, 200, and
300 and then recorded the parameter values that derived

the best prediction powers for 10 years. Table 5 reports
bankruptcy prediction results for the manufacturing firms
for 10 years, along with Type I an Type II errors. The logit
and MDA models show poor prediction powers from one
to five years prior to bankruptcy. As confirmed in the pre-
liminary analysis, the financial ratios in this study deviate
from the multivariate normality assumption, while the MDA
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Table 5 Comparative analysis of prediction accuracy for corporate bankruptcy

1 2 3 4 5 6 7 8 9 10

Logit Accuracy 0.6897 0.6724 0.5345 0.6724 0.6724 0.5172 0.5862 0.6379 0.5690 0.5862

Type I err. 0.1379 0.1552 0.2586 0.1552 0.1552 0.1379 0.2241 0.1379 0.2759 0.1552

Type II err. 0.1724 0.1724 0.2069 0.1724 0.1724 0.3448 0.1897 0.2241 0.1552 0.2586

MDA Accuracy 0.7758 0.6552 0.6552 0.7241 0.6552 0.6379 0.5172 0.6207 0.6379 0.6897

Type I err. 0.1034 0.2069 0.2069 0.1552 0.1897 0.1207 0.2586 0.0862 0.1379 0.0690

Type II err. 0.1207 0.1379 0.1379 0.1207 0.1552 0.2414 0.2241 0.2931 0.2241 0.2414

ANN Accuracy 0.8276 0.7759 0.7586 0.7069 0.6207 0.6379 0.6724 0.6724 0.6379 0.6207

Type I err. 0.0690 0.1034 0.1552 0.1724 0.1379 0.1724 0.1379 0.1207 0.1724 0.2241

Type II err. 0.1034 0.1207 0.0862 0.1207 0.2414 0.1897 0.1897 0.2069 0.1897 0.1552

DD-SVM Accuracy 0.9655 0.9655 0.8966 0.9483 0.8793 0.9138 0.7586 0.6724 0.6034 0.6724

Type I err. 0.0000 0.0000 0.0517 0.0000 0.0000 0.0517 0.1379 0.0517 0.3448 0.1897

Type II err. 0.0345 0.0345 0.0517 0.0517 0.1207 0.0345 0.1034 0.2759 0.0517 0.1379

performs well under multivariate normality. The DD-SVM
outperforms the ANN model, which is a main comparison
target from one to six years prior to bankruptcy. Overall,
the DD-SVM has the best prediction power among promi-
nent bankruptcy prediction models reviewed in this study.
Because of the impact on the domestic economy, Type I
error is more important to diagnose in firms at risk for
bankruptcy. Remarkably, the DD-SVM shows almost zero
Type I errors from one to five years prior to bankruptcy.

5 Discussion

Because corporate bankruptcy causes heavy damage to
the economy, it is essential to diagnose firms at risk for
bankruptcy in order to hedge against the financial harm
the at-risk firms stand to inflict. We presented a novel
hybrid method that combines DD and nonlinear SVM for
the prediction of corporate bankruptcy. This study pioneers
the application of DD to financial distress prediction. The
empirical results demonstrate that the proposed method
offers the highest level of accuracy in bankruptcy prediction.
By condensing various financial data from the firms through
DD metrics, the DD-SVM can be utilized as part of an
early warning system for corporate failure. Unless pertinent
information about an underlying distribution is available,
we strongly recommend the use of our procedures (detailed
in Section 4) to establish a prediction model for corporate
bankruptcy. The proposed method is expected to help pro-
vide a guidance on corporate investment for investors or
other potentially interested parties.

Our comparison is based on a data-set with an equal
proportion of failed and non-failed firms. In real cases, how-
ever, the number of bankrupt firms constitutes only a small
portion of the whole population. To avoid modeling bias,
which may be caused by the one-to-one matching process,

the entire population of both failed and non-failed firms
can be used to construct a corporate bankruptcy prediction
model. Financial distress is not the only area wherein DD
based SVM shows potential for beneficial use. We believe
that the DD-SVM can be extended to other managerial
applications, particularly classification problems in various
areas.
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14. Häardle W, Lee YJ, Schaafer D, Yeh YR (2009) Variable selection
and oversampling in the use of smooth support vector machines for
predicting the default risk of companies. J Forecast 28:512–534

15. Henze N, Zirkler B (1990) A class of invariant consistent
tests for multivariate normality. Commun Stat Theory Methods
19(10):3595–3617

16. Lawrence S, Giles CL, Tsoi AC (1997) Lessons in neural network
training: overfitting may be harder than expected. In: Proceedings
of the 14th national conference on artificial intelligence, AAAl-97,
pp 540–545

17. Lee H, Jo H, Han I (1997) Bankruptcy prediction using case-based
reasoning, neural networks, and discriminant analysis. Expert Syst
Appl 13:97–108

18. Li H, Sun J (2008) Ranking-order case-based reasoning for finan-
cial distress prediction. Knowl-Based Syst 21:868–878

19. Li J, Cuesta-Albertos JA, Liu R (2012) DD-classifier: nonparamet-
ric classification procedure based on DD-plot. J Am Stat Assoc
107:737–753

20. Lin PT (2001) Support vector regression: systematic design and
performance analysis. Unpublished Doctoral Dissertation, Depart-
ment of Electronic Engineering, National Taiwan University

21. Liu RY (1990) On a notion of data depth based on random
simplices. Ann Stat 18:405–414

22. Liu RY, Parelius JM, Singh K (1999) Multivariate analysis by
data depth: descriptive statistics, graphics and inference. Ann Stat
27:783–858

23. Liu Z, Modarres R (2011) Lens data depth and median. J Non-
parametric Stat 23:1063–1074

24. MacKay DJ (1992) Bayesian kernel based classification for finan-
cial distress detection. Neural Comput 4:448–472

25. Mahalanobis PC (1936) On the generalized distance in statistics.
Proc Nat Acad India 12:49–55

26. Min JH, Lee YC (2005) Bankruptcy prediction using support vec-
tor machine with optimal choice of kernel function parameters.
Expert Syst Appl 28:603–614

27. Min SH, Lee J, Han I (2006) Hybrid genetic algorithms and sup-
port vector machines for bankruptcy prediction. Expert Syst Appl
31:652–660

28. Odom MD, Sharda R (1990) A neural network model for
bankruptcy prediction. In: Proceedings of the IEEE international
joint conference on neural networks, vol 2. San Diego, pp 163–168

29. Ohlson JA (1980) Financial ratios and probablistic prediction of
bankruptcy. J Account Res 18:109–131

30. Rousseeuw PJ, Ruts I (1996) Bivariate location depth. Appl Stat
45:516–526

31. Rousseeuw PJ, Jubert M (1999) Regression depth. J Am Stat
Assoc 94:388–402

32. Salcedo-Sanz S, Fernandez-Villacanas JL, Segovia-Vargas MJ,
Bousono-Calzon C (2005) Genetic programming for the predic-
tion of insolvency in non-life insurance companies. Comput Oper
Res 32:749–765

33. Sarle WS (1995) Stopped training and other remedies for overfit-
ting. In: Proceedings of the 27th symposium on the interface of
computing science and statistics, pp 352–360

34. Tam KY, Kiang MY (1992) Managerial applications of neu-
ral networks: the case of bank failure predictions. Manag Sci
37:926–947

35. Tsai CF (2009) Feature selection in bankruptcy prediction. Knowl
Based Syst 22:120–127

36. Tukey JW (1975) Mathematics and picturing of data. Proc 1974
Int Congress Math 2:523–531

37. Van Gestel T, Suykens JA, Lanckriet G, Lambrechts A, De Moor
B, Vandewalle J (2002) Bayesian framework for least-squares sup-
port vector machine classifiers, Gaussian processes, and kernel
Fisher discriminant analysis. Neural Comput 15:1115–1148

38. Van Gestel T, Baesens B, Suykens JA, Van den Poel D, Baestaens
DE, Willekens M (2006) Bayesian kernel based classification for
financial distress detection. Eur J Oper Res 172:979–1003

39. Vapnik VN (1995) The nature of statistical learning theory. Springer,
New York

40. Wu CH, Tzeng GH, Goo YJ, Fang WC (2007) A real−valued
genetic algorithm to optimize the parameters of support vector
machine for predicting bankruptcy. Expert Syst Appl 32:397–408

41. Zmijewski ME (1984) Methodological issues related to the esti-
mation of financial distress prediction model. J Account Res
22:59–82

42. Zuo Y, Serfling R (2000) General notions of statistical depth
function. Ann Stat 28(2):461–482

Sungdo Kim was born in
1979, in Busan, Republic of
Korea. He received the B.S.
Degree in industrial engineering
from the Kongju University,
Chungcheongnam-do, korea,
and the M.S degree in industrial
engineering from Hanyang
University, Seoul, Korea, in
2005 and 2007, respectively,
He received the Ph.D. degree
at the Department of industrial
engineering, Hanyang Univer-
sity, Seoul Korea in 2017. His
research interests in statistical
process control, bankruptcy
prediction model and data
mining.

Byeong Min Mun received
the Ph.D. degree from the
Department of Industrial En-
gineering, Hanyang Univer-
sity, Seoul, Korea. He is re-
search professor in the Depart-
ment of Industrial Engineering
at Hanyang University, Seoul,
Korea. His current research
interests include reliability,
data mining, and Bayesian
inference.



804 S. Kim et al.

Suk JooBae received the Ph.D.
degree from the School of Indus-
trial and Systems Engineering
at the Georgia Institute of Tech-
nology, Atlanta, GA, USA, in
2003. He is a professor in the
Department of Industrial Engi-
neering at Hanyang Univer-
sity, Seoul, Korea. He worked
as a reliability engineer at
Samsung SDI, Korea, from
1996 to 1999. His research
interests are centered on reli-
ability evaluation of light
displays and nano-devices via
accelerated life and degrada-

tion testing, statistical robust parameter design, and process control for
large-volume on-line processing data. He published about 30 papers
in journals such as Technometrics, Journal of Quality Technology,
IIE Transactions, IEEE TRANSACTIONS ON RELIABILITY, and
Reliability Engineering & System Safety. Prof. Bae is an Associate
Editor of the IEEE TRANSACTIONS ON RELIABILITY. He is a
member of INFORMS and ASA.


	Data depth based support vector machines for predicting corporate bankruptcy
	Abstract
	Introduction
	The modeling of bankruptcy prediction
	Data depth functions
	Mahalanobis depth
	Simplicial depth
	Tukey depth

	Depth vs. depth plot
	The nonlinear support vector machine

	Research data
	Multivariate normality test

	Analytical results
	Computing data depths
	Plotting via DD-plot
	Classifying via the nonlinear SVM

	Discussion
	Acknowledgements
	References


