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Abstract Software testing is both a time and resource-con-
suming activity in software development. The most difficult
parts of software testing are the generation and prioritiza-
tion of test data. Principally these two parts are performed
manually. Hence introducing an automation approach will
significantly reduce the total cost incurred in the software
development lifecycle. A number of automatic test case
generation (ATCG) and prioritization approaches have been
explored. In this paper, we propose two approaches: (1) a
pathspecific approach for ATCG using the following meta-
heuristic techniques: the genetic algorithm (GA), particle
swarm optimization (PSO) and artificial bee colony opti-
mization (ABC); and (2) a test case prioritization (TCP)
approach using PSO. Based on our experimental findings,
we conclude that ABC outperforms the GA and PSO-based
approaches for ATC.G Moreover, the results for PSO on
TCP arguments demonstrate biased applicability for both
small and large test suites against random, reverse and
unordered prioritization schemes. Therefore, we focus on
conducting a comprehensive and exhaustive study of the
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1 Introduction

With the growth of software systems and their complexity,
the total cost incurred by the verification and validation pro-
cess increases as the defect probability increases. Defects in
software can prevent it from functioning correctly or cause
it to crash. Therefore, it is essential to prevent software
defects; however, it is almost impossible to deliver defect-
free software. Thus, it is desirable to minimize defects
as much as possible, especially when considering safety-
critical systems.

A study conducted by the National Institute of Standards
and Technology [1] has shown that software defects are
so harmful and common that they cost the U.S. economy
$59.5 billion each year. Current research and approaches are
still not sufficiently mature to address this subject bravely;
hence, there is an immediate need for further research. To
date, many methods have been proposed to validate software
systems, including code inspection and review; the most
common method among them is software testing. How-
ever, this method suffers from a cost issue. Research studies
have shown that software testing may consume 50 percent
of the total cost of software development [2]. Reducing
this cost demands the automation of the testing process.
Because testing has many components, the essential, costly
sub-component of “test data generation and prioritization”
is unfortunately performed manually with little automation

DOI 10.1007/s10489-017-1003-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-1003-3&domain=pdf
mailto:mukesh.gbu@gmail.com
mailto:parry.tomar@gmail.com
mailto:sangwan_op@yahoo.co.in


688 M. Mann et al.

success rate. Approximately 40 percent of the total software
testing cost is incurred during the test data generation pro-
cess. Therefore, to reduce the cost of software testing, the
success of automatic test data generators is essential. They
boost the confidence of development teams by increasing
the reliability of software.

Because the objective of many proposed ATCG method
is to reduce the extreme cost, we must incorporate excellent
and efficient methods supplemented by the highest level of
experienced test automation. Hence, the demand for the
automatic generation of effective test cases is increasing to
incorporate completeness and reduction in terms of cover-
age and expenses, respectively. An effective test case not
only reveals faults early in the testing phase but also uncov-
ers untouched paths and hence reduces the software cost.

The second concern in the software industry is to perform
regression testing thoroughly. The three well-known aspects
of regressing testing are as follows: (1) test case minimiza-
tion; (2) test case selection; and (3) test case prioritization
(TCP). In this paper, our second prime objective is to focus
on TCP. TCP is studied to evaluate whether reordering the
test case and then executing it can reveal more faults in a
program [3]. Past works have shown how different algo-
rithms/techniques [4–8] have been proposed for TCP and a
number of criteria have been used to check the effectiveness
of reordered test cases [3, 9, 10].

In this paper, we address the ATCG and TCP problems.
To address ATCG, a path-specific test (PST) data generation
approach is proposed and experiments are conducted for
several benchmark problems, including a real case study. The
genetic algorithm (GA), particle swarm optimization (PSO),
and ABC are used as optimization algorithms to generate
the test data by solving the objective fitness function as
proposed using a PST-based approach. We compare the
effectiveness of these three optimization techniques in terms
of their time efficiency for the generation of test data. To
address TCP, PSO is used and evaluated using a large, real
dataset.

The remainder of the paper is organized as follows: In
Section 2, we briefly discuss related work. In Section 3, we
discuss the PST approach in detail. In Section 4, we discuss
the experimental setup in detail. In Section 5, we discuss the
results for ATCG. We dedicate Section 6 to TCP using PSO,
and finally, in Section 7, we provide a brief summary and
the future scope of the present work.

2 Related work

During recent years, ATCG has emerged as a great tool for
software practitioners to generate test data efficiently. Sev-
eral approaches have been incorporated to generate test data
efficiently. However, unfortunately, very few of them are

automated. In industrial settings, many ATCG approaches
have demonstrated their effectiveness for simple programs.
Generally, many industrial programs exhibit some common
characteristics, such as (1) a large input space and (2) high
complexity and widespread structural features. Thus, many
automatic test data generators have demonstrated limited
success in the industrial domain.

Random testing [11–14] is a historical approach to gen-
erating a large amount of test data, which may or may not
exercise a test requirement. Regardless of its simplicity,
random testing has not demonstrated tremendous support
for many practical purposes because it may generate a
sufficient amount of good test data for simple programs,
but most of the time it fails for larger, complex programs
[15]. By contrast, software practitioners that have a sub-
stantial understanding of the domain of complex operations
in an SUT can profitably use analysis-oriented techniques
[16, 17]. However, such techniques are not used in prac-
tice because, in a development team, not all members have
expertise in all the operations of SUT, especially when the
system domain is new.

Many early attempts at ATCG demonstrated little success
[18]. PST data generators can demonstrate good perfor-
mance by yielding test data. The main idea behind such
generators is to design an objective function based on
numerical functions, which can be maximized or minimized
further to obtain solutions. These functions can be mini-
mized or maximized using a chosen optimization technique.
McMinn (2004) [19] provided a complete survey of work in
this area.

The proposed PST-based approach differs from early
attempts at ATCG because path-based test data generator
approaches [20–24] operate in two stages: (1) the paths are
selected by analyzing the SUT; and (2) test data are gener-
ated to execute the selected path. However, such generators
encounter a problem with infeasible paths. The generators
fail to generate input data for such paths and the quality of
the generated input is random because it is not always pos-
sible to determine the path for which the input is generated.
Thus, from the large amount of input data generated, only
very few inputs are useful.

However, for the proposed PST approach, the paths are
selected based on a number of independent paths, and to
avoid the extra effort required to generate data for each indi-
vidual path, random test data are first generated and the
paths that have been covered by such data are checked.
Any such path is excluded from the generators, and for the
remaining paths, data are generated by forming an objective
function that follows each incoming constraint in the paths.
These constraints traverse through the selected paths’ results
to form an efficient fitness function. Thus, the PST-based
approach ensures that we determine every selected path that
was missing in earlier attempts in this domain.
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Additionally, many earlier ATCG approaches encoun-
tered the problem of determining global minima. This is
possibly because of an unguided search by the search algo-
rithms in large areas of the search domain. Many search
algorithms do not determine global values because of insuf-
ficient directional information to guide these algorithms.
It is important to analyze the SUT because the success
of any optimization algorithm depends strongly on the
program’s structure. Therefore, several works have demon-
strated the application of various optimization algorithms
in this domain. For instance, GA was used to construct the
tools GADGET [25] and EVOSUITE [26] for data gener-
ation, and the approach presented by [27] used simulated
annealing for ATCG. For a more detailed discussion on cur-
rent research trends in ATCG, refer to the work of Malhotra
and Khari [28].

The second prime focus in this paper is TCP. Various
approaches have been proposed during recent years that use
different techniques and criteria to prioritize given test cases
[29–33]. The most popular unit framework, called Junit,
is applied to coverage-based prioritization techniques [29].
The prioritized execution of JUnit test cases results in a
higher value of the Average Percentage of Fault Detected
(APFD) than untreated ordering. In a controlled environ-
ment, the effectiveness of the prioritization can be measured
by executing the test cases according to the fault detection
rate [34].

An empirical study was conducted [31] for TCP using
seven C programs. The APFD is considered as a perfor-
mance metric. The result of this study demonstrated that TCP
improves the rate of fault detection. The authors described
several important aspects of the TCP problem, for example,
a TCP can be used initially or during the regression test-
ing of software. An empirical study on TCP was conducted
[35] using a greedy algorithm, additional greedy algorithm,
optimal greedy algorithm, and GA. The study aimed to
examine the suitability and effectiveness of search-based
techniques for the TCP problem. The study demonstrated
that the greedy algorithm performed well for TCP.

ABC [36] has been presented for TCP. The behavior
of scout bees and forager bees has been observed. The
maximum code coverage was considered as an adequacy
criterion. The average percentage of conditions covered was
used as a performance metric. The proposed algorithm had
shortcomings, as follows. (1) In natural BCO, the number
of scout bees is 5%–10% of forager bees; however, in the
proposed algorithm, the number of scout bees and forager
bees was equal. (2) The energy reduction rate was chosen
such that only 50% of the test suite was executed, which
means that the remaining test suite was unexplored. (c) The
approach was not automated, and the proposed algorithm
was manually executed, which may only be useful for a
small problem.

A systematic study on TCP [37] concluded the following.
(1) A public dataset should be given more priority over pro-
prietary datasets in the case of TCP. (2) More studies on the
comparison of prioritization methods are required. (3) Prior-
ity should be given to using industrial projects that represent
real-time industrial problems.

A TCP technique was proposed [38] using the GA. The
test case information available from regression testing was
used during prioritization using the GA. The GA took the
test case information from regression testing as an input and
produced a sequence of test cases to be executed so that the
maximum number of modified lines could be covered. The
prioritization of test cases was performed based on a num-
ber of modified lines covered by a test case; the test case that
covered the fewest modified lines was given the lowest pri-
ority and executed last, provided the deadline time was not
reached. The authors evaluated their study on a small prob-
lem domain, and a real benchmark study was missing from
their work.

Additionally, the works [28, 35, 36, 39] and [40] demon-
strated the application of various metaheuristics in the TCP
domain. The problems that were encountered by earlier
studies in this domain were clearly highlighted in the works
of [37, 38], which emphasized the evaluation of TCP on
more real datasets, together with a comparison with earlier
studies. Thus, taking into account the guidelines from [37,
38] and other works in this domain, it has been observed that
proposing a metaheuristic for TCP is beneficial only if it is
evaluated on large, real datasets, together with a comparison
with existing techniques for TCP.

Therefore, in this paper, we focus on conducting a com-
prehensive study of optimization algorithms in the domain
of ATCG and TCP. In Sections 3–5, we propose a PST-
based methodology for ATCG, together with its results. In
Section 6, we formulate the TCP and address using a PSO-
based approach. Throughout the paper, our aim is to address
ATCG and TCP using metaheuristic algorithms.

3 Methodology

Our methodology for path specific target-based test data
generation (PST) consists of four steps, as shown in Table 1.
The first phase is used to clearly specify all testing require-
ments that are derived based on various condition deci-
sions/predicate nodes. A condition coverage table is then
formed, which is used to mark off the conditions that have
been covered and not covered in the SUT.

The second phase is the generation of a random test case,
which is executed against the SUT to check which subset
of conditions is covered. Thus, the initial coverage table is
initialized. The last phase is the application of the meta-
heuristic algorithm by forming a suitable fitness function
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Table 1 Automatic test case generation process

Step 1: Initialization Step: Analysis of SUT

• Drive testing requirements according to condition/predicate decision in SUT.

• Prepare condition-decision test metric table.

Step 2: Initialization of test metric table

• Randomly generate a single test case.

• Execute generate test case against SUT.

• Monitor the condition coverage information using this test case.

• Initialize coverage table with the obtained information.

Step 3: Generate test cases to fulfill all test requirement in test metric table using search process (using Metaheuristic optimization algorithms)

• Generate test case by applying selected evolutionary algorithm on the selected test requirement from test metric table.

• Record the test cases, coverage information, and other relevant information to update the test metric table.

Step 4: Repeat step 3 until all test requirements in test metric table are met.

using PST on each test requirement in the coverage table
that is not covered. The metaheuristic algorithm is repeat-
edly applied until we obtain a fully tested coverage table.

A test’s metric is the adequacy criterion that tracks
which conditions are covered by the decision taken after
their execution. For example, consider the following code
segment:

If(a + b > c&&b + c > a&&c + a > b)

{
Prints “true”;

}
else {
Prints “false”;

}
To execute this condition, a tester must obtain an input
value (test case). With this value, the code segment can
take two decisions: true or false.Thus, every test case must
have the outcome of either true or false at least once. How-
ever, it should be noted that entire decision for a particular
condition depends on all sub-conditions that constitute the
full decision condition. For example, consider the condition
If(x < 0 and y > 1); it consists of two sub-conditions:
(x < 0) and (y > 1).

Table 2 Test cases for sub-conditions

X Y OUTCOME

−2→ true 0→false False

0 → false 0 →false False

5 → false 5 → true False

1 →false −1 →false False

The test case shown in Table 2 ensures that each sub-
condition has a true or false outcome at least once.

Thus, none of the four conditions had the outcome “true.”
To summarize, the outcome of the full condition depends
on the sub-conditions and the operators joining these sub-
conditions. Thus such condition and its decisions are more
complicated and reliable than branch and statement cover-
age. This motivates us to consider decision conditions as a
test metric criterion in the present work.

To reach a particular condition in an SUT, we first need to
reach the sub-conditions that follow, which ensures that we
reach the goal condition. Thus, there must be an approach
to arrive at all sub-conditions.

A particular goal condition can consist of many different
sub-conditions, and to reach the goal, we must follow the
sub-conditions such that their execution takes the flow of
the program to the goal state.

For example, consider the triangle classification code
segment given below:

1: if (tri == 1) System.out.println (“Scalene triangle”);
2: else if (tri == 2) System.out.println (“isosceles trian-

gle”);
3: else if (tri == 3) System.out.println (“equilateral trian-

gle”);
4: else if (tri == 4) System.out.println (“not a triangle”);

Table 3 Example of a test metric

Line no True False

1 − X

2 − X

3 X –

4 – –
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Table 4 Fitness function for predicate condition decision expressions

Expression a == b a! = b a<b a<=b a>b a>=b a||b a&&b

False −|a−b| abs(a−b) b−a b−a a−b a−b f(c1)+f(c2) min(f(c1), f(c2))

True |a−b| −abs(a−b) a−b a−b b−a b−a min(f(c1),f(c2)) f(c1)+f(c2)

Table 3 illustrates the test metric, which specifies that
for the decision status for each condition with a supplied
test case (5, 5, 5), it prints “equilateral triangle.” The test
case covered the false, false, true branches of statements
1, 2 and 3, respectively. The tester can easily track which
true/false condition for a particular branch has been cov-
ered or not covered. Based on Table 3, testers can apply the
metaheuristic optimization algorithm proposed in this paper
to generate a test case that can exercise the false, false, and
true conditions of statements 1, 2 and 3, respectively.

3.1 Optimization objectives

Dynamic test case generation is based on the fact that a well-
formulated problem that can determine a test case can be
transformed into a numerical maximization or minimization
problem. For every such problem, we can form a func-
tion that can be maximized or minimized using different
available optimization techniques. This function must guide
the search process for test case generation that can satisfy
a given condition. For every branch/predicate node in the
SUT, the function is called an objective function. An objec-
tive function can evaluate the goodness of the generated test
case, that is, how good the generated test case is in satisfying
the particular condition for which it is generated.

If there are conditions that are composed of several other
sub-conditions and connected using “*” (AND) or “||” (OR)
operators, then the following rule is followed to form the
combined fitness for the entire expression:

IF cond “a” AND cond “b” AND cond “c.”

The objective fitness for the entire expression that results in
a true branch is

�and = �1a + �1b + �1c,

where �is the objective function for the entire expression,
and�a,�b, and�c are the objective functions for cond “a,”
cond “b,” and cond “c,” respectively.

Similarly, if the expression is IF cond “a” OR cond
“b” OR cond “c,” then the objective fitness for the entire
expression that results in a true branch is

�or = min (�1a,�1b,�1c).

Table 4 provides various fitness functions that can be used
to evaluate the true and false branches of an expression [41].

We consider a small fragment of code to understand the
construction of the objective fitness function that can be
minimized or maximized using the proposed metaheuristic
approaches:

If (a + b > c&&b + c > a&&c + a > b)

{
. . . . . . . . . . . . . . . . . . ..

}
To reach the true condition of the decision, If (a+b>c
&& b+c>a && c+a>b), there must be the following sub-
conditions, which must be true to exercise the truthiness of
the decision:

1. a+b>c→ must be true, therefore the objective function
(�1 must be �1 = (c−(a+b)).

2. b+c>a→must be true, therefore the objective function
(�2) must be �2 = (a−(b+c)).

3. c+a>b→must be true, therefore the objective function
(�2) must be �2 = (b−(c+a)).

Because the decision consists of three sub-condition
decisions, the net objective function for the decision is �=
�1+�2+�3.

In a similar manner, we can form objective functions for
different test requirements that arise while traversing a path.

3.2 Complete illustration

We illustrate the approach by considering Tri tryp [42–47]
as a sample benchmark problem. The test requirement is to
generate a test case for an equilateral triangle (Tri Tr1).

Fitness function construction We individually derive the
objective fitness function for each targeted goal by con-
structing fitness functions as explained above (see Table 4).
For example, to reach the goal equilateral triangle (Tri Tr1),
the following sub-goals (sub-conditions), together with their
decisions, must be followed to reach a final objective func-
tion that guarantees the generation of a test case that exer-
cises the targeted goal. Table 5 shows the fitness function
for each sub-condition in the path to the final goal: Tri Tr1.

Thus, we can form the net PST-based fitness function for
any targeted path. An instrumented MATLAB version of
triangle classification is shown in Table 6.
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Table 5 Fitness for a targeted goal (Tri Tr1)

Sub goals/test requirements Condition Fitness value

If (a+b>c && b+c>a && c+a>b) True �1=(c− (a+b) )+ (a−(b+c)) + (b−(c+a))

If((a!=b&&b!=c&&c!=a)) False �2=min(min(abs(a−b),abs(b−c)), abs(c−a));

Else if (((a==b) && b==c)) True �3=abs(a−b)+ abs(b−c)

Net fitness(�) �1+�2+�3;

Thus, the source code fitness function can be created
for targets. With the formed fitness function, the search
process is conducted using optimization search algorithms.
We investigate whether the designed fitness function is
sufficiently good to generate the target values when used
by the optimization algorithms in this study. The initial
solution space of each search algorithm in this study is
assigned based on the problem bounds. For example, in the
case of Tri tryp, there are three variables in the range for
the lower and upper bounds, [1 1 1] and [100 100 100], and
each bound represents a potential solution to the problem.
The objective is to reach to an optimal solution by evalu-
ating the formed fitness function using the metaheuristics
in this study. By optimal, we mean that the generated value
is sufficiently fit to traverse the targets for which it is gen-
erated. Below is a sample approach to instrument different
optimization algorithms using the fitness function formed
using the PST-based approach:

% calling type of metaheuristic
Call = @ GA/PSO/ABC1

% setting max run
Total run = 20;
% call to fitness function formed using PST based approach.
FitnessFunction = @objective funtion; % In case of
Tri Typ the fitness function is Tri classification
% setting number of variables in problem
NumberofVariables = []; % set according to problem
domain
% set lower and upper bound of variables
lb = [];
ub = [];
% setting other parameters as per Algorithms setting (refer
Section 4)
print (‘Final Solution obtained’, Fval);
print (‘Total Time taken’);

Each subject in this study is evaluated for their test
requirements. The solutions obtained by evaluating the

1 Detailed MATLAB code can be provided by the authors upon prior
request for academic use only.

fitness function using metaheuristics are then compared.
In the next section, we discuss the basic implementation
decisions and parameter settings used for different meta-
heuristics.

4 Experimental setup and optimization algorithm
details

Three search-based metaheuristics were used in this study:
GA, PSO, and ABC. MATLAB 7.10 was used for the
implementation. In the following, we describe the basic
implementation decision for each metaheuristic used in this
study.

1. GA: A double vector population was used as an initial
population type. The selection scheme was a roulette
wheel with a uniform creation function to create a
uniformly distributed initial range in two spaces for
the lower and upper bounds. Each space of the lower
and upper bounds was selected based on the prob-
lem bounds. A crossover fraction of 0.9 with a single
crossover was used for the crossover phenomena. The
initial population size was set equal to 100.

2. PSO: The initial population was created uniformly
between the lower and upper bounds of the prob-
lem. The inertial maximum and minimum weights, and
acceleration factor were all set to one. A maximum of
100 iterations was set to run the experiment.

3. ABC: The colony size was set to 100 and initial food
sources were created uniformly between the lower and
upper bounds of the problem, as in the case of PSO.
The total food sources was set to half the colony
size. A maximum of 100 iterations was set to run the
experiment.

4.1 System under test

In an ideal situation, we could select a large number of
programs for the experiments, which might provide a good
representation of a large experimental space. Unfortunately,
this ideal assumption is hypothetical for many reasons: first,
there are no universal sampling criteria available to select a
sampling size from the large universe of software programs.
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Table 6 Instrumented Tri Tryp program

Function [type, Line no]= Tri classification(x,y,z)

% net Fitness function for first independent path, Scalene triangle fScal = f0t+f1t+ f2t
% net Fitness function for second independent path, equilateral triangle fequi = f0t+f1t+ f2t+f3t
% net Fitness function for first independent path, isoceleous triangle fiso = f0t+f1t+ f2t+f3f+ f4t
% net Fitness function for first independent path, invalid triangle is finv = f0t+f1t+ f2f+ f3f+ f4f
% where subscript in fitness function f shows (1) first subscript as line number (2) second subscript as either false(f)
or true(t) to represent that this function is for false branch, for example, a fitness function f1t means that this fitness
function is formed for the True Branch of line no1
% f0t =(0−x)+(0−y)+(0−z)

% f0f =min((min(x−0),(y−0)),(z−0))

1. if(x>0 && y>0 && z>0)

% f1t =(z− (x+y) )+(x−(y+z)) +(y−(z+x))

% f1f =((x+y)−z )+((y+z)−x) +((z+x)-y)

2. if (x+y>z && y+z>x && z+x>y)

%f2t =−abs(x−y)+−abs(y−z)+−abs(z−x));

% f2f =min(min(abs(x−y),abs(y−z)), abs(z−x));

3. if(x∼=y&&y∼=z&&z∼=x)

4. type= 1; % scalene

5. L=4;

% f3f =abs(x−y)+abs(y−z)+abs(z−x);

% f3t =min(min(−abs(x−y),−abs(y−z)),−abs(z−x));

6. elseif ((x==y) && (y==z) && (z==x))

7. type= 2; % Equilateral

8. L=7;

% a1=(abs(x−y)+−abs(y−z));

%a2=(abs(y−z)+abs(z−x));

%a3=(abs(z−x)+abs(x−y));

%b1=min(-abs(x-y),abs(y−z));

%b2=min(abs(y−z),abs(z−x));

%b3=min(abs(z−x)+abs(x−y));

%f4t =min(min(a1,a2),a3);

%f4f =b1+b2+b3;

9.elseif (((x==y) && (x∼=z)) || ((x == z) && (x∼= y)) || ((y == z) && (y ∼= x)))

10. type= 3; % Isoceleous

11. L=10;

12. else

13. type= 4; % invalid triangle

14. L=3;

15. end

16. else

17. type= 5; % out of range

18. L=2;

19. end

20. Line=L;

21. tri=type;

22. end

Therefore, any chosen sampling criteria are always ad hoc
in nature and a matter of open debate. Second, many works

on optimization algorithms for target-oriented test data
generation have demonstrated its application on a small set
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of programs. If we select programs that are beyond the limits
of currently available techniques, such as GA, then the
present study will not accumulate any relevant information.

Thus, we considered the aforementioned factors and
selected ten benchmark problems. In addition to the tra-
ditional research benchmark problems, we also considered
validating the proposed work on a larger, real applica-
tion. Hence, we considered a real case study of a popular
e-commerce website: Flipkart [48]. A module to purchase a
mobile gadget was considered by writing the source code of
the data flow functionality of this module. In the following
are the benchmarks considered for the ATCG study:

1. Bubble sort: a sorting program that recursively sorts
a list, compare adjacent items, and swaps them into
the correct order. This program has two test require-
ments.2

2. Leap year: checks whether a year entered by the user
is a leap year. This program has two test requirements.

3. Factorial: calculates the factorial of a given number as
its output. This program has one test requirement.

4. Greater of three numbers: checks the greater number
from the input three numbers. This program has four
test requirements.

5. HCF: calculates the highest common factor (HCF)
of two input numbers. This program has four test
requirements.

6. Quadratic equation: determines the roots of a
quadratic equation as real or imaginary numbers when
the coefficients are given as an input. This program
has three test requirements.

7. Student grade: determines the grade of the student
when the input arguments are the subject’s marks. This
program has four test requirements.

8. Sum and average: determines the summation and aver-
age of input integers; the size of the input array can be
n. This program has one test requirement.

9. Triangle classification: classifies a triangle as “sca-
lene,” “equilateral,” “isosceles,” and “not a triangle”
based on the input three integers as three sides of the
triangle. This program has three test requirements.

10. Flipkart ecommerce application: source code
mapped from the functional flow of the e-commerce
application “Flipkart” [48]. If a user wants to
buy the electronic item “mobile,” then he/she
should traverse the functionalities as follows:
Home→gadgets→mobile→prize range→select
mobile→select quantity→checkout (bill). These
functionalities are mapped into source code and dif-
ferent test requirements are tested. For example, a test
requirement is to buy an Apple mobile in the range

2A test requirement identifies what needs to be tested, including con-
ditions, business logic, and functional and non-functional benchmarks.
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Fig. 1 Relative performance of
GA, PSO, and ABC for ATCG
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$800–$1000 when the quantity is two. The tester has
to check whether the final item in the checkout is in
accordance with the specification. For this, the source
code is traversed to fit the test requirement, and the
final objective function is created, which is optimized
using the proposed metaheuristics. This program has
135 test requirements.

5 Results and discussion

Each subject benchmark was taken to read their test require-
ments, and the corresponding objective functions were

Table 8 Small test case fault matrix

Test case number Revealed fault(s)

t1= f1

t2= f1

t3= f1

t4= f1+f2

t5= f1

t6= f1+f3+f4+f5

t7= f1+f2

t8= f1

t9= f1

t10= f1

t11= f1

t12= f1

t13= f1

t14= f1

t15= f1

t16= f1

t17= f1

t18= f1+f2

created. For each test requirement, the corresponding objec-
tive function was minimized using the GA, PSO, and ABC
metaheuristics. Test data was generated using all three meta-
heuristics. We aimed to determine which search algorithm
was more efficient for ATCG. For performance measures,
we considered two criteria: (1) time taken to generate the
final test value; and (2) coverage provided by the generated
test case.

Table 7 shows the relative performance of PSO, GA, and
ABC in terms of the average time taken for 20 runs to
generate the final test data for each subject program.

To establish confidence in the proposed approach, a sta-
tistical test was performed to evaluate whether ABC was
significantly better than GA and PSO for ATCG on selected
artifact instances. As discussed previously, 10 instances of
different benchmark problems, including a real benchmark
instance, were chosen to run each algorithm. Each algo-
rithm was run on 10 subjects, n times, where n=20, and
the average value from n runs was collected for each sub-
ject problem. This constituted a total of 3×10×20 = 600
runs. Additionally, each algorithm was evaluated based on
the final time taken to generate a test case that could tra-
verse each targeted goal for a given problem. The average
values of time obtained are as follows: ABC (0.095, 0.092,
0.046, 0.16, 0.15, 0.14, 0.13, 0.051, 0.15, and 4.99), GA
(2.22, 1.16, 0.95, 3.68, 3.61, 3.69, 2.36, 0.62, 2.04, and
23.62), and PSO (0.36, 0.2, 0.099, 0.38, 1.88, 0.51, 0.28,
0.076, 0.21, and 11.07). We sought to understand and eval-
uate whether there was any significant difference between
two algorithms, that is, ABC vs. GA and ABC vs. PSO.The
Mann–Whitney U-test (an unpaired test at 5% level of sig-
nificance) yielded a p−value of 0.0022 for ABC vs. GA and
0.03156 for ABC vs. PSO. For each case, the p−value sug-
gested that there was a statistical difference between ABC
vs. GA and ABC vs. PSO. However, it is extremely impor-
tant to run a paired test, such as the Wilcoxon rank sum,
when a case study involves artifacts of different levels of
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Fig. 2 Percentage of test suite
executed vs. percentage of
detected faults for a small
application
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difficulty [49]. In a paired sum test, the null hypothesis is
z=0, that is, the difference Zi = Yi−Xi is centered on zero,
which means that there is no statistical difference between
two algorithms, whereas the alternative hypothesis states
that there is a statistical difference between two algorithms.
In this study, ZABCV S.GA = −(2.125, 1.068, 0.904, 3.52,
3.46, 3.55, 2.23, 0.569, 1.89, 18.63) and ZABCV S.PSO =
−(0.265, 0.108, 0.053, 0.22, 1.73, 0.37, 0.15, 0.025, 0.06,
6.08). On average, the first algorithm, ABC, was always
better than the second algorithm in each case. A Wilcoxon
rank sum test (5% level of significance; W critical=8) in
this study yielded w=0, which argues that we should reject
the null hypothesis (because W<W critical) in both cases,
that is, ABC vs. GA and ABC vs. PSO. Thus, there is a
significant difference in the performance of ABC vs. GA
and ABC vs. PSO. Additionally, the results are not in sharp
contrast with those of the aforementioned Mann–Whitney
U-test. The reason to run such a paired test is to establish
confidence in evaluating the goodness of the randomized
algorithm when it is run over artifacts that have different
difficulty levels [49].

Figure 1 shows a comparison of the efficiency of three
search metaheuristics when time is considered as a perfor-
mance parameter.

The standard deviation of the algorithm’s time clearly
indicates very few diversions from the mean time. For each
subject, ABC outperformed GA and PSO.

5.1 Comments on coverage information
as a performance parameter

Coverage information is considered as a good criterion to
measure the potential of a test case. The coverage itself
can be divided into statement coverage, branch coverage,
and path coverage. Among these three types of coverage,
path coverage has the most potential because 100% path
coverage reflects 100% statement and branch coverage.

Because a given program can contain a number of inde-
pendent paths, we considered path selection based on inde-
pendent paths as a primary requirement. For each selected
path, we designed a path fitness function, which was fur-
ther given as an argument to the three metaheuristics,

Fig. 3 APFD comparison of
different prioritization schemes
for a small application
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Table 9 Subject benchmark real applications

S.no Application Number of LOC No. of classes No. of methods No. of branches No. of test cases No. of unique faulty line

1 Tera Paint3 18376 219 644 1277 424 148

2 Tera Present3 44591 230 1644 3099 32 139

3 Tera Spreadsheet3 12791 125 579 1521 1172 121

as discussed above. From the start, our goal was to hit
the targets, and each final generated test data value was
found to reach the goal, thereby achieving full coverage
for the targeted path. Therefore, this approach can achieve
100% path coverage if the fitness function is designed
efficiently.

When same number of initial maximum iterations was
set, the only difference we observed was in the time taken
to obtain the final values for each of the three metaheuristic
algorithms. From small to large applications, the time bene-
fits of ABC compared with GA and PSO bias its application
for ATCG.

6 Test case prioritization: a swarm approach

When a program is modified or updated, it is almost impos-
sible to guarantee that the changes work correctly and that
the unmodified modules of the program have not been
affected by the modifications. However, it is extremely nec-
essary to perform exhaustive regression testing because a
small change in one module can reflect a bigger change in
another module. Thus, regression testing has emerged as a
great subject of research within the software testing commu-
nity. Three core areas of regression testing that attract most
researchers are as follows: (1) test case minimization; (2)
test case selection; and (3) TCP.
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Fig. 4 APFD score for Tera Paint

The second objective of this paper is to develop a TCP
strategy using swarm behavior. TCP [50] is a well-studied
research problem in software testing.

TCP is a technique of ordering given test cases based on
defined prior criteria such that the test cases that determine
a number of defects and faults are given higher priority; that
is, they are executed before the others. Then the tester has an
opportunity to prioritize test cases based on some criteria,
such as maximum code coverage and maximum defect/fault
coverage in the minimum test suite execution time. Thus,
testers can save precious time and costs during regression
testing. More formally, the prioritization problem is defined
as follows [50]:

Definition (Test case prioritization problem) Given: test
suite T, set of permutations of T called PT, and function from
PT to real numbers f : PT → R.

Problem: Determine T ′ ∈ PT such
that(∀ (

T ′′)
(
T ′′ ∈ PT

)
T ′′ �= T ′) [F (

T ′) ≥ f
(
T ′′)].

Ideally, function f should map from tests to their fault
detection capability. However, we know the defect-finding
capability of a test only after its execution. In practice, func-
tion f is taken, which can substitute fault detection capability
of tests.

Our second focus is on TCP, which is used to iden-
tify the best order in which given test cases under some
test suite must be executed to maximize the rate of fault
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Fig. 5 APFD score for Tera Present
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Fig. 6 APFD score for Tera Spreadsheet

detection. Different artificial intelligence techniques are
available to solve optimization problems [51–54, 56], as dis-
cussed in Section 2. To evaluate the performance of various
TCP schemes, the APFD was considered as a performance
parameter. A higher preference was given to the prioritiza-
tion scheme that had a higher APFD value. The APFD [10]
is defined as

APFD = [1 − �
g

i=1reveal(i, T )/ng] + 1/2n, (1)

where T is the test suite, g is the number of faults in the
program under test, n is the number of test cases, and reveal
(i, T) is the position of the first test in T that exposes fault i.

The APFD score of the proposed swarm-based algorithm
was compared with existing work using three real test case
fault matrices [57–59]. For each test suite, we compared
the proposed PSO prioritization scheme with the existing
techniques for TCP.

Throughout the paper we are interested in the following
research question:

Q) Which techniques are most effective for solving the
TCP problem in software testing?

6.1 Motivational example: small test case fault matrix

To understand the PSO approach for TCP, we considered
a small motivational example: TeraPaint3. The original
repository [57] had 424 test cases with their corresponding
revealed faulty line numbers. Each similar faulty line could
be treated as a fault, that is, if test case T1 revealed a fault

in line 120 of the application, then test case T1 revealed a
fault. Because the repository of the test case fault matrix
contained many test cases that revealed the same faults, to
select a test case to create a small test fault matrix, we deter-
mined a fault that was captured by the maximum number
of test cases. Additionally, then we ensured the compulsory
selection of those test cases that at least captured the most
common fault. A selected test case could capture faults other
than the most common. Thus, we ensured a fair selection to
create a small test fault matrix, which at least revealed the
most common fault. In this example, the original test fault
matrix size was 424×148, that is, 424 test cases revealed
148 faults in the application. The most common fault was
on line 110. To map the fault line number to a fault number,
we first identified all unique faulty lines in the program, and
for each unique faulty line, a fault number was assigned. For
example, let a program contain n unique faulty line num-
bers. To assign a fault number for each unique faulty line,
we first extracted all unique fault lines in a matrix, and for
each faulty line, an index starting from one up to the last
unique fault was assigned. Thus, we could use this fault
index instead of faulty line numbers in our test fault matrix.
Hence, if a faulty line number was 110 (revealed by test case
5) and its corresponding fault index was “39,” then test case
5 revealed fault 39.

To understand the working strategy, we considered a
small test case fault matrix of size 18×5 from the larger
TeraPaint3 application of size 424×148. Although in a later
section, we consider the original TeraPaint3 application test
case fault matrix, to clearly understand the basic work-
ing principle, we chose the 18×5 test case fault matrix
(see Appendix 1). This matrix was not selected randomly;
extreme care was taken to select test cases that revealed
the most common faults. Thus, 18 test cases were selected
that revealed the five most common faults in the original
TeraPaint3 application.

6.2 PSO objective function creation

Our next objective was to prioritize the selected small moti-
vational test suite in order of maximum fault coverage. To
apply PSO to this problem, we first created an objective
function.

Table 10 Comparison of the APFD scores for various ordering in TCP

S.no Application APFD Score for different TCP Schemes

Random Reverse Untreated PSO

1 Tera Paint 73.48 47.74 73.15 85.52

2 Tera Present 58.89 63.61 48.99 88.07

3 Tera Spreadsheet 90.87 76.32 80.04 97.75
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Because our objective was to maximize the rate of fault
detection in a given test fault matrix, the objective func-
tion had to be designed in such a way that it would capture
the most common fault. Considering this aim, the following
objective function was formulated:

Netf itness =
∑n

i=1
t, (2)

where t is the test case and t = ∑
revealed faults.

Additionally, nis the number of test cases in the test suite.
Equation (2) ensured that a particular test case captured

its entire corresponding faults. The initial swarm population
was created randomly between the lower and upper bounds,
where the lower bound was the first test case and the upper
bound was the final test case in the test case fault matrix.
In the present example, the size of the small test case fault
matrix is [18×5]. Table 8 presents the faults revealed by
each test case.

Note that
t6 = f1+ f3+ f4+ f5 in Table 8 indicates that test case t6

captures fault numbers 1, 2, 4 and 5.
The following fitness function was formed:
Objval = (t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 +

t10 + t11 + t12 + t13 + t14 + t15 + t16 + t17 + t18).
For each iteration, the Objval fitness function was evalu-

ated and checked for whether the population was converging
toward the global maximum. The global maximum for this
particular example was an arrangement of test cases that
would reveal the most common faults. Thus, if the algorithm
generated such a global arrangement, then it was stopped.
The maximum number of iterations was 500, which was
used as a stopping condition.

The following is the final output of the PSO generated
test sequence:

t6 t4 t7 t18 t1 t2 t3 t5 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17.
The APFD score [3] was calculated by determining the area
under the curve of Fig. 2. The APFD score calculated using
(1) resulted in the same score as that calculated using the
area under the curve method. To explain the results, both
techniques are presented in this paper (Fig. 2). We com-
pared the PSO TCP scheme with random, reverse, and no
ordering, as shown in Fig. 3.

6.3 From motivational to real applications

This motivational example was further extended to check
whether the PSO scheme could prioritize a large amount of
test data. Our motivation to extend this study was based on
the previous studies in TCP. A number of researchers have
used small datasets in their studies on TCP [39, 40, 60–63].
Extending the study to larger datasets develops more confi-
dence in the proposed work. Furthermore, real-time testers
have to manage large amounts of data, thus a bias toward
using a large test dataset is naturally justified.

Three real test case fault matrix datasets, as discussed
above, were used to further check the validity of PSO-based
ordering. The three real applications [57–59] are described
in Table 9. The objective function for each benchmark was
formed (see Appendix 2) and evaluated using the PSO
algorithm.3

6.3.1 Pre-processing repository data

The size of the original dataset (Tera Paint) was (424×148),
where 424 is the number of test cases and 148 is the number
of unique faulty lines in the application. To use this test data,
we first instrument it using the following steps:

1. Assign each unique faulty line an index value, starting
from one.

2. Create a fault matrix for each corresponding faulty line.
3. Create a matrix of the test case and its corresponding

fault numbers.

The above three steps were also instrumented for
the remaining two benchmarks, that is, Tera Present and
Tera Spreadsheet. Thus, we obtained a matrix for each
of the three applications. The matrix contained informa-
tion about each test case’s fault-finding capacity. The
APFD scores obtained for Tera Paint, Tera Present, and
Tera Spreadsheet after applying PSO TCP to the formed test
fault matrix are shown in Figs. 4, 5 and 6, respectively.

A comparative analysis of the different prioritization
schemes is shown in Table 10.

From the above observation, it is clear that for both small
and large test suite prioritization, the effectiveness of PSO-
based ordering was significantly better than that of random,
reverse, and unordered prioritization schemes.

7 Conclusion

In this paper, we focused on two objectives: the genera-
tion of test cases using metaheuristic approaches and TCP
of large repository data using PSO. For the generation of
test cases, we considered 10 software engineering bench-
mark problems, including one real case study, to validate
the proposed approach. Three optimization algorithms were
considered to generate effective test cases for randomly
chosen targets in the subject benchmarks. Although each
optimization algorithm performed well for generating tar-
get test data, when we compared the time efficiency, we
found that ABC outperformed all other algorithms. Addi-
tionally, the fitness function designed using the proposed
approach provided all the independent path coverage if

3Detailed MATLAB code for PSO for TCP can be provided by the
authors upon prior request for academic use only.
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all test requirements were considered while forming the
objective fitness function.

A second major contribution of this work was demon-
strated by solving the TCP problem using a PSO-based app-
roach. We considered four real test pool sizes: one was small
and the other three were large. For our experiments, for
small and large test suites, we found that PSO-based order-
ing was substantially significant in maximizing the rate of
fault detection in comparison with existing approaches, such
as random, reverse, and unordered prioritization schemes.

A major problem that we found during this work was in
the extraction of datasets for TCP. Public repositories are
readily available; however, users extracting data from these
available repositories encounter a small amount of user doc-
umentation. The preprocessing of raw data to make it useful
requires a large amount of effort. Thus, care should be taken
to provide user-friendly documentation for public datasets.
The approach presented in this paper shows the potential of
metaheuristic algorithms and techniques in the domains of
ATCG and TCP. Thus, in future work, we will exploit exist-
ing nature-inspired algorithms and explore new paradigms
of computational intelligence to solve various existing and
forthcoming problems in software testing.

Appendix 1: Small application test suite- fault
matrix

Only the main modules are provided in this paper. Detailed
source code is available from the authors upon prior request.

Small- Size Application test Suite- Fault Matrix

Test case number fault1 fault2 fault3 fault4 fault5

T1 X – – – –
T2 X – – – –
T3 X X – – –
T4 X – – – –
T5 X – – – –
T6 X – X X X
T7 X X – – –
T8 X – – – –
T9 X – – – –
T10 X – – – –
T11 X – – – –
T12 X – – – –
T13 X – – – –
T14 X – – – –
T15 X – – – –
T16 X – – – –
T17 X – – – –

T18 X X – – –

X- indicate fault is revealed and “–” indicates fault is not revealed

Large real application test suite: data can be accessed at
[57].

Appendix 2: Objective function formulation
for TeraPaint3

The following code is implemented in MATLAB and forms
the objective function. The objective function is given as an
input to the PSO algorithm. Note that the lower and upper
bounds in the PSO algorithm depend on the system under
test. Because TeraPaint3 has 424 test cases, the lower and
upper bounds are set to [1] and [424], respectively.

Objective Function Formulation for TeraPaint3

function [ObjVal test]=ofun Terapaint(x)
T1= x(1);
T2= x(2);
T3= x(3);
T4= x(4);
.
T424= x(424);

%F1. . . FN are the test cases:-Put here which test case
find which faults(T)

F1= T39;
F2= T103;
F3= T113+T114+T115;
F4= T107+T108+T109;
F5= T110+T111+T112;
F6= T140;
F7= T51+T52+T53+T54
F8= T70+T73+T74+T75;
F9= T64+T67+T68+T69;
.
.

F420= T5+T6+T7+T8+T9+T10;
F421= T5+T6+T7+T8+T9+T10;
F422= T5+T6+T7+T8+T9+T10;
F423= T5+T6+T7+T8+T9+T10;
F424= T5+T6+T7+T8+T9+T10;
final= [F1 F2 F3 F4 . . . . F420 F421 F422 F423 F424];
[value, test] = sort(final, 2,‘descend’)
ObjVal=(F1+F2+F3+F4..+ . . . . . .+F420+F421+
F422+F423+F424);

MY(:,:)=final;
End

% The APFD scores for the other two applications, Ter-
aPresent3 and TeraSpreadSheet3, are calculated in a similar
manner.
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