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Abstract Many multi-objective evolutionary algorithms
(MOEAs) have been developed for many-objective opti-
mization. This paper proposes a new enhanced θ dominance
and density selection based evolutionary algorithm (called
θ -EDEA) for many-objective optimization problems. We
firstly construct an m-dimension hyper-plane using the
extreme point on the each dimension. Then we replace the
distance between the origin point and projection of solu-
tion on the reference line of θ dominance which recently
is proposed in θ dominance based evolutionary algorithm
(θ -DEA), with the perpendicular distance between each
solution and the hyper-plane to develop an enhanced θ

dominance. Finally, in order to maintain better diversity,
θ -EDEA employs density based selection mechanism to
select the solution for the next population in the envi-
ronment selection phase. θ -EDEA still inherits clustering
operator and ranking operator of θ -DEA to balance diversity
and convergence. The performance of θ -EDEA is validated
and compared with five state-of-the-art algorithms on two
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well-known many-objective benchmark problems with three
to fifteen objectives. The results show that θ -EDEA is capa-
ble of obtaining a solution set with better convergence and
diversity.
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1 Introduction

Multi-objective evolutionary algorithms (MOEAs) have
been widely used in real-world applications [1], e.g., soft-
ware engineering [2, 3], water distribution systems [4], and
industrial scheduling [5, 6]. Hence, many MOEAs have
been developed to solve the multi-objective optimization
problems. They have shown excellent success on the multi-
objective problems with two or three objectives, such as
non-dominated sorting genetic Algorithm 2 (NSGA-II) [7],
strength Pareto evolutionary Algorithm 2 (SPEA2) [8], mul-
tiobjective evolutionary algorithm based on decomposition
(MOEA/D) [9], and Pareto envelope based selection Algo-
rithm 2 (PESA-II) [10]. However, they suffer from some
challenges in solving the multi-objective optimization prob-
lems with four or more objectives [1]. Moreover, many
optimization problems having a large number of objec-
tives also are commonly seen in real-world applications [11,
12]. Thus, it is not surprising that tackling a large num-
ber of objectives has been one of the hot research topics in
evolutionary multiobjective optimization(EMO)community
during recent years [13].

Many-objective optimization problems(MaOPs) are
defined as problems with four or more objectives [1].
MaOPs pose many difficulties to any MOEAs. First and
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foremost, with the number of objectives increasing, almost
all the solutions in the population become nondominated,
which would lead to a severe loss of selection pressure that
drive solutions toward the Pareto Front (PF). This consid-
erably impedes the evolutionary process [14]. Secondly,
in high dimension objective space, the conflict between
convergence and diversity becomes deteriorative, since
most of the diversity-preservation operators (such as the
crowding distance operator [7], or kth nearest distance [8])
prefer selecting the dominance solutions [15]. They cannot
enhance the selection pressure toward the PF, and may even
put a brake on the evolutionary process to a certain extent.
With the increased number of objective space in size, these
operators also become a computationally expensive opera-
tion. Thirdly, visualization of a high-dimensional front is a
challenging task. These difficulties have been highlighted
both analytically and experimentally in the early studies
[16, 17] on evolutionary many-objective optimization.

To overcome difficulties mentioned above, a variety of
algorithms have been proposed, which can be mainly clas-
sified into five categories. Firstly, new dominance relation
based approaches modify the Pareto dominance to produce
fine selection pressure toward PF, such as θ dominance
[18], ε-dominance [19, 20], grid dominance [21], fuzzy
Pareto dominance [22, 23], preference order ranking [24],
and so on [25–27]. These dominance relations extend their
dominance area to a certain extent. Secondly, the idea of
the decomposition-based approach is that it decomposes an
m-objective problem into a series of single-objective sub-
problems based on aggregation functions and then solves
these subproblems simultaneously. The well-known algo-
rithm is the multi-objective evolutionary algorithm based
on decomposition(MOEA/D) [9]. There are many other
improved versions of MOEA/D, such as MOEA based
on both dominance and decomposition (MOEA/DD) [13],
improved decomposition-based evolutionary algorithm(I-
DBEA) [28]. Thirdly, indicator based approaches introduce
a performance indicator as the fitness value to guide the
process of evolution. Hypervolume(called S metric) [29],
R2 [30] and other indicators [31] have been used widely in
MOEAs for many-objective problems. Some common algo-
rithms contain hypervolume estimation algorithm (HypE)
[32] S metric selection EMOA (SMS-EMOA) [33], many-
objective metaheuristic based on the R2 indicator (MOMBI)
[34] and indicator-based evolutionary algorithm(IBEA)
[31]. Among these indicators, hypervolume is probably the
most popular one due to its good theoretical properties.
However, with the increased number of objectives, compu-
tational costs become very expensive, which lead to being
rarely applied in an application. Fourthly, reference points
based MOEAs depend on multiple predefined reference
points to make them multi-directional search. This class
algorithm mainly has NSGA-III [35], θ dominance based

evolutionary algorithm (θ -DEA) [18], clustering-ranking
evolutionary algorithm (crEA) [36]. Reference points play a
crucial role in maintaining both convergence and diversity.
Finally, hybrid technique based methods not only enhance
pressure of population toward true PF, but also maintain
diversity of population during the evolutionary process. The
typical algorithms have Two Arch2 [37], MOEA/D-U [38]
and EFR-RR [38]. Two Arch2 divides nondominated solu-
tions into two archives, i.e. the convergence archive(CA)
and the diversity archive(DA). CA adopting indicator of
IBEA [31] promotes convergence, while DA maintains
diversity based on another approach. Others introduce dif-
ferent operations into original algorithms to enhance their
convergence or diversity. As shown in [39], the performance
of an algorithm can be significantly enhanced by adopting
a unified approach and borrowing operations from another
algorithm. Generally speaking, the main idea of these algo-
rithms is to balance both convergence and diversity.

Although many algorithms have been proposed to solve
many-objective optimization problem, existing state-of-the-
art many-objective evolutionary algorithms are still not
powerful enough [18]. There are still some drawbacks in
these algorithms. A new dominance relation based many-
objective evolutionary algorithm, called θ -DEA, is pro-
posed to solve the many-objective optimization problem.
Although θ -DEA considers both convergence and diversity
in the environmental selection process, we can find that it
does not demonstrate strong competitiveness for its conver-
gence and diversity on some problems with irregular shape,
such as WFG1, WFG2, from [18]. In addition, convergence
information in the θ dominance may be weak, which leads
to obtaining poor convergence performance on the problems
with regular shape.

Based on the above motivation, we improve the θ -DEA
to obtain a solution set with better convergence and even
distribution. Our contributions are as following:

(1) An enhanced θ -DEA, called θ -EDEA, is proposed
through improving θ dominance to enhance conver-
gence and introducing density based selection mech-
anism to maintain diversity. Firstly, we construct an
m-dimension hyper-plane using extreme point on each
objective. Then, the distance from the origin point to
the projection of a solution on the reference line in θ

dominance is replaced with the perpendicular distance
between the solution and the m-dimension hyper-plane
to form the enhanced θ dominance.

(2) Through computational experiments, the results show
that using the perpendicular distance is more effective
than the distance from the ideal point to the projection
of a solution on the reference line, which indicates that
the enhanced θ dominance has stronger convergence
performance.



994 C. Zhou et al.

(3) The density based selection mechanism is incorporated
into the proposed θ -EDEA to maintain diversity in the
environment selection phase.

(4) Through investigating to parameter θ , the results indi-
cate that when θ =5.0, θ -EDEA can achieve the best
performance.

(5) An extensive comparison between the proposed θ -
EDEA and five state-of-the-art algorithms on two
well-known test suites is provided in this paper. The
results show that θ -EDEA is a very promising algo-
rithm for many-objective optimization.

The rest of the paper is organized as follows. Section 2
briefly presents the concepts of MOO, and definition of θ

dominance. In Section 3, the proposed θ -EDEA is described
in detail. The experimental results and discussions are out-
lined in Section 4. Finally, the conclusions are presented in
Section 5.

2 Preliminaries

2.1 Multiobjective optimization problem

Multi-objective optimization problem also is called multi-
criteria optimization problem. Generally, a minimize multi-
objective optimization problem having n decision variables
and m objective variables can be mathematically described
as:

Minimize f (x) = (f1(x), f2(x), . . . , fm(x))T

Subject to x ∈ X.

}
(1)

Where x = (x1, . . . , xn)
T ∈ X ⊆ Rn is n-dimension

decision vector; X represents n-dimension decision space;
y = (y1, . . . , ym)T ∈ Y ⊆ Rm is m-dimension objec-
tive vector; Y denotes m-dimension objective space. f :
X → Y constitutes m conflicting objective functions,
and is a mapping from n-dimensional decision space X to
m-dimensional objective space Y.

Based on the above, a few relevant definitions are defined
as follows:

Definition 1 (Pareto Dominance) [7, 40]: Let x1, x2 ∈
X, x1 ≺ x2 if and only if

∀i ∈ {1, 2, . . . , m} : fi (x1) ≤ fi (x2) ∧ ∃j ∈ {1, 2, . . . m}
: fj (x1) < fj (x2)

Definition 2 (Pareto Optimality) [7, 40]: A vector x∗ ∈ X
is Pareto optimal if there is no other x ∈ X, such that x ≺ x∗

The set of all Pareto optimal points is called the Pareto
set (PS). The corresponding shape of Pareto set in objective
space forms the Pareto Front (PF).

Definition 3 (Ideal Point): The ideal point z∗ is a vector
z∗ = (z∗

1, z
∗
2, . . . , z

∗
m)T , where z∗

i is the infimum of each
objective i ∈ {1, 2, . . . , m},.

Definition 4 (Nadir Point):The nadir point znad is a vector
znad = (

znad
1 , znad

2 , . . . , znad
n

)
, where znad

i is the supremum
of each objective, i ∈ {1, 2, . . . , m}

2.2 θ Dominance relation

θ dominance which uses penalty-based boundary intersec-
tion (PBI) approach of MOEA/D is proposed in [18]. θ

dominance works in the normalized objective space, where
the origin point is the ideal point. Let λi be a reference line
or weight vector, f (x) be a solution in the objective space.
PBI is described as:

Min F(x) = di,1(x) + θ · di,2(x) (2)

Where θ is a predefined penalty parameter, i is an index
of a reference line. As shown in Fig. 1, di,1(x) denotes the
distance from the origin point to the projection of f (x) on
the reference line λi and di,2(x) is the perpendicular dis-
tance between f (x) and λi . θ dominance is defined on a set
of solution St and a predefined set of reference lines �θ

dominance relation is determined by two steps. Firstly, each
solution in St is assigned to a reference line to form N dif-
ferent clusters C according to di,2(x), where N is size of
reference lines. Secondly, F(x) of each solution is computed
and solutions belonging to the same cluster Ci can be com-
pared by F(x) to determine θ dominance relation. Based on
the above, several concepts related to θ dominance can be
defined as follows.

Fig. 1 Illustration of distances di,1(x), di,2(x)
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Definition 5 (θ dominance ) [18]: Let x, y ∈ St , x is said
to θ -dominance y, denoted by x ≺θ y, if and only if x ∈
Ci, y ∈ Ci and Fi(x) < Fi(y) where i ∈ {1, 2, . . . , N}

Definition 6 (θ optimality ) [18]: A solution x∗ ∈ St is
called as θ optimality iff there is no other solution x ∈ St

such that x ≺θ x∗
A set of all θ -optimal solutions is referred to as the

θoptimal set (θ -OS) and each solution of θ -OS is mapped
correspondingly in the objective space to form the θ -optimal
front [18].

θ dominance aim to gain nondominated solution set that
minimizes the distance to the PF and spreads well over the
PF.

3 The proposed algorithm

3.1 Framework of the proposed θ -EDEA

Framework of the proposed θ -EDEA is presented in Algo-
rithm 1. Firstly reference points � = {λ1, λ2, . . . , λN },,
which are considered as center of clusters for clustering
operator and maintain diversity, are generated using Das
and Dennis’s method [41]. Then, the initial population P 0,
with N individuals is randomly produced. The ideal point
z∗ is initialized in step 3. Steps 5–15 are iterated in evolu-
tion procedure until stopping criteria is met. Step 6 adopts
SBX operator with a large distribution index and polynomial
mutation to produce offspring population Qt . After union
Rt of Qt and current population Pt , nondominated sorting
is used to classify Rt into different nondominated levels
(F1, F2 and so on). Population, St = ∪l

i=1Fi , is achieved,
where Fl satisfies size of St exceeding N for the first time.

Then, St is applied to update the ideal point. In step 10, an
m-dimension hyper-plane is constructed using the extreme
points. Clustering operator is employed to split the mem-
bers in St into N clusters, C = {C1, C2, . . . , CN }. Ranking
operator is manipulated to sort the member in Ci in terms
of enhanced θ dominance. This produces different layers,
F∧ = {

F ′
1, F

′
2, . . . , F

′
N

}
. Finally, the density based selec-

tion mechanism is used to select the remaining individuals
from F ′

l to fill slots in Pt+1

3.2 Reference points generation

A set of reference points is generated using Das and Den-
nis’s method [41] that can create a set of uniformly dis-
tributed points in the objective space with a predefined
integer p which controls the divisions along each axis. In
this approach, reference points are sampled from a unit sim-
plex. Reference lines which pass through the origin point
and reference points not only are used to maintain diversity
of obtained solutions, but also are considered as the center
of each cluster produced by clustering operator. The number
of reference points (H ) can be calculated as

H =
(

p + m − 1
p

)
(3)

From the above formulation, the number of reference points
depends on the dimension of objective space m and user-
defined integer p. For example, for three objective problem,
if p is set to 4, total number of reference points is H =15.
For clarity, the distribution of reference points or reference
lines is illustrated in Fig. 2a on a three objective problem.

When p ≥ m, number of reference points will be inter-
mediate. However, for high-dimensional objective problem,
even if we use p = m, it would lead to a huge number of
reference points, which apparently increases the computa-
tional burden. For example, when m =7, p =7 will require
1716 reference points. On the other hand, if we simply
address this issue by lowering p, it will make all reference
points sparsely lie along the boundary of the simplex, which
is obviously harmful to the solution diversity. To solve the
issue, we utilize two-layered reference points with relatively
small values of p as presented in [35]. Let p1 and p2 denote
divisions of boundary layer and inside layer respectively,
then number of reference points is computed as:

H =
(

p1 + m − 1
p1

)
+

(
p2 + m − 1
p2

)
(4)

Figure 2b illustrates the distribution of two-layered refer-
ence points, with p1 =2 for the boundary layer and p2 = 1
for the inside layer on a three objective problem.
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Fig. 2 a Structured reference points in the three-objective problem with p = 4. b Two-layer structured reference points with p1 = 2 for the
boundary layer and p2 = 1 for the inside layer

3.3 Constructing m-dimensional hyper-plane

In the proposed algorithm, we need m extreme points for
constructing an m-dimension hyper-plane. Therefore, the
extreme points (ze

i ) in the ith objective axis are identified
by finding the solution (x ∈ St ) that requires the following
achievement scalarizing function minimum.

ASF(x,wj) = m
max
i=1

{
fi(x) − z∗

i

wj,i

}
(5)

Where wj = (
wj,1, wj,2, . . . , wj,m

)
is the axis direction

of the j th objective axis and wj,i subjects to the following
condition.

wj,i =
{

0, j �= i,

1, j = i.
(6)

Note that, 0 should be replaced with a small number 10−6.
Thus, these m extreme points are used to construct an m

dimension hyper-plane. Let a = {a1, a2, . . . , am} denote
intercept ai of the ith objective axis. So the equation of the
m dimension hyper-plane is expressed as following

x1

a1
+ x2

a2
+ · · · + xm

am

= 1. (7)

Given a matrix A = (
ze

1 − z∗, ze
2 − z∗, . . . , ze

m − z∗) and a
vector b = (1, 1, . . . , 1), a vector x is generated by Ax = b.
Each intercept ai can be computed by following equation.

ai = 1

xi

+ z∗
i i ∈ {1, 2, . . . , m} . (8)

Note that, if all extreme points contain duplicate extreme
points, intercepts can be replaced with the maximum value
(zmax

i ) for each objective axis i = 1, 2, ..., m. Procedure
of calculating intercepts and constituting the hyper-plane
using extreme points is showed in Fig. 3 on a three objec-
tive problem. The main process of constructing hyper-plane
is showed in Algorithm 2.

3.4 Clustering operator

Clustering operator is an important step in the proposed
algorithm. The clustering operator works in the objective
space not in the decision space, and the ideal point is con-
sidered as the origin point. However, the clustering operator
adapts different reference line as center of cluster so that
each solution in St is associated with a certain reference
line.

Let us consider a reference line λi pass through the
origin with a reference point. f (x) presents a solution in
the objective space. di,1(x) is the distance between the
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Fig. 3 Constructing the hyper-plane from extreme points and comput-
ing intercepts are shown for a three-objective problem

ideal point and the projection of f (x) on λi , di,2(x) is
the perpendicular distance between f (x) and λi . These are
shown in Fig. 4, They can be computed respectively as

di,1(x) = ‖f (x)λi/ ‖λi‖‖ (9)

di,2(x) = ∥∥f (x) − dj,1(x)(λj /
∥∥λj

∥∥)
∥∥ . (10)

Procedure of clustering operator is that the solution x
with the closest distance (di,2(x)) to ith reference line can be
categorized to the cluster Ci , as be described in Algorithm 3.

Fig. 4 Procedure of clustering operator

3.5 Enhanced θ dominance and ranking operator

Enhanced θ dominance is similar to θ dominance in [18],
but the difference between them is that di,1(x) in the
θ dominance is replaced. Enhanced θ dominance also is
defined on the population and the predefined set of refer-
ence line that pass through the origin point and reference
points. Each solution can be divided into a cluster produced
by the clustering operator. Solutions in the same cluster can
compare with others using enhanced θ dominance. In order
to illustrate the enhanced θ dominance, we explain it in two-
objective space. Suppose that f (x) = (f1(x), f2(x))T is a
solution in a two objective problem, line L is constructed
by Algorithm 2. Let dL(x) be the perpendicular distance
between f (x) and line L, and di(x) be the perpendicular dis-
tance between f (x) and reference line λi . These distances
are demonstrated in the two-objective space for convex
problem in Fig. 5. They can be calculated respectively by
(11) and (10)

dL(x) = |f1(x)/a1 + f2(x)/a2 − 1|√
(1/a1)2 + (1/a2)2

(11)

The larger dL(x) value means better convergence while the
smaller di,2(x) value can maintain better diversity. The F(x)
of enhanced θ dominance is defined as following:

Min F(x) = θ ∗ di,2(x) + (−dL(x)) (12)

Where θ is a supplied penalty parameter. Since di,2(x) and
dL(x) are mutual conflict, dL(x) need be set negative value
so that they can simultaneously minimize.
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Fig. 5 Illustration of di,2(x) and dL(x)

Definition 7 (enhanced θ dominance): Let x, y be two
solutions. x ≺E y, if only and if x ∈ Ci, y ∈ Ci , and
F(x) < F(y), where i ∈ {1, 2, . . . , N}

Due to enhanced θ dominance balancing both conver-
gence and diversity, each solution in St is pushed fast and
evenly toward the Pareto front. Meanwhile, with the extreme
points on the each objective updating, line L also is recon-
structed, which makes the line L close to Pareto Front.

However, for a concave problem, it is possible to occur
that some solutions locate above line L with the evolution
running. Figure 6 illustrates the process on the two objective
problem. In the early stage of the evolutionary process, all
solutions in the population locate below the line L, as shown
in Fig. 6a. Then, some solutions possible locate above the
line L, as shown in Fig. 6b. In the end stage of the evolu-
tionary process, all solutions in St move to above the line L,
as shown in Fig. 6c. The last two cases lead to the result that
dL(x) with smaller value is better. To tackle the two cases,
the distance can be amended as follows.

dL(x)=
{
dL(x), if f1(x1)/a1+f2(x2)/a2+f3(x3)/a3−1<0
−dL(x), otherwise.

(13)

F(x) of each solution is calculated by (11), and solu-
tions in each cluster are assigned a layer using ranking
operator which sorts the solutions in ascending order by
their F(x). The solution with smaller F(x) value is front
in each cluster. The first solution in each cluster is selected
to consist of layer F ′

1. Then we use the same steps to pro-
duce F ′

2, F
′
3, . . . , F

′
l . Finally, we can make each solution be

assigned into a layer.

3.6 Density based selection mechanism

To maintain diversity, we compute density of solution based
on clustering operator. After clustering operator, each solu-
tion is split into a cluster. Density value σ of a solution is
defined as number of solution in the cluster to which the
solution belongs. Solution with smaller density value is bet-
ter. The density based selection mechanism firstly selects
the lowest layer solution into new population Pt+1 until
the number of selected solutions equals the population size
However, solutions in the last layer are selected based on its
density value. The pseudo-code of the selection procedure
is given in Algorithm 4

3.7 Computational complexity analysis

In the proposed θ -EDEA, the main computational com-
plexity depends on four components: GetParetoNondom-
inationLevels, ConstructHyperplane, Clustering Operator
and Ranking Operator from Algorithm 1. Given a MaOP
with m objectives and population size N as an exam-
ple, GetParetoNondominationLevels requires O(mN2) com-
putations. ConstructHyperplane in Algorithm 2 requires
O(mN) computations. Computation of Clustering Opera-
tor in Algorithm 3 is same as θ -DEA, requiring O(mN2).
In the enhanced θ dominance, distance of each x in St to
hyper-plane is computed in O(m) computations. So total
complexity is O(m|St |). The worst case of Ranking Oper-
ator requires O(|St |log|St |) computations. Since |St |<2N ,
total computational complexity of the proposed algorithm is
O(mN2), which is same as that of θ -DEA [18].

4 Experiment and results

This section devotes to the experimental design and result
analysis for demonstrating the performance of the proposed
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Fig. 6 Changes of location between line Land solutions with the evolution process, on the two-objective problem

algorithm θ -EDEA. We compare the proposed algorithm
with five other state-of-the-art algorithms: NSGA-III [35]1.,
GrEA [21].2, MOEA/D [9]3 HypE [32]4 θ -DEA [18].5 Test
problems and performance metrics used in our experiments
are briefly introduced in Section 4.1 and Section 4.2 respec-
tively. Parameter setting is given in Section 4.3. Section 4.4
is significance test adopted in the paper. Finally, result and
discussion are provided.

4.1 Test problems

Deb–Thiele–Laumanns–Zitzler (DTLZ) [38, 42] and Walk-
ing Fish Group (WFG) [43, 44] are two popular scalable
test suites for many-objective optimization. To test perfor-
mance of the proposed algorithm, we use DTLZ1-4and all
9 WFG test functions from three to fifteen objective prob-
lems DTLZ1 PF is satisfied with

∑m
i=1 fi(x) = 0.5 while

other DTLZ problems need to satisfy
∑m

i=1 fi(x)2 = 1. The
number of decision variables is set as n = m + r − 1for
DTLZ test cases. In our experiment, r is set as 5 for
the DTLZ1 and is set as 10 for the DTLZ2-4. For the
WFG test suite, according to [18], the number of decision
variables suggests to n =24, where the position-related
variable k = m−1 and the distance-related variable l =
n − k. The features of these problems are described as
Table 1.

1The code of NSGA-III is from http://learntsinghuaeducn:8080/
2012310563/ManyEAsrar.
2The code of GrEA is from http://www.tech.dmu.ac.uk/∼syang/
publications.html.
3The code of MOEA/D is from http://dces.essex.ac.uk/staff/zhang/
webofmoead.htm.
4The code of HypE is from http://www.tik.ee.ethz.ch/pisa.
5The code of θ -DEA is from http://learntsinghuaeducn:8080/
2012310563/ManyEAsrar.

4.2 Performance metrics

To evaluate the solution set obtained by the proposed algo-
rithm, the inverted generational distance (IGD) [41] that
is one of the most widely used metric is adopted in our
experience. IGD provides a combined information about
convergence and diversity of a solution set. To compute
IGD value, a set of uniformly distributed points over the
true PF is required. However, for many-objective optimiza-
tion, a larger number of studies failed to point out how
they sampled those points along the PF. Since reference
points or reference directions are predefined in θ -DEA,
NSGA-III and MOEA/D algorithms, respectively and true
Pareto-optimal surface of most test problems are known
we can locate the intersection point of the Pareto-optimal
surface with each reference line. Therefore, according to

Table 1 Features of problems

Problems Features

DTLZ1 Linear, Multi-modal

DTLZ2 Concave

DTLZ3 Concave, Multi-modal

DTLZ4 Concave,Biased

WFG1 Mixed,Biased,Scaled

WFG2 Convex,Disconnected,Multi-modal,Non-separable, Scaled

WFG3 Linear,Degenerate,Non-separable,Scaled

WFG4 Concave,Multi-modal,Scaled

WFG5 Concave,Deceptive,Scaled

WFG6 Concave,Non-separable,Scaled

WFG7 Concave,Biased,Scaled

WFG8 Concave,Biased,Non-separable,Scaled

WFG9 Concave,Biased,Non-separable,Scaled,Deceptive

http://learntsinghuaeducn:8080/2012310563/ManyEAsrar
http://learntsinghuaeducn:8080/2012310563/ManyEAsrar
http://www.tech.dmu.ac.uk/~ syang/publications.html
http://www.tech.dmu.ac.uk/~ syang/publications.html
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://www.tik.ee.ethz.ch/pisa
http://learntsinghuaeducn:8080/2012310563/ManyEAsrar
http://learntsinghuaeducn:8080/2012310563/ManyEAsrar
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intersection points, a new way to compute IGD is proposed
by Deb and Jain [35]. The way is defined as following

IGD(A,Z) = 1

|Z|
|Z|∑
i=1

|A|
min
j=1

d(aj , zi) (14)

Where d(aj , zi) = ∥∥aj − zi

∥∥
2. A presents the set of final

nondominated solutions obtained in the objective space. The
set Z consists of intersection points of the true PF with each
reference line. The set A with smaller IGD values is better.

However, MOEAs without supplying reference
points/directions fail to compute the IGD value. To com-
pare with these MOEAs, we adopt another popular metric
i.e., hypervolume(HV) [45, 46]. HV denotes the volume of
the objective space between the obtained solution set and a
reference point and also gives the solution set a comprehen-
sive assessment with respect to convergence and diversity.
The compute way can be described as:

HV (A, r) = volume

(
∪

f ∈A
[f1(x), r1]×. . . × [fm(x), rm]

)

(15)

Where A is the set of nondominated solutions in the objec-
tive space. r = (r1, r2, . . . , rm) denotes a reference point in
the objective space which is dominated by all points in the
set A.

To compute HV value, we need normalize the objec-
tive values of solutions in A according to the range of the
problem’s Pareto front, due to test problems with different
scaling of the search space. As the recommendation in [47],
the reference point is set to 1.1 times the upper bound of the
Pareto front (i.e., r = 11m)

In addition, for the problems with no more than ten objec-
tives, we calculate HV exactly using the recently proposed
WFG algorithm [29]. For problems with 15 objectives, we
approximate the HV by the Monte Carlo simulation pro-
posed in [32], and 10 000 000 sampling points are used to
ensure the accuracy.

4.3 Parameter setting

In this section, we set all parameters utilized by these algo-
rithms. For common parameters, we set the same value for
the fair comparison. For other parameters, we set the best
value that can obtain the best nondominated solution set.

1) Population size: for NSGA-III, θ -DEA, θ -DEA*,
MOEA/D algorithms, their population size N is con-
trolled by division p. So we set parameter p to deter-
mine population size N . For other algorithms, we adopt
a same parameter value to fairly compare. Table 2 lists
the population sizes used in this paper for the problem
with different objectives.

Table 2 Setting of Population Size

No. of Objectives(m) Divisions(H) Population Size(N)

3 12 91

5 6 210

8 3,2 156

10 3,2 275

15 2,1 135

2) Parameters of Crossover and Mutation: For GrEA,
MOEA/D, HypE, SBX probability is pc = 10 and its
distribution index is ηc = 2 and Polynomial mutation
probability is pm = 1/n and its distribution index is
ηm = 20. As for NSGA-III, θ -DEA, θ EDEA, the set-
tings are only a bit different according to [29], where
ηc is set to 30.

3) Stopping Condition and Number of Runs: an algorithm
for each run reach to a specified number of generations.
Each algorithm in this paper is independently run 20
times on each test instance.

4) Penalty Parameter of MOEA/D-PBI and θ -DEA: θ =
5.0

5) Neighborhood Size in MOEA/D: T = 20.
6) Grid Division (div) in GrEA: the settings of div are

summarized in Table 3
7) Number of Points in Monte Carlo Sampling: it is set

to10 000 according to [28].

4.4 Significance test

To test the different statistical significance we use the
Wilcoxon signed-rank test [48–50] at the 5% significance
level.

Table 3 Setting of grid division GrEA

Problem No. of Objective(m) Grid Division(div)

DTLZ1 3, 5, 8, 10, 15 14, 17, 12, 17, 28

DTLZ2 3, 5, 8, 10, 15 15, 12, 12, 12, 12

DTLZ3 3, 5, 8, 10, 15 17, 19, 19, 19, 33

DTLZ4 3, 5, 8, 10, 15 16, 11, 12, 17, 18

WFG1 3, 5, 8, 10, 15 6, 14, 13, 13, 13

WFG2 3, 5, 8, 10, 15 18, 16, 15, 19, 17

WFG3 3, 5, 8, 10, 15 16, 14, 12, 14, 16

WFG4 3, 5, 8, 10, 15 10, 13, 10, 11, 11

WFG5 3, 5, 8, 10, 15 10, 11, 12, 14, 14

WFG6 3, 5, 8, 10, 15 10, 12, 12, 14, 15

WFG7 3, 5, 8, 10, 15 10, 11, 12, 14, 14

WFG8 3, 5, 8, 10, 15 10, 12, 10, 14, 11

WFG9 3, 5, 8, 10, 15 9, 12, 12, 15, 13
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4.5 Results and discussion

In this paper, we compare the proposed algorithm with
six MOEA algorithms on the DTLZ and WFG test suits.
According to two performance metrics IGD and HV com-
parison results are shown in Tables 4–6. Then we discuss
and analyze the results.

4.5.1 Comparison with NSGA-IIIMOEA/D and θ -DEA

In this section, we discuss IGD results on the DTLZ test
problems. The way to compute IGD and experimental set-
tings are same as those in the original NSGA-III [35] and θ -
DEA study [18]. Since our proposed algorithm, NSGA-III,
θ -DEA and MOEA/D all can obtain a same set of intersec-
tion point of true PF with reference lines or weight vectors
for IGD computation, we only compare these algorithms on
three-objective to fifteen-objective DTLZ1-4 problems. θ -
DEA∗ that is another version of θ -DEA with normalization
and will also be involved in the comparison. Note that the
IGD results of NSGAIII, MOEA/D-PBI and two versions
of θ -DEA used to compare with those of θ EDEA are taken
from [18, 35].

The results on the four DTLZ test problems are given in
Table 4, with both best, median and worst of the IGD values
over 20 independent runs being reported for the five com-
pared MOEAs, where the best performance among the five
compared algorithms is highlighted in bold. From Table 4,
we can find that MOEA/D-PBI performs well on DTLZ2
test problems with all objectives and DTLZ3 test problems
with 8, 10, 15 objectives. On the DTLZ3 problem with 8, 10,
15 objectives, MOEA/D-PBI can obtain the smallest IGD
value. The DTLZ2problem is a relatively easy problem with
a spherical PF. The DTLZ3 problem adds a huge number
of local PFs paralleling to the global PF based on DTLZ2,
which poses a stiff challenge for algorithms to converge to
the global PF. However, MOEA/D-PBI does not work well
on DTLZ4 with any number of objectives. The main reason
is that DTLZ4 problem introduces a biased density of points
along the PF increasing challenge to maintain the diversity
in the objective space. MOEA/D-PBI is not able to find a
widely distributed set of solutions.

NSGA-III don’t achieve best IGD value on all the test
problems. But for all DTLZ1 and DTLZ4 with more than
three objectives, NSGA-III obtains smaller IGD value than
MOEA/D except for DTLZ1 with five-objective problem.
However, for all problems, θ -DEA performs consistently
better than NSGA-III. We think that the reason is that θ

dominance used in θ -DEA∗ simultaneously maintain conver-
gence and diversity. Although θ -DEA performs consistently
better than NSGA-III on all the problems except DTLZ1

with three, five objectives and DTLZ2 with three objec-
tives, θ -DEA∗ achieved a smaller IGD value than θ -DEA on
almost all problems except DTLZ4 with fifteen objectives.
For all the DTLZ3 and DTLZ4 problems, θ -DEA∗ obtains
a much better IGD value than θ -DEA on DTLZ3, but it
obtains similar IGD value as θ -DEA on DTLZ4.

From Table 4, the performance of θ -EDEA is very
promising on the four DTLZ test problems with more
than three objectives. For all DTLZ1 instances, DTLZ3
with three, five objectives and DTLZ4 with three, five,
eight objectives, our proposed θ -EDEA can obtain the
smallest IGD value than other algorithms. For all DTLZ2
instances, DTLZ3 and DTLZ4 high objective instances,
performance of θ -EDEA is slightly poor than θ -DEA∗ on
these instances, while it performs better than θ -DEA on
DTLZ2 and DTLZ3 with ten, fifteen objectives. For DTLZ3
and DTLZ4 with more than eight objectives, IGD values
obtained by θ -EDEA are a marginally worse than IGD val-
ues obtained by θ -DEA∗. We suspect that the reason is
that θ -EDEA sometimes fails to find the extreme point in
high-dimensional objective space and constructs a wrong
hyper-plane

From the 20 test instances of the DTLZ test suite pre-
sented in Table 4, we can find that θ -EDEA achieves
9 the smallest IGD values, while NSGA-III achieves 0,
MOEA/D-PBI achieves 6, θ -DEA∗achieves 1, and θ -DEA
achieves 1. From these results, we can conclude that θ -
EDEA outperforms NSGA-III, MOEA/D-PBI, θ -DEA∗,
and θ -DEA on DTLZ test problems in terms of IGD. Based
on the above comparisons, it can be concluded that the
proposed θ -EDEA can generally maintain a good balance
between convergence and diversity assisted by structured
reference points and hyper-plane.

4.5.2 Comparison with state-of-the-art algorithms

In this section, we compare the proposed θ -EDEA with
other algorithms on the DTLZ and WFG test suits in terms
of HV value. Tables 5–6 show the average HV for DTLZ1-
4 and WFG1–9 problems over 20 independent runs, where
the best average results of HV indicator are shown in bold-
face. Moreover, we also perform the pair wise comparison
in terms of the reported average values of HV indicator
between θ -EDEA and other algorithms via the Wilcoxon
signed-rank test as shown in Tables 5–6, where symbol “*”
denotes that the outcome is significantly outperformed by
θ -EDEA.

To describe the distribution of obtained solutions on the
test instances, we provide illustrations of three-objective
DTLZ test instances in low-dimensional objective space and
fifteen-objective WFG test instance in high-dimensional
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Table 4 Best, median, and worst IGD values obtained for NSGA-IIIMOEA/D-PBI, two versions of θ -DEA and θ -EDEA on Mobjective DTLZ1
DTLZ2, DTLZ3, and DTLZ4 problems

Problem M MaxGen NSGA-III MOEA/D-PBI θ -DEA∗ θ -DEA θ -EDEA

DTLZ1 3 400 4.880E-04 4.095E-04 5.655E-04 3.006E-04 2.940E-04

1.308E-03 1.495E-03 1.307E-03 9.511E-04 9.295E-04

4.880E-03 4.743E-03 9.449E-03 2.718E-03 2.605E-03

5 600 5.116E-04 3.179E-04 4.432E-04 3.612E-04 3.164E-04

9.799E-04 6.372E-04 7.328E-04 4.259E-04 3.561E-04

1.979E-03 1.635E-03 2.138E-03 5.797E-04 4.522E-04

8 750 2.044E-03 3.914E-03 1.982E-03 1.869E-03 1.585E-03

3.979E-03 6.106E-03 2.704E-03 2.061E-03 1.931E-03

8.721E-03 8.537E-03 4.620E-03 2.337E-03 2.325E-03

10 1000 2.215E-03 3.872E-03 2.099E-03 1.999E-03 1.484E-03

3.462E-03 5.073E-03 2.448E-03 2.268E-03 2.055E-03

6.869E-03 6.130E-03 3.935E-03 2.425E-03 2.373E-03

15 1500 2.649E-03 1.236E-02 2.442E-03 2.884E-03 1.520E-03

5.063E-03 1.431E-02 8.152E-03 3.504E-03 2.366E-03

1.123E-02 1.692E-02 2.236E-01 3.992E-03 3.784E-03

DTLZ2 3 250 1.262E-03 5.432E-04 1.042E-03 7.567E-04 7.054E-04

1.357E-03 6.406E-04 1.569E-03 9.736E-04 9.973E-04

2.114E-03 8.006E-04 5.497E-03 1.130E-03 1.179E-03

5 350 4.254E-03 1.219E-03 2.720E-03 1.863E-03 1.931E-03

4.982E-03 1.437E-03 3.252E-03 2.146E-03 2.363E-03

5.862E-03 1.727E-03 5.333E-03 2.288E-03 2.539E-03

8 500 1.371E-02 3.097E-03 7.786E-03 6.120E-03 6.123E-03

1.571E-02 3.763E-03 8.990E-03 6.750E-03 7.995E-03

1.811E-02 5.198E-03 1.140E-02 7.781E-03 9.683E-03

10 750 1.350E-02 2.474E-03 7.558E-03 6.111E-03 6.845E-03

1.528E-02 2.778E-03 8.809E-03 6.546E-03 7.578E-03

1.697E-02 3.235E-03 1.020E-02 7.069E-03 8.981E-03

15 1000 1.360E-02 5.254E-03 8.819E-03 7.269E-03 7.444E-03

1.726E-02 6.005E-03 1.133E-02 8.264E-03 1.137E-02

2.114E-02 9.409E-03 1.484E-02 9.137E-03 1.335E-02

DTLZ3 3 1000 9.751E-04 9.773E-04 1.343E-03 8.575E-04 5.873E-04

4.007E-03 3.426E-03 3.541E-03 3.077E-03 2.921E-03

6.665E-03 9.113E-03 5.528E-03 5.603E-03 8.909E-03

5 1000 3.086E-03 1.129E-03 1.982E-03 8.738E-04 7.203E-04

5.960E-03 2.213E-03 4.272E-03 1.971E-03 1.806E-03

1.960E-03 6.147E-03 1.911E-02 4.340E-03 3.534E-03

8 1000 1.244E-02 6.459E-03 8.769E-03 6.493E-03 8.956E-03

2.375E-02 1.948E-02 1.535E-02 1.036E-02 1.394E-02

9.649E-02 1.123E+00 3.826E-02 1.549E-02 2.016E-02

10 1500 8.849E-03 2.791E-03 5.970E-03 5.074E-03 5.608E-03

1.188E-02 4.319E-03 7.244E-03 6.121E-03 8.079E-03

2.083E-02 1.010E+00 2.323E-02 7.243E-03 9.678E-03

15 2000 1.401E-02 4.360E-03 9.834E-03 7.892E-03 9.366E-03

2.145E-02 1.664E-02 1.917E-02 9.924E-03 1.268E-02

4.195E-02 1.260E+00 6.210E-01 1.434E-02 1.695E-02
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Table 4 (continued)

Problem M MaxGen NSGA-III MOEA/D-PBI θ -DEA∗ θ -DEA θ -EDEA

DTLZ4 3 600 2.915E-04 2.929E-01 1.866E-04 1.408E-04 1.405E-04

5.970E-04 4.280E-01 2.506E-04 1.918E-04 2.092E-04

4.286E-01 5.234E-01 5.320E-01 5.321E-01 5.320E-01

5 1000 9.849E-04 1.080E-01 2.616E-04 2.780E-04 2.554E-04

1.255E-03 5.787E-01 3.790E-04 3.142E-04 3.139E-04

1.721E-03 7.348E-01 4.114E-04 3.586E-04 4.497E-04

8 1250 5.079E-03 5.298E-01 2.780E-03 2.323E-03 2.202E-03

7.054E-03 8.816E-01 3.098E-03 3.172E-03 3.712E-03

6.051E-01 9.723E-01 3.569E-03 3.635E-03 4.596E-03

10 2000 5.694E-03 3.966E-01 2.746E-03 2.715E-03 3.090E-03

6.337E-03 9.203E-01 3.341E-03 3.216E-03 3.930E-03

1.076E-01 1.077E+00 3.914E-03 3.711E-03 4.835E-03

15 3000 7.110E-03 5.890E-01 4.143E-03 4.182E-03 5.107E-03

3.431E-01 1.133E+00 5.904E-03 5.633E-03 8.327E-03

1.073E+00 1.249E+00 7.680E-03 6.562E-03 9.104E-03

Best performance is shown in bold

Table 5 Average HV on the DTLZ1-4 problems

Problem m MaxGen GrEA NSGA*III MOEA/D HypE θ -DEA θ -EDEA

DTLZ1 3 400 1.082739* 1.115466* 1.114239* 1.117363* 1.118932* 1.120385

5 600 1.519459* 1.576958* 1.577202* 1.454109* 1.577901* 1.578002

8 750 2.110453* 2.137026* 2.136825* 1.989577* 2.138167* 2.138317

10 1000 2.558587* 2.592386* 2.591796* 2.526151* 2.592568* 2.593868

15 1500 3.912006* 4.173867* 4.170569* 3.853399* 4.175940* 4.177080

DTLZ2 3 250 0.730874* 0.739818* 0.744239* 0.754543 0.744635* 0.744661

5 350 1.304378* 1.302634* 1.307512* 0.765242* 1.307572* 1.308034

8 500 1.997173 1.968493* 1.978216* 0.929827* 1.978721* 1.979740

10 750 2.515879 2.509008* 2.514912 1.165486* 2.514398* 2.514908

15 1000 4.061970* 4.134103* 4.137689* 1.524265* 4.137862* 4.138910

DTLZ3 3 1000 0.693546* 0.739503* 0.736892* 0.755781 0.739674* 0.744583

5 1000 1.161970* 1.302303* 1.303509* 0.793805* 1.307257* 1.308333

8 1000 1.717030* 1.954336* 1.295804* 0.993805* 1.969218* 1.979488

10 1500 2.392539* 2.508985* 2.430164* 1.165778* 2.514406* 2.514908

15 2000 3.355547* 4.127026* 3.092941* 1.538516* 4.136242* 4.137585

DTLZ4 3 600 0.564057* 0.749818 0.498067* 0.558772* 0.602951* 0.650585

5 1000 1.307255* 1.307596* 1.284505* 1.013612* 1.309439* 1.309772

8 1250 1.988538 1.981936 1.882543* 0.969695* 1.976632* 1.979322

10 2000 2.506069* 2.514950* 2.454102* 1.227722* 2.514963* 2.515473

15 3000 4.129253* 4.138694* 3.984783* 2.142551* 4.138223* 4.138335

The best value of each instance is highlighted in boldface
*The outcome is significantly outperformed by θ -EDEA
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Table 6 Average HV on the WFG1-9 problems

Problem m MaxGen GrEA NSGAIII MOEA/D HypE θ -DEA θ -EDEA

WFG1 3 400 0.895068* 0.689467* 0.675222* 0.988430* 0.968445* 1.044409

5 750 1.289914* 0.905452* 1.349140* 1.016691* 1.428698* 1.514039

8 1500 1.789506* 1.438081* 1.758656* 1.543206* 1.889775 1.863716

10 2000 2.349430* 2.224545* 1.818101* 2.194333* 2.138866* 2.410439

15 3000 3.813874 4.096943 1.729792* 3.972482 3.867407 3.629010

WFG2 3 400 1.229894 1.236114 1.111475* 1.241143 1.116515* 1.204943

5 750 1.571387* 1.597623* 1.533952* 1.597188* 1.500357* 1.599362

8 1500 2.091851* 2.141299 2.028409* 2.105278 1.972818* 2.122803

10 2000 2.581640* 2.592674 2.488966* 2.567307* 2.393355* 2.577545

15 3000 4.100339* 4.167543 3.967803* 4.164007* 3.961793* 4.133155

WFG3 3 400 0.796657 0.692841 0.771185 0.814962 0.703137 0.698698

5 750 1.061229 1.007997* 0.818806* 1.006524* 1.029293* 1.059608

8 1500 1.269627 1.216728* 0.767703* 1.329387 1.237738 1.231836

10 2000 1.587147 1.586258 0.533817* 1.754860 1.366208* 1.375443

15 3000 2.694943 2.510223 0.585506* 2.893723 0.904082* 1.517330

WFG4 3 400 0.706897* 0.724183* 0.683321* 0.755720 0.725280* 0.731983

5 750 1.288774* 1.290371 1.170129* 0.863721* 1.268144* 1.271631

8 1500 1.941171 1.974878 1.29033* 1.170046* 1.865674* 1.919393

10 2000 2.478209 2.510336 1.448645* 1.511532* 2.222351* 2.466326

15 3000 3.946541* 4.136393 1.728177* 2.441369* 2.990774* 4.078850

WFG5 3 400 0.701313* 0.693657* 0.664493* 0.714197* 0.704382* 0.733420

5 750 1.221282* 1.237322* 1.129326* 0.853723* 1.253552* 1.274434

8 1500 1.865096* 1.879006* 1.276512* 1.176945* 1.860502* 1.921456

10 2000 2.334575* 2.361469* 1.549924* 1.591378* 2.235619* 2.467227

15 3000 3.508628* 3.833242* 1.864379* 2.925016* 2.719208* 4.077490

WFG6 3 400 0.680906* 0.691486* 0.654956* 0.710370* 0.702309* 0.732276

5 750 1.214910* 1.212372* 1.050044* 0.523099* 1.250184* 1.272797

8 1500 1.853571* 1.877105* 0.701298* 0.594473* 1.840666* 1.920959

10 2000 2.344692* 2.343912* 0.794119* 0.696925* 2.212380* 2.466218

15 3000 3.610583* 3.717982* 0.583321* 1.217393* 2.936836* 4.078140

WFG7 3 400 0.718109* 0.736025 0.677115* 0.743787 0.723335 0.728889

5 750 1.290140 1.298653 1.121068* 0.599807* 1.266145* 1.268587

8 1500 1.994678 1.975418 0.874136* 0.575521* 1.854709* 1.914270

10 2000 2.497715 2.509460 1.051292* 1.510454* 2.265434* 2.465931

15 3000 3.900431* 4.134418 0.801271* 2.137169* 3.474231* 4.078020

WFG8 3 400 0.662997* 0.684537* 0.632906* 0.684505* 0.671341* 0.713981

5 750 1.180906* 1.209515* 0.970442* 0.206996* 1.180849* 1.233336

8 1500 1.745758* 1.759951* 0.327348* 0.807302* 1.824686* 1.834345

10 2000 2.353431* 2.280276* 0.252241* 1.308194* 2.284630* 2.362661

15 3000 3.653792* 3.815520* 0.705129* 1.878598* 2.655804* 3.932465

WFG9 3 400 0.685212* 0.706173* 0.575197* 0.738415 0.699731* 0.725614

5 750 1.229112* 1.216387* 1.006993* 1.117802* 1.216973* 1.241202

8 1500 1.865343 1.803989* 0.920784* 1.452032* 1.757462* 1.842188

10 2000 2.367534* 2.354544* 1.115323* 2.161329* 2.082889* 2.370702

15 3000 3.537925* 3.801860* 1.012731* 2.842365* 2.674073* 3.897450

The best value of each instance is highlighted in boldface
*The outcome is significantly outperformed by θ -EDEA
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(b) θ-DEA
(c) GrEA (d) HypE (a) θ-EDEA

(a) θ-EDEA (b) θ-DEA (c) GrEA (d) HypE 

Fig. 7 Pareto-fronts produced by (a) θ -EDEA, (b) θ -DEA,(c) GrEA and (d) HypE on the DTLZ1 and DTLZ3 problems with three objectives

objective space. Distributions of final solutions obtained by
competitive algorithms in a single run on the DTLZ1 and
DTLZ3 with three objectives are shown in Fig. 7 by three-
dimensional coordinates, while final solutions in a single
run on the WFG6 with fifteen objectives are shown in Fig. 8
by parallel coordinates. It is clearly seen from Figs. 7 and 8
that our proposed θ -EDEA is able to find a solution set with
good convergence and diversity.

To quantify how well each algorithm performs overall,
the performance score [32] used to rank the algorithms
is introduced. Suppose there are l algorithms Alg1, Alg2 ...,
Algl involved in the comparison, let δi,j be 1, if Algi
is significantly better than Algj according to HV, and 0

otherwise. Then, for each algorithm Algi, the performance
score P (Algi) is computed as

P(Algi) =
l∑

j = 1
j �= i

δi,j (16)

The performance score demonstrates how many other
algorithms significantly outperform the corresponding algorithm
on the test case considered. So the algorithm with a lower
values is better. Figure 9a demonstrates the average per-
formance score for different test problems and Fig. 9b
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Fig. 8 Final solution sets produced by a NSGA-III, b GrEA, c θ -DEA, d MOEA/D, e HypE and f θ -EDEA on the fifteen-objective WFG6
problem, is shown by parallel coordinates

demonstrates the average performance score for different
numbers of objectives.

Based on the above results, we can obtain some observa-
tions for each algorithm. GrEA obtains the best HV value
on DTLZ2 DTLZ3, WFG7 and WFG9 with eight objec-
tives, while it was slightly worse on the other problems.
From Fig. 8b, GrEA cannot converge the best value on each
dimension and distribution of the final solution set obtained
by GrEA is dense on the WFG6 with fifteen objectives. But
GrEA works better on the three objective DTLZ instances.
This is mainly because that GrEA divides each dimension
of the objective space into the same number of divisions. So
the performance of GrEA is influenced by the parameter
div.

NSGA-III shows the closest performance to the proposed
θ -EDEA over a widely range of WFG test problems, espe-
cially for WGF4 and WFG7, and it also can perform better
than θ -DEA. But NSGA-III is slightly worse than θ -DEA on
the DTLZ problem from Fig. 9a. It is interesting to find that
from Fig. 9b, it takes the second place on the five-objective
and fifteen-objective instances.

For solving normalized test problems, MOEA/D achieves
satisfactory performance except DTLZ4. However, it does
not perform well on the WFG test problems. The main rea-
son may be that MOEA/D don’t employ normalization on
the WFG problems. This is why it ranks poorly in Fig. 9.

From Fig. 9b, HypE achieves a good performance on all
test problems with three objectives according to HV. Indeed,

it wins 7 out of the 13 instances with three objectives. How-
ever, it does not show advantages over the other algorithms
on instances with more than three objectives except for
WFG3 with eight, ten, fifteen objectives. On these instances,
HypE obtains the best HV values. HypE need to compute
exactly the hypervolume as its fitness values when m < 3,
otherwise it computes hypervolume using Monte Carlo sim-
ulation to accelerate the speed. So inaccurate fitness value
may lead to its poor performance on problems with many
objectives. Moreover, HypE does not maintain evenly
distributed solution set on all test instances, as shown in
Figs. 7d and 8e.

Similar to MOEA/D, θ -DEA without normalization
achieves a better performance on DTLZ test problems than
NSGA-III, but it does not behave quite well on WFG test
problems, especially on WFG2. From Fig. 8c, it does not
maintain a good convergence on the fifteen-objective WFG6
problem. However, θ -DEA obtained a good convergence
and diversity on three-objective DTLZ test problems, as
shown in Fig. 7b. Due to worse performance on WFG test
problems, its performance is poorer than NSGA-III on all
test problems.

The performance of proposed θEDEA is the best than
other compared algorithms from Fig. 7 on the two problems.
However, it doesn’t show consistently excellent perfor-
mances on all WFG test problems, especially on WFG3.
We suspect that geometrical shapes of WFG3’ PFs are
degenerate and linear, which results in that uniform ref-
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Fig. 9 a Average performance score over all objective dimensions for
different test problems, namely DTLZ (Dx) and WFG (Wx). b Aver-
age performance score over all test problems for different number of

objectives. The smaller the score, the better the PF approximation in
terms of HV. The values of θ -EDEA are connected by a solid line to
easier assess the score

erence points have opposite effect. As shown in [43], all
the algorithms with uniform reference points don’t perform
well on the WFG3 problem. In general, from all compar-
ison in terms of HV, our proposed θ -EDEA gets a better

performance on test problems with more than three objec-
tives. We think that the reason may be that the hyper-plane
constructed is nearer and nearer to the true PF with the
evolution running, and the closest solution to true PF can

Table 7 Average IGD and HV values obtained by θ -EDEA∗(θ = 0.0) and θ -DEA (θ = 0.0) on the DTLZ1-4 problems

Problem m MaxGen IGD HV

θ -EDEA*
(θ = 0.0)

θ -DEA
(θ = 0.0)

θ -EDEA*
(θ = 0.0)

θ -DEA
(θ =0.0)

DTLZ1 3 400 0.001892 0.031534 1.117392 1.059386

5 600 0.000963 0.084348 1.577674 1.253205

8 750 0.004202 0.138724 2.138022 2.012146

10 1000 0.003556 0.147053 2.592827 2.508532

15 1500 0.008137 0.297560 4.176743 3.290382

DTLZ2 3 250 0.072470 0.085894 0.729786 0.676301

5 350 0.165131 0.261315 1.266188 0.829019

8 500 0.290134 0.454144 1.934898 1.592977

10 750 0.304797 0.503104 2.483959 2.106326

15 1000 0.363108 0.935090 3.791441 1.299609

DTLZ3 3 1000 0.072351 0.085968 0.723960 0.674149

5 1000 0.166572 0.262791 1.261848 0.815090

8 1000 0.290001 0.453196 1.931257 1.614756

10 1500 0.305365 0.503241 2.480466 2.135813

15 2000 0.468710 0.912567 3.697852 1.521037

DTLZ4 3 600 0.324778 0.354339 0.560231 0.521130

5 1000 0.181351 0.263465 1.255655 0.814275

8 1250 0.311729 0.470214 1.929659 1.570027

10 2000 0.305477 0.511248 2.490012 2.123995

15 3000 0.372665 0.687801 3.854801 3.168345

The best value of each instance is highlighted in boldface
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Fig. 10 Examination of the influence of θ on IGD of θ -EDEA for DTLZ1–4 problems with varying number of objectives m. The box plots show
the IGD of 20 independent runs each on (1) θ = 0, (2) θ = 5.0, (3) θ = 106. Number of objectives is in brackets

be found through the perpendicular distance between the
solution and the hyper-plane. From Fig. 8d, solution set
obtained by θ -EDEA has a better convergence and diversity
than other algorithms. From the test problem, our proposed
θ -EDEA achieves the best score on all test problems
except for WFG2-3, WFG4 and WFG7 in Fig. 9a. From
the number of objective, θ -EDEA shows obvious advan-
tages on the MaOPs, as shown in Fig. 9b except for three
objectives.

In summary, θ -EDEA is able to obtain better or simi-
lar performance with other compared state-of-the-art algo-
rithms on MaOPs. However, θ -EDEA still doesn’t achieve
better performance on the WFG3, due to distinctive features of
the problem. HypE has a better performance than θ -EDEA
on the problems with three objectives, while it doesn’t
maintain better diversity. NSGA-III performs the best on
WFG2-4 and WFG7 problems. Compared with θ -DEA, the
proposed algorithm in this paper obtains better or simi-
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Fig. 11 Examination of the influence of θ on HV of θ -EDEA for DTLZ1–4 problems with varying number of objectives m. The box plots show
the HV of 20 independent runs each on (1) θ = 0, (2) θ = 5.0, (3) θ = 106. Number of objectives is in brackets

lar performance in the all test instances. So our proposed
methods can effectively handle many-objective problems.

4.5.3 Distance influence analysis

In this section, we inspect the effectiveness of the
perpendicular distance between a solution and the m-
dimension hyper-plane in the enhanced θ dominance. In the
θ -DEA and θ -EDEA, θ takes a value of 0.0, so that they
only depend on a single distance during the evolutionary
process. From Table 7, we can see that the proposed algo-
rithm can achieve a better performance than θ -DEA on the
all test problems in terms of two indicators. θ -EDEA* per-
forms random selection rather than density based selection
in the last layer for fair comparison. Therefore, the results

indicate that the perpendicular distance between a solu-
tion and the m-dimension hyper-plane is more effective in
guiding the search.

4.5.4 Parameter θsensitivity analysis

In this section, we investigate the influence of parameter
θ on the performance of the proposed algorithm. Variation
of θ would affect selection of θ -EDEA in the environmen-
tal selection phase. So in our experiments, we are to show
influence of parameter θ by running θ -EDEA on the DTLZ
test problem in terms of IGD and HV indicators. According
to the observation in [18], θ = 5.0 can achieve better per-
formance on almost all test problems. So we only consider
three situations: (1) θ = 0 (2) θ = 5.0 (3) θ = 106
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Figures 10 and 11 present how the performance of
θ -EDEA varies with different value of parameter θ on
DTLZ1-4 problems according to IGD and HV for 20 inde-
pendent runs. From these figures, we can find that when θ

is set 5.0, θ -EDEA has a clear advantage on the DTLZ1-
3 with all objectives in terms of two indicators: IGD and
HV. However, on the only DTLZ4 problem with all objec-
tives, θ = 5.0 and θ = 106 achieve a slightly better or
similar performance in terms of two indicators. The same
observation can also be found in study [18]. In addition,
θ = 0 and θ = 106 are two extreme cases. In the environ-
mental selection phase of θ -EDEA, if θ = 106 the search
behavior of θ -EDEA is more like NSGA-III. If θ = 0, the
search behavior of θ -EDEA only depends on perpendicular
distance between a solution and the hyper-plane and den-
sity selection. Therefore, the results show that the proposed
method plays a vital role in the search process. And it can be
summarized that θ = 5.0 can achieve a better performance
on all test problems

5 Conclusion and future work

On the MaOPs, one of the challenges is how to balance
convergence and diversity. In this paper, we improve θ dom-
inance which can emphasize both convergence and diversity
and propose a new many-objective evolutionary algorithm
called θ -EDEA. Our proposed θ -EDEA is expected to
enhance the convergence and diversity of θ -DEA in high-
dimension objective space by introducing the perpendicular
distance between a solution and the hyper-plane constructed
using extreme point on each dimension and inheriting clus-
tering operation and ranking operation.

To investigate strong competitiveness of θ -EDEA, we
have performed an extensive experimental comparison of
θ -EDEA with five state-of-the-art algorithms, which cover
grid division, reference point, decomposition, indicator and
new dominance relation based approach, on two widely
used DTLZ and WFG test suits. In terms of two perfor-
mance indicators IGD and HV, our proposed θ -EDEA per-
forms significantly better than peer algorithms on most test
problems and it is compared favorably with five state-of-
the-art many-objective optimizers. To demonstrate clearly
this, we also present some visual evidence of superior
performance in terms of performance score and diversity. To
verify effectiveness of enhanced θ dominance, we compare
it with θ dominance in the same condition through compu-
tational experiments. Moreover, we show the influence of
parameter θ with different value in this paper.

Although many MOEAs have been developed to solve
both MOPs and MaOPs, more studies are to be carried
out in the future. First, some fundamental studies should
be paid more attention. For instance, in single-objective

optimization field, the study in [51] emphasizes that one
optimization algorithm can be enhanced by another algo-
rithm by understanding an algorithmic linking between
them and then borrowing important operators from one to
the other. In multi-objective optimization field, the funda-
mental studies [39, 51] also should be investigated. Sec-
ond, θ -EDEA should be utilized to solve the constrained
optimization problem. Some constraint-handling strategies,
such as inverse parabolic confined method and inverse
parabolic spread method that they both base on parent-
centric and inverse parabolic probability (IP) distribution
in [40], can be incorporated to θ -EDEA for solving con-
strained many-objective optimization problem. Finally, we
can introduce a new strategy to θ -EDEA, like model based
estimation of distribution method [52, 53], heuristic search
method [54, 55], so as to further improve its performance.
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