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Abstract The Flexible Job Shop Scheduling Problem (FJSSP)
represents a challenging applicative problem for meta-
heuristic algorithms because it imposes the development
of innovative domain-dependent search operators that have
to deal both with its combined discrete and permutation
nature. Emerging as an effective approach for the resolution
of a broad spectrum of hard optimization problems, some
few discrete declinations of the Harmony Search (HS) algo-
rithm have been recently proposed for tackling the FJSSP.
Recent advances include an investigation of an innovative
and promising permutation-based proposal. Accordingly,
this paper proposes an Effective Operations Permutation-
based Discrete Harmony Search (EOP-DHS) approach for
FJSSP with Makespan criterion. The approach adopts an
integrated two-part “affectation-sequencing” representation
of the solution harmony and a dedicated improvisation
operator particularly adapted to the integer-valued and oper-
ations permutation-based used coding scheme. Besides, a
Modified Intelligent Mutation (MIM) operator is integrated
to the adopted framework in order to enhance its overall
search ability. Mainly, by balancing maximum machine
workload during the overall search process, MIM operator
allows essentially maintaining and enhancing the reciprocal
equilibrium of diversification and intensification abilities of
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the proposed EOP-DHS algorithm. Conducted numerical
experimentations on 188 benchmarking instances validate
the proposal comparatively to a representative set of pre-
viously deployed metaheuristic approaches to FJSSP with
Makespan criterion. Furthermore, main contribution of the
paper is extended with an experimental procedure proving
the effectiveness of the adopted permutation-based HS
scheme for the resolution of combinatorial optimization
problems. Hard benchmarking instances of the classical Job
Shop Scheduling Problem (JSSP) are thus considered for
exemplification.
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1 Introduction

Scheduling problems arise in many management and engi-
neering fields and are generally identified as belonging to
the class of hard combinatorial optimization problems. One
of those, the Job Shop Scheduling Problem (JSSP) describes
a representative machine-scheduling problem where a set
of independent jobs, each one constituted by an ordered
set of operations, has to be executed on dedicated spe-
cialized machines while optimizing a predefined perfor-
mance criterion. Mainly, the problem consists of finding
the proper sequence of operations execution on machines
considering imposed affectations. Formulated by Brucker
and Schlie [1] as a generalization of JSSP, the Flexible Job
Shop Scheduling Problem (FJSSP) relaxes affectation con-
straints described by JSSP and allows to operations to be
executed by a machine chosen from a predefined set of
allowable machines. Therefore, the resolution of the FJSSP
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implies both determination of a proper sequence of exe-
cution of operations on machines and a proper affectation
of machines to operations. In accordance with its inherent
complexity, FJSSP is classified as a harder generalization of
the classical JSSP that is fundamentally known as NP-hard
combinatorial optimization problem [2, 3].

Indeed, by integrating both sequencing and affectation
problems, FJSSP is characterized by strong practical impli-
cations and an admitted academic relevance that is due to
the fact that it incarnates a fair representation of the general
domain of combinatorial optimization. Thus, developing
effective resolution processes for FJSSP will allow the res-
olution of broad kinds of existing real-world combinatorial
optimization problems. These facts motivated the utilization
of a number of approaches for its resolution, ranging from
exact mathematical, to approximation methods and com-
putational intelligence tools. In [4] an exact mathematical
and a heuristic approaches are considered for the reso-
lution of FJSSP. Presented experimental and comparative
results clearly indicate the ineffectiveness of the proposed
mathematical approach for the resolution of medium size
instances of the problem that consist of more than four jobs
and five machines. Actually, due to their scalability issue,
general deterministic methods are commonly admitted to
be (being) unsuccessful for the resolution of large scale
and realistic scheduling problems in an acceptable time and
are generally considered for a small problem and academic
studies.

Metaheuristic optimization methods and in line with
their ability to efficiently cope with the strong combi-
natorial nature of hard optimization problems stay the
most reexamined class of approximation approaches for
the resolution of a wild spectrum of hard manufacturing
scheduling problems. Historically, trajectory based methods
such as Tabu Search (TS) algorithm initiated the applica-
tion of metaheuristic framework to FJSSP and are con-
tentiously investigated [5–9]. Evolutionary technics also
maintain a permanent position in FJSSP literature with a
number of effective and superior achievements [10–16].
Besides, different recent metaheuristic approach proposals
for tackling the complexity of FJSSP exemplify perfectly its
academic relevance. Such proposals include Biogeography-
based optimization [17], Variable Neighborhood Search
[18], Artificial Immune Algorithms [19], Estimation of dis-
tribution algorithms [20], artificial bee colony algorithms
[21], Particle Swarm Approaches [22, 23], and Hybrid of
Artificial Immune/Simulated Annealing approach [24]. Fur-
ther readings concerning the development of the FJSSP
and a consolidated survey of various techniques that have
been employed since 1990 for problem resolution are pro-
posed in [25]. Moreover, it is important to note at this
stage that despite the fact of being a generalization of JSSP,
FJSSP motivated a dedicated branch of research literature,

generally unsuitable for the JSSP and where common JSSP
instances are omitted from the computational experiments.
Actually, the two problems are generally tackled indepen-
dently with few exceptions such as in [26]. Regarding the
basic JSSP, a recent review paper of the application of Arti-
ficial Intelligence (AI) technics to the problem [27] shows
that as for FJSSP, a significant spectrum of metaheuristic
approaches is constantly proposed for JSSP. Example of
recently published proposals include novel declinations of
Evolutionary Algorithms [28], multi-population ones [29,
30], Biogeography-based Algorithm [31], and Parallel Bat
Algorithm [32].

Proposed by Geem [33], the Harmony Search (HS) meta-
heuristic algorithm, emerged in just more than one decade
of research, as an effective approach for the resolution
of a broad kind of hard optimization problems, including
construction, engineering, robotics, telecommunications,
health, and energy [34]. The HS algorithm simulates the
improvisation process of music players and was originally
conceptualized using the musical process of searching for
a perfect state of harmony. Indeed, HS is a population-
based algorithm that maintains and improves a population of
solutions, the Harmonies Memory (HM). It uses a replace-
ment policy and an improvisation operator that produces at
each iteration a new harmony (solution vector) merging the
information of different solutions stored in HM. Generally,
the newly generated Harmony replaces the bad harmony
in HM if it is better. Particularly, HS improvisation opera-
tor generates the New Harmony by using a recombination
mechanism that acts independently on each component of
the solution vector and considers all the solutions stored
in HM. As reported in [34] and [35] this distinctive char-
acteristic of the HS algorithm from other population-based
metaheuristic approaches is one of its important innovative
operational procedures. Furthermore, it is stressed in [34]
that by playing a major role in achieving a good trade-off
between diversification and intensification, the improvisa-
tion operator constitutes another remarkable strength of the
HS algorithm. Also, numerical comparisons in [36, 37]
demonstrated that evolution in the HS algorithm was faster
than the canonical Genetic Algorithm (GA). These par-
ticular features in addition to its simplicity and ease of
implementation motivated the deployment of HS algorithm
for the resolution of a continuously increasing number of
hard optimization problems leading to a number of improve-
ments and adaptation mechanisms. In fact, recent literature
( See [35, 38]) reports different improvements of HS algo-
rithm that covered different aspects related to algorithms’
parameters adaptation, improvisation mechanisms and inte-
gration within the HS process of other metaheuristic search
components such as the genetic mutation operator [39, 40].

Accordingly, different declinations of HS algorithm
have been recently proposed for the resolution of various
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manufacturing scheduling problems. The existing contribu-
tions can be broadly classified into two principal categories:
“continuous-discrete domain mapping-based approaches”
and “discreet domain approaches”. Developments of the
first class of approaches are motivated by the difficulty
to adapt the continuous domain operators of HS algo-
rithm to manufacturing scheduling problems, particularly
those where the solution vector is coded using a dis-
crete permutation-based form such as for JSSP and FJSSP.
Indeed, approaches falling within that category use the
canonical continuous-domain HS algorithm and a dedicated
mapping scheme for the generation and the evaluation of
the solution in the permutation-based native domain of the
scheduling problem. Different recently published contribu-
tions for tackling various classes of flow shop scheduling
problems [41–43] and parallel machine one [44] belong
to that category. Other works falling into the second cat-
egory of applicative methodologies of HS algorithm to
scheduling problems propose a fundamental adaptation of
HS operators to the targeted permutation-based represen-
tation domain. In [45] and [46], different discrete HS
strategies and job permutation-based improvisations oper-
ators are respectively proposed for the no-wait flow shop
scheduling problem with total flow time criterion and the
single-machine earliness/tardiness problem.

Lately, few but important contributions have been reported
concerning the application of HS algorithm to FJSSP. Indeed,
when solved using metaheuristic approaches, a FJSSP solu-
tion is naturally coded using a two-vectors representation
that express both affectation of machines to operations and
the sequencing of operations on machines (operations per-
mutation). Thus, FJSSP can be considered as a challenging
applicative problem for the HS algorithm because it imposes
the development of innovative domain-dependent HS oper-
ators that have to deal both with its discrete and permutation
nature in one effective and efficient research process. Yuan
et al. [47] tackled the problem using a HS-based hybrid opti-
mization scheme that make use of the continuous domain
HS algorithm augmented with a variable neighborhood local
search approach exploiting the concept of critical path.
Gao et al. [48] investigated a discreet HS approach for
the multi-objective FJSSP (MOFJSSP) with weighted linear
combination of two minimization criteria: Makespan and
mean of earliness and tardiness. Mainly, the approach uses
a GA crossover operator for the improvisation of the opera-
tions permutation part of the coding scheme. As well, Gao
et al. [49] proposes a discrete HS approach for the FJSSP
with fuzzy processing time that makes uses of an opera-
tions permutation-based improvisation operator that work
only on two harmonies at a time. In [50], the authors pre-
sented a study on the application of different metaheuristic
approaches for the resolution of the MOFJSSP investi-
gating as well a discrete operation permutation-based HS

(OP-DHS) proposal. Mainly, introduced improvisation oper-
ator deals clearly with the discrete and permutation nature
of FJSSP and exploits a large amount of solutions in HM.
In succinct experiments compared to a Genetic and TS
algorithm, OP-DHS approach depicted a promising search
behavior for the resolution of MOFJSSP with weighted lin-
ear combination of three minimization criteria, including
Makespan.

From the above presented recent literature concerning
the application of HS algorithm to the FJSSP, it is worth
noting that conceptually, with the exception of OP-DHS
algorithm, none of the other approaches proposes an adap-
tation of HS algorithm and operators to FJSSP, considering
both its discrete and permutation-based nature. Mainly, the
hybrid HS-based resolution process presented in [47] is
formulated in the continuous domain. Although they use
a discrete improvisation operator to deal with the affec-
tation part of the solution vector, approaches presented
in [48] and [49] did not propose a conceptually suitable
permutation-based improvisation operator that, with respect
to the canonical formulation of the HS algorithm, exploits
a large number of the solutions stored in HM. It is thus
noticeable that OP-DHS approach proposed in [50] consti-
tutes a fundamental development regarding the application
of HS algorithm to the FJSSP considering that it proposes
a strong adaptation of the canonical continuous domain
HS algorithm to the discrete and permutation-based nature
of the problem. However, considering limitations of the
reported experimental procedure and results, it is clear that
further investigations and improvements of the basic OP-
DHS approach are important to give a fair insight and a
rigorous assessment of HS algorithm performances in its
permutation-based form for the resolution of FJSSP using
usual criterion and comparative procedures. This fact con-
stitutes the main motivation of the present research work.
Moreover, this investigation is also motivated both by the
representativeness of the FJSSP in combinatorial optimiza-
tion area and the recently reported “infancy” of research
works concerning the application of HS algorithm to dis-
crete and scheduling problems [35, 46]. Mainly, academic
and practical implications of presently reported extended
investigation of the HS algorithm in its combined discrete
and permutation declination are expected to go beyond the
context of FJSSP.

In accordance with the above presented research context
and motivations, this paper presents as a main contribution
an Effective Operations Permutation-based Discrete Har-
mony Search (EOP-DHS) approach for the resolution of
FJSSP with Makespan criterion. The proposed EOP-DHS
algorithm largely adopts the discrete and permutation-based
research process of the basic OP-DHS [50] and improves
its search ability exploiting a Modified declination of the
Intelligent Mutation operator (MIM) previously introduced
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in [14]. Integrated to the basic OP-DHS scheme MIM is
probabilistically applied on each newly improvised har-
mony to balance maximum machines workload (sum of
processing times of the most loaded machine); this is done
by re-affecting a flexible operation belonging to a machine
with maximum workload to another allowable machine.
Thus, MIM is mainly expected to have both explorative
and exploitative role in the research process. Actually as
a mutation operator, MIM conceptually plays an explo-
rative role. By balancing machines maximum workload it
also acts as an exploitative operator because of, as noted
in [51], Makespan and maximum workload are often posi-
tively correlated. Mainly, MIM operator essentially allows
maintaining and enhancing the reciprocal balance of explo-
rative and exploitative power of the developed effective HS
framework for the resolution of FJSSP.

In order to assess its effectiveness and efficiency, the
proposed EOP-DHS algorithm is experimented using an
extensive set of benchmarking problems and compared to a
wild spectrum metaheuristic approaches recently deployed
for the resolution of FJSSP including existing declina-
tions of HS algorithm. Comparative algorithms have been
chosen to have as fair as possible representation of the
general domain of metaheuristic approach appliance to
FJSSP with makespan, which is too large to be considered
entirely. Thus, different classes of algorithms with differ-
ent sophistication level but proved effectiveness for most of
them have been selected for comparative purpose (GA, TS,
Biogeography-Based Optimization (BBO), Mimetic Algo-
rithm (MA), Artificial Bee Colony (ABC), Parallel Variable
Neighborhood Search (PVNS), Artificial Immune Algo-
rithm (AIA), Particle Swarm-Optimization, and Hybrid of
Artificial Immune and simulated annealing (HAISA).

Furthermore, in order to rigorously assess the effective-
ness of the contribution, the integrated MIM operator is
investigated, and the EOP-DHS algorithm is experimentally
validated in comparison with its mutation-free declination,
which is precisely the mono-objective version of the origi-
nal OP-DHS algorithm with Makespan criterion. Wilcoxon
non-parametric statistical procedure is used to support the
conclusions drawn.

The paper presents a complementary experimental con-
tribution by investigating the effectiveness of the adopted
permutation-based HS scheme for the resolution of classical
JSSP. The basic OP-DHS algorithm (without the integration
of operations affectation search mechanisms) is experi-
mented for the resolution of different hard benchmarking
instances of classical JSSP. A main motivation of such
investigation is to enrich existing knowledge by providing a
consistent evaluation of the adopted operation permutation-
based HS scheme for the resolution of hard permutation-
based scheduling problems. This is achieved by alleviating
the possible experimental bias that can be introduced by

simultaneously considering both of affectation and sequenc-
ing related HS components, as have been done for FJSSP.
Considering the simplicity of the experimented HS frame-
work, the experimental comparative investigation does not
consider existing superior and generally sophisticated meta-
heuristic approach existing in the literature for the classical
JSSP but just a restraint sample of algorithms representing
different classes of sophistication and effectiveness.

The reminder of this paper is organized as follows:
in the Section 2 we formulate FJSSP. The canonical HS
algorithm is presented in Section 3. Section 4 details the
proposed effective operations permutation-based discrete
harmony search framework. Section 5 reports and discusses
the results of the experimental studies. Finally, Section 6
concludes this paper with some perspectives for future works.

2 FJSS problem formulation

The FJSS problem is defined as follow: given a set of n inde-
pendent jobs J = {J1, J2,. . . , Jn}to be processed on a set of
m machines M ={M1, M2,. . . , Mm}. Each job Ji consists
of a sequence of ni ordered operations {Oi1, Oi2,. . . , Oini

}.
Each operation Oij (i =1,2,. . . ,n; j=1,2,. . . ,ni) has to be
processed, with no interruption, by one machine out of a set
of allowable machines for the operation Mij ⊆ M . The pro-
cessing time of an operation Oij on machine Mk ∈ Mij

is pijk . Each machine can only handle at most one operation
at a time.

A solution to the problem consists in assigning both
a machine and a starting time tij to each operation to
minimize the makespan Cmax, which is the maximum of
completion time of jobs.

Cmax = Max 1≤ i< n Ci (1)

Where, Ci is the completion time of the last operation of
job J i .

From the given problem definition, we note that the
JSS Problem is a particular case of the FJSS Problem
where the set of allowable machines for each operation
contains exactly one machine (i.e. |Mij |=1 ∀i=1,2,. . . ,n;
∀j=1,2,. . . ,ni).

3 The harmony search algorithm

The conceptual inception of the HS technic is the analogy
between the intelligent exploration of harmonies space pro-
cess depicted during jazz band musical improvisations, and
intelligent explorative search in meta-heuristic optimiza-
tion technic [33]. Thus, the HS algorithm is a population-
based evolutionary algorithm that mimics the improvisation
process of music players. Accordingly, when a group of



An effective operations permutation-based discrete harmony... 1427

musicians seek to find musically pleasing melodies, they
iteratively explores the harmonies search space by a creative
process that is made up of three different stages: (i) playing
any pitch from memory, (ii) modifying a pitch which exists
in the memory, or (iii) improvising any pitch from the pos-
sible pitch range. The New Harmony is then integrated or
not in musician’s memories according to its audio-aesthetic
significance.

According to the optimization point of view, a decision
solution vector is represented by a harmony, and a pop-
ulation of solution vectors is represented by a harmonies
memory. At each algorithm iteration a new harmony is gen-
erated (improvised) with the value of each decision variable
composing the solution vector obtained using one of the
following three options: (i) assigning a value from the mem-
ory, (ii) modifying an existing value in the memory, or (iii)
assigning a possible random value. The generated harmony
is then assessed for insertion in the harmonies memory
using a predefined replacement policy based on its objective
value.

This analogy give rise to a simple iterative optimization
approach that consists of five steps:

Step 1: Initializing the optimization problem and algo-
rithm parameters

Step 2: Initialize the Harmonies Memory (HM)
Step 3: Improvising a new harmony from the HM
Step 4: Updating the HM
Step 5: Repeat Step 3 and 4 until the termination criterion

is met.

The continuous and basic form of the algorithm is suc-
cinctly presented in the following subsections.

3.1 Initializing the optimization problem and algorithm
parameters

The continuous optimization problem is defined as follows:

minimizeF (x) , (2)

Subject to xi ∈ Xi= {xi (1) , . . . , xi (k) , . . . ., xi (ki)}
Where F(x) is the objective function, and x =

{x1, . . . ., xN } is the optimal solution that has to be found
by the harmony search algorithm. The set of candidate
values for the variables are xi ∈ Xi = {xi (1) , . . . ,

xi (k) , . . . ., xi (ki) .
The algorithm initialization phase considers the follow-

ing parameters:

– Harmony memory size (HMS), (i.e. number of solution
vectors in the harmonies memory)

– Harmony memory consideration rate (HMCR), where
HMCR ∈ [0, 1]

– Pitch adjusting rate (PAR), where PAR∈ [0, 1]

– Number of improvisations (NI) that is the stopping
criterion.

3.2 Harmony memory representation and initialization

A matrix of solution vectors, extended with a column of
calculated objective value for each corresponding harmony
represents the Harmony Memory (HM). During initializa-
tion, the matrix is filled with randomly generated solu-
tion vectors. Accordingly, each solution value is randomly
selected within the range of its set of allowable values. The
solutions are evaluated and based on their objective function
values, they are sorted with aworst and aBest the worst and
best harmony vector respectively.

HM =

⎡
⎢⎢⎢⎣

x1
1 x1

2 · · · x1
N

x2
1 x2

2 · · · x2
N

...
... · · · ...

xHMS
1 xHMS

2 · · · xHMS
N

∣∣∣∣∣∣∣∣∣

f(x1)

f(x2)
...

f(xHMS)

⎤
⎥⎥⎥⎦ (3)

3.3 Improvising a new harmony from the HM

Harmony improvisation process embeds recombination
operators of the approach. It principally associates at each
iteration different intensification and explorative compo-
nents for the generation of a new harmony. It is mainly
expected to exploit a wide region of the search space during
recombination, which is a noticeable particularity compared
to other population-based evolutionary algorithms. Impro-
visation makes use of three recombination operators for
the generation of a new harmony x = {

x′
1, x′

2, x′
3, . . . ., x′

N

}
:

memory consideration, pitch adjustment, and randomization.
Applied with a certain probability determined by

HMCR∈ [0, 1], harmony consideration forces the new val-
ues x′

i to be randomly inherited from corresponding values
stored in HM:

{
x1

i , x2
i , .. . . . ., x′

HMS

}
. Otherwise, using a

randomization component with an implicit probability of (1
– HMCR), value of x′

i is chosen according to its admissi-
ble range Xi. The following equation summarizes memory
consideration and random consideration steps:

xi
′ ←

{
xi

′ ∈ {
xi

1, xi
2, .. . . . ., xHMS

′} w.p.HMCR
xi

′ ∈ Xi w.p. (1 − HMCR)
(4)

Using a probability determined by the PAR parameter,
pitch adjustment component examines every value cho-
sen by harmony consideration to determine whether it
should be adjusted or not. Adjusting decision for x′

i is
given by (5), where bw is an arbitrary distance band-
width that determines the nature and amount of change
that can occur in x′

i It depends mainly on the considered
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optimization problem. The function rand() generates a ran-
dom number ∈ [0, 1].

x′
i←

{
x′

i = x′
i ± rand().bw w.p.PAR

x′
i = x′

i w.p. (1 − PAR)
(5)

3.4 Updating the HM

Harmonies Memory updating mechanism is based on a
replacement policy that can take different forms. The
replacement policy mainly characterize the admissibility or
not of the new improvised solution (New Harmony) in the
Harmonies Memory and, if considered, which solution from
the HM will be replaced. According to its common and
basic form, the HM is updated if the new generated harmony
vector is better than the worst harmony in the HM. In this
case anew will replace aworst and become a new member of
the HM. If anew is worst than aworst it is not considered. The
following equation summarizes HM updating step:

aworst ←
{

anew if : f (anew) < f
(
aworst

)
aworst if : f

(
aworst

) ≤ f (anew)
(6)

3.5 Stopping criterion

If the predefined termination criterion is met - for exam-
ple the number of improvisations -, return the best harmony
vector abest. Otherwise, go to step (3).

4 An effective operations permutation-based
discrete HS algorithm for the FJSSP

In this section, the improved discrete permutation-based
form of the canonical HS algorithm introduced in Section 3
is presented for the resolution of FJSSP with Makespan min-
imization objective. Mainly, for completeness this section
highlights important conceptual and algorithmic features of
the basic OP-DHS approach adopted in this work. Further-
more, this section details the integrated MIM operator. At
the end of this section, the overall algorithm flow of the
proposed EOP-DHS approach is presented.

4.1 Harmony coding and decoding

As reported by Wu and Wu [16] and Zhang et al. [15]
different coding approaches have been used in FJSSP lit-
erature. In this work, the adopted representation from [15]
codes the FJSSP solution vector by means of two parts that
express independent assignment of machines to operations
and the processing sequence of operations on machines.
Accordingly, a Harmony representation for FJSSP is com-
posed of two vectors: a Machine Selection Vector (MSV)
and an Operation Sequence Vector (OSV). Table 1 depicts

Table 1 Example of a FJSSP instance

Ops Machines

Jobs M1 M2 M3

O11 N/A 1 2

J1 O12 1 5 3

O13 4 1 N/A

O21 3 5 6

J2 O22 N/A 2 1

O23 1 3 N/A

O31 N/A 6 2

J3 O32 5 1 4

O33 2 1 2

O34 1 N/A 3

an example of a FJSSP instance. Numerical values indicate
the execution time of each operation on the corresponding
allowable machines. N/A means that the machine is Not
Allowable for the corresponding operation. Figure 1 illus-
trates a harmony MS/OS vectors representation of a feasible
solution for FJSSP of Table 1.

Integer-valued MSV indexed by p, expresses the assign-
ment of each operation to a machine selected from the set
of allowable machines for the corresponding operation. Its
number of elements is equal to the total number of opera-
tions of all jobs (Top) and each element MSVp indicates a
column index (a machine choice) in the matrix of alterna-
tive allowable machines/processing-time for the operation
Oij corresponding to P . As an example and as depicted in
Fig. 1, the operation O2,2 is assigned to machine 2 which
correspond to the column index 1 in the matrix of alter-
native allowable machines for that operation. The second
row in the matrix corresponds to the execution times of the
operation O2,2 for each of the possible machines.

[ 2 1 3 1 2 3 2 3 1 3 ]
O2,1 O 1,1 O 3,1 O 1,2 O 2,2 O 3,2 O 2,3 O 3,3 O 1,3 O 3,4

O 1,1 O 1,2 O 1,3 O 2,1 O 2,2 O 2,3 O 3,1 O 3,2 O 3,3 O 3,4

[ 1 3 2 1 1 1 2 2 3 1 ]

M2 M3
2 1

Order Sequencing Vector (OSV)

Machine Selec�on Vector (MSV)

Fig. 1 MS/OS coding of a Harmony
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The Operations Sequence Vector (OSV) indexed by (s)
expresses the processing sequence of all the operations in
the system. With a length also equal to the total number of
operations (Top), it uses an “Operations Permutation-based
representation” that defines all operations of a job with the
same integer value and then interprets them according to
the sequence of their appearance. Therefore, the index i of
the job Ji appears ni times in the vector, with ni the num-
ber of operations of the job Ji . As an example, the OS part
of the solution vector illustrated in Fig. 1 expresses the fol-
lowing sequence of operations execution: (O2,1 → O1,1 →
O3,1 → O1,2 → O2,2 → O3,2 → O2,3 → O3,3 →
O1,3 → O3,4).

The evaluation procedure is based on a decoding pro-
cess that transforms Harmony solution vectors to a feasible
schedule. In this study, a priority-based and machine’s idle-
time occupation decoding scheme such as described in [12,
13, 15] is used. It assists in a construction process that
iteratively inserts each operation of OSV in its correspond-
ing selected machine according to its priority, which is
determined by its order of appearance. The correspond-
ing machine and processing time are identified using the
MSV, and the operation is inserted at the first allowable
idle-time interval respecting precedence constraints, or at
the end of the machine. The algorithm presented in Fig. 2
depicts the adopted decoding procedure and an example
of a construction of a schedule structure (represented by a
Gantt diagram) integrating machines idle-time occupation
process is depicted in Fig. 3b. The considered Harmony
is: [2 1 3 1 2 3 2 3 1 3]. During the construction pro-
cess the operation O3,2 is inserted at the allowable idle time
interval in machine 2 before the operation O2,2, generat-
ing a final Makespan of eight time unit. The utilization of
a decoding process that does not integrate machines idle-
time occupation strategy place the operation O3,2 after the
operation O2,2 and generates a Makespan of 9 time unit
(Fig. 3a).

4.2 Harmonies memory initialization

Expected to enhance evolutionary algorithms resolution
process efficiency, different population initialization strate-
gies have been adopted in the FJSSP literature. Such as
the strategies presented in [14, 15]. These approaches gen-
erally consider different local and global search heuristic
mechanisms for minimizing or balancing machine’s work-
load during the generation of a new solution, introducing a
number a supplementary algorithm parameters to be tuned.
In this work, a simple random harmonies memory initializa-
tion approach is adopted such as to maintain the number of
algorithm parameters as small as possible. Furthermore, this
strategy allows the generation of an initial HM with high
solutions diversity.

4.3 Harmony improvisation operator

According to HS optimization process, at each algorithm
step a new harmony is improvised from HM using three
recombination components: memory consideration, pitch
adjustment, and random consideration. In this work, two
dedicated discrete improvisation schemes fitting the two-
part adopted FJSSP representation are adopted: Machine
Selection and Operations Sequence vector Improvisation.

4.3.1 Machine selection vector improvisation

The integer coded machines selection vector presents no
particular structural relationships between its components.
Accordingly, the MSV improvisation scheme uses with
slight modifications, related to the integer valued nature
of the MSV, the basic operators presented in Section 3.3.
Hence, applied with a certain probability determined by
HMCR ∈ [0, 1], the harmony consideration operator force
the new values of machine selection index for the opera-
tion Oi,j at the position p (MSVNew

p ) to be inherited from a
randomly selected historical values stored in the HM. Oth-
erwise and using a random consideration with an implicit
probability of (1 − HMCR), the values of MSVNew

p is
randomly chosen according to its possible range of val-
ues. Every component chosen by harmony consideration
is examined for adjustment in its possible range of val-
ues, which is the number of allocation possibilities for that
operation.

Figure 4 depicts a succinct example of an MSV impro-
visation process for the problem described in Table 1. As it
is shown, the new final MSV part of the harmony is itera-
tively generated from the Machine selection part of the HM.
Indeed, each element is generated using one of the possible
rules with a certain probability: Consideration, Consider-
ation + adjustment, or Randomization. Value adjustment
and randomization are expected in the range of the possible
allocations for each operation that is also depicted in Fig. 4.

4.3.2 Order sequence vector improvisation

As formerly presented in Section 4.1, the OSV uses
an operations Permutation-based representation commonly
adopted for metaheuristic approach to FJSSP. Therefore,
ordinary HS improvisation operators are not suitable to
this structurally constrained representation because of the
possibility to generate unfeasible solutions. An operations
permutation-based HS improvisation operator is adopted in
this work in order to tackle this issue. This operator depicts
two main conceptual features: It approaches the explorative
behavior of the HS improvisation operator in its native for-
mulation and avoids from the generation of an unfeasible
OSV during recombination. Particularly, as for the basic
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Procedure: Harmony Decoding

Input: Harmony MS/OS Vectors, Problem Data

Output: A schedule Structure

1- Initialize the Schedule Structure

2- Each element of the , with = 1,… ,

3- Decode each integer to the corresponding Operation ,

4- Refer to to determine the integer element MSV corresponding to the index of 

the array of alternative machines for the corresponding operationO , .

5- Identify from the dataset the corresponding selected machine and processing 

time , ,

6- , is the first operation of the Job

Set , the starting time of , to 0

7-

Set , to , the stop time of the predecessor operation ,

8-

9- If  did not process any operation Then

Set the stop time of the machine to 0 

10-

Set the stop time of the last operation on

11-

12- ≤ ,

Add , to starting at ,

13- it exist (an idle-time interval between , and ) ≥ , ,

Insert , in starting at , = ( , , ) , where is the starting 

time of the first allowable machine idle-time interval

14-

Add , to starting at 

15-

16-

Fig. 2 Harmony decoding procedure

HS algorithm, for the generation of one OSV, this operator
exploits with some probability a large amount of the infor-
mation contained within the HM and is expected to increase
its exploitation ability with the increase of the number of
jobs. The operator processes according to two consecutive
conceptual stages (Procedure in Fig. 5):

The first Stage concerns the generation of a matrix of N

intermediates OSVs, each one corresponding to a specific

Job. Accordingly, for each job from the vector of randomly
sorted set of all jobs, the job-based consideration scheme,
if used, copies all the operations of the considered job
from a randomly selected OSV from the HM in their cor-
responding positions in the empty intermediate OSV. Next,
if applied to the intermediate OSV the Operation-Based
adjustment scheme adjusts randomly the position of a ran-
domly selected operation in the vector. If consideration and
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Fig. 3 Example of a decoding procedure without (a) and with allowable machine idle time interval occupation strategy (b)

adjustment are not of concerns, a random intermediate OSV
is obtained by applying the Job-Based consideration scheme
to a newly generated OSV. In the second stage, the final
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Fig. 4 Example of MSV Improvisation Process

OSV is generated from the matrix of intermediates OSVs.
Essentially, the components of the final OSV are filled
considering the values of non-empties components of each
column of the matrix of intermediates OSVs sequentially.
The values of non-empties components of each column are
considered according to their order of apparition from the
first to the last line of the matrix.

In Fig. 6 the OSV improvisation process for the problem
described in Table 1 is illustrated by an applicative exam-
ple. Actually, the randomly generated JobRand vector in
this example is [2, 1, 3].

4.4 Modified intelligent mutation operator

Inspired by the Intelligent Mutation operator proposed in
[14] and also used in [19], the Modified Intelligent Mutation
(MIM) operator is applied with a certain rate to the newly
improvised harmony. The operator mainly balances maxi-
mum machines workload by reassigning a random flexible
operation from the machine with the maximum workload
to another randomly chosen allowable machine. Main dif-
ference between the MIM and the original version of the
operator is that it considers systematically the obtained solu-
tion as a current one. Actually, the original operator used in
[14] evaluates the fitness of the generated solution and con-
sider it only if it minimize Makespan comparatively to the
altered individual.

MIM operator processes according to three steps sum-
marized in Fig. 7. Its utilization implies the introduction of
a new algorithm parameter that is the Modified Intelligent
Mutation Rate (MIMR).
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Procedure: Operations Permutation-based OSV Improvisation

Input: Harmony Memory, Consideration rate, Adjustment rate

Output: New OSV

Stage 1:
1- Initialize OSV the New OS Vector

2- Initialize : the vector of randomly sorted set of jobs

3- Initialize : the Matrix of Intermediates OS Vectors

4- Each element of , with = [1,…, ]
5- Identify the current Job: 

6- Initialize : the intermediate OS vector with empty positions

7- Consideration
8- Select : the OS part of a random Harmony from the Memory 

9- Copy from the values equal to in their respective positions in 

10-

11- Select a random non-empty position in 

12- Insert the corresponding value to another randomly selected empty position

13-

14-

15- Generates : a randomly generated OS vector

16- Copy from the values equal to in their respective positions in 

17-

18- Add to 

19-

Stage 2:
20- Each column of OSV , with = 1,…,
21- Each line of , with = [1,…, ]
22- ( , ) is non empty 

Add element at  ( , ) to  OSV

23-

24-

25-

Fig. 5 OSV Improvisation procedure

Fig. 6 Example of OSV
Improvisation procedure

Cons id. + Adjustment

- 2 - 2 - - 2 - - -

Cons idera�on

Job 1 - - - 1 - - - 1 - 1

Randomiza�on

Job 2 - 3 3 - - - - 3 3 -

Job 3 Final OSV [2 3 3 2 1 2 1 3 3 1]
Random OSV

OS part of the Harmonies Memory

2 3 3 1 2 1 3 1 3 2
2 1 3 3 2 1 3 2 3 1
2 2 3 1 2 3 3 1 3 1

[1 3 3 2 1 2 2 3 3 1]

3 1 1 3 2 2 1 3 2 3
2 2 3 1 2 3 3 1 3 1
3 2 2 3 2 1 3 1 3 1
1 1 3 2 2 3 3 1 3 2
1 3 3 2 1 2 2 3 3 1

Matrix of Intermediates OS Vectors

1 2 3 1 2 3 3 1 3 2
2 1 3 3 2 1 3 2 3 1
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Step 1: Identify the Machine  with the maximum workload 

Step 2: Select, if it exist,  a random operation from    with a flexibility > 1 

Step 3: Reassigns in MSV randomly   to a different allowable machine.

Fig. 7 Conceptual steps of the modified intelligent mutation operator

4.5 Framework of the proposed EOP-DHS algorithm

As described in Fig. 8, the overall framework of the pro-
posed EOP-DHS algorithm to FJSSP consists in six steps.
Actually, the five steps canonical HS framework is extended
with the application of MIM operator and modified accord-
ing to the presented discrete and permutation form of
the adopted operators. Besides, we note that despite the
introduction of a new algorithm parameter that is MIMR,
the overall number of HS algorithm parameters is main-
tained to five. This is because the presented approach does
not use an adjustment bandwidth as for the canonical HS
algorithm.

5 Experimental study

In order to assess the effectiveness of the proposed EOP-
DHS algorithm this section provides an experimental eval-
uation of its performances and a comparative study with
different stat of the art metaheuristic approaches to FJSSP,
considering significant benchmarking instances of differ-
ent dimensions. The comparative algorithms have been
mainly chosen such as to give a wide exemplification of

Step 1:  Initialize the problem and algorithm parameters

Initializes Scheduling Instances, Harmonies Memory Size (HMS), 

Memory Consideration Rate (MCR), Pitch Adjustment rate

(PAR), Modified Intelligent Mutation Rate (MIMR), Number of 

Improvisations (NI).    

Step 2:  Initialize Harmonies Memory (HM)

Initialize the HM with a randomly generated harmonies, 
Evaluates each harmony and determines the Best and Worst 
Harmonies

Step 3:   Improvise a New Harmony 

Improvise a New MSV using the Integer value-based 
Improvisation scheme, Improvise a New OSV using the 
Operations Permutation-Based Improvisation scheme

Step 4:  Apply MIM Operator

Apply MIM Operator to the newly generated Harmony 
Step 5:  Update HM

Replace if better the Worst Harmony in the HM with the newly 
improvised one, Update Best and Worst Harmonies

Step 6: Repeat Step 3, 4 and 5 until the termination criterion is met.

Repeat Improvisation, Intelligent Global Adjustment and HM 
updating for the predefined number of Improvisation.

Fig. 8 Overall framework of the proposed EOP-DHS algorithm for
the FJSSP

the spectrum of approaches previously investigated for the
resolution of FJSSP, and they represent different levels
of algorithmic complexity and effectiveness. Additionally,
the proposed enhanced EOP-DHS approach integrating the
MIM operator is experimentally compared to the basic
OP-DHS algorithm (the mutation-free EOP-DHS) and the
Wilcoxon non-parametric statistical test is used in order
to characterize achieved improvement. Finally, the experi-
mental examination is extended with supplementary results
related to the performances of the adopted operations-
permutation based HS framework for the resolution of the
classical JSSP comparatively to a sample of metaheuris-
tic algorithms previously deployed for the resolution of the
classical JSSP.

5.1 EOP-DHS approach performances and comparative
results

The first experimentation round in this subsection con-
cerns the assessment of the performances of the proposed
EOP-DHS approach comparatively to several previously
published state of the art metaheuristic proposals to FJSSP.
Thus, the ten BRdata test instances of Brandimarte [5] are
first considered and in order to enhance approach efficiency,
algorithm parameters are set empirically as follow: MCR =
0.97, PAR = 0.01, MIMR = 0.5 and NI = 500 000. HMS
parameter is adopted as a free dimensioning parameter and
is determined empirically for each instance of the problem.
Besides, the algorithm is coded in Java language and run
on an I7 PC with 3.30 GHz and 8 GB of RAM memory.
Regarding the stochastic nature of the proposed metaheuris-
tic approach, 30 runs are realized for the resolution of each
problem instance.

Table 2 compares the EOP-DHS algorithm to six algo-
rithms previously investigated on BRdata; ABC algorithm
of Wang et al. [21], PVNS algorithm (PVNS) of Yazdani
et al. [18], MA of Kobti [26], GA of Pezzella et al. [14], the
hybrid Tabu Search with Public Critical Block-based neigh-
borhood structure (TSPCB) of Li et al. [9], and BBO of
Rahmati et al. [17]. The first three columns report respec-
tively the name of the instance, the corresponding number
of jobs and machines and the best-known solution obtained
so far for that instance (BKS). The following columns report
best-reported solutions sets for the different algorithms
and both the reported computational results of the ABC
algorithm and the obtained computational results for the
proposed EOP-DHS. For the ABC and the EOP-DHS algo-
rithms, the results involve four metrics for each problem:
the best-obtained Makespan (BCm), the average Makespan
(AvCm), the standard deviation of the Makespan (SDV),
and the average computational time in seconds (AvT(s)).
Besides, to characterize their global relative performances,
the number of best solution obtained (#BCm) and Mean
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Table 2 Results of the proposed EOP-DHS and comparison with different metaheuristic approaches on BRdata

Inst. N × M BKS BBO TSPCB GA MA PVNS ABC EOP-DHS

BCm AvCm SDV AvT(s) BCm AvCm SDV AvT(s) HMS

Mk01 10 × 6 (40) 40 40 40 40 40 40 40,0 0,00 3,2 40 40,0 0,00 0,1 100

MK02 10 × 6 (26) 28 26 26 26 26 26 26,5 0,50 35,6 26 26,7 0,34 2,7 100

MK03 15 × 8 (204) 204 204 204 204 204 204 204,0 0,00 1,2 204 204,0 0,00 0,0 100

MK04 15 × 8 (60) 66 62 60 60 60 60 61,2 1,36 38,9 60 60,5 0,84 5,5 200

MK05 15 × 4 (172) 173 172 173 172 173 172 173,0 0,14 19,3 172 172,7 0,45 13,7 200

MK06 10 × 15 (57) 64 65 63 59 60 60 64,5 1,75 66,6 60 61,1 0,87 23,3 100

MK07 20 × 5 (139) 144 140 139 139 141 139 141,4 1,20 131,8 139 140,7 1,10 41,6 300

MK08 20 × 10 (523) 523 523 523 523 523 523 523,0 0,00 2,3 523 523,0 0,00 0,8 100

MK09 20 × 10 (307) 310 310 311 307 307 307 308,8 1,63 91,2 307 308,1 1,66 36,3 200

MK10 20 × 15 (196) 230 214 212 216 208 208 212,8 2,43 237,1 207 211,5 2,59 227,5 200

#BCm 3 5 6 7 6 8 8

MRD(%) 5,3 2,82 2,06 1,37 1,34 1,14 1,09

Makespan values in bold indicate that this is the best known solution obtained

Relative Deviation metric (MRD) are reported for each algo-
rithm. An algorithm MRD from the BKS set is defined as
follows:

MRD (%) = 1

p

∑p

i=1
Rdvi

With Rdvi (%) = 1
Ci

(
Ci − Cbks

i

) × 100
Where Rdvi , represents the relative deviation for the

considered instance i, p denotes the number of tested
instances, Ci denotes the Makespan of the considered
instance, and Cbks

i denotes the best-known Makespan so far
for the instance i.

Table 2 results indicate that the proposed EOP-DHS
algorithm to FJSSP depicts a superior behavior compar-
atively to a wild spectrum of metaheuristic approaches
previously investigated for the FJSSP. Actually, the algo-
rithm dominates the six algorithms in term of MRD from the
best-known solution set, where it achieves a minimum MRD
of 1.09%. Concerning the #BCm indicator, both the pro-
posed EOP-DHS and the ABC approaches achieved the best
result among the seven approaches with eight best solutions
obtained out of the 10 test problems. It is noticeable that
ABC algorithm depicts an interesting competitive behavior
compared to the proposed EOP-DHS both in term of solu-
tion quality and robustness to initial conditions (appreciated
using AvCm and SDV metrics). Because of the difference in
computing environments, it can be simply appreciated that
both two approaches depict a comparable and acceptable
computational efficiency. Hence, considering the nature of
the two approaches and the fact that EOP-DHS algorithm
is not equipped with any sophisticated initialization scheme
or critical path-based local search technique as with ABC
approach, one can easily support the contextual dominance

of EOP-DHS algorithm to ABC. In the other side, the appre-
ciated superiority of the proposed EOP-DHS approach to
the overall set of considered algorithms, amongst them dif-
ferent highly competitive algorithms such as PVNS, MA,
and GA, confirm that the EOP-DHS algorithm is effec-
tive and robust for the resolution of the FJSSP on the
well-known BRdata set.

The second experimentation round concerns a compar-
ative investigation of performances of the proposed EOP-
DHS to FJSSP on Fdata benchmarking set [4]. Thus, EOP-
DHS results concerning the ten medium size Fdata problems
are considered comparatively to the results obtained by three
effective and competitive metaheuristic proposals from the
literature: Artificial Immune Algorithm (AIA) of Bagheri et
al. [19], Hybrid of Artificial Immune and Simulated Anneal-
ing approach (AISA) of Roshanaei et al. [24], and Particle
Swarm-based approach of Teekeng et al. [23] (EPSO).
Table 3 reports for each algorithm and problem instance
the best-found solution and relative deviation from the
BKS. Besides, the table reports previously introduced per-
formance metrics for each algorithm (MRD, #BCm). Algo-
rithm parameters are set empirically as follow: MCR = 0.97,
PAR = 0.01, MIMR = 0.5, NI = 500 000 and HMS = 100.

It can be noticed in Table 3 that the search ability of
the proposed EOP-DHS approach is also confirmed using
a different dataset and comparatively to different effective
and sophisticated metaheuristic approaches to the FJSSP.
Indeed, the EOP-DHS algorithm obtained the best perfor-
mances among the four algorithms with nine BKSs out of
the ten considered problems and a superior MRD of 0.025%.

The third and final experimentation round of this sub-
section concerns the comparison of the proposed EOP-DHS
approach to existing declinations of HS algorithm to the
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Table 3 Results of EOP-DHS
and comparison with existing
FJSSP metaheuristic
approaches on Fdata

Inst. n × m BKS AIA AISA EPSO EOP-DHS

BCm Rdv (%) BCm dv (%) BCm Rdv (%) BCm Rdv (%)

MFJS 1 5 × 6 468 468 0,00 468 0,00 468 0,00 468 0,00
MFJS 2 5 × 7 446 448 0,45 446 0,00 446 0,00 446 0,00
MFJS 3 6 × 7 466 468 0,43 466 0,00 466 0,00 466 0,00
MFJS 4 7 × 7 554 554 0,00 554 0,00 554 0,00 554 0,00
MFJS 5 7 × 7 514 527 2,53 514 0,00 514 0,00 514 0,00
MFJS 6 8 × 7 634 635 0,16 634 0,00 634 0,00 634 0,00
MFJS 7 8 × 7 879 879 0,00 879 0,00 879 0,00 879 0,00
MFJS 8 9 × 8 884 884 0,00 894 1,13 884 0,00 884 0,00
MFJS 9 11 × 8 1055 1088 3,13 1088 3,13 1059 0,38 1055 0,00
MFJS 10 12 × 8 1196 1267 5,94 1196 0,00 1205 0,75 1199 0,25
#BCm 4 8 8 9
MRD(%) 1,26 0,43 0,11 0,025

Makespan values in bold indicate that this is the best known solution obtained

FJSSP on BRdata: the basic Operations permutation-based
discrete HS (OP-DHS) approach of Gaham et al. [50], the
Discrete HS (DHS) algorithm of Gao et al. [48], and the
Hybrid HS (HHS) algorithm of Yuan et al. [47]. Indeed,
in Table 4 the first and second columns indicate the name
for each test instance and its corresponding BKS. The fol-
lowing columns report best solutions obtained by the three
algorithms and the corresponding relative deviation from
the BKS for each problem. MRD and #BCm metrics are also
included for each algorithm.

Reported results show that the proposed EOP-DHS algo-
rithm clearly outperforms existing discrete adaptations of
the HS algorithm to the FJSSP both in term of MRD and
#BCm. The EOP-DHS algorithm achieve also competitive
performances compared to the hybrid critical path-based
local search continuous domain HHS approach with a same
#BCm and a difference in MRD that is inferior to 0.5%, what

is in our sense an expected result considering the nature of
the two algorithms. These succinctly presented results con-
firm that the EOP-DHS is of an outperforming searching
ability comparing to stat of the art discrete harmony search
approach to the FJSSP.

5.2 Performance analysis of the modified intelligent
mutation operator

In order to assess the effectiveness of the contribution, par-
ticularly the effect of the integration of MIM operator into
the research process, the EOP-DHS algorithm is experi-
mentally validated in this subsection in comparison with
its Mutation-Free declination (EOP-DHSMF ) (that is essen-
tially the basic OP-DHS algorithm to the mono-objective
FJSSP with Makespan). Taking into account the motiva-
tion of the following experimentation that is self-contained

Table 4 Results of EOP-DHS
and comparison with existing
HS-based FJSSP
Metaheuristics proposals

Inst. BKS OP-DHS DHS HHS EOP-DHS

BCm Rdv (%) BCm Rdv (%) BCm Rdv (%) BCm Rdv (%)

Mk01 40 40 0,00 40 0,00 40 0,00 40 0,00
MK02 26 26 0,00 28 7,69 26 0,00 26 0,00
MK03 204 204 0,00 204 0,00 204 0,00 204 0,00
MK04 60 61 1,67 60 0,00 60 0,00 60 0,00
MK05 172 173 0,58 172 0,00 172 0,00 172 0,00
MK06 57 61 7,02 67 17,54 58 1,75 60 5,26
MK07 139 140 0,72 143 2,88 139 0,00 139 0,00
MK08 523 523 0,00 523 0,00 523 0,00 523 0,00
MK09 307 307 0,00 309 0,65 307 0,00 307 0,00
MK10 196 214 9,18 212 8,16 205 4,59 207 5,61
#BCm 5 5 8 8
MRD (%) 1,92 3,69 0,63 1,09

Makespan values in bold indicate that this is the best known solution obtained
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and the fact that previous presented experimentations of the
EOP-DHS algorithm have been carried out using the Har-
mony size as a free dimensioning parameter, an alternative
and uniform experimental design is adopted in this part.
Thus, the EOP-DHSMF and the EOP-DHS algorithms are
experimented using both BRdata and Fdata benchmarking
sets and with the following parameters: HMS = 200, MCR
= 0.97, PAR = 0.01, and NI = 300 000. The MIMR is nat-
urally set to zero for the EOP-DHSMF and to 0.5 for the
EOP-DHS. Besides, 50 runs are realized by each algorithm
for the resolution of each problem instance and Wilcoxon
signed rank test is adopted to measure the statistical rele-
vance of the results. The confidence level for all tests is set
to 95% (corresponding to α = 0.05). The Wilcoxon signed
rank test [52] is a non-parametrical statistical procedure
generally used to perform pairwise performances compar-
ison of evolutionary algorithms [53]. Particularly, the test
aims at the detection of significant differences between two
sample means, that is, the behavior of two algorithms over
a certain number of runs. The Wilcoxon signed ranks test
have been for example used in several studies concerning
the application of metaheuristic approach for the resolution
of manufacturing scheduling problems [54, 55].

Table 5, presents obtained results. The first column
reports the name of each instance. Its corresponding Best
and average Makespan value obtained over 50 runs for
both the EOP-DHSMF and the EOP-DHS algorithms are
reported in the following four columns. Sixth column
reports the sum of ranks for the problems in which the
EOP-DHS algorithm outperformed the EOP-DHSMF (R+).
The sum of ranks for the opposite (R -) and the num-
bers of ties cases (Ties) among the 50 runs are respectively
reported in the seventh and the eighth columns. The last
column reports the corresponding p-value that indicates the
statistical relevance of obtained results. The attached signs
“+” or “−” indicate that the proposed EOP-DHS algorithm
performs significantly better or worse than EOP-DHSMF

algorithm. The sign “=” denotes that there is no significant
difference between the two declinations. Additional indica-
tors; numbers of “=”, “−” and “+” cases over the twenty
benchmarking instances are also reported in the table.

It can be observed from corresponding columns in Table 5
that EOP-DHS algorithm shows better performances com-
pared to its mutation-free version considering average
Makespan value among the 50 runs. This clearly indi-
cates that by acting on maximum machines workload the
integration of MIM operator improves the search abil-
ity of the adopted HS framework for the resolution of
FJSSP. This conclusion is confirmed by the conducted
statistical test. Actually, statistical results indicate that EOP-
DHS algorithm performs significantly better than the EOP-
DHSMF algorithm on 13 out the 20 considered instances.
Besides, it is important to note that the number of “−”

indicating that the EOP-DHSMF algorithm performs signif-
icantly better than EOP-DHS algorithm is equal to zero.

5.3 EOP-DHS approach performances discussion
and extended experimental investigation

Globally considered, presented results indicate that the pro-
posed EOP-DHS algorithm is a simple and highly compet-
itive algorithm for the resolution of FJSSP on well-known
BRdata and Fdata problem instances. Actually, the approach
at least competes effectively or outperforms the entire con-
sidered comparative set of recently deployed metaheuristic
approaches for the FJSSP. In order to permit a fair consider-
ation of this result, it is important to relativize the conceptual
and algorithmic simplicity of the proposed EOP-DHS algo-
rithm to the sophistication of most of the considered stat of
the art comparative approaches. Indeed, these approaches
often incorporate in addition to a specific initialization
scheme, domain-specific local search components, sophis-
ticated critical path-based neighborhood search, or the two
mechanisms in the same time. This fact is clearly suscep-
tible to introduce a significant implementation complexity
of these approaches. Besides, the utilization of dedicated
heuristic initialization procedures generally introduces a
number of additional algorithm parameters that have to
be tuned, which is a complex task in the context of non-
deterministic optimization.

According to our appreciation, the effective search
behavior of the proposed EOP-DHS algorithm is clearly in
line with its developed operational procedures that maintain
a correct balance between its explorative and exploitative
capabilities overall the search process: first, the EOP-DHS
algorithm exploits a solutions decoding scheme that gener-
ates an active schedule at each evaluation step. Secondly,
the EOP-DHS algorithm does not use any specific initial-
ization scheme, what foster a high diversity of the generated
initial population and avoid from a guided convergence
of the algorithm to a specific region of the search space.
Besides, this strategy allows a free-parameters HM initial-
ization scheme that avoids from any inconsistent behavior of
the search process due to a poor choice of these parameters.
Thirdly, by using an improvisation operator that proba-
bilistically exploits at each iteration a large number of
the solutions stored in the HM, the algorithm guaranties,
as it have been noted in [34, 35], an appropriate balance
between exploration and exploitation ability of the search
space. Finally, exploitation and exploration abilities of the
EOP-DHS approach are enhanced by the use of MIM oper-
ator that exploits the correlation that often exist between
maximum machines workload and Makespan criteria. Actu-
ally, as indicated in [51], maximum machines workload and
Makespan are generally linearly correlated what implies a
minimization of the Makespan when reducing maximum
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Table 5 Results of the OP-DHS and comparison with the EOP-DHS on BRdata and Fdata

Inst. OP-DHS EOP-DHS R+ R − Ties p-Value

AV(Cm) BCm AV(Cm) BCm

MFJS1 468,14 468 468,04 468 35 10 41 9,60E-02 /=
MFJS2 464,57 446 454,92 446 767,5 135,5 8 8,17E-05 /+
MFJS3 483,55 466 474,35 466 666 154 9 1,00E-03 /+
MFJS4 576,8 554 565,04 554 969.5 111,5 3 2,77E-06 /+
MFJS5 530 514 525,2 514 350.5 244,5 15 3,80E-01 /=
MFJS6 641,69 634 635,2 634 129,5 23,5 36 6,95E-03 /+
MFJS7 929,14 879 906,02 879 988 338 1 4,00E-03 /+
MFJS8 936,9 884 925,31 884 775,5 449,5 3 1,00E-01 /=
MFJS9 1142,12 1099 1118,96 1059 985,5 190,5 2 7,08E-05 /+
MFJS10 1285,24 1251 1274,35 1215 814 220 5 1,25E-03 /+
Mk01 40,65 40 40 40 153 0 33 2,93E-04 /+
MK02 27,18 27 26,73 26 604 26 15 2,21E-06 /+
MK03 204 204 204 204 0 0 50 1,00E+00 /=
MK04 62,67 60 61,67 60 499 167 14 8,00E-03 /+
MK05 173,92 173 172,98 172 378 0 23 8,30E-06 /+
MK06 64,31 61 63,92 61 476 265 12 1,40E-01 /=
MK07 143,92 140 142,04 140 928,5 106,5 5 4,15E-06 /+
MK08 523 523 523 523 0 0 50 1,00E+00 /=
MK09 307,06 307 307 307 1 0 49 1,00E+00 /=
MK10 220,12 213 217,63 211 920 115 5 4,00E-06 /+
Number of /= 7
Number of /- 0
Number of /+ 13

Makespan values in bold indicate that this is the best known solution obtained

machines workload. The MIM operator exploits this fact
and acts probabilistically as an intensification operator.
Besides by altering the solution generated by the improvisa-
tion operator, MIM operator behaves probabilistically also
as an explorative search component.

Comparatively to the EOP-DHS approach, different
metaheuristic algorithms have been investigated in this
work. Considering BRdata benchmarking set as a basis for
the following analysis (Table 2), the population-based BBO
algorithm presented in [17] showed relatively poor per-
formances comparatively to the overall set of considered
approaches. According to our appreciation, this fact is prob-
ably due, among others, to the adopted population initializa-
tion approach. Actually, in BBO algorithm the affectation
part of the solutions are initialized using dedicated rules
that mostly foster the generation of solutions with mini-
mum global workload (total sum of processing times for all
machines), where it is showed in [51] that for FJSSP, global
workload and Makespan are generally inversely correlated.
On the other side, TSPCB approach [9] uses a sophisticated
initial solution generation scheme based on different rules
particularly articulated around machines workloads balanc-
ing and minimization. Besides, an efficient neighborhoods

structure for machine assignment is used. However, the
approach fails to obtain effective solutions for Mk04,
MK06, and Mk10 problems and showed a lack of explo-
ration ability, what is generally a difficult task within the
context of trajectory-based metaheuristic approaches, par-
ticularly for hard and computationally expensive problems
(such as MK04, MK06, MK07. MK09, Mk10). We note
also that the TSPCB approach does not exploit any active
schedule-based solutions decoding scheme. Moreover, GA
of Pizzella [14] exploits a sophisticated initial population
generation scheme based on global workload balancing and
an Intelligent Mutation Operator (IMO) that acts proba-
bilistically on each solution to balance maximum workload.
GA showed relatively good search ability for the consid-
ered dataset but fail in getting high quality solutions for
MK06, MK09, and MK10 problems, which is probably due
to a lack of exploration ability of the algorithm. Possible
reasons for that, lies in the fact that IMO is used only as
an intensification operator and obtained solution are con-
sidered only if they improve solutions Makespan. Besides,
as for TSPCB algorithm, we also note that the GA do
not exploit any active schedule-based solutions decoding
scheme.
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Above presented analysis of the performances of various
metaheuristic approaches previously applied to the FJSSP
considered mainly approaches with a relatively simples
search procedures. For comparative purpose, different other
highly sophisticated resolution processes have been consid-
ered. Actually, MA [26], PVNS [18], and ABC approach
[21] achieved globally high quality results for BRdata
benchmarking instances and obtained an MRD (mean rel-
ative deviation from the best known solution set in Table 5)
that is inferior to 2%. This appreciated superior search
ability is certainly due to various facts related to opera-
tional procedures embedded within these approaches and
proves that they clearly achieved a proper balance between
exploitation and exploration abilities of the search space.
However, some search components are of particular inter-
est; in ABC approach a continuous updating mechanism of
the population is proposed to enrich the searching behav-
ior and avoid the premature convergence of the algorithm.
MA uses a novel Priority-based fitness function (PBFF)
during selection. Accordingly, when ties occur between
individuals, a priority scheme is considered to direct the
search process considering the lower maximum work-
load. Authors stressed that the solution which has lower
maximum workload is more likely to be the direction
to the optimal solution. Besides, a maximum workload-
based strategy is also considered in PVNS within the
adopted Neighborhood structures. Conceptually, proposed
EOP-DHS approach for FJSSP adopts a great part of these
search components in an effective and simple optimization
process.

Finally, in order to provide a fair consideration of the
performances of the proposed EOP-DHS algorithm for the
resolution of the FJSSP, an extended experimental inves-
tigation have been endeavored on series of 168 bench-
marking problems with actual complexity: The data set
from Dauzére-Pérés and Paulli [56] (DPdata), the data set
from Barnes and Chambers [57] (BCdata), and the data set
from Hurink et al. [58] that contains three sets of bench-
mark problems: Hurink Edata, Hurink Rdata, and Hurink
Vdata.

Table 6 reports computational performance of the pro-
posed EOP-DHS algorithm comparatively to different meta-
heuristic approaches deployed for the resolution of the
FJSSP and tested using the adopted extended benchmark-
ing data sets: The recent and highly superior Hybrid genetic
and tabu search Algorithms (HA) of Li and Gao [59], the
hybrid Genetic Algorithm (hGA) of Al-Hinai et al. [60],
and previously investigated Hybrid HS (HHS) algorithm
of Yuan et al. [47], PVNS algorithm (PVNS) of Yazdani
et al. [18], and the GA of Pezzella et al. [14]. Particularly,
Table 6 reports for each approach and dataset the MRD from
the best-known lower bound obtained over 50 runs and the
Global Relative Deviation (GRD) computed for all datasets.

Obtained results clearly confirm previously appreciated
highly competitive behavior of the EOP-DHS algorithm
for the resolution of FJSSP, extending the conclusions to
realistically dimensioned and computationally expensive
datasets. Indeed, the approach obtained a GRD from the
best-known lower bound of just 6.67% that represent a
significant performance comparatively to the superior HA,
and show a clear superior search behavior comparatively to
other approaches.

5.4 Classical JSSP experimental investigation

Final experimentation subsection, deals with the investi-
gation of the adopted operations permutation-based HS
framework initially proposed in [50] for the resolution of
the classical JSSP with Makespan criterion. Thus, 27 prob-
lems of a generally affirmed intractability taken from the
OR-Library [61] are considered: 2 problems from the Fisher
and Thompson instances (ft10, ft20) and 25 problems from
Lawrence instances (LcA16-LA40). Algorithm parameters
are set empirically as follow: MCR = 0.97, PAR = 0.08, NI
= 500 000 and HMS = 100.

Table 7 reports computational achievement of OP-DHS
algorithm in term of best obtained Makespan (BCm), Aver-
age Makespan (AvCm) and average computational time
(Av(T)) for 30 independent runs (last three columns). For
each problem, the name, the dimension, and the BKS
are reported in the first three columns. For performances
comparison purpose, Table 5 reports also best obtained
results for three metaheuristics approaches from the lit-
erature (columns 4, 5 and 6): The Bat Algorithm (BA)
approach investigated in [32], the Hybrid Genetic Algo-
rithm/Local Search algorithm (Hybrid) proposed in [62] and
the New Island Model Genetic Algorithm (NIMGA) pre-
sented in [29]. In addition, Average Makespan and average
computational time for the NIMGA approach are reported
in columns 7 and 8.

Table 7 results show that OP-DHS algorithm to the JSSP
depicts either a superior or a highly competitive search-
ing behavior comparatively to the investigated approaches.
Indeed, achieving a BCm and an MRD respectively equal to
12 and 1.03%, OP-DHS algorithm clearly outperforms the
BA that obtains respectively 0 and 1.57% for the considered
measures. We note that the basic BA has been chosen as a
comparative algorithm because, not using any complemen-
tary improvement operators, it is considered from the same
algorithmic class of EOP-DHS approach. The results also
show that OP-DHS algorithm outperform GA/TS approach
that attains an MRD of 3,84% and a BCm equal to 5. The
GA/TS approach represents an example of a sophisticated
optimization method using a hybrid of a genetic algorithm
and a Tabu Search. Besides, comparatively to the effective
NIMGA, obtained average Makespan and computational
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Table 6 Results of EOP-DHS
on extended datasets and
comparison with different
metaheuristic proposals

Data Set N. Prob. HA (%) EOP-DHS (%) PVNS (%) hGA (%) GA (%)

DPdata 18 1,82 3,43 5,11 6,83 7,63

BCdata 21 22,38 23,74 26,66 24,74 29,56

Hdata

Edata 43 2,21 3,01 3,86 3,92 6

Rdata 43 1,16 2,64 1,88 3,68 4,42

Vdata 43 0,08 0,52 0,42 0,8 2,04

GRD 5,53 6,67 7,59 7,99 9,93

time results of the EOP-DHS approach reflect a superior
behavior both in term of robustness and efficiency for the
resolution of JSSP. Indeed, EOP-DHS results are clearly
superior to those of NIMGA for both average Makespan and
computational time. It is important to mention that the paral-
lel three populations-based NIMGA have been implemented

in C++ and tested using a computing environment close to
the one used for this study (a PC with 3.40 GHz Intel(R)
Core(TM) i7-3770 CPU and 8.00GB).

Thus, considering obtained results and the admitted
intractability of most of the investigated benchmarking
instances, it can be affirmed that the OP-DHS approach

Table 7 Results of EOP-DHS for the JSSP and comparison with different metaheuristic proposals

Inst. N × M B K S BA GA/TS NIMGA EOP-DHS

BCm AvCm Av(T) BCm AvCm Av(T)

ft10 10 × 10 930 951 953 930 951,85 76,15 937 943,95 38,56

ft20 20 × 5 1165 1177 1192 1173 1186,55 84,62 1165 1185,05 34,2

la16 10 × 10 945 965 959 946 954,05 50,07 945 968,55 35,07

la17 10 × 10 784 794 792 784 784,75 29,67 784 784,25 8,41

la18 10 × 10 848 858 857 848 853,5 32,78 848 854,65 21,52

la19 10 × 10 842 852 860 842 846,55 14,2 850 866,35 35,14

la20 10 × 10 902 912 907 907 909,65 73,69 907 907,5 10,23

la21 15 × 10 1046 1066 1097 1058 1086,25 100,33 1062 1073,6 23,84

la22 15 × 10 927 944 980 937 956,25 101,42 935 942,9 18,58

la23 15 × 10 1032 1042 1032 1032 1032,2 24,56 1032 1032,15 6,41

la24 15 × 10 935 970 1001 947 970,45 72,34 967 969,3 14,59

la25 15 × 10 977 989 1031 992 1013,7 99,19 992 1002,45 39,88

la26 20 × 20 1218 1228 1295 1218 1240,1 119,01 1218 1221,65 85,74

la27 20 × 20 1235 1256 1306 1269 1296,2 131,83 1265 1279,01 74,63

la28 20 × 20 1216 1227 1302 1247 1265,45 123,18 1227 1243,2 61,27

la29 20 × 20 1152 1184 1280 1241 1261,8 124,61 1191 1225,65 44,28

la30 20 × 20 1355 1365 1406 1355 1357,45 84,2 1355 1355 23,19

la31 30 × 10 1784 1794 1784 1784 1784 6,12 1784 1784 14,7

la32 30 × 10 1850 1871 1850 1850 1850 9,66 1850 1850 32,41

la33 30 × 10 1719 1739 1719 1719 1719 9,98 1719 1719 51,93

la34 30 × 10 1721 1731 1758 1721 1723 55,24 1721 1721 62,17

la35 30 × 10 1888 1919 1888 1888 1888,55 27,1 1888 1888 14,1

la36 15 × 15 1268 1291 1357 1293 1316,45 110,98 1291 1298,9 56,42

la37 15 × 15 1397 1425 1494 1439 1460,2 138,27 1437 1448,05 50,06

la38 15 × 15 1196 1223 1338 1222 1266,65 138,48 1228 1241,2 38,13

la39 15 × 15 1233 1256 1343 1259 1275,35 137,2 1253 1260,5 71,49

la40 15 × 15 1222 1252 1311 1246 138,78 1252 1258,75 53,85

#BCm 0 5 12 12

MRD(%) 1,57 3,84 1,13 1,03

Makespan values in bold indicate that this is the best known solution obtained
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depicts a highly competitive behavior both in term of effec-
tiveness and efficiency for the resolution of the JSSP with
Makespan criterion. That particular and complementary
result confirms specially the effectiveness of the adopted HS
framework and used improvisation scheme for the resolu-
tion of hard combinatorial scheduling problems.

6 Conclusion and future works

In this paper, an Effective Operations Permutation-based
Discrete Harmony Search approach was proposed to solve
the FJSSP with Makespan criterion. Proposed EOP-DHS
approach adopts an integrated “affectation-sequencing”
two-part representation of the solution harmony and a ded-
icated improvisation operator particularly adapted to the
integer-valued and operations permutation-based used cod-
ing scheme. A complementary search operator, the Modi-
fied Intelligent Mutation (MIM) is integrated to the adopted
framework in order to enhance its overall search ability
by probabilistically balancing maximum machine workload
during the overall search process. MIM operator allows
essentially maintaining and enhancing the reciprocal equi-
librium of diversification and intensification abilities of the
proposed EOP-DHS algorithm. For performances assess-
ment purpose, EOP-DHS approach has been experimented
on a set of 188 test problems and compared with a repre-
sentative spectrum of metaheuristic resolution approaches
recently formulated for the FJSSP. Obtained and discussed
results indicate that the proposed algorithm is effective for
the resolution of the FJSSP. In addition, a complemen-
tary experimental procedure proving the effectiveness of the
adopted permutation-based HS scheme for the resolution of
hard combinatorial optimization problems exemplified by
the JSSP has been carried on.

Enhancement of the approach considering its effi-
ciency will be considered in future works. Furthermore,
an extended examination of the adopted Permutation-based
improvisation framework for the resolution of other hard
combinatorial problems will be of a notable usefulness.
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