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Abstract In a DNA microarray dataset, gene expression
data often has a huge number of features(which are referred
to as genes) versus a small size of samples. With the devel-
opment of DNA microarray technology, the number of
dimensions increases even faster than before, which could
lead to the problem of the curse of dimensionality. To
get good classification performance, it is necessary to pre-
process the gene expression data. Support vector machine
recursive feature elimination (SVM-RFE) is a classical
method for gene selection. However, SVM-RFE suffers
from high computational complexity. To remedy it, this
paper enhances SVM-RFE for gene selection by incorporat-
ing feature clustering, called feature clustering SVM-RFE
(FCSVM-RFE). The proposed method first performs gene
selection roughly and then ranks the selected genes. First,
a clustering algorithm is used to cluster genes into gene
groups, in each which genes have similar expression pro-
file. Then, a representative gene is found to represent a gene
group. By doing so, we can obtain a representative gene
set. Then, SVM-RFE is applied to rank these representative
genes. FCSVM-RFE can reduce the computational com-
plexity and the redundancy among genes. Experiments on
seven public gene expression datasets show that FCSVM-
RFE can achieve a better classification performance and
lower computational complexity when compared with the
state-the-art-of methods, such as SVM-RFE.
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1 Introduction

DNA microarray technology can monitor the expression
level of a large number of genes, which helps us to detect
the biological nature of gene expression data. Meanwhile,
with the rapid development of DNA microarray technology,
gene expression data grows explosively. The number of
gene expression measurements remains in the hundreds,
compared to tens of thousands of genes involved. However,
several studies have shown that most genes measured in a
DNA microarray experiment are not relevant in the accurate
classification of different classes of the problem [15]. Thus,
the importance of selecting relevant genes before designing
a classifier can be over-emphasized [4]. The selected genes
couldprovidevitalcluesforunderstanding thediseasemechanism.

Gene expression data reduction involves two aspects:
relevant and redundant. The relevancy between genes and
the label information is measured with respect to the class
labels, which is related to the importance of a gene for
the classification task [24]. Highly correlated genes tend
to deteriorate the generalization performance and become
redundant for classification tasks [44]. Usually, an opti-
mal performance could be achieved by a set of maximal
relevance and minimal redundancy genes.

Feature(gene) selection as a means of dimension reduc-
tion in machine learning and pattern recognition has
attracted many researchers. Feature selection aims to select
the most representative feature subset with a high resolution
by eliminating redundant and unimportant features [19].
The aim of feature selection is to select the subset of features
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which has feature metric maximization. Generally speaking,
feature selection has three advantages. First, feature selec-
tion can reduce the dimension of the data. Second, feature
selection can enhance the generalization performance of the
classifier in case of feature redundancy. In other words, the
classifier modelled by the feature subset can improve the
classification accuracy. Third, feature selection can deepen the
understanding of the data when data visualization is possible.

Considering whether the evaluation criterion involves
classification models, gene selection methods can be
divided into three categories: the filter gene selection [10,
15, 22, 27], the wrapper gene selection [9, 11, 16, 26, 34,
39] and the embedded gene selection [37]. Filter methods
are independent of classifiers and can select a gene subset
from an original dataset using specific evaluation criteria
which are mostly based on statistical methods. Relief [22]
and MRMR (minimal redundancy-maximal relevance) [10]
are two typical filter gene selection algorithms. ReliefF was
proposed as an extension of Relief in [25] by Kononeill et
al. Zhang et al. proposed a hybrid method which combines
ReliefF and MRMR in [45]. Specifically, the candidate
gene set is first identified by ReliefF. Then, the redundancy
is minimized with the help of MRMR, which facilitates
to select an effectual gene subset from the candidate set.
These algorithms are simple but efficient, and are widely
used in gene selection. Generally, filter methods have a low
computational complexity, but may result in an unsatisfac-
tory classification accuracy. Wrapper methods can select a
gene subset by employing the performance of the classi-
fier to evaluate the importance of gene subsets. Compared
with filter methods, wrapper methods can usually achieve
a higher classification accuracy and have a higher com-
putational complexity [18]. Embedded methods combine
the advantages of filter and wrapper techniques by using a
pre-determined classifier model to perform gene selection.

Among the three kinds of gene selection methods, wrap-
per methods have considerably attracted the attention of
researchers. Support vector machine recursive feature elim-
ination (SVM-RFE) is a typical wrapper feature selection
method, which adopts the manner of a sequential back-
ward elimination [16]. SVM-RFE can rank genes by taking
weights generated by SVM as the ranking criterion of genes.
However, weights generated by SVM does not account
for the redundancy among the genes [42]. In addition,
SVM-RFE has a high computational complexity when deal-
ing with the high-dimension data. In [30], SVM-RFE and
MRMR are combined to select genes. This new method
incorporates a mutual-information-based MRMR filter into
SVM-RFE to minimize the redundancy among selected
genes, which can improve the accuracy of classification and
yield a smaller gene set compared with both MRMR and
SVM-RFE. However, the computational complexity of the
new method is still high.

To reduce the computational complexity of SVM-RFE,
this paper proposes a gene selection method called Fea-
ture Clustering-based Support Vector Machine Recursive
Feature Elimination (FCSVM-RFE).

The proposed method first performs gene selection
roughly and then ranks the selected genes. First, a clus-
tering algorithm is used to cluster genes into gene groups.
Clustering genes according to their expression profiles is an
important step for interpreting data from microarray studies.
Clustering can help predict gene functions, as co-expressed
genes are more likely to have similar functions than non-
co-expressed genes [13]. The clustering method employed
here is the widely used K-means, which outperforms the
other algorithms, such as CRC (Chinese Restaurant Cluster-
ing) and ISA (Iterative Signature Algorithm), especially on
typical microarray brain expression datasets [33]. Then, a
gene that can be used to represent a gene group is found. By
doing so, we can obtain a feature subset. Then, SVM-RFE
is applied to rank genes from the obtained feature subset.
Experiments on seven public gene expression datasets show
that FCSVM-RFE achieves a better performance and a lower
computational complexity than other compared methods.

The remainder of this paper is organized as follows.
Section 2 briefly reviews SVM, Relief and MRMR, respec-
tively. FCSVM-RFE is presented in Section 3. Section 4
gives extensive experimental results and analyzes the pro-
posed model. Conclusions are provided in Section 5.

2 Related works on gene selection

2.1 Support vector machine

Support vector machine (SVM) proposed in [40] is a learn-
ing algorithm based on statistical learning theory. SVM
implements the principle of structure risk minimization
which is to minimize the empirical error and the complexity
of the learner at the same time, and achieves good gener-
alization performance in classification and regression tasks.
The goal of SVM for classification is to construct the opti-
mal hyperplane with the largest margin. In general, the
larger the margin is, the lower the generalization error of the
classifier has.

Given a set of training samples {(xi , yi)}Ni=1, where xi ∈
R

D , yi ∈ {(+1, −1)} is the label of xi , D and N are the
dimension and the number of samples, respectively, SVM
solves the following primal optimization problem:

min 1
2 ||w||2 + C

∑N
i=1 ζi

s.t. yi(w · xi + b) ≥ 1 − ζi, i = 1, 2, ..., N

ζi ≥ 0, i = 1, 2, ..., N

(1)

where w and b are the weight and threshold of the hyper-
plane w · x + b = 0, respectively, C > 0 is a regulation
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parameter and ζi is the slack variable. Tuning C can make a
balance between the minimization of misclassification and
the maximization of the margin of the hyperplane. By intro-
ducing Lagrange multipliers, the dual problem of (1) can be
described as follows:

min 1
2

∑N
i=1

∑N
i=1 αiαjyiyjxT

i xj − ∑N
i=1 αi

s.t.
∑N

i=1 yiαiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., N
(2)

where αi is the Lagrange multiplier. The weight vector
can be expressed using Lagrange multipliers and training
samples:

w =
N∑

i=1

αiyixi (3)

The discriminant function of SVM has the form:

f (x) = sgn

(
N∑

i=1

αiyixT
i + b

)

(4)

where sgn(·) is the sign function.
The training of linear SVM has a computational com-

plexity of O(ND).

2.2 Relief

Relief is a feature weighting algorithm, which is limited
to classification problems with two classes [22]. The main
idea behind Relief is to estimate attributes according to how
well their values distinguish among the instances that are
near to each other. Relief first randomly selects a sample x.
Then Relief finds one nearest neighbor from the same class,
called nearest hits xH and one nearest neighbor from dif-
ferent classes, called nearest misses xM , respectively. Relief
updates the quality estimation w for all features depending
on their values for xi , hits xH and misses xM . The rationale
of the formula for updating the weights of feature p is that a
good attribute should have the same value for instances from
the same class (subtracting the difference diff (p, x, xH )

and should differentiate between instances from different
classes (adding the difference diff (p, x, xM). The process
is repeated for m times, where m is the number of iterations.
The detail algorithm for Relief is shown in Algorithm 1 [10].

Relief is simple and efficient. However, Relief concerns
the label information instead of the redundancy between the
selected features.

For N training samples with D attributes, Relief has a
computational complexity of O(mND) where m can be
taken as the iteration times [22].

2.3 MRMR (minimal redundancy-maximal relevance)

MRMR aims at selecting a maximally relevant and min-
imally redundant set of genes for discriminating tissue
classes [10]. Here, we introduce the mutual-information-
based MRMR criterion to find a set of genes with maximally
relevance and minimally redundance.

If the expressions of genes are randomly or uniformly
distributed in different classes, the mutual information
among these classes is zero. If genes are strongly differ-
entially expressed for different classes, then the mutual
information should be large. Thus, MRMR uses the mutual
information as a measure of relevance of genes [32].

Assume that there is a set of training samples
{(xi , yi)}Ni=1, where xi ∈ R

D , and yi ∈ {(+1, −1)} is the
label of xi . Let X be the sample matrix where xi is the i-th
row. Without loss in generality, we use gi to represent the
i-th column of X, or the i-th gene. Let S be the selected
feature subset, where S ⊂ {1, 2, · · · , D}. The mutual infor-
mation between the class label vector y = [y1, · · · , yN ]T
and gi can quantify the relevancy of gene i for the clas-
sification task. The relevancy RS of genes is defined as:

RS = 1

|S|
∑

i∈S

I (y, gi ) (5)

where I (y, gi ) is the mutual information between the class
label vector y and gene i, and is defined as:

I (y, gi ) = P (y, gi ) log
P (y, gi )

P (y) P (gi )
(6)
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The redundancy of a gene subset is determined by the
mutual information among the genes. The redundancy of
gene with the other genes in the subset S is given by:

QS,i = 1

|S|2
∑

i′∈S,i′ �=i

I (gi , gi ) (7)

In MRMR, the gene ranking is performed by optimizing
the ratio of the relevancy of a gene to the redundancy of
the genes in the set. The maximally relevant and minimally
redundant gene i∗ in the set S is found by:

i∗ = argmax
i∈S

RS

QS,i

(8)

Exact solution to MRMR requires O
(|S|2D)

computa-
tional complexity.

3 FCSVM-RFE (feature clustering based support
vector machine recursive feature elimination)

Because SVM-RFE does not account for the redundancy
among the genes and has a high computational complexity,
this paper presents an enhanced feature selection algorithm
based on SVM-RFE, called feature clustering based sup-
port vector machine recursive feature elimination (FCSVM-
RFE). The framework of FCSVM-RFE is shown in Fig. 1.
There are three stages in the proposed method, gene cluster-
ing, gene representation and gene ranking. We first roughly
cluster the gene expressions into gene groups so as to
eliminate the redundancy of the gene data, and then find rep-
resentative genes for these gene groups. Finally, we rank the
representative gene set using SVM-RFE.

3.1 Gene clustering

In gene clustering, genes having similar expression profiles
would be clustered into a gene group. Genes which belong
to the same gene group could contain partially redundant
information for the classification task, whereas the informa-
tion held by different gene groups is different. It is necessary
for us to consider a good clustering algorithm. There is not
a best clustering algorithm according to the No Free Lunch
Theorem. However, it has shown that the K-means cluster-
ing algorithm outperforms CRC and ISA when clustering

gene expressions [33]. It is well known that K-means is a
single cluster membership method that has been in use for
several decades [17]. Thus, K-means is used here for its
simplicity and efficiency in practice.

In K-means, each gene belongs to only one cluster or one
group. Essentially, K-means distributes K centers through-
out the data. A gene would be assigned to the group whose
center is the nearest to it. At the same time, the centers are
removed to minimize the distance between them and their
assigned genes. This process is repeated until the center are
stable. A number of distance measures can be used to define
the distance between genes and centers. The Euclidean
distance is one of the most commonly used and simplest
measures.

Assume that we have a set of training samples
{(xi , yi)}Ni=1, where xi ∈ R

D , and yi ∈ {(+1, −1)} is
the label of xi , D and N are the dimension and the num-
ber of samples, respectively. In gene clustering, it does
not require the label information. Let the sample matrix
be X = [xT

1 , · · · , xT
N ] ∈ R

N×D and the gene gi be the
i-th column of X. K-means is summarised in Algorithm 2
[17].

The key parameter in K-means is the number of clusters.
If the number of clusters is too large, the most information
contained in the feature subset would be redundant. On the
other hand, if the number of clusters is too small, some use-
ful information contained in genes would be lost. In both
cases, the classifier performance would be decreased. So a
proper number of cluster centers is crucial to improve the
classifier performance. In experiments, a 10-fold cross vali-
dation [3] is adopted to determine the number of clusters.

Fig. 1 Framwork of
FCSVM-RFE
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3.2 Gene representative

Although we compress genes and obtain K gene groups
using gene clustering, the operation of gene selection is not
performed. Each gene group consists of some genes having
a similar profile and a potentially similar function. Thus, we
can use a gene to represent the gene group. It is necessary
to select the representative gene which should carry most
useful information compared with other genes in the cluster.
In doing so, we reduce the number of genes from D to K .

Generally, the center of the cluster could be used as a
representative point. However, the center may be not a real
gene, just a synthetic gene. Although center can not be taken
as the representative genes directly, we can select the gene
from a gene group, which has the minimal distance from the
corresponding center [20].

Let Gj be the j -th gene group. The representative gene
gj for the j -th gene group can be determined by:

gj = arg min
gi∈Gj

||gi − mj ||22, j = 1, · · · , K (9)

where ‖ · ‖2 denotes the Euclidian distance, mj =
1

|Gj |
∑

gi∈Gj
gi is the center of the jth cluster. By doing

so, we can retain the original information carried by gene
expressions which is more convincing for gene classifica-
tion.

3.3 Gene ranking

Since K representative genes are roughly selected, we can
not guarantee all K genes are useful. Thus, we need to
rank these genes according to their importance with respect
to classification tasks. SVM-RFE is used to rank the K

representative genes.
The main idea behind SVM-RFE is that each gene is

related to a score which determines the importance of a
gene.

After gene clustering and gene representative, we obtain
a new training sample set {(x′

i , yi)}Ni=1, where xi ∈ R
K ,

and yi ∈ {(+1, −1)}. In each iteration, a linear SVM
is trained with the selected feature subset to generate the
weight vector w = [w1, · · · , wK ]T . The score for gene i

is defined as follows:

ci = w2
i (10)

The higher the score ci is , the greater the importance of
the feature is. The detail algorithm for SVM-RFE is shown
in Algorithm 3 [16].

3.4 Computation complexity

Now, we discuss the computational complexity of FCSVM-
RFE. Since FCSVM-RFE consists of three stages:
gene clustering, gene representation and gene ranking, the com-
putational complexity of FCSVM-RFE depends on the them.

K-means is used to cluster genes and has the computa-
tional complexity of O(NDKT ), where N is the number of
samples, D is the total number of genes, K is the required
number of clusters and T is the number of iterations [31,
43]. The computational complexity of gene representation
is O(DN). For SVM-RFE, its computational complexity
largely depends on the number of features. The training of
linear SVM has a computational complexity of O(ND). If
only one feature is removed from the feature list in each
iteration, SVM-RFE has a computational complexity of
O(ND2) [38].

Thus, we have O(NDKT ) + O(DN) + O(NK2) for
FCSVM-RFE. In gene expression data, we usually have
D 
 N . In addition, D 
 K and T � D in our algo-
rithm. Thus, the computational complexity of FCSVM-RFE

Table 1 Comparasion of computational complexity for five methods

Algorithm Complexity

Relief [22] O(mND)

MRMR [10] O(|S|2D)

SVM-RFE [16] O(ND2)

MRMR+SVM-RFE [30] O(ND2)

FCSVM-RFE O(NDKT )
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should be O(NDKT ) which is much lower than that of
SVM-RFE.

Table 1 lists the computational complexity of five meth-
ods. We can see that FCSVM-RFE has the same order of
magnitude as Relief with respect to D.

4 Experimental design and results

To validate the efficiency of FCSVM-RFE, we perform
experiments on seven public gene microarray datasets avail-
able which are summarized in Table 2. Seven gene expres-
sion datasets are Leukemia [2], CNS Tumor [2], ColonTu-
mor [2], DLBCL [1], BreastCancer [2], Lung Cancer [2],
and Prostate [2].

All genes in these datasets are expressed as numerical
values at different measurement levels. All samples are nor-
malized to zero mean and unit variance, based on gene
expressions of a particular sample.

In this paper, we use accuracy and recalls to evaluate the
performance of compared methods. The accuracy is defined
as

Accuracy = T P + T N

P + N
(11)

The recall of the positive class is calculated by

Recall+ = T P

T P + FN
(12)

where T P is the number of correctly classified positive
samples, and FN is the number of wrongly classified pos-
itive samples. Similarly, the recall of the negative class is
defined as

Recall− = T F

T F + FP
(13)

where T F and FP are the number of correctly and wrongly
classified negative samples, respectively.

In our experiments, all source codes are implemented
with Matlab R2015a and experiments are conducted on a
Pentium PC with 3.3GHz processor and 6GB main memory.

Table 2 Information of datasets used in experiments

Dataset Sample Gene Class

Leukemia [2] 72 7129 2

CNS Tumor [2] 60 7129 2

ColonTumor [2] 62 2000 2

DLBCL [1] 77 5469 2

BreastCancer [2] 97 24481 2

Lung Cancer [2] 96 7129 2

Prostate [2] 136 12600 2

4.1 Experiments on the Leukemia dataset

In the Leukemia dataset, there are two sets for training and
test, respectively. The training set of Leukemia consists of
38 bone marrow samples (27 ALL and 11 AML), over 7129
probes from 6817 human genes. The other 34 samples for
test is provided, with 20 ALL and 14 AML.

4.1.1 Parameter setting

For comparison, we consider five gene selection methods,
including SVM-RFE, Relief, MRMR, MRMR+SVM-RFE,
and the proposed FCSVM-RFE. We use the linear SVM as
the subsequent classifier. In both SVM and SVM-RFE, there
is the regularization parameter C which is determined from
the set {1, 10, 100} by using the 10-fold cross-validation,
and finally let C = 10.

For MRMR and MRMR+SVM-RFE, we need to deter-
mine how many genes are remained. Xin and Tuck showed
that a maximum of 400 genes are identified in all experi-
ments [46]. To validate this conclusion, we perform feature
selection with SVM-RFE on the Leukemia dataset, and the
accuracy on the test data is shown in Fig. 2. We can see that
when the number of selected genes is larger than 400, the
accuracy on the test set is not significantly increased. Thus,
the gene subset has at most 400 genes for three methods,
SVM-RFE, MRMR and MRMR+SVM-RFE.

For Relief and FCSVM-REF, let the iteration times be
the sample size N . In other words, m = T = N in Table 1.
For Relief, the threshold of relevancy δ = 0.001, which is
the experience value. For FCSVM-REF, the number of clus-
ters must also be determined in advance. The 10-fold cross
validation is adopted to get the optimal number of cluster
centers K which is selected from the set {10, 20, 30, 50,
80, 100, 150}. Figure 3 shows the experimental result on
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Fig. 3 Accuracy vs. cluster number on the Leukemia dataset

the Leukemia dataset. We can see from the accuracy curve
that the accuracy is highest when the number of clusters
is 80. Thus, let K = 80 in the following experiments. To
save evaluation time, we also adopt C = 10, K = 80,
m = T = N , δ = 0.001 and selected gene number is 400 in
other six gene microarray datasets.

4.1.2 Comparison of accuracy and computational time

Based on the above parameter settings, Fig. 4 shows the best
recalls on the Leukemia dataset for the five feature selection
methods. Here, the best performance of SVM-RFE, MRMR
and MRMR+SVM-RFE is obtained using some top-ranked
genes from the remaining 400 genes instead of using all
remaining 400 genes. So does FCSVM-REF algorithm.

As we can see, FCSVM-RFE algorithm and SVM-
RFE algorithm outperform the other three methods and
achieve the average recall of 100%. It may be confused
that the combination method MRMR+SVM-RFE does not
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Fig. 4 Classification performance on the Leukemia dataset dataset

Table 3 Comparison of running time(s) on the Leukemia dataset

FCSVM-RFE SVM-RFE Relief MRMR MRMR+SVM-RFE

0.390 103.740 4.774 221.085 241.094

beat both of MRMR and SVM-RFE. The main reason is
that MRMR+SVM-RFE is sensitive to the first selected
gene which is M55150 at from the Leukmia dataset, and
M55150 at is excluded from the good gene list. Addition-
ally, FCSVM-RFE requires only 7 genes to achieve the
100% average recall, which is the smallest among five meth-
ods. The number of selected genes is 59, 258, 240 and 239
for SVM-RFE, Relief, MRMR and MRMR+SVM-RFE,
respectively.

Table 3 lists the running time of five methoeds. Obvi-
ously, FCSVM-RFE is the fastset one among five methods,
followed by Relief. FCSVM-RFE is faster than SVM-
RFE in three orders of magnitude. The runing time of
MRMR+SVM-RFE is even longer than SVM-RFE.

4.1.3 Selected genes

Table 4 presents top-ranked 10 genes obtained by FCSVM-
RFE. The genes listed in Table 4 have been reported by
many previous works [35, 36], which shows the effective-
ness of FCSVM-RFE. In fact, previous experiments and
clinical studies indicate that the 7791th (Zyxin, probe ID:
X95735 at), the 945th (CD33, probe ID: M23197 at) and
the 973th (MB-1, probe ID: U05259 rna1 at) genes are
associated with leukemia. For example, the Zyxin gene has
been shown to encode an LIM domain protein important in
cell adhesion of fibroblasts and CD33 has been developed
for targeted antibody therapy to kill leukemia AML cells
[35, 36]. The distribution of training data with the two top-
ranked genes is shown in Fig. 5. According to these two
genes, we can exactly discriminate ALL and AML on the
trainning set.

4.2 Experiments on the prostate dataset

The Prostate dataset has two classes, Tumor versus Nor-
mal: training set contains 52 prostate tumor samples and
50 non-tumor (labelled as “Normal”) prostate samples with
around 12600 genes. An independent set of testing sam-
ples is also prepared, which is from a different experiment
and has a nearly 10-fold difference in overall microarray
intensity from the training data. We also have removed extra
genes contained in the testing samples. In the above publi-
cation, the testing set is indicated to have 27 tumor and 8
normal samples. However, from our extraction, there are 25
tumor and 9 normal samples.
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Table 4 Significant genes selected by FCSVM-RFE on the Leukemia dataset

Index Gene ID Probe ID Gene annotation

4847 7791 X95735 at Homo sapiens mRNA for Zyxin

1834 945 M23197 at CD33 antigen (differentiation antigen)

5833 4125 U05572 at MANB Mannosidase alpha-B (lysosomal)

1174 112714 K03460 at Alpha-tubulin isotype H2-alpha gene, last exon

230 9694 D14659 at KIAA0103 gene

2776 2825 U13666 at GB DEF = G protein-coupled receptor (GPR1) gene

1882 1471 M27891 at CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

2678 84560 U07807 at GB DEF = Metallothionein IV (MTIV) gene

4519 283135 X72790 at GB DEF = Endogenous retrovirus mRNA for ORF

2642 973 U05259 rnal at MB-1 gene

4.2.1 Comparison of accuracy and computational time

The experimental setting is the same as before. We report
the results on the Prostate dataset in Table 5, where the
bold values indicate the best performance among five algo-
rithms. It is easy to see that FCSVM-RFE achieves the
best average recall and has the fastest selection speed
among five methods. Although both SVM-RFE and MRMR
have 100% tumor recall, their normal recalls are decreases.
MRMR+SVM-RFE has a bad classification performance on
the Prostate dataset.

4.2.2 Selected genes

Table 6 presents the 11 selected genes obtained by FCSVM-
RFE. These genes are consistent with the results reported
in previous studies. For example, the 3249th gene (probe
ID: 37639 at) has been selected by other papers [6, 21, 29,
35, 41]. This gene is known as a potential prostate cancer
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Fig. 5 Distribution of training data on the Leukemia dataset

biomarker [8, 28] because it has been reported to encode
hepsin, a serine protease that is significantly upregulated
in human prostate cancer and it promotes cancer progres-
sion and metastasis of prostate. The 3329th gene (probe ID:
37720 at) has been correlated to different cancer types with
consistent upregulation in tumor [23].

The distribution of training data with the two top-ranked
genes is shown in Fig. 6. Obviously some samples are over-
lapped, but the spearablity of the two top-ranked genes is
acceptable. Actually, we use 11 top-ranked genes to classify
Tumor and Normal.

4.3 Experiments on the Lung Cancer dataset

The Lung Cancer dataset consists of 96 tissue samples of
which 86 primary lung adenocarcinomas samples and 10
non-neoplastic lung samples are included. Each sample is
described by 7129 genes.

The experimental setting is the same as before. Since the
Lung Cancer dataset has no partition for training and test,
we randomly take half of samples as training ones and the
rest as test ones, which is repeated 10 times. We report the
average results on 10 trials in Table 7, which shows the com-
parison of the best classification performance obtained by
five methods. In Table 7, the bold values represent the best
performance among five algorithms.

We can see from Table 7, Both FCSVM-RFE and
MRMR+SVM-RFE have the best average performance,
100%. In fact, other algorithms also obtain comparable per-
formance. However, these algorithms take more time to
perform gene selection except for FCSVM-RFE and Relief.

The probe IDs of the 2 top-ranked genes obtained
by FCSVM-RFE are U60115 at and X62466 at, where
U60115 at is FHL1- Juvenile dermatomyositis muscle pro-
file (HuGeneFL), and X62466 at is CD52 - CD34+ cell
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Table 5 Comparison of performance on the Prostate dataset

Algorithm Tumor Recall(%) Normal Recall(%) Average Recall(%) Accuracy(%) (Gene number) Running Time(s)

FCSVM-RFE 100.00 100.00 100.00 100.00(11) 9.45

SVM-RFE 100.00 84.00 92.00 88.24(5) 1404.289

Relief 88.89 100.00 94.45 97.06(21) 412.233

MRMR 100.00 96.00 98.00 97.06(17) 387.569

MRMR+SVM-RFE 11.11 100.00 55.50 76.47(161) 1529.844

analysis. The distribution of training data with the top-
ranked 2 genes is shown in Fig. 7. We can see tht the
separability between AD and NL is very high.

4.4 More experiments on gene datasets

More datasets are used here, including Breast Cancer [2],
Colon Tumor [2], Diffuse large B-cell lymphoma (DLBCL)
[1] and CNS Tumor [2].

The Breast Cancer dataset has 97 samples belonging to
two classes, or Relapse (positive class) and Non-relapse
(negative class). Each sample has 24481 genes. The train-
ing set contains 78 patient samples, 34 of which are from
patients who had developed distance metastases within 5
years (labelled as “relapse”), and the remaining 44 samples
are from patients who remained healthy from the disease
after their initial diagnosis for an interval of at least 5 years
(labelled as “non-relapse”). Correspondingly, there are 12
relapse and 7 non-relapse samples in the test set.

The Colon Tumor dataset contains 62 samples collected
from colon-cancer patients. Among them, 40 tumor biop-
sies are from tumors (labelled as “negative”) and 22 normal
(labelled as “positive”) biopsies are from healthy parts of
the colons of the same patients. Two thousand out of around

6500 genes were selected based on the confidence in the
measured expression levels.

The diffuse large B-cell lymphoma (DLBCL) and follic-
ular lymphomas, the most common lymphoid malignancy
in adults, is curable in less than 50% of patients. There are
77 samples, 58 of them are from DLBCL group (labelled as
“negative”) while 19 are FL group (labelled as “positive”).
Each sample is described by 5469 genes.

The CNS dataset contains 60 patient samples, 21 are sur-
vivors (alive after treatment) which are labelled as positive
class, and 39 are failures (succumbed to their disease) which
are labelled as negative class. There are 7129 genes in the
dataset. The training set consistsof the first 10 survivors and 30
failures, the other 11 survivors and 9 failures are testing points.

The experimental setting on the Colon Tumor and
DLBCL datasets is the same as that of the Lung Cancer
dataset, and setting on the Breast Cancer and CNS Tumor
datasets is the same as that of the Leukemia Dataset. We
report the results on the four datasets in Table 8, which
shows the comparison of five methods when obtaining
the best classification performance. Inspection on Table 8
implies that FCSVM-RFE has a very fast gene selec-
tion speed. In addition, the classification performance of
FCSVM-RFE is also comparable.

Table 6 Significant genes selected by FCSVM-RFE on the Prostate dataset

Index Gene ID Probe ID Gene annotation

6185 3249 37639 at Homo sapiens mRNA for Pex3 protein

8965 3329 37720 at Human mitochondrial matrix protein P1 (nuclear encoded) mRNA, complete cds

9172 5730 38406 f at PTGDS - Pulmonary adenocarcinoma

4365 445347 41468 at TARP - B-cell chronic lymphocytic leukemia progression

6185 3249 37639 at HPN - Muscle function and aging (HG-U95A)

8965 3329 37720 at HSPD1 - RENT1 nonsense-mediated mRNA decay component knockdown

2791 1191 36780 at CLU - Type 2 diabetes: myotube

6617 3834 39028 at IPO5 - Type 2 diabetes: myotube

3649 284 39315 at ANGPT1 - Cyclophosphamide-resistant chronic myelogenous leukemia cell line

8925 9590 37680 at AKAP12 - 13-cis retinoic acid effect on SEB-1 sebocyte cell line

6662 4830 39073 at NME1 - Vitamin D effect on intestinal epithelial cells
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Fig. 6 Distribution of training data on the Prostate dataset

4.5 Statistical comparison over multiple datasets

In the previous section, we perform experiments on seven
datasets, and compare the classification performance and
running time of FCSVM-RFE with other methods. For the
sake of comparison, statistical tests on multiple data sets for
multiple algorithms are preferred for comparing different
algorithms over multiple datasets [7]. In the following, we
conduct two different statistical analyses, the win-loss-tie
summary and the Friedman test.

First, the win-loss-tie times are summarized to compare
FCSVM-RFE with the other four methods. Table 9 shows
the win-loss-tie summary of FCSVM-RFE in terms of the
average recall and the running time for gene selection,
respectively. From Table 9, it is observed that FCSVM-
RFE outperforms SVM-RFE in five out of seven datasets,
both Relief and MRMR in six out of seven datasets, and
MRMR+SVM-RFE in four out of seven datasets in terms
of the average recall. Briefly speaking, FCSVM-RFE can
achieve a better performance than other methods. On the
performance of the running time, FCSVM-RFE is the fastest
among these five methods.
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Fig. 7 Distribution of training data on the Prostate dataset

Second, we conduct the Friedman test with the cor-
responding post-hoc tests, which is a non-parametric
equivalence of the repeated-measures analysis of variance
(ANOVA) under the null hypothesis that all the algorithms
are equivalent and so their ranks should be equal [14].
According to [14], the Friedman test is carried out to test
whether all the algorithms are equivalent. If the test result
rejects the null hypothesis, i.e., these algorithms are equiv-
alent, we can proceed to a post-hoc test. The power of the
post-hoc test is much greater when all learners are com-
pared with a control learner and not among themselves. We
do not need to make pairwise comparisons when we in fact
only test whether a newly proposed method is better than
the existing ones.

FCSVM-RFE is taken as the control learner to be com-
pared with. The Bonferroni-Dunn test [12] is used as post-
hoc tests when all learners are compared to the control one.
The performance of pairwise classifiers is significantly dif-
ferent if the corresponding average ranks differ by at least
the critical difference

CD = qα

√
j (j + 1)

6T
(14)

Table 7 Comparison of performance on the Lung Cancer dataset

Algorithm Recall of AD(%) Recall of NL(%) Average Recall(%) Accuracy(%) (Gene number) Running time(s)

FCSVM-RFE 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00(5) 0.530

SVM-RFE 100.00±0.00 96.00±9.00 98.00±45.00 99.58±1.00(392) 99.684

Relief 99.53±1.00 96.00±9.00 97.77±5.00 99.17±1.00(47) 1.448

MRMR 99.53±1.00 100.00±0.00 99.77±1.00 99.58±1.00(385) 219.449

MRMR+SVM-RFE 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00(280) 250.475
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Table 8 Comparison of FCSVM-RFE, SVM-RFE, relief, MRMR and MRMRSVM-RFE algorithms on the other gene datasets used in
experiments

Dataset Algorithm Positive Recall(%) Negative Recall(%) Average Recall(%) Accuracy(%) (Gene number) Running time(s)

Breast Cancer FCSVM-RFE 85.71 100.00 92.86 94.74(37) 17.175

SVM-RFE 57.14 100.00 78.57 84.21(29) 4764.271

Relief 75.00 100.00 87.50 84.21(326) 292.970

MRMR 100.00 75.00 87.50 84.21(27) 757.931

MRMR+SVM-RFE 71.43 91.67 81.55 84.21(185) 931.482

Colon Tumor FCSVM-RFE 88.57±3.00 85.71±4.00 87.14±35.00 87.56±2.00(45) 0.265

SVM-RFE 92.86±6.00 74.03±3.00 83.45±45.00 86.18±2.00(345) 5.163

Relief 92.86±6.00 88.31±7.00 90.59±6.00 91.24±6.00(91) 1.06

MRMR 92.86±6.00 77.92±10.00 85.39±8.00 87.56±7.00(10) 53.932

MRMR+SVM-RFE 91.43±8.00 89.61±3.00 90.52±5.00 90.78±7.00(77) 56.114

DLBCL FCSVM-RFE 99.14±1.00 94.44±11.00 96.79±6.00 98.03±2.00(13) 0.312

SVM-RFE 100.00±0.00 94.44±6.00 97.22±3.00 99.34±1.00(213) 57.969

Relief 99.14±2.00 91.67±2.00 95.40±2.00 97.37±2.00(92) 3.108

MRMR 97.41±2.00 97.22±6.00 97.32±4.00 97.06±4.00(61) 161.473

MRMR+SVM-RFE 98.28±3.00 100.00±0.00 99.14±15.00 97.37±3.00(373) 176.515

CNS Tumor FCSVM-RFE 88.89 81.82 85.36 85.00(43) 0.514

SVM-RFE 88.89 45.45 67.17 65.00(16) 113.194

Relief 100.00 54.55 77.28 75.00(92) 4.352

MRMR 100.00 45.45 72.73 70.00(325) 214.470

MRMR+SVM-RFE 100.00 36.36 68.18 65.00(68) 216.264

The bold values indicate the best performance among five algorithms

where j is the number of algorithms, T is the number of
data sets, the critical values qα can be found in [14], and the
subscript α is the threshold value. Generally, let α = 0.1 [5],
and in Table 10 we find that the critical value q0.10 = 2.241.
Here, we have j = 5, T = 7, then CD = 1.8940.

Table 11 lists the mean rank of five feature selec-
tion algorithms including FCSVM-RFE, SVM-RFE, Relief,
MRMR and MRMR+SVM-RFE. Table 12 shows the Fried-
man test results. On the performance of average recall,
although FCSVM-RFE is the first, we could not find
any significant differences between FCSVM-RFE and
Relief, MRMR and MRMR+SVM-RFE since all rank dif-
ferences are below the critical difference. However, we

Table 9 Win-loss-tie summary of FCSVM-RFE

Performance SVM-RFE Relief MRMR MRMR+SVM-RFE

Average Recall 5-1-1 6-1-0 6-1-0 4-2-1

Running Time 7-0-0 7-0-0 7-0-0 7-0-0

can see that FCSVM-RFE is significantly better than
SVM-RFE according to the difference (2.1429) between
them.

For the performance of running time, the differences
between FCSVM-RFE and other algorithms including
SVM-RFE, MRMR and MRMR+SVM-RFE are greater
than the critical difference, so the differences are significant,
which means the performance of running time of FCSVM-
RFE is significantly better than SVM-RFE, MRMR and
MRMR+SVM-RFE in this current experimental setting.
The difference (1.1429) between FCSVM-RFE and Relief
is below the critical difference. We could not detect any
significant difference between FCSVM-RFE and Relief.

Table 10 Critical values for the two-tailed Bonferroni-Dumn test

#Classifiers 2 3 4 5 6

q0.05 1.960 2.241 2.394 2.498 2.576

q0.10 1.654 1.960 2.128 2.241 2.326
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Table 11 The mean rank of five methods

Performance FCSVM-RFE SVM-RFE Relief MRMR MRMR+SVM-RFE

Average Recall 1.7857 3.9286 3.2143 2.7857 3.1429

Running Time 1.0000 3.4286 2.1429 3.5714 4.8571

Table 12 Friedman tests with the corresponding post-hoc tests to compare FCSVM-RFE with other methods for multiple datasets

Performance CD0.10 SVM-RFE Relief MRMR MRMR+SVM-RFE

Average Recall 1.8940 2.1429 1.4286 1.0000 1.3571

Running Time 1.8940 2.4286 1.1429 2.5714 3.8671

5 Conclusion

We propose FCSVM-RFE to enhance SVM-RFE for gene
selection by incorporating the K-means clustering method,
and apply it to cancer classification. FCSVM-RFE can re-
duce the computational complexity and the redundancy a
mong genes. There are three stages in the proposed method,
gene clustering, gene representation, and gene ranking.
Gene clustering is implemented by applying K-means clus-
tering. The goal of gene representation is to find the re-
presentative genes for gene clusters. SVM-RFE is used to
rank the representative genes. Extensive experiments are per-
formed on seven public gene expression datasets, including
Leukemia, CNS Tumor, ColonTumor, DLBCL, Breast Can-
cer, Lung Cancer, and Prostate. All experimental results show
that FCSVM-RFE can achieve better classification perfor-
mance and much lower computational complexity when
compared with the state-the-art-of methods. The Friedman
test also shows that FCSVM-RFE is ranked the first on the
performance of both average recall and running time.

In the framework of FCSVM-RFE, each stage can also
be implemented by other methods. For example, we could
use other clustering algorithms to perform gene clustering.
Thus, we will continue to research this model further for
better classification performance and faster gene selection.

Acknowledgment This study was funded by the National Natural
Science Foundation of China (grant numbers 61373093, 61672364,
and 61672365), by the Natural Science Foundation of Jiangsu Province
of China (grant number BK20140008), by the Natural Science Foun-
dation of the Jiangsu Higher Education Institutions of China (grant
number 13KJA520001), and by the Soochow Scholar Project.

References

1. The dataset is download from gene expression model selector.
http://www.gems-system.org/

2. The dataset is download from kent ridge bio-medical dataset.
http://datam.i2r.a-star.edu.sg/datasets/krbd/

3. Ambroise C, McLachlan GJ (2002) Selection bias in gene extrac-
tion on the basis of microarray gene-expression data. Proc Nat
Acad Sci 99(10):6562–6566

4. Blum AL, Langley P (1997) Selection of relevant features and
examples in machine learning. Artif Intell 97(1):245–271

5. Chen H, Tiho P, Yao X (2009) Predictive ensemble pruning by
expectation propagation. IEEE Trans Knowl Data Eng 21(7):999–1013

6. Chu W, Ghahramani Z, Falciani F, Wild DL (2005) Biomarker
discovery in microarray gene expression data with Gaussian pro-
cesses. Bioinformatics 21(16):3385–3393
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