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Abstract In this paper, we propose a new classifier termed
as an improved ν-twin bounded support vector machine
(Iν-TBSVM) which is motivated by ν-twin support vector
machine (ν-TSVM). Similar to the ν-TSVM, Iν-TBSVM
determines two nonparallel hyperplanes such that they are
closer to their respective classes and are at least ρ+ or ρ−
distance away from the other class. The significant advan-
tage of Iν-TBSVM over ν-TSVM is that Iν-TBSVM skill-
fully avoids the expensive matrix inverse operation when
solving the dual problems. Therefore, the proposed classi-
fier is more effective when dealing with large scale problem
and has comparable generalization ability. Iν-TBSVM also
implements structural risk minimization principle by intro-
ducing a regularization term into the objective function.
More importantly, the kernel trick can be applied directly
to the Iν-TBSVM for nonlinear case, so the nonlinear
Iν-TBSVM is superior to the nonlinear ν-TSVM theo-
retically. In addition, we also prove that ν-SVM is the
special case of Iν-TBSVM. The property of parameters in
Iν-TBSVM is discussed and testified by two artificial exper-
iments. Numerical experiments on twenty-two benchmark-
ing datasets are performed to investigate the validity of our
proposed algorithm in both linear case and nonlinear case.
Experimental results show the effectiveness of our proposed
algorithm.
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1 Introduction

The support vector machine (SVM) [1], motivated by Vap-
nik’s statistical learning theory, is the state of the art
algorithm in nonlinear pattern classification, together with
multilayered neural network models. Compared with other
machine learning methods like artificial neural networks[2],
SVM gains many advantages. SVM solves a quadratic
programming problem (QPP) which assures that once an
optimal solution is obtained, it is the unique global solution.
SVM implements the structural risk minimization principle
rather than the empirical risk minimization principle, which
minimizes the upper bound of the generalization error. The
introduction of the kernel function [3] in SVM maps train-
ing vectors into a high-dimensional space directly. On the
basis of the techniques above, SVM has been successfully
applied in many fields [4–8] and various amendments have
been suggested [9–17].

It is well known that solving the entire QPP in the
SVMs is time consuming, which still remains challeng-
ing. To improve the computational speed, Jayadeva et al.
have proposed a twin support vector machine (TSVM)
[18] for the binary classification data. TSVM attempts to
seek two nonparallel proximal hyperplanes for the two
classes of samples, such that each hyperplane is closer
to one class and as far as possible from the other. The
greatest advantage of TSVM over SVM is that it solves
two smaller-sized QPPs rather than a single large one,
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which makes TSVM work faster than SVM. Later, many
variants of TSVM have been proposed [19], such as smooth
TSVM [20], least squares TSVM [21], twin support vec-
tor regression [22], twin bounded SVM (TBSVM) [23],
and structure information based TSVM [24]. Tian et al.
proposed a new improved TSVM [25] to avoid solving
the corresponding inverse matrices in most of the existing
TSVMs.

In TSVM, the patterns of one class are at least a unit
distance away from the hyperplane of other class, this may
increase the number of support vectors thus leading to poor
generalization ability. Recently, Peng proposed ν-TSVM
[26]. The unit distance of TSVM is modified to variable ρ

which needs to be optimized in the primal problem. And the
parameter ν in ν-TSVM is used to control the bounds on
the fractions of support vectors and error margins. Besides,
ν-TSVM can be interpreted as a pair of minimum gener-
alized Mahalanobis-norm problems on two reduced convex
hulls. Based on the thoughts of ν-TSVM, many algorithms
are studied extensively, such as ν-twin bounded SVM (ν-
TBSVM) [27], rough margin based ν-TSVM [28, 29] and a
novel improved ν-TSVM [30]. Nevertheless, the aforemen-
tioned ν-TSVMs all involve expensive matrix inverse oper-
ation, which makes them time consuming even though the
Sherman-Morrison-Woodbury [31–33] for matrix inversion
can be used. When using the linear kernel, the ν-TSVMs
cannot transform to the linear case. However, our algorithm
can achieve it.

In this paper, we present an improvement on ν-TSVM,
called the improved ν-twin bounded support vector machine
(Iν-TBSVM). Our Iν-TBSVM possesses the following
attractive advantages:

1. Iν-TBSVM leads to less computation time because
it skillfully avoids the matrix inverse operation when
solving dual QPPs. Therefore, it is more suitable to
solve large scale problems.

2. Unlike the ν-TSVM, when using the linear kernel, the
Iν-TBSVM can degenerate to the linear case.

3. Similar to ν-TBSVM, the structural risk is min-
imized by introducing a regularization term in
the objective function in Iν-TBSVM, which makes
sure the enhanced algorithm yields high testing
accuracy.

The remainder of the paper is organized as follows. In
Section 2 we give a brief overview on ν-TSVM and ν-
TBSVM. In Section 3 we introduce our Iν-TBSVM in
detail. In Section 4, we compare our Iν-TBSVM with ν-
TBSVM and TBSVM. Section 5 performs two artificial
experiments to verify the property of parameters in Iν-
TBSVM, and twenty-two experiments to investigate the
effectiveness of our proposed algorithm. We make conclu-
sions in Section 6.

2 Related works

In this section, we review the basics of ν-TSVM and
ν-TBSVM and summarize their drawbacks.

2.1 ν-twin support vector machine

Consider a binary classification problems with p sam-
ples belonging to class +1 and q samples belonging to
class −1 in the n-dimensional real space R

n. Let matrix
A ∈ R

p×n,B ∈ R
q×n stand for the positive and negative

samples, respectively.
The ν-TSVM [26] generates two nonparallel hyperplane

instead of a single one as in the standard SVM. The two non-
parallel hyperplanes are obtained by solving two smaller-
sized QPPs rather than a single large one. The ν-TSVM
seeks the following pair of nonparallel hyperplanes:

〈w+, x〉 + b+ = 0 and 〈w−, x〉 + b− = 0 (1)

for linear case, and it seeks the following kernel surfaces:

K(xT ,CT )w+ + b+ = 0 and K(xT ,CT )w− + b− = 0 (2)

for nonlinear case, where C = [AT BT ] ∈ R
n×(p+q), such

that each hyperplane is closer to one class and is as far as
possible from the other.

The dual problems of ν-TSVM are as follows:

max
α

− 1

2
αT G(HT H)

−1
GT α

s.t. 0 ≤ α ≤ 1

q
e−, (3)

eT−α ≥ ν1,

and

max
γ

− 1

2
γ T H(GT G)

−1
HT γ

s.t. 0 ≤ γ ≤ 1

p
e+, (4)

eT+γ ≥ ν2,

where G = [B e−] and H = [A e+] for linear case, and
G = [K(B,CT ) e−] and H = [(A,CT ) e+] for nonlinear
case.

A new sample x is assigned to a class i (i = +1, −1) by

class i = arg min
i=+,−

| 〈wi , x〉 + bi |
‖wi‖ , (5)

where | · | is the perpendicular distance of the new sample x
from the two hyperplanes (1).
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2.2 ν-twin bounded support vector machine

Xu and Guo [27] introduced a regularization term into the
objective function in the ν-TBSVM. The linear QPPs of ν-
TBSVM are denoted as follows,

min
w+,b+,ρ+,ξ−

c1

2
(||w+||2 + b2+) + 1

2
‖Aw+ + e+b+‖2

−ν1ρ+ + 1

q
eT−ξ−

s.t. − (Bw+ + e−b+) ≥ ρ+e− − ξ−, (6)

ρ+ ≥ 0, ξ− ≥ 0,

and

min
w−,b−,ρ−,ξ+

c2

2
(||w−||2 + b2−) + 1

2
‖Bw− + e−b−‖2

−ν2ρ− + 1

p
eT+ξ+

s.t. Aw− + e+b− ≥ ρ−e+ − ξ+, (7)

ρ− ≥ 0, ξ+ ≥ 0.

By introducing the Lagrange multipliers α and γ , their dual
problems are derived as,

max
α

− 1

2
αT G(HT H + c1I)

−1
GT α

s.t. 0 ≤ α ≤ 1

q
e−, (8)

eT−α ≥ ν1,

and

max
γ

− 1

2
γ T H(GT G + c2I)

−1
HT γ

s.t. 0 ≤ γ ≤ 1

p
e+, (9)

eT+γ ≥ ν2,

where G = [B e−] and H = [A e+].
From the dual QPPs (3), (4), (8) and (9), we can clearly

see that ν-TSVM and ν-TBSVM inevitably need to calcu-
late the inverse matrices HT H and GT G, HT H + c1I and
GT G+c2I, respectively, which is time consuming. Besides,
the size of the inverse matrices is roughly (n + 1) × (n + 1)

which means the linear ν-TSVM and ν-TBSVM only works
on smaller n. Therefore, they are not suitable for, and have
difficulty calculating, the high dimensional datasets. For the
nonlinear case, the size is (l + 1) × (l + 1), which means
they only work for the problem with smaller scale. And
the nonlinear ν-TSVM and ν-TBSVM with the linear ker-
nel is not equivalent to the linear ν-TSVM and ν-TBSVM,
respectively. Here we illustrate it by a toy example, see
Fig. 1.

3 An improved ν-twin bounded support vector
machine

In this section, we propose a new algorithm based on ν-
TSVM, termed as improved ν-twin bounded support vector
machine (Iν-TBSVM), which inherits the essence of the tra-
ditional ν-SVM and overcomes the aforementioned draw-
backs in ν-TSVM and ν-TBSVM. Further speaking, Iν-
TBSVM constructs two nonparallel hyperplanes by imple-
menting the structural risk minimization principle. Due to
the introduction of two new variables, the Iν-TBSVM does
not require the expensive matrix inverse operation and the
nonlinear case can degenerate to the linear case directly
when linear kernel is applied.

3.1 Linear case

For the linear case, the Iν-TBSVM finds the following
QPPs.

min
w+,b+,η+,ρ+,ξ−

c1

2
(||w+||2 + b2+) + 1

2
ηT+η+

−ν1ρ+ + 1

q
eT−ξ−

s.t. Aw+ + e+b+ = η+,

−(Bw+ + e−b+) ≥ ρ+e− − ξ−, (10)

ξ− ≥ 0, ρ+ ≥ 0,

and

min
w−,b−,η−,ρ−,ξ+

c2

2
(||w−||2 + b2−) + 1

2
ηT−η−

−ν2ρ− + 1

p
eT+ξ+

s.t. Bw− + e−b− = η−,

Aw− + e+b− ≥ ρ−e+ − ξ+, (11)

ξ+ ≥ 0, ρ− ≥ 0,

where c1, c2 are the penalty parameters; ξ+, ξ− are slack
vectors; e+, e− are vectors of ones of appropriate dimen-
sions; η+, η− are vectors of appropriate dimensions; ν1, ν2

are chosen a priori; ρ+, ρ− are additional variables.
It is worth noting that we only introduce two parameters

η+ and η− in (10) and (11) compared with QPPs (6) and (7).
For the sake of conciseness, we only take the dual problem
of (10) into account.

The first term in the objective function is the regular-
ization term. That means our Iν-TBSVM still takes the
structural risk minimization principle into consideration to
improve the generalization ability. The distance between
the hyperplane 〈w+, x〉 + b+ = 0 and the boundary
hyperplane 〈w+, x〉 + b+ = −ρ+ can be measured by

ρ+/

√
||w+||2 + b2+, which is maximized by minimization
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Fig. 1 Nonlinear ν-TSVM with
the linear kernel is not equivalent
to the linear ν-TSVM. The
different points “*” and “o” are
generated following two normal
distributions respectively. Here
the parameter ν1 = ν2 = 0.5. a
Two nonparallel hyperplanes
obtained from the linear
ν-TSVM; b Two nonparallel
hyperplanes obtained from
nonlinear ν-TSVM with linear
kernel

a b

of c1
2 (||w+||2 + b2+) − ν1ρ+. It implies that the distance

between two parallel hyperplanes is as large as possible.
The Lagrangian function corresponding to Iν-TBSVM

(10) is as follows,

L = c1

2
(||w+||2 + b2+) + 1

2
ηT+η+ − ν1ρ+ + 1

q
eT−ξ−

+λT (Aw+ + e+b+ − η+) − βT ξ− − sρ+
+αT (Bw+ + e−b+ + ρ+e− − ξ−), (12)

where α = (α1, ..., αq)T , β = (β1, ..., βq)T , λ =
(λ1, ..., λp)T and s are Lagrange multipliers. Differentiat-
ing the Lagrangian function L with respect to variables w+,
b+, η+, ρ+, ξ− yields the following Karush-Kuhn-Tucker
(KKT) conditions:

∂L

∂w+
= c1w+ + AT λ + BT α = 0, (13)

∂L

∂b+
= c1b+ + eT+λ + eT−α = 0, (14)

∂L

∂η+
= η+ − λ = 0, (15)

∂L

∂ρ+
= eT−α − ν1 − s = 0, (16)

∂L

∂ξ−
= 1

q
e− − α − β = 0, (17)

Aw+ + e+b+ = η+, (18)

−(Bw+ + e−b+) ≥ ρ+e− − ξ−, ξ− ≥ 0, ρ+ ≥ 0, (19)

αT (Bw+ + e−b+ + ρ+e− − ξ−) = 0, α ≥ 0, (20)

βT ξ− = 0, β ≥ 0, (21)

sρ+ = 0, s ≥ 0. (22)

Since β ≥ 0, from (17) we have

0 ≤ α ≤ 1

q
e−. (23)

Since s > 0, from (16) we also get

eT−α ≥ ν1. (24)

Equations (13) and (14) imply that

w+ = − 1

c1
(AT λ + BT α), (25)

b+ = − 1

c1
(eT+λ + eT−α). (26)

Using (13), (14) and (15), we derive the dual formulation
of the QPP (10) as follows,

max
λ,α

− 1

2
(λT αT )Q(λT αT )

T

s.t. 0 ≤ α ≤ 1

q
e−, (27)

eT−α ≥ ν1,

where

Q =
(

AAT + c1I ABT

BAT BBT

)
+ E, (28)

and I is the p×p identity matrix, E is the (p+q)× (p+q)

matrix with all entries equal to 1.
Similarly, the dual formulation of (11) is derived as

max
θ ,γ

− 1

2
(θT γ T )Q̃(θT γ T )

T

s.t. 0 ≤ γ ≤ 1

p
e+, (29)

eT+γ ≥ ν2,

where

Q̃ =
(

BBT + c2I BAT

ABT AAT

)
+ E, (30)

and I is the q ×q identity matrix, E is the (p +q)× (p +q)

matrix with all entries equal to 1. Once the optimal solutions
(θ , γ ) are obtained, we can derive

w− = − 1

c2
(BT θ + AT γ ), (31)

b− = − 1

c2
(eT−θ + eT+γ ). (32)
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To compute ρ±, we choose the samples xi (or xj )with
0 < αi < 1

p
(or 0 < αj < 1

q
, which means ξi = 0 (or

ξj = 0) and wT−xi + b− = ρ− (or wT+xj + b+ = −ρ+)
according to the KKT conditions. Then ρ± can be calculated
by

ρ+=− 1

q1

q1∑
j=1

(wT+xj +b+), ρ−= 1

p1

p1∑
i=1

(wT−xi+b−). (33)

There is similar conclusion for the QPPs (27) and QPP
(29) above, so we only take QPP (27) into account. For con-
venience, we first give an equivalent formulation of the QPP
(27). The optimal parameters ρ+ in the QPP (10) is actu-
ally larger than zero. On the conditions above, we give the
following Proposition 1.

Proposition 1 The QPP (27) can be transformed into the
following QPP.

max
λ,α

− 1

2
(λT αT )Q(λT αT )

T

s.t. 0 ≤ α ≤ 1

q
e−, (34)

eT−α = ν1.

The QPPs (27) and (34) differ in the second constraint con-
dition. In (27), the second inequality constraint eT−α ≥ ν1

can become an equality constraint eT−α = ν1.

Proof According to assumptions ρ+ > 0 and the KKT
condition sρ+ = 0, we can obtain that the Lagrangian mul-
tipliers s = 0. Then, by substituting it into (16), we can get
the equality constraint eT−α = ν1.

As in ν-SVM, ν-TSVM and ν-TBSVM, parameter ν in
our Iν-TBSVM has its property. We discuss its property in
the following Propositions.

Proposition 2 Denote by q2 the number of support vectors
in the negative class. Then we can obtain an inequality ν1 ≤
q2
q
, which implies that ν1 is a lower bound on the fraction of

support vectors in the negative class.

Proposition 3 Denote by p2 the number of boundary errors
in the negative class. Then we can obtain an inequality ν1 ≥
p2
q
, which implies that ν1 is an upper bound on the fraction

of boundary errors in the negative class.

Proof The proof of Proposition 2 and 3 is similar to that of
Proposition 2 and 3 in [27]. These results can be extended
to the nonlinear case by considering kernel function.

It is worthwhile to mention that the dual problems (27)
and (29) don’t involve the matrix inverse operation accord-
ing the expression of Q and Q̃ . More importantly, they can
be easily extended to the nonlinear case.

3.2 Nonlinear case

By introducing the kernel function K(xi , xj ) = (ϕ(xi ) ·
ϕ(xj )) and the corresponding transformation x = ϕ(x),
where x ∈ H, H is the Hilbert space, we can get the
nonlinear Iν-TBSVM as follows,

min
w+,b+,η+,ρ+,ξ−

c1

2
(||w+||2 + b2+) + 1

2
ηT+η+

−ν1ρ+ + 1

q
eT−ξ−

s.t. ϕ(A)w+ + e+b+ = η+,

−(ϕ(B)w+ + e−b+) ≥ ρ+e− − ξ−, (35)

ξ− ≥ 0, ρ+ ≥ 0,

and

min
w−,b−,η−,ρ−,ξ+

c2

2
(||w−||2 + b2−) + 1

2
ηT−η−

−ν2ρ− + 1

p
eT+ξ+

s.t. ϕ(B)w− + e−b− = η−,

ϕ(A)w− + e+b− ≥ ρ−e+ − ξ+, (36)

ξ+ ≥ 0, ρ− ≥ 0,

where c1, c2, ν1, ν2 are chosen a priori; ξ+, ξ− are slack
vectors; e+, e− are vectors of ones of appropriate dimen-
sions; η+, η− are vectors of appropriate dimensions.

In an exactly similar way as the linear case, we derive the
dual formulation of (35) as follows,

max
λ,α

− 1

2
(λT αT )Qϕ(λT αT )

T

s.t. 0 ≤ α ≤ 1

q
e−, (37)

eT−α ≥ ν1,

where

Qϕ =
(

K(A,A) + c1I K(A,B)

K(B,A) K(B,B)

)
+ E. (38)

Similarly, the dual of the QPP (36) is derived as

max
θ ,γ

− 1

2
(θT γ T )Q̃ϕ(θT γ T )

T

s.t. 0 ≤ γ ≤ 1

p
e+, (39)

eT+γ ≥ ν2,
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where

Q̃ϕ =
(

K(B,B) + c2I K(B,A)

K(A,B) K(A,A)

)
+ E. (40)

Once the optimal solutions (λ,α) and (θ , γ ) are
obtained, the pair of nonparallel hyperplanes in the Hilbert
space can be obtained as follows,

K(xT ,A)λ + K(xT ,B)α + b+ = 0, (41)

where b+ = eT+λ + eT−α, and

K(xT ,B)θ + K(xT ,A)γ + b− = 0, (42)

where b− = eT−θ + eT+γ .
Obviously, the dual QPPs (37) and (39) don’t involve

the matrix inverse operation, and they can degenerate to the
problems (27) and (29) of linear Iν-TBSVM when the linear
kernel is applied.

The flowchart of the nonlinear Iν-TBSVM is described
as follows.

3.3 Analysis of algorithm

In this section, we summarize the superiorities of the pro-
posed Iν-TBSVM.

1) By introducing a new pair of variables in ν-TBSVM,
our Iν-TBSVM skillfully avoids the matrix inverse
operation while it is inescapable in other ν-TSVMs.

2) When using the linear kernel, our Iν-TBSVM can
degenerate to the linear case directly, while it is really
not so in other ν-TSVMs.

3) Our Iν-TBSVM can naturally and reasonably explain
the regularization terms for both linear and nonlinear
cases.

4) ν-SVM is the special case of Iν-TBSVM. Let us com-
bine QPP (10) and (11) together to be the following
problem,

min
c1

2
(||w+||2 + b2+) + c2

2
(||w−||2 + b2−)

+1

2
(ηT+η+ + ηT−η−) − ν1ρ+ − ν2ρ− + 1

q
eT−ξ− + 1

p
eT+ξ+

s.t. Aw+ + e+b+ = η+,

Bw− + e−b− = η−,

−(Bw+ + e−b+) ≥ ρ+e− − ξ−, (43)

Aw− + e+b− ≥ ρ−e+ − ξ+,

ξ− ≥ 0, ρ+ ≥ 0,

ξ+ ≥ 0, ρ− ≥ 0.

It is easy to prove that the solutions of QPP (43) are
the solutions of QPP (10) and (11). If we delete the term
1
2 (ηT+η++ηT−η−) in the objective function in QPP (43),
then QPP (43) can degenerate to be

min
c1

2
(||w+||2 + b2+) + c2

2
(||w−||2 + b2−)

−ν1ρ+ − ν2ρ− + 1

q
eT−ξ− + 1

p
eT+ξ+

s.t. − (Bw+ + e−b+) ≥ ρ+e− − ξ−, (44)

Aw− + e+b− ≥ ρ−e+ − ξ+,

ξ− ≥ 0, ρ+ ≥ 0,

ξ+ ≥ 0, ρ− ≥ 0.

Furthermore, if we want to get the solutions satisfy-
ing w+ = w−, b+ = b−, ρ+ = ρ−, we only need to
solve the special case of QPP (44), namely,

min
1

2
(||w||2 + b2) − νρ + 1

l
(eT−ξ− + eT+ξ+)

s.t. − (Bw + e−b) ≥ ρe− − ξ−, (45)

Aw + e+b ≥ ρe+ − ξ+,

ξ− ≥ 0, ξ+ ≥ 0, ρ ≥ 0.

It is obvious that (45) is the ν-SVM for binary clas-
sification problem. In other words, the ν-SVM with
parallel hyperplane is a special case of Iν-TBSVM with
nonparallel hyperplanes. Iν-TBSVM is more flexible
than ν-SVM and has better generalization ability.

4 Comparison with other algorithms

4.1 Iν-TBSVM vs. ν-TBSVM

The matrix inverse operation is inescapable in ν-TBSVM.
In the linear case, ν-TBSVM has to solve two matrix inverse
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operations of order (n + 1), where n denotes the number
of dimensions of training samples. In the nonlinear case, ν-
TBSVM has to solve two matrix inverse operations of order
(l + 1), where l denotes the number of training samples.
Therefore, ν-TBSVM is not suitable for large scale prob-
lems. Compared with ν-TBSVM, our Iν-TBSVM perfectly
avoids the matrix inverse operation.

Besides, ν-TBSVM with the linear kernel is not equiv-
alent to the linear case. Namely ν-TBSVM cannot obtain
the exact solutions when using a nonlinear kernel. When
using the linear kernel, our Iν-TBSVM can degenerate to
the linear case easily. Therefore, our nonlinear Iν-TBSVM
is superior to the nonlinear ν-TBSVM theoretically.

Their common ground is that they both implement the
structural risk minimization principle.

4.2 Iν-TBSVM vs. TBSVM

Both Iν-TBSVM and TBSVM [25] find two nonparallel
hyperplanes and classify two classes of training samples.

In TBSVM, the patterns of one class are at least a unit
distance away from the hyperplane of other class, this may
increase the number of support vectors thus leading to
poor generalization ability. The unit distance of Iν-TBSVM
is modified to variable ρ which is optimized in the pri-
mal problem involved therein. And the parameters ν in
Iν-TBSVM are used to control the bounds on the frac-
tions of support vectors and error margins. It implies that
the parameters in our Iν-TBSVM have a better theoretical
interpretation than TBSVM.

5 Numerical experiments

To validate the superiorities of our algorithm, in this section,
we conduct the experiments on two artificial datasets and
twenty-two benchmarking dataset. In the artificial datasets
we verify the property of parameter ν in our Iν-TBSVM.
In the twenty-two benchmarking experiments, we compare
our Iν-TBSVM with three other algorithms, i.e. TSVM,
ν-TSVM and ν-TBSVM, from both accuracy and time
aspects. All experiments are carried out in Matlab R2014a
on Windows 7 running on a PC with system configuration
Inter Core i3-4160 Duo CPU (3.60GHz) with 4.00 GB of
RAM.

5.1 Experiments on two artificial datasets

In this subsection, two artificial datasets have been used to
show the properties of our proposed Iν-TBSVM. Firstly,
we randomly generate two classes of points, each class
has 50 points. They all follow two-dimensional normal dis-
tributions, where positive samples X1 ∼ N(−2, 2), and

Fig. 2 The red “	” denotes the positive samples, and the blue “∗”
stands for the negative samples

negative samples X2 ∼ N(3.5, 2). Their distributions are
shown in Fig. 2. By our proposed Iν-TBSVM, we can eas-
ily obtain a pair of nonparallel hyperplanes for the two
classes of samples, also shown as Fig. 2. The green and
pink dashed represents the positive hyperplane (f+ =
0.002x1 + 0.0018x2 − 0.0188) and the negative hyperplane
(f− = −0.0022x1 − 0.0022x2 + 0.0044), respectively.
And the red solid line stands for the final classification
hyperplane.

To further investigate the property of parameter ν in our
Iν-TBSVM, we present an intuitive Fig. 3, where the x-axis
denotes the values of parameter ν. The blue curve denotes
the changing curve between the fraction of support vectors
in negative class and parameter ν1. The green curve denotes
the changing curve between the values of p2

q
and parame-

ter ν1. This artificial experiment confirms the property of

Fig. 3 The red line denotes a bound (ν1). The blue curve denotes
the fraction of support vectors in negative class. The green curve

denotes the fraction of entirely errors in negative class in our Iν-
TBSVM
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parameter ν described in Propositions 2 and 3. Namely
ν1 is a lower bound on the fraction of support vectors in
the negative class; ν1 is an upper bound on the fraction
of boundary errors in the negative class. This is helpful
to understand our algorithm and helpful for the choice of
parameter.

Secondly, we conduct the experiment on crossplane
(XOR) dataset which has 101 points for each class. Simi-
larly, we draw the pair of nonparallel hyperplanes, which is
shown in Fig. 4. And from Fig. 5, Propositions 2 and 3 are
also confirmed on XOR dataset.

5.2 Experiments on benchmarking datasets

We also test the effectiveness of our proposed algorithm
on a collection of twenty-two benchmarking datasets from
UCI machine learning repository 1. These datasets are con-
structed for binary classification problems. In order to make
the results more convincing, we use 10-fold cross-validation
for each experiment. More specifically, each dataset is split
randomly into ten subsets, and one of those sets is reserved
as a test set whereas the remaining data are considered for
training. This process is repeated ten times.

5.2.1 Parameters selection

Choosing the optimal parameters is an important problem
for SVMs. In our experiments, we adopt the grid search
method [34] to obtain the optimal parameters. The Gaus-
sian kernel function K(xi , xj ) = exp(−||xi − xj ||2/r2) is
used as it is often employed and yields great generalization
performance. In the four algorithms, the Gaussian kernel
parameter r is selected from the set {2i |i = −5, −4, ..., 10}.
For brevity’s sake, we let c1 = c2 in TSVM, ν1 = ν2

in ν-TSVM, and c1 = c2, ν1 = ν2 in ν-TBSVM and Iν-
TBSVM. The parameter c1 is selected from the set {2i |i =
−10, −9, ..., 10}. The parameter ν1 is searched from the set
{0.1, 0.2, ..., 0.9}.

5.2.2 Results comparisons and discussion

We report testing accuracy to evaluate the performance of
classifiers. ‘Accuracy’ denotes the mean value of ten testing
results, plus or minus the standard deviation. ‘Time’ denotes
the mean value of the time taken by ten experiments, and
each experiment’s time consists of training time and testing
time, and the unit of time is seconds. At the same time, we
record the optimal parameters of four algorithms during the
experiments. To compare it more comprehensively, we do

1http://archive.ics.uci.edu/ml/datasets.html.

Fig. 4 The red “	” denotes the positive samples, and the blue “∗”
stands for the negative samples. The separating hyperplanes of our
proposed Iν-TBSVM on XOR dataset

the experiments both in the linear and nonlinear cases on
the twenty-two benchmarking datasets, and the results are
reported in Tables 1 and 2, respectively. The bold values
indicate best mean of accuracy (in %).

By analyzing our experimental results on the twenty-two
benchmarking datasets, we can easily draw the following
conclusions.

– No matter the linear case or the nonlinear case, our Iν-
TBSVM outperforms other three algorithms for most
datasets in terms of classification accuracy. ν-TBSVM
follows, it produces better testing accuracy than ν-
TSVM and TSVM for most cases. The main reason
is that both Iν-TBSVM and ν-TBSVM implement the
structural risk minimization principle.

Fig. 5 The red line denotes a bound (ν1). The blue curve denotes
the fraction of support vectors in negative class. The green curve

denotes the fraction of entirely errors in negative class in our Iν-
TBSVM on XOR dataset

http://archive.ics.uci.edu/ml/datasets.html
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Table 1 Performance comparisons of four linear algorithms on twenty-two datasets

Datasets TSVM ν-TSVM ν-TBSVM Iν-TBSVM

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

c1 ν1 (ν1, c1) (ν1, c1)

Wine 100.00±0.00 0.07 100.00±0.00 0.03 100.00±0.00 0.14 100.00±0.00 0.16

(130 × 13) 0.5 0.7 (0.2,0.313) (0.7,0.5)

Monks 86.88±4.04 0.54 86.95±3.61 0.50 88.44±3.45 0.40 89.87±3.83 0.80

(554 × 6) 0.25 0.9 (0.3,32) (0.4,1024)

PimaIndians 76.84±3.44 2.23 76.63±20.91 1.40 79.59±2.20 0.79 81.33±4.41 7.28

(758 × 8) 1 0.8 (0.1,1) (0.5,0.313)

Vote 99.05±0.92 0.46 99.26±0.71 0.36 99.05±0.92 0.41 99.26±0.71 0.46

(435 × 16) 0.0625 0.8 (0.5,0.5) (0.4,4)

Ionosphere 76.59±20.15 0.23 76.59±20.15 0.35 88.29±18.85 0.53 81.95±7.11 0.42

(351 × 34) 0.002 0.2 (0.9,1) (0.7,8)

Australian 87.79±1.73 1.40 87.57±1.97 0.56 87.86±2.86 0.57 88.21±3.20 3.79

(690 × 14) 1 0.5 (0.2,32) (0.8,16)

German 89.47±2.10 2.56 75.90±1.98 1.21 87.97±1.63 0.91 83.70±2.37 2.03

(1000 × 24) 0.5 0.8 (0.2,16) (0.3,0.0078)

Abalone 70.27±31.85 11.00 64.63±23.13 7.57 74.43±10.43 7.05 75.97±4.81 6.76

(2835 × 8) 0.5 0.8 (0.2,32) (0.1,2)

Balance 96.08±3.48 0.57 95.17±3.64 0.48 96.48±2.88 0.34 96.36±2.56 1.21

(576 × 4) 64 0.2 (0.1,16) (0.9,1024)

Bupa 75.26±5.26 0.23 84.32±2.78 0.18 84.63±6.00 0.22 85.47±6.23 0.17

(345 × 6) 0.5 0.7 (0.7,8) (0.6,128)

Iris 100.00±0.00 0.10 100.00±0.00 0.07 100.00±0.00 0.05 100.00±0.00 0.07

(150 × 4) 0.5 0.3 (0.2,1) (0.1,0.25)

Heart 80.17±24.35 0.19 83.17±22.39 0.19 83.67±21.77 0.23 84.50±5.06 0.60

(270 × 150) 1 0.7 (0.7,0.313) (0.2,2)

Lung 62.22±11.94 0.12 64.44±11.48 0.09 67.78±17.72 0.15 75.56±14.63 0.07

(23 × 56) 256 0.9 (0.8,16) (0.9,32)

CMC 100.00±0.00 13.66 100.00±0.00 14.91 100.00±0.00 12.10 100.00±0.00 15.43

(1473 × 10) 9.77E-04 0.5 (0.6,16) (0.2,8)

Connectionist 79.57±12.97 0.18 78.70±17.08 0.18 80.00±18.92 0.20 83.48±18.08 0.25

(208 × 60) 0.0156 0.7 (0.2,32) (0.4,0.039)

Dbworld 93.57±11.88 20.37 93.57±11.88 20.41 94.29±12.05 20.40 94.29±12.05 12.37

(64 × 4702) 0.125 0.8 (0.5,4) (0.3,0.0625)

WBCD 99.28±1.16 2.09 99.04±1.37 1.02 99.28±1.02 0.84 99.28±1.30 2.63

(683 × 9) 8 0.2 (0.2,8) (0.6,1024)

Hepatitis 89.64±7.98 0.21 91.43±6.12 0.25 94.64±3.47 0.22 92.86±5.05 0.21

(155 × 19) 0.0156 0.5 (0.8,4) (0.3,0.0625)

Fertility 77.5±7.91 0.25 81.25±0.00 0.24 81.25±0.00 0.15 83.75±7.91 0.19

(100 × 9) 0.5 0.1 (0.1,0.0625) (0.1,0.002)

Haberman 77.50±19.22 0.20 77.22±16.86 0.32 82.22±13.75 0.21 84.17±9.45 0.54

(306 × 3) 0.0078 0.9 (0.1,0.0078) (0.7,1)

Climate 99.33±0.86 1.80 98.83±1.37 0.81 99.33±1.17 2.08 98.50±3.19 3.40

(540 × 20) 0.0625 0.5 (0.9,0.313) (0.1,0.125)

WPBC 78.93±8.98 0.24 79.29±3.69 0.17 82.86±6.02 0.23 81.79±6.83 0.33

(198 × 33) 0.125 0.3 (0.5,0.0313) (0.9,1)

Average 90.28 2.67 90.19 2.33 92.95 2.19 93.35 2.69
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Table 2 Performance comparisons of four nonlinear algorithms with Gauss kernel on twenty-two datasets

Datasets TSVM ν-TSVM ν-TBSVM Iν-TBSVM

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

(c1, r) (ν1, r) (ν1, r, c1) (ν1, r, c1)

Wine 97.75±1.42 0.24 98.25±2.06 0.26 98.75±1.32 0.28 98.83±1.53 0.18

(4,1024) (0.8,1024) (0.9,1024,4) (0.8,512,2)

Monks 99.68±0.34 1.73 98.96±1.47 1.56 97.86±1.56 2.53 99.09±1.02 1.01

(8,128) (0.1,64) (0.1,4,0.125) (0.1,1,0.313)

PimaIndians 75.54±3.90 3.80 76.31±5.20 5.93 76.80±4.90 4.31 77.56±4.13 2.27

(4,256) (0.9,256) (0.9,512,16) (0.4,512,32)

Votes 95.58±2.78 1.16 98.63±1.22 1.14 98.95±1.22 1.12 96.51±2.26 0.88

(0.0313,1024) (0.4,1024) (0.2,256,0.625) (0.8,1024,4)

Ionosphere 94.88±12.03 0.73 95.37±12.14 1.36 95.12±12.06 0.94 95.61±4.11 0.54

(0.0625,2) (0.8,2) (0.1,128,0.25) (0.2,0.25,0.25)

Australian 74.64±17.5 3.24 83.14±2.94 4.33 82.79±2.06 2.44 84.79±6.26 1.69

(0.5,512) (0.9,512) (0.8,1024,0.1) (0.1,256,0.25)

German 88.10±10.20 6.39 83.87±17.06 6.59 84.23±16.55 4.11 80.17±7.23 3.47

(0.5,1024) (0.3,64) (0.2,1024,2) (0.4,128,0.125)

Abalone 74.69±19.46 58.29 75.09±17.93 36.19 75.89±21.24 30.08 76.06±18.83 28.24

(0.125,1) (0.3,1) (0.5,0.0625,2) (0.3,256,8)

Balance 97.78±2.25 1.65 97.9±2.91 1.51 98.58±2.59 1.64 98.98±1.16 1.15

(8,512) (0.7,256) (0.9,8,0.25) (0.9,8,2)

Bupa 70.95±4.01 0.69 70.21±4.49 0.95 73.89±4.54 0.64 74.32±5.04 0.43

(1,64) (0.1,64) (0.9,128,0.5) (0.1,128,1)

Iris 100.00±0.00 0.20 100.00±0.00 0.21 100.00±0.00 0.23 100.00±0.00 0.12

(0.313,0.25) (0.1,0.25) (0.7,128,4) (0.1,0.625,0.313)

Heart 80.00±1.91 0.64 84.44±3.4 0.80 83.70±3.12 0.57 84.81±1.17 0.38

(2,256) (0.4,1024) (0.2,1024,32) (0.9,512,4)

Lung 65.56±14.3 0.10 73.33±14.05 0.13 75.56±14.63 0.12 84.44±11.94 0.07

(32,32) (0.9,1024) (0.8,128,0.125) (0.4,1024,0.313)

CMC 100.00±0.00 20.08 100.00±0.00 26.76 100.00±0.00 10.67 99.45±0.89 8.55

(9.7656e-04,1024) (0.1,512) (0.5,1024,1) (0.5,2,4)

Connectionist 85.22±12.5 0.48 83.04±7.52 0.47 84.35±6.55 0.43 85.65±5.82 0.31

(4,64) (0.1,1) (0.5,1,0.0625) (0.1,0.0625,32)

Dbworld 95.00±8.94 0.54 94.29±8.78 0.55 95.71±9.04 0.54 93.57±8.55 0.40

(16,512) (0.5,256) (0.4,512,0.0625) (0.1,1024,2)

WBCD 99.28±1.02 4.85 99.16±1.28 6.24 99.16±1.14 3.14 99.28±1.02 2.20

(0.0625,32) (0.3,64) (0.9,512,0.25) (0.9,512,0.25)

Hepatitis 81.18±2.48 0.38 81.76±3.34 0.52 84.71±4.11 0.28 83.40±2.55 0.15

(4,512) (0.8,512) (0.7,1024,0.313) (0.7,0.5,8)

Fertility 84.00±8.43 0.12 84.00±8.43 0.15 84.00±8.43 0.22 85.00±5.27 0.08

(0.313,0.125) (0.1,0.125) (0.1,0.125,0.0313) (0.6,0.0313,1)

Haberman 74.72±13.38 0.60 77.78±15.38 0.67 83.06±12.99 0.64 83.33±8.59 0.54

(0.0313,0.125) (0.1,0.125) (0.7,512,8) (0.6,512,1)

Climate 90.50±1.12 3.00 90.33±0.7 2.97 92.50±1.96 2.48 91.17±1.58 1.46

(0.3,1024) (0.2,1024) (0.9,32,0.0625) (0.7,0.313,1024)

WPBC 78.21±1.38 0.26 79.01±2.73 0.28 79.80±3.40 0.25 79.80±3.40 0.20

(0.0313,0.0625) (0.1,0.0625) (0.1,0.313,0.313) (0.1,0.125,0.125)

Average 90.63 4.96 91.66 4.53 92.64 3.08 92.94 2.47
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Table 3 Average rank on accuracy of four linear algorithms on
twenty-two datasets

Datasets TSVM ν-TSVM ν-TBSVM Iν-TBSVM

Wine 2.5 2.5 2.5 2.5

Monks 4 3 2 1

PimaIndians 3 4 2 1

Vote 3.5 1.5 3.5 1.5

Ionosphere 3.5 3.5 1 2

Australian 3 4 2 1

German 1 4 2 3

Abalone 3 4 2 1

Balance 3 4 2 1

BUPA 4 3 2 1

Iris 2.5 2.5 2.5 2.5

Heart 4 3 2 1

Lung 4 3 2 1

CMC 2.5 2.5 2.5 2.5

Connectionist 4 3 2 1

Dbworld 3.5 3.5 1.5 1.5

WBCD 2 4 2 2

Hepatitis 4 3 1 2

Fertility 4 2.5 2.5 1

Haberman 3 4 2 1

Climate 1.5 3 1.5 4

WPBC 4 3 1 2

Average rank 3.159 3.205 1.932 1.705

– It is worthwhile to mention that our Iν-TBSVM takes
the least computational time on all twenty-two bench-
marking dataset in nonlinear case. The mean running
time of Iν-TBSVM for twenty-two datasets is 2.47 sec-
onds as compared to 3.08, 4.53 and 4.96 seconds for
ν-TBSVM, ν-TSVM and TSVM. The main reason is
also that our Iν-TBSVM doesn’t involve matrix inverse
operation when solving the dual QPPs which greatly
reduced the time spent to run the algorithms.

– Compared with the other three algorithms, our Iν-
TBSVM has better performance on Dbworld datasets.
This implies that our Iν-TBSVM is suitable for the high
dimensional dataset. At the same time, when the num-
ber of training sample is large, such as Abalone dataset,
our Iν-TBSVM still performs best in both testing accu-
racy and running time. As the aforementioned analysis,
the other three algorithms take much time to do matrix
inverse operation when solving the dual QPPs.

5.3 Friedman test

In order to further analyze the performance of the four
comparable algorithms on twenty-two datasets with statistic
methods, we use Friedman test [35] with the corresponding

Table 4 Average rank on accuracy of four nonlinear algorithms with
Gauss kernel on twenty-two datasets

Datasets TSVM ν-TSVM ν-TBSVM Iν-TBSVM

Wine 4 3 2 1

Monks 1 3 4 2

PimaIndians 4 3 2 1

Vote 4 2 1 3

Ionosphere 4 2 3 1

Australian 4 2 3 1

German 1 3 2 4

Abalone 4 3 2 1

Balance 3 4 2 1

BUPA 3 4 2 1

Iris 2.5 2.5 2.5 2.5

Heart 4 2 3 1

Lung 4 3 2 1

CMC 2 2 2 4

Connectionist 3 4 2 1

Dbworld 2 3 1 4

WBCD 1.5 3.5 3.5 1.5

Hepatitis 4 3 1 2

Fertility 3 3 3 1

Haberman 4 3 2 1

Climate 3 4 1 2

WPBC 4 3 1.5 1.5

Average rank 3.136 2.955 2.159 1.750

post hoc tests as suggested in Dems̃ar [36] and Garcı́a et al.
[37]. The Friedman test is proved to be simple, nonparamet-
ric and safe for comparing three or more related samples and
it makes no assumptions about the underlying distribution of
the data. For this, the average ranks of four linear and non-
linear algorithms on accuracy for twenty-two datasets are
calculated and listed in Tables 3 and 4, respectively. Under
the null-hypothesis that all the algorithms are equivalent,
one can compute the Friedman statistic [36] according to the
following equation,

χ2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ , (46)

where Rj = 1
N

∑
i r

j
i , and r

j
i denotes the j th of k

algorithms on the ith of N datasets. Friedman’s χ2
F is

undesirably conservative and derives a better statistic

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

(47)

which is distributed according to the F-distribution with k −
1 and (k − 1)(N − 1) degrees of freedom.

We can obtain χ2
F = 24.9606 and FF = 12.7724 accord-

ing to (46) and (47) for linear case. Similarly, we obtain
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χ2
F = 17.0320 and FF = 7.3042 for nonlinear case where

FF is distributed according to F-distribution with (3, 63)
degrees of freedom. The critical value of F(3, 63) is 2.17
for the level of significance α = 0.1, similarly, it is 2.75 for
α = 0.05 and 3.33 for α = 0.025. These results suggest that
there is significant difference among the four algorithms
since the value of FF is 12.7724 for linear case and 7.3042
for nonlinear case. Both of the values are much larger than
the critical value. We can also illustrate that our Iν-TBSVM
outperforms the other three algorithms in the linear case or
nonlinear case, because Iν-TBSVM gets the lowest average
rank both in Tables 3 and 4.

6 Conclusion

In this paper, we present a novel algorithm, i.e., the
improved ν-twin bounded support vector machine. This
Iν-TBSVM not only maximizes the margin between two
parallel hyperplanes by introducing a regularization term
into the objective function, but also inherits the merits of
standard SVM. Firstly, the matrix inverse operation is skill-
fully avoided in our Iν-TBSVM while it is inevitable for
most existing ν-TSVMs. Secondly, the kernel trick can be
applied directly to Iν-TBSVM for the nonlinear case, which
is essential to obtain a model with higher testing accuracy.
Thirdly, we prove that the ν-SVM is a special case of Iν-
TBSVM. Iν-TBSVM is more flexible than ν-SVM and has
better generalization ability. Experimental results indicate
that our algorithm gives better performance than others.
What’s more, this novel method can be applied in many
fields, such as multi-class classification, semi-supervised
learning and so on.
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