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Abstract This paper performs an exploratory study of
the use of metaheuristic optimization techniques to select
important parameters (features and members) in the design
of ensemble of classifiers. In order to do this, an empiri-
cal investigation, using 10 different optimization techniques
applied to 23 classification problems, will be performed.
Furthermore, we will analyze the performance of both mono
and multi-objective versions of these techniques, using
all different combinations of three objectives, classifica-
tion error as well as two important diversity measures to
ensembles, which are good and bad diversity measures.
Additionally, the optimization techniques will also have to
select members for heterogeneous ensembles, using k-NN,
Decision Tree and Naive Bayes as individual classifiers and
they are all combined using the majority vote technique.
The main aim of this study is to define which optimization
techniques obtained the best results in the context of mono
and multi-objective as well as to provide a comparison with
classical ensemble techniques, such as bagging, boosting
and random forest. Our findings indicated that three opti-
mization techniques, Memetic, SA and PSO, provided better
performance than the other optimization techniques as well
as traditional ensemble generator (bagging, boosting and
random forest).
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1 Introduction

In the Pattern Recognition, there has been an intense inves-
tigation of many efficient approaches and methodologies
in recent decades. This is the result of the increasing com-
plexity and widening applicability of such systems. In the
supervised approach of pattern recognition, for instance,
the search for efficient and robust classification methods
(classifier) has been intensified drastically in the last two
decades. Several classifiers from different classes have been
efficiently applied to several classification domains [1].
However, according to the No-Free-Lunch theorem [2], the
best classifier will not be the same for all problem domains.
A prominent solution to this scenario is the use of ensem-
bles of classifiers. These systems are pattern classification
structures that combine the outputs of several classifica-
tion algorithms in order to achieve efficient performance in
pattern classification [3, 4].

One important aspect in the design of efficient ensem-
bles is the diversity promoted by the individual components
of this system, called ensemble diversity. Ensemble diver-
sity can be reached when the individual classifiers are built
under different circumstances, such as: parameter setting,
classification type and datasets. In the case of different
datasets, the use of feature selection methods in ensemble
systems usually increases the diversity of their components.
The problem of feature selection can be considered a search
problem, in which it intends to find the optimal subsets of
attributes for all components of an ensemble system. In this
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sense, optimization techniques can be easily used to solve
this problem.

The choice of the individual classifiers (member selection)
of an ensemble is another important aspect in the design
of ensemble systems, since it plays an important role in
the design of efficient ensembles. In some applications, the
ideal size of an ensemble system could vary enormously
in order to obtain an ensemble with a reasonable accuracy.
Therefore, the search for the optimal size of an ensemble is not
an easy task. The problem of member selection can also be
considered as a search problem, in which it is intended to
find the optimal size (and composition) of an ensemble system.

The majority of papers in the literature usually address
only one important aspect of the design of ensemble systems,
either feature selection or member selection in ensembles.
As a contribution to this important subject, in this paper,
we will investigate extensively the influence of optimization
techniques in the automatic design of ensemble systems. In
order to do this, we selected ten well-known optimization
techniques (genetic algorithm, tabu search, GRASP, iter-
ated local search, variable neighborhood search, memetic
algorithms, ant colony optimization, particle swarm opti-
mization, simulated annealing and multi start) to define two
important parameters in the design of ensemble systems (the
individual classifiers and features). These techniques will
be used in their mono and multi-objective versions and they
use accuracy (error rate) as well as two diversity measures
(good and bad diversity, described in (1) and (3) as objec-
tive functions in the search process. In this analysis, we will
design heterogeneous ensembles in which k-NN (k nearest
neighbor), Decision Tree and Naive Bayes classifiers will
be used as individual classifiers of these systems and they
will be combined by the Majority Voting technique.

In [5, 6], the authors presented the first attempt to
analyze the use of these two diversity measures for the
automatic design of homogeneous ensemble systems, using
only two optimization techniques, tabu search and genetic
algorithms. It could be observed, for instance, that there
is a high correlation between bad diversity and error rate,
which shows that this measure could be an interesting guide
in the design of ensembles. In this paper, we extend the
work done in [5, 6], performing an exploratory study with
more optimization objectives, datasets and using heteroge-
neous structures of ensembles, aiming at performing a more
extensive investigation. The main goal is to explore the full
potential of the optimization algorithms in the automatic
design of ensemble systems. Therefore, the main contributions
of this paper can be described in the following topics.

1. To use 10 optimization techniques, in both mono and
multi-objective versions, as a feature and member selec-
tor in heterogeneous ensemble systems;

2. To investigate the importance of two diversity measures
to guide the design of ensemble systems using them as
objectives in all ten optimization techniques;

3. To compare the results of optimization algorithms,
using accuracy, good and bad diversity to build their
solutions for the feature and member selection problem.

This paper is divided into six sections and it is orga-
nized as follows. Section 2 describes the research related
to the subject of this paper. In Section 3, the optimization
techniques are described and the methodology used in the
experimental work of this paper is presented in Section 4.
An analysis of the results provided by the empirical analysis
is shown in Section 4. Finally, Section 5 presents the final
remarks of this paper.

2 Recent studies on optimization techniques
for ensemble systems

Finding an optimal subset of features that maximizes classi-
fication accuracy is still an open problem. In this paper, we
work with a modification of this problem in which we aim
at maximizing accuracy and diversity in ensemble systems
through the selection of features and members of an ensem-
ble. A recent review on the optimization techniques can be
found at [30].

In the literature, we can find studies with similar topics
like the application of optimization techniques (metaheuris-
tics) applied to the selection of features in ensembles, such
as in [23, 24, 28], among others. However, most of them
usually apply one or two techniques, such as Bee Colony
optimization [28], Genetic Algorithms [29], Particle Swarm
Optimization [32, 33] and Bee Colony optimization and Par-
ticle Swarm Optimization for feature selection and Genetic
Algorithms for configuration of ensemble parameters [23].
To the best of the authors knowledge, the only study that
uses more than two optimization techniques can be found
in [24], in which the authors performed a comparative anal-
ysis with six different metaheuristics (genetic algorithm,
particle swarm optimization, ant colony optimization, har-
mony search, differential evolution, and quantum-inspired
evolutionary algorithm) applied to the problem of feature
selection, but they applied these techniques for individual
classifiers and not for ensemble systems.

We can also find studies related to the use of optimization
techniques for selecting ensemble members, such as in [27]
that selected ensemble members using GRASP and in [26]
that applied Genetic Algorithms. Once again, these studies
applied only one optimization technique.

Additionally, all the aforementioned studies applied mono-
objective optimization techniques. There are also some



418 A.A. Feitosa Neto, A.M.P. Canuto

studies using the multi-objective version of these tech-
niques for classification algorithms, such as in [25], in
which the authors applied the multi-objective version of
two techniques, Memetic Algorithms and Particle Swarm
Optimization, to build a radial basis function network for
classification problems. However, there are a few studies
that deal with multi-objective optimization techniques in
the context of ensembles, such as [22, 37, 38]. In [37], for
instance, the authors proposed to build ensemble systems
taking into account accuracy and diversity, but differently
from this work, it does not address diversity as an opti-
mization objective. In [38], the authors applied simulated
annealing to calculate competence and diversity of ensem-
ble components. Once again, diversity was not used as an
optimization objective.

One recent study, [39], showed that that diversity can be
used to design ensemble systems, but not on its own (along
with error rate). We can conclude that it is necessary to use
multi-objective techniques optimizing accuracy and diver-
sity in order to achieve more accurate ensembles. Therefore,
this paper aims at providing an exploratory study of the role
of two important diversity measures, along with accuracy, in
the automatic design of ensemble systems and using them
in the context of several optimization techniques (mono and
multi-objective versions).

3 Optimization techniques

As mentioned previously, we will analyze the performance
of ten optimization techniques and they will be briefly
described in the next subsections. The choice of these ten
methods is that, first, we would like to investigate the use of
neighborhood-based algorithms in the automatic design of
ensemble systems, not yet explored in the literature. Then,
we selected well-known neighborhood-based methods, that
have been successfully applied in traditional optimization
problems. Additionally, we would like to investigate the
performance of population-based algorithms (the most com-
mon option for this problem) and we selected the most
used algorithms in the Machine Learning area. Finally, we
selected a hybrid algorithm, Memetic, since it has been suc-
cessfully applied in traditional optimization problems and
we believe it can provide good performance in the automatic
design of ensemble systems.

In all algorithms, the objective function is the error rate
(accuracy) and/or good and bad diversity measures. For
mono-objective optimization problems, only one objective
function f (X) is usually applied. In order to use accuracy,
good and bad diversity as optimization objectives, we can
use the equations that describe these metrics as objectives.
In this sense, we should try to maximize good diversity and

accuracy. For instance, fgd(X) = max{D+} represents the
objective function for good diversity (D+ is given by (1))

D+ = 1

N

P +∑

i=1

v−
i (1)

Where P + represents the set of instances correctly classi-
fied by the ensemble system; and v−

i represents the number
of incorrect votes for i-th instance in P + [10]. For accuracy,
we will use the following objective function.

fac(X) = max

{
Acc = P+

P+ + P−

}
(2)

where P+ and P− are the number of instances correctly
and incorrectly classified by an ensemble. In contrast, we
should minimize bad diversity, fbd(X) = min {D−} (D− is
given by (3)).

D− = 1

N

P −∑

i=1

v+
i (3)

Where P − represents the set of instances incorrectly
classified by the ensemble system; v+

i denotes the number
of correct votes for the i-th instance in P −.

For the multi-objective versions, each optimization tech-
nique will have up to 3 objectives. In this context, we will
use the inverse function of bad diversity in order to allow
the use of all three objectives in a maximization problem.

We divided the optimization techniques into three classes,
neighborhood-based, population-based and hybrid ones. In
the next subsection, these algorithms will be described in
more details.

3.1 Neighborhood-based algorithms

Neighborhood-based Algorithms (NbA) usually starts with
one solution s and employs a local search to iteratively
move from this solution s to an improved solution s∗ in
the neighborhood of s. Therefore, it will be necessary to
define a local search method, for both mono and multi-
objective techniques. The mono-objective local search starts
with an initial solution s and it is composed of information
about the individual classifiers NC and the attributes NA

of these classifiers. In the individual classifiers part, each
part represents one ensemble member and can be one possi-
ble classifier type (assign an integer to represent a classifier
type). Then, the local search can replace each part by other
type of classifiers (classification algorithm). Each replace-
ment generates a new solution and it belongs to the solution
neighborhood (neighbors). In the attribute part, the local
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search performs a number of random replacements and each
replacement changes the boolean value of the attribute, that
defines the presence or absence of the attribute in the initial
solution.

The multi-objective local search is similar to its mono-
objective version, differing in the objective function, that is
a set of functions instead of just one. This change implies in
a performance evaluation of the solutions that it is now done
by a dominance relationship procedure. The algorithm 1
describes the step of the multi-objective local search.

The neighborhood-based Algorithms used in this paper are
the following ones.

Tabu Search (TS) it is a metaheuristic technique originally
proposed in [11]. As a Neighborhood-based Algorithm,
it employs a local search to iteratively move from one
potential solution s to an improved solution s∗ in the neigh-
borhood of s, until a stopping criterion has been satisfied. It
also has an aspiration function, that determines if a solution
should be evaluated, in case its cost is lower than the cost of
the best solution s. In this paper, the tabu list size is set to the
maximum between 1 and 50% of number of attributes and
may vary between 1 and 25% of the number of attributes.
The way that the TS algorithm updates the tabu list is also
modified in this paper. In this paper, a movement remains
in the tabu list for a variable number of iterations that is
represented by the following equation.

I = (0.5 ∗ NA) ∗ NC ∗ R (4)

where NA is the number of attributes of the used dataset;
NC represents the number of classifiers of the solution and
R is a random number that lies in the interval [1,50% of the
size of the tabu list]. Finally, we also added a diversification
strategy to restart the search every 20 iterations, using the
best solution to trigger this restart.

In the multi-objective context, we selected the Multino-
mial Tabu Search algorithm (MTS) that, in each iteration,
selects one goal to be considered in the MTS processing.
The main difference from the mono-objective version is
that it works with a set of possible solutions, called non-
dominated solutions ND, at the end of the MTS processing.

In this paper, this set is unlimited and all goals have equal
chances of being chosen. In terms of parameters, MTS
includes a parameter D, in comparison to TS, that indi-
cates the number of iterations in which the diversification
zprocess must occur. As each iteration represents one goal
to be optimized, D represents the number of goals that must
be involved in the diversification process. In addition, the
cost function is modified to represent a set of functions F ,
according to the used set of objectives and, for each func-
tion fi in F , there is a probability pi of selecting fi to be
the objective to be optimized.

GRASP (Greedy Randomized Adaptive Search Proce-
dure) The GRASP (Greedy Randomized Adaptive Search
Procedure) algorithm has two distinct phases: In the first
one, called constructive phase, a set of solutions is built and
the best solution is selected. In the second phase, called
refinement phase, a local search is applied to this selected
solution [12, 20].

In the first phase, a criterion is used to define the quality
of the solutions. In this paper, we use the objective func-
tions to select the best solution of the initial set of solutions.
Once the best solution is selected, the second phase starts
with the individual classifiers of the selected solution, but
they contain all attributes. In each iteration, an attribute is
removed while better solutions are achieved. This proce-
dure is applied to all individual classifiers of the selected
solution. In addition, a path-relinking operator is used as
a refinement procedure in order to obtain better solutions
[19].

The multi-objective version is similar to the mono-
objective version, changing the construction mode of solu-
tions to deal with multi-objective solutions. It also changes
the local search in a way that the path-relinking operator is
applied to all ND solutions.

Iterated Local Search (ILS) The idea of this algorithm is to
iteratively apply a “perturbed” local search algorithm [12].
In other words, ILS builds a sequence of locally optimal solu-
tions by perturbing the current local minimum and applying
local search after starting from the modified solution.

In this paper, we use five types of perturbations, which
are the the following amendments:

1. Change the type of one individual classifier;
2. Change 1/3 of the individual classifiers;
3. Change 1 attribute of 2/3 of the individual classifiers;
4. Change 1/3 of the attributes of each individual classi-

fier;
5. Change 2/3 of the attributes of each individual classifier.

All perturbations are performed on a random and uni-
form way. Finally, the acceptance criterion means that a new
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solution is accepted if it presents a lower cost in f than the
original solution s.

In the multi-objective version of ILS, the perturbations
in the solutions are implemented in the same way as in the
mono-objective version, but using the set of objectives.

Multi-Start Algorithm This algorithm builds a random
solution and refines through a local search process [12].
This algorithm selects a random initial solution and applies
some improvements in this solution in order to obtain
better solutions. The multi-objective version uses the multi-
objective local search described in 1.

Simulated annealing it is a metaheuristic to approximate
global optimization in a large search space. It works by
emulating the physical process in which a solid is slowly
cooled so that when eventually its structure is “frozen”, this
happens at a minimum energy configuration [12, 15].

In this paper, we employ a standard mono-objective sim-
ulated annealing. The multi-objective version of Simulated
Annealing is similar to the MTS algorithm, in which each
iteration of the algorithm selects one objective and uses it
as the current objective evaluation of solutions. In addition,
each objective has an equal probability of being selected.
For both versions, the initial temperature T was set to 0.9,
the rate of decay of temperature alpha is set to 0.5 and the
number of iterations or neighbors M in each temperature is
20.

Variable Neighborhood Search It consists of a system-
atic exchange of the neighborhood structures to gradually
explore different solutions from the current one [12]. In
this paper, we use three different neighborhood structures,
which are:

1. Consider all individual classifiers, in which replacing
them generates a neighbor;

2. Consider each possible combination of two individ-
ual classifiers in a solution, in which exchanging them
generates a neighbor;

3. Consider a proportion, ATT, of attributes to be replaced,
generating a neighbor.

During the search process, type 1 neighborhood is the first
to be expanded, followed by type 2 and finally type 3.
The multi-objective version is similar to the mono-objective
one, using a set of objectives and the idea of non-dominant
solution set.

3.2 Population-based algorithms

In this class of algorithms, we start with a population of
solutions, instead of just one. In this paper, we analyze three
population-based methods, which are:

Genetic algorithm it is a well-known bio-inspired meta-
heuristic algorithm, originally proposed by John Hol-
land [13]. It can be seen as optimization technique whose
functioning is based on biological mechanisms as hereditary
and evolution. In genetic algorithm, a chromosome is used
to describe each solution of a problem. Additionally, in each
step of a genetic algorithm, a population of chromosomes
(individuals) is considered.

In this paper, we apply a standard genetic algorithm,
with selection, genetic operator (crossover and mutation)
and evaluation. For the multi-objective context, we employ
the NSGA-II algorithm [14]. For both versions, we use
the following parameters: a standard two-point crossover
(crossover probability = 80%) and bit flipping mutation;
a random and uniform choice of the solution parents; and
population of 30 chromosomes. The mutation operator is
applied with a probability of 10%, in order to avoid prema-
ture convergence.

Ant Colony Optimization As genetic algorithm, Ant
colony optimization (ACO) can be seen as a population-
based (ants) method which is applied in computational
problems that can be reduced to the idea of defining good
paths in graph structures. In this paper, a path will be repre-
sented by a set of attributes and classifiers. Each ant builds
a solution by choosing the set of attributes and/or classifiers
to be part of a solution. It also updates pheromone, based on
the quality of the corresponding solution [12, 16, 17].

In this work, we use the pheromone equation consider-
ing only the attributes of the solution. For the selection of
the individual classifiers, a random selection is made. The
choice of each attribute is define by (5).

pk
ij = [�ij ]α ∗ [ηij ]β∑

l∈Ni
k
[�il]α ∗ [ηil]β ∀j ∈ Ni

k (5)

Where Ni
k represents the set of attributes not yet selected

by ant k, �ij represents the pheromone for the i − th

attribute of classifier j , ηil is a prior heuristic information
that defines the importance of the i − th attribute for the
ensemble system and α and β are two parameters that con-
trol the influence of pheromone and heuristic information
respectively. In this paper, ηil represents the cost of the solu-
tion in case only the i-th attribute is present in the individual
classifier.

Given the probability of selection for each attribute, a
solution is built by randomly selecting the individual classi-
fiers and selecting the attribute in an iterative process. This
iterative process starts with a solution where all attributes
are active and each iteration selects an attribute to be
removed, according to (5). In order to select an attribute, the
current cost of the solution is assessed and compared to the
cost of the solution by removing one attribute, if the cost
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is lower, this process continues with a new iteration. Other-
wise this process is interrupted, returning the solution with
the attributes deleted until then.

The multi-objective version is similar to the mono-objective
one. It uses only one colony and the pheromone matrix is
shared among all different objectives. At each iteration, one
objective is selected and the pheromone matrix is updated.

Particle Swarm Optimization This population-based
algorithm is based on a population of particles that moves
in the search space of a problem in order to resolve an opti-
mization problem [21]. In each iteration, all particles carry
out a movement operation that consists of three parts: 1)
Follow its own path; 2) Return to the best position found
(local best); and 3) Go to the best position found by all other
particles (global best).

In this paper, we use the implementation similar to the
one used in [18] to deal with mono-objective discrete prob-
lems. The main difference of this algorithm to a standard
PSO is the speed operator, that is divided into three com-
ponents. The first one represents the particle following its
own path (local search), while the second part is when the
particle wants to follow its local best (path-relinking) and
the last part represents when a particle selects the global
best, the best position found among all other particles (path-
relinking). For all three parts, a probability of selection is
defined and one is selected, based on this probability.

The multi-objective version is similar to the mono-
objective version. However there are two main differences:

1. The local search is replaced by local search multi-
objective described by the algorithm 1;

2. The path-relinking operator is modified to act in the
context of multi-objective.

The multi-objective algorithm assumes that all objectives
are normalized in the (0, 1) interval and all goals must be
minimized.

3.3 Hybrid algorithm

This class of algorithms uses the idea of neighborhood
structure (local search), but it uses a population of solutions,
instead of just one. In this paper, we analyze only one hybrid
algorithm, which is a memetic algorithm.

Memetic Algorithms are metaheuristic algorithms based
on a combination of ideas originated by different meta-
heuristics. It is also known as a hybrid Genetic Algorithm.
Basically, it combines the ideas of neighborhood structure
and population algorithms [12].

The global search for the memetic algorithm is a stan-
dard genetic algorithm using the same parameter set of the
other GA-based methods (crossover probability = 80% and
mutation probability = 10%). In addition, we applied an elitism
selection operator and, for helping to refine the search pro-
cess during its functioning, the mono-objective local search
described in the beginning of Section 3 is applied.

In this paper, we employ a standard mono-objective
memetic algorithm. For the multi-objective version, we
update a version of the algorithm NSGA-II to include the
combination needed by a Memetic Algorithm. In the algo-
rithm implemented in this paper, we use the following
parameters: a standard two-point crossover (crossover prob-
ability = 80%) and bit flipping mutation; a random and
uniform choice of the solution parents; and population of
30 individuals. The mutation operator is applied with a
probability of 10%.

4 Experimental methodology

In order to analyze the effects of using optimization tech-
niques in the automatic design of ensemble systems, an
empirical analysis will be conducted. In this analysis, we
evaluate the effect of using ten optimization techniques in

Fig. 1 An illustration of the
general framework of the
experimental methodology
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the selection of important components of ensemble sys-
tems. In this analysis, mono and multi-objectives versions
are analyzed in which the optimization objectives are all
possible combinations of accuracy, good diversity and bad
diversity.

The feature selection process is defined in the following
way: Suppose that X is the original set of attributes, with s

attributes. Then, we select N subsets, Sj |j = 1, ..., N where
N represents the number of individual classifiers that com-
pounds an ensemble system. Therefore, each subset of Sj

has a cardinality si < s. In addition, the member selection
procedure selects whether or not a classifier will compose
an ensemble system. Once it is selected, the classifier type
is also defined. In this sense, based on an initial size of an
ensemble, N, N’ members will be selected to compose the
ensemble system, where N ′ < N .

In this paper, we apply optimization techniques to select
these two parameters (attributes and members). The general
framework of the experimental methodology is illustrated
in Fig. 1 and the main steps of the used methodology is
presented in Algorithm 1.

For member selection, k-NN (k nearest neighbor), Deci-
sion Tree and Naive Bayes will be used as possible types
of individual classifiers of the ensemble systems and they
will be combined by the Majority Voting technique. These
algorithms are chosen because they are simple and effi-
cient algorithms that apply different classification criteria
in their hypothesis. Decision tree, for instance, builds a
classification tree during its training and use it during the
test procedure, while k-NN is an instance-based algorithm.
Additionally, all classifiers of the same type used the same
parameter setting, once they use different training data. For
k-NN, for simplicity reasons, we decided to use its sim-
plest version, using only one neighbor. Then, the ensemble
systems uses a standard stacking procedure to define the

learning process for the individual classifiers and for the
combination methods.

In relation to the feature selection, there is no restriction
about the number of classifiers in which an attribute may be
assigned to. In other words, an attribute can be assigned to
all classifiers or to none of them.

In order to compare the accuracy of the obtained ensem-
ble systems, two statistical tests will be applied, depending
on the used scenarios. They are Mann-Whitney (U test) and
Friedman tests with a post-hoc test [7] and all applied tests
are bi-caudal, in which the null hypothesis is based on the
idea that the samples come from the same population. In all
three tests, the confidence level is 95% (α = 0.05).

4.1 Optimization algorithms

In all optimization algorithms, the solutions are represented
by a vector of values indicating the individual classifiers
and attributes used by the ensemble. The parameter N is
the maximum number of individual classifiers that a solu-
tion can have. For example, for N = 15, it means that all
possible solutions represent ensembles composed from 2 to
15 classifiers. The size of the vector that represents a solu-
tion is determined by the number of attributes of the selected
dataset multiplied by the maximum number of individual
classifiers (plus 1). For example, let us take N = 15 and the
number of attributes of problem s = 5. Then, we will have a
vector of size (s + 1)∗N positions, 90 positions. The first 6
positions define the configuration of the first classifier. The
first position indicates the type of classification algorithm,
in which 0 means that this classifier is not selected, 1 indi-
cates a k-NN classifier, and 2 and 3 indicate Decision Tree
and Naive Bayes, respectively. The remaining five positions
represent the attributes that will be used by this classifier. In
the same way, the 6 following positions correspond to the
second individual classifier and so on until the last classifier.

During the processing of an optimization technique, one
or more initial solutions are instantiated, depending on if the
selected algorithm if a population-based method or not. The
initial solutions are randomly generated and the optimiza-
tion process starts, generating and evaluating the obtained
solutions. The evaluation of a possible solution is performed
based on its performance in a validation set. In order to
define the training/validation/test division, a stratified 10-
fold cross-validation will be used in which 8 folds will be
used for training, one for validation and one for test.

The ending condition of each optimization technique
is based on three criteria, which are: maximum run time
(from 30 to 60 minutes for neighborhood-based methods
and from 60 to 120 minutes for population-based methods,
depending on the analysed dataset); 20 iterations without
updating the best solution, in the case of the mono-objective
algorithms and 20 iterations without upgrading the set of
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non-dominated solutions, in the case of multi-objective
algorithms; and a maximum of 1000 iterations. Finally, as
the optimization techniques used are non-deterministic, 10
runs of each technique are performed. Thus, all accuracy
results presented in this paper refer to the mean over 10
different test sets.

For each optimization technique, seven possibilities are
generated (three mono-objective and four multi-objective
ones). The next subsection will describe the multi-objective
versions of the used optimization techniques.

4.1.1 The multi-objective algorithms

For all multi-objective neighborhood-based algorithms, we
apply the multi-objective local search described in 1. In
addition, we apply well known multi-objective versions of
the population-based algorithms. As already mentioned, we
will use four multi-objective versions, with all combinations
of error rate, good and bad diversity. Table 1 presents all
multi-objective combinations that are used in this paper.

When using multi-objective optimization techniques, one
of the biggest challenges is to compare the outcomes pro-
vided by these techniques. In general, the outcome of
a multi-objective stochastic optimizer is a set of non-
dominated points, called approximation set. Pareto front is
the best set of non-dominated (ND) solutions for a problem.
In this set, there is no solution that dominates other solution
within the ND set. The main aim of the multi-objective opti-
mization techniques is to create a set of ND solutions that is
as close as possible to the Pareto front. Therefore, in order to
evaluate the quality of the ND set, several evaluation metrics
can be used, such as GD (Generational Distance) and IGD
(Inverted Generational Distance). However, for these two
evaluation metrics, the exact Pareto front must be known.

Nevertheless, in our case, the exact pareto set cannot
be known. In this case, we decided to follow the gen-
eral guidelines that are provided in [34], in which different
measures compared to approximation sets are reviewed.
The authors also proposed the dominance ranking approach
which they claim that it yields general statements about
the relative performance of multi-objective optimizers fairly
independent of preference information. This approach is
recommended as the first step in any comparison. If con-
clusions cannot be drawn based only on this approach,

Table 1 Multi-objective Versions for all Optimization Objective

– Alg.EG Alg.EB Alg.GB Alg.EGB

Error x x

Good Diversity x x x x

Bad Diversity x x x

other measures, named quality indicators, are applied to
point out differences among the sets generated by differ-
ent stochastic optimizers. Moreover, they recommend to
use Pareto compliant indicators which are those that when-
ever an approximation set A is preferable to an other one,
B, with respect to weak Pareto dominance, the indicator
value for A is at least as good as the indicator value for B.
The Pareto-compliant quality indicators are multiplicative
binary-ε [35] and hyper-volume [36] and they are used here
when significant differences are not devised with the dom-
inance ranking approach. The ε-indicator gives the factor
by which an approximation set is worse than another with
respect to all objectives [35]. The hyper-volume measures
the portion of the objective space that is weakly dominated
by an approximation set [34].

At the end of the processing of each optimization tech-
nique, one or more solutions are provided. In the case of
mono-objective algorithms, a single solution is provided
and, in the case of multi-objective algorithms, a set of solu-
tions is provided. In this case, the best solution is selected
based on the error rate delivered by all solutions over the
validation set (the one that achieved the lowest error rate).

4.2 Datasets

This experimental analysis is performed using 23 different
classification data sets. The majority of databases used in
this analysis were obtained from the UCI repository [8].
All datasets are preprocessed removing irrelevant attributes.
Table 2 presents a description of the datasets used in this
analysis, defining the number of instances, attributes and
classes of the datasets.

The datasets that were not taken from UCI were Gaus-
sian, Simulated and Jude. They are synthetic databases
that simulate microarray data and were created to test the
machine learning algorithms in the gene expression analysis
[31].

5 Results

This empirical analysis will be divided into four parts. In
the first part, we will analyze the effect of ensemble size, in
which we will analyze ensembles with different sizes (num-
ber of individual classifiers) in order to define which size
should be used in the following parts of this analysis. In the
second part, we will investigate which objective set achieves
the most accurate ensembles. Then, in the third part, we will
analyze the best optimization technique, the one that pro-
vides the most accurate ensembles. Finally, we select the
best algorithms of the previous part and compare them with
some existing techniques for building ensemble systems, in
order to compare the performance achieved in this paper
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Table 2 Description of the used data sets, defining the number of
attributes (C stands for the number of categorical attributes and N for
numeric attributes), instances and classes

Index Base Attributes(C/N) Instances Classes

1 Ecoli 7(7/0) 336 8

2 Wine 13(13/0) 178 3

3 Vehicle 18(18/0) 846 4

4 Flags 28(10/18) 194 6

5 Breast Tissue 9(9/0) 106 6

6 Credit Approval 14(6/8) 690 2

7 Hepatitis 19(6/13) 155 2

8 Annealing 31(6/25) 798 6

9 Pittsburgh Bridges V1 11(3/8) 105 6

10 Congressional Voting
Records

16(0/16) 435 2

11 Climate Model
Simulation Crashes

20(20/0) 540 2

12 Breast Cancer Wisconsin
Prognostic

33(33/0) 198 2

13 Connectionist
Bench Vowel

12(10/2) 990 11

14 Labor 16(8/8) 57 2

15 Horse Colic 22(7/15) 368 2

16 Ionosphere 33(33/0) 351 2

17 Planning Relax 12(12/0) 182 2

18 Zoo 17(0/17) 101 7

19 Sick 27(6/21) 3772 2

20 Dermatology 34(1/33) 366 6

21 Protein 120(0/120) 583 5

22 Gaussian 600(0/600) 60 3

23 Simulated 600(0/600) 60 6

with the state-of-the-art in ensemble systems. All four parts
of this analysis will be presented in the next subsections.

5.1 Ensemble size

In this first part, we aim at analyzing the effect of ensemble
size in the performance of the ensemble systems obtained
by optimization algorithms. In order to do this, we selected
three ensemble sizes, with N = 10, 15 and 30, where N

represents the maximum number of individual classifiers for
an ensemble. For each ensemble size, all ten optimization
algorithms are performed (for all 7 combinations of objec-
tive functions) and the obtained ensembles are evaluated. It
is important to emphasize that the numbers 10, 15 and 30
are the maximum number of individual classifiers so that an
ensemble can have from 2 to N individual classifiers.

In order to do this analysis, we will apply the Friedman
test to compare the performance (error rate) of all three
ensemble sizes (10, 15 and 30) for each optimization algo-
rithm, for all 23 datasets. The p-values of the Friedman test

are presented in Table 3. In this table, we also present the
results of the post-hoc Friedman test, comparing each pair of
sizes, for the cases in which the Friedman test detected dif-
ference in performance (p − values < 0.05). The post-hoc
Friedman test results are presented in the ”A X B” format,
where A and B may have the following values: 10c, 15c
and 30c, representing 10, 15 and 30 individual classifiers,
respectively.

The Friedman test did not show statistical difference in
performance for the majority of algorithms, with exception
for GA, ILS, MultiStart and GRASP. In other words, accord-
ing to the statistical test, there is no statistical difference in
performance for ensemble systems using 10, 15 or 30 as
the maximum number of individual classifiers. An interest-
ing aspect can be observed in the cases that the Friedman
test detected statistical difference in performance. In these
cases, the post-hoc test proved that the use of 10 individual
classifiers provided more accurate ensemble systems.

The results obtained in Table 3 show that the best option
for ensemble size is 10, since it provides ensemble systems
with better or similar performance to the other ensem-
ble sizes. Therefore, hereafter, we will be using ensemble
systems with 10 as the maximum number of individual
classifiers (N = 10).

5.2 Objective sets

In this section, we will investigate which objective set
achieves the most accurate ensembles. In order to do this,
we will analyze the classification error of ensemble systems,
when they are generated by all possible combinations of the
optimization objectives, which are: error (E), good diver-
sity (G), bad diversity (B), error and good diversity (EG),
error and bad diversity (EB), good and bad diversity (GB)
as well as error, good and bad diversity (EGB). Due to the
large amount of data, we summarize these values in Table 4
that illustrates, for each algorithm, the number of datasets
which obtained the best result (lowest error rate) by each

Table 3 Fridman and the Post-hoc Test for Ensemble Size

MTS GA ACO GRASP PSO

Friedman 0.4858 0.0099 0.1492 0.0008 0.191

10c x 15c – 0.0002 – 0.1338 –

10c x 30c – 0.0001 – 0.0002 –

15c x 30c – 0.6394 – 0.0003 –

VNS SA Memetic ILS MultiStart

0.1105 0.1854 0.087 0.0246 0.0022

10c x 15c – – – 0.0292 0.4327

10c x 30c – – – 0.0002 0.0002

15c x 30c – – – 0.0108 0.0005
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Table 4 Number of Best Results for Each Objective Set

E G B EG EB GB EGB

TS 7 0 0 7 5 3 3

GA 4 0 3 9 11 4 8

ACO 4 1 1 8 6 2 7

GRASP 17 0 1 3 3 3 2

PSO 15 0 1 5 5 3 2

PSO 11 0 1 8 6 3 3

SA 9 0 0 9 8 3 8

Memetic 20 0 2 3 5 3 3

ILS 15 0 0 3 2 1 5

Multi Start 16 0 1 4 4 2 2

Total 118 1 10 59 55 27 43

E = Error; G = Good Diversity; B = Bad Diversity

objective. For example, for the TS algorithm, error rate (E)
objective obtained the best result in 7 datasets, while error and
the good diversity objective (EG) obtained the best results
in 7 datasets.

In observing Table 4 we notice that the best results are
concentrated in the optimization of error rate (E), error rate
and good diversity (EG), error rate and bad diversity (EB)
and error rate, good and bad diversity (EGB). However there
are some aspects that need to be considered: ACO has error
and good diversity (EG) as the best objective set as well as
GA, in which the best objective set is error and bad diversity
(EB). It is important to emphasize that genetic algorithms
(GA) is the most popular optimization algorithm for appli-
cations in ensemble systems. In addition, ACO, along with
PSO, can be considered as a second option of optimiza-
tion algorithm for ensemble systems. In other words, the
inclusion of one diversity measure as objective had a pos-
itive effect in the performance of the two most popular
optimization algorithms for ensemble systems.

Now, in order to compare the performance of the differ-
ent objective sets, we apply the Friedman test, comparing all
objective sets and datasets, for each optimization algorithm.
The obtained p-values are presented in Table 5.

When analyzing Table 5, it can be detected a statisti-
cal difference in performance among the different objective
sets in all optimization algorithms. This means that there
is a statistical difference in performance between one or

Table 5 The Friedman Test Between the Different Sets of Optimiza-
tion Objectives

MTS GA ACO GRASP PSO

Friedman 0.0001 0.0001 0.0001 0.0001 0.0001

VNS SA Memetic ILS MultiStart

Friedman 0.0001 0.0001 0.0001 0.0001 0.0001

more pairs of objective sets. Then we decided to apply the
post-hoc Friedman test in order to evaluate each pair of
objective sets. Table 6 presents the p-values of the post-hoc
test. For simplicity reasons, we are only presenting the com-
parison of the objective sets that provided the best results in
Table 4, which are: error rate (E), error rate and good diver-
sity (EG), error rate and bad diversity (EB) and error rate,
good and bad diversity (EGB). In this table, each column
represents the optimization algorithm and each line repre-
sents the compared pair of objective sets. In addition, the
bold numbers represent the statistically significant results
(p − values < 0.05).

As we can observe in Table 4, despite the statistical dif-
ference observed by the Friedman test, the same behavior
was not detected by the post-hoc test, comparing the three
best objective sets. For instance, the first column of Table 6
corresponds to the TS algorithms and we can observe that
we did not verify statistically significant differences in
any pair of objective sets. The same behavior occurs for
seven optimization algorithms. However, in two optimiza-
tion algorithms, GA and ACO, the performance of error rate
(E) and error rate and bad diversity (EB) as well as error
rate (E) and error rate and good diversity (EG) proved to
be statistically different. In both cases, as the performance
delivered by EB and EG are better (lower error rate) than
the one delivered by E, we can state that the inclusion of
both diversity measures had a positive effect in the perfor-
mance of the ensemble systems, from a statistical point of
view. Therefore, the improvement in performance detected
in Table 4 proved to be statistically significant.

Now that we analyzed the objective sets only by the
error rate produced by the ensemble systems obtained by
the optimization techniques, we would like to assess the
different optimization algorithms from the multi-objective

Table 6 The Post-hoc Friedman Test Between the Different Sets of
Optimization Objectives

ObjSet TS GA ACO GRASP PSO

E/EB 0.4778 0.0299 0.0424 0.3962 0.4003

E/EG 0.3584 0.0037 0.0170 0.2220 0.4174

E/EGB 0.2211 0.1386 0.0817 0.1652 0.1978

EG/EG 0.9300 0.9912 0.9912 0.8510 0.9474

EG/EGB 0.8433 0.9212 0.9387 0.6387 0.7583

EB/EGB 0.9737 0.9825 0.9474 0.8235 0.6445

ObjSet VNS SA Mem ILS MS

E/EB 0.3667 0.5212 0.2443 0.0958 0.2056

E/EG 0.5212 0.4950 0.2841 0.1904 0.4176

E/EGB 0.4604 0.5561 0.1382 0.2524 0.3920

EG/EG 0.6683 0.9912 0.8432 0.7417 0.7836

EG/EGB 0.9212 1.0000 0.8518 0.8951 0.8175

EB/EGB 0.6763 0.9825 0.7499 0.7170 0.9737
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Table 7 Multi-Objective parameters - GA

E/EG E/EB

Base DR H ε DR H ε

1 0.4127 0.0952 0.3413 0.0635 0.2381 0.0238

2 0.1667 0.0159 0.0079 1 0.1667 0.6032

3 0.619 0.0317 0.0317 0.0079 – –

4 0.2857 0.0079 0.1508 0.0476 – –

5 0.2857 0.8413 0.9683 0.1667 0.0317 0.5714

6 0.746 0.0079 0.0873 0.2063 0.5397 0.6905

7 0.4444 0.0079 0.0238 0.2381 0.0317 0.3095

8 0.0952 0.0317 0.0397 0.1746 0.0317 0.8413

9 0.7698 0.0952 0.0952 0.0794 0.0079 0.7381

10 0.9841 0.0079 0.5476 0.5238 0.0952 1

11 1 0.0079 0.8889 0.0079 – –

12 0.5238 0.3095 0.3095 0.0238 – –

13 0.6032 0.0079 0.1349 0.0159 – –

14 1 0.1667 1 1 1 1

15 0.9048 0.5397 0.8333 0.7143 0.0397 0.0635

16 0.0476 – – 0.2778 0.2778 0.7857

17 1 0.5476 0.4206 0.1667 0.0079 0.1905

18 0.4444 0.3095 0.1667 0.4444 0.0952 0.4444

19 0.2619 0.0079 0.0317 0.5079 0.0079 0.8413

20 0.7143 0.1508 0.5079 1 0.0079 0.8095

21 0.7143 0.0079 0.0317 0.0079 – –

22 1 0.0079 1 1 1 1

23 1 0.0079 1 1 1 1

DR = Dominance Ranking; H = Hyper-volume ε = Binary-ε

context. The main aim of this analysis is to assess the inclu-
sion of one diversity measure, along with error rate, as
objective set and if it can provide ensemble systems with
better performance. In order to do this, we evaluate three
important multi-objective parameters, which are: Domi-
nance Ranking, Hyper-volume and binary-ε (described in
Section 4.1.1).

Although these measures are multi-objective parameters,
we also apply them in the mono-objective versions. In order
to do this, we perform the mono-objective versions in a
common way and, we calculate the remaining objectives
only in the solution provided by the optimization algorithm.
For example, if we apply the error rate as objective, we run
the optimization algorithms using only the error rate and,
after the optimization process, we calculate the good and the
bad diversity presented in the delivered ensemble. Thus, we
have all values for the application of above cited parameters.

In order to evaluate the optimization algorithms from the
multi-objective context, we apply the Mann-Whitney test in
the obtained results in order to check if there is any statis-
tical difference. For simplicity reasons, we selected three

Table 8 Multi-Objective parameters - ACO

E / EG E / EB

Base DR H ε DR H ε

1 0.7222 0.0079 0.0159 0.2857 0.0079 0.5556

2 0.4762 0.7937 1 1 0.9048 0.6825

3 0.4444 0.0556 0.5 0.1429 0.0079 0.0159

4 0.7143 0.0159 0.0556 0.1667 0.0079 0.9524

5 0.0794 0.0317 0.3889 0.0079 – –

6 0.3333 0.0556 0.6111 0.5238 0.0238 0.3889

7 0.3651 0.0476 0.5635 0.0079 – –

8 0.9206 0.1667 0.381 1 0.0556 0.246

9 0.0397 – – 0.0079 – –

10 0.1429 0.0317 0.6667 1 0.0317 0.1111

11 0.1429 0.0159 0.0556 0.4206 0.0079 0.8413

12 0.1905 0.0317 0.0159 0.127 0.0079 0.2222

13 1 0.0952 0.8889 0.3968 0.0952 0.8889

14 1 0.1667 1 1 0.4444 1

15 0.7619 0.3016 0.3016 0.7143 0.0873 1

16 0.2857 0.5873 0.5476 0.2063 0.0079 0.0397

17 0.4444 0.1349 0.127 0.1667 0.1667 1

18 1 0.127 0.4048 1 0.0079 0.4048

19 0.0794 0.4206 0.4444 0.3651 1 1

20 0.7143 0.0159 0.5873 0.5238 0.0079 0.9683

21 0.6429 0.2857 0.6905 0.0714 0.4206 0.3968

22 0.9206 1 1 1 0.4 1

23 0.0476 1 1 0.6429 0.2 1

DR = Dominance Ranking; H = Hyper volume ε = Binary-ε

optimization algorithms, which are: GA, ACO and SA. In
the same way, we selected three objective sets, error (E),
error and bad diversity (EB) and error and good diversity
(EG) for analysis. These results are presented in Tables 7, 8
and 9 for GA, ACO and SA, respectively.

When analyzing Tables 7, 8 and 9, we notice that only
a few statistic differences occur, for all datasets. For GA
(Table 7), we have some cases that presented significant
difference between the two analyzed objective sets. When
comparing error to error and good diversity, we detected sta-
tistical significant differences in 7 datasets (1 for DR and
6 for H and ε), in which only 5 of them were in favor of
error and good diversity (EG) objective. For the comparison
of error (E) against error and bad diversity (EB), we have
statistical significant cases in 6 datasets (all 6 are in DR),
in which 3 of them are in favor of EB objective. For ACO
(Table 8), we also have some cases that present a statically
significant difference in performance. When comparing E
against EG, we have cases in 3 datasets, in which 2 of them
are in favor of EG objective. For the comparison to EB, we
have statically significant differences in 5 datasets, being 3
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of them in favor of EB objective. Finally, for SA (Table 9),
when comparing E against EG, we have statically significant
differences in 7 datasets (1 for DR and 6 for H and ε), in
which 6 of them is in favor of EG objective. For the com-
parison to EB, we have statically significant differences in
7 datasets, being 4 of them in favor of EB objective.

In summary, according to the statistical analysis of three
important parameters for multi-objective, the bi-objective
versions EG (error and good diversity) and EG (error and
bad diversity) can generate similar performance to the
mono-objective version using error rate as objective, for
the majority of datasets. In the cases in which statistically
significant differences in performance were detected, they
were in favor of the bi-objective versions, for most of the
analyzed cases. It is important to emphasize that we ana-
lyzed only three optimization, GA, ACO and SA. However,
a similar pattern of behavior was observed in the remaining
optimization algorithms.

5.3 Optimization algorithms

As mentioned previously, in this section, we will analyze
the performance of all optimization techniques, aiming at

Table 9 Multi-Objective parameters - SA

E/EG E/EB

Base DR H ε DR H ε

1 0.6905 0.0079 0.0317 0.2063 0.1032 0.7460

2 0.2381 0.0952 1.0000 0.4444 0.1429 1.0000

3 0.2857 0.0079 0.2222 0.4444 0.0079 0.2460
4 0.0952 0.0238 0.6349 1.0000 0.0079 0.8413

5 0.7302 0.0079 0.0079 0.0476 – –
6 0.7937 0.0079 0.0952 0.5238 0.1032 1.0000

7 1.0000 0.0079 0.1905 0.4444 0.0079 0.6190

8 0.1349 0.0079 0.0635 0.0159 – –

9 0.9206 0.0079 0.0159 0.4444 0.0079 0.0556
10 0.0476 – – 0.1667 0.0079 0.1667

11 0.6032 0.0397 0.1508 0.4444 0.0079 0.0476
12 0.7222 0.0317 0.2857 1.0000 0.0079 0.1270

13 0.3333 0.0079 0.1905 0.0476 – –

14 1.0000 0.0476 1.0000 1.0000 0.4444 1.0000

15 0.4286 0.0317 0.0635 0.5238 0.0794 0.2857

16 0.2302 0.0079 0.0079 0.1667 0.0079 0.0238

17 0.9206 0.0079 0.0317 0.0476 – –
18 1.0000 0.0079 0.0079 1.0000 0.0079 0.1667

19 0.8810 0.0079 0.4206 0.4444 0.0079 0.1270
20 1.0000 0.0397 0.1429 0.1667 0.0079 0.0079

21 0.1270 0.0079 0.3095 0.1667 0.0079 0.0397

22 1.0000 0.0079 1.0000 1.0000 1.0000 1.0000

23 1.0000 0.0079 1.0000 1.0000 1.0000 1.0000

DR = Dominance Ranking; H = Hyper volume ε = Binary-ε

assessing which one provides the most accurate ensembles.
Table 10 illustrates the average error rate for each algo-
rithm, averaging the results of all objective sets. The main
aim is to evaluate which optimization algorithm provides
the best overall performance. The bold numbers represent
the best performance for a dataset. The AVG line represents
the average error rate over all datasets and the values within
brackets represent the overall position of the optimization
technique, in terms of error rate, ranging from 1 (the one that
provides the most accurate ensembles) to 10 (the least
accurate ensembles).

As we can observe from Table 10, in terms of the number
of best results, PSO delivered the most accurate ensem-
ble systems in 7 datasets, followed by Memetic and SA (5
datasets), GRASP and ILS (2 datasets) and VNS and MS
(1 dataset). However, when considering the averaged error
rate, Memetic is the optimization technique that provides
the most ensemble systems, followed by SA and PSO.

In order to analyze the performance of the optimization
from a statistical point of view, we applied the Friedman
test in the results of Table 10. As a result of this test, we
observed that that there is a significant difference in per-
formance of all optimization algorithms (p-value = 0.001).
Then we applied the post-hoc Friedman test for each pair of
algorithms. The p-values of the post-hoc test are expressed
in Table 11. The results in this table are presented in a (sym-
metric) matrix form, comparing the line algorithm with the
column algorithm. For example, the comparison of TS with
GA (cell 2,1) provides p-value = 0.9260. The statistically
significant values are described in bold.

When analyzing Table 11 we observe that there are
statistically significant results in almost 56% of the ana-
lyzed cases (25 out of 45). An important aspect is that
TS, GA and ACO showed statistically significant results,
when compared to all remaining optimization techniques.
As these algorithms provided the least accurate ensembles,
this decrease in performance proved to be statistically sig-
nificant. Among the remaining algorithms, there are only
a few statistically significant differences, mainly related to
Memetic and SA algorithms. Therefore, instead of selecting
one optimization algorithm, we have selected a set of two
algorithms, SA, and Memetic. We will use this set of best
algorithms in the comparison with the classical approach,
that will be done in the next subsection.

5.4 Comparative analysis: classical techniques

Table 12 presents the comparison of the best optimization
algorithms with some classical ensemble techniques, which
are: random selection, bagging, boosting and random forest
(more details about these methods can be found [9]). The
random selection generates a heterogeneous committee by
randomly choosing individual classifiers, the choices are:
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Table 10 Average error rate of all optimization algorithms

Dataset TS GA ACO GRASP PSO

1 0.1472 0.1412 0.1202 0.1070 0.1070
2 0.0114 0.0122 0.0090 0.0048 0.0000
3 0.2788 0.2600 0.2484 0.2528 0.2724

4 0.2164 0.2360 0.2136 0.2073 0.1844

5 0.2492 0.2454 0.2336 0.2226 0.2058

6 0.1304 0.1313 0.1298 0.1260 0.1338

7 0.0852 0.0878 0.0826 0.0772 0.0504

8 0.0238 0.0134 0.0088 0.0060 0.0100

9 0.2648 0.2594 0.2422 0.2250 0.2000
10 0.0524 0.0418 0.0226 0.0210 0.0232

11 0.0606 0.0712 0.0460 0.0443 0.0544

12 0.1860 0.1980 0.1920 0.1782 0.1680

13 0.0488 0.0166 0.0112 0.0387 0.0178

14 0.0036 0.0000 0.0000 0.0000 0.0000
15 0.0444 0.0292 0.0160 0.0110 0.0110

16 0.0540 0.0570 0.0618 0.0576 0.0650

17 0.2758 0.2726 0.2800 0.2660 0.2418
18 0.0240 0.0340 0.0220 0.0200 0.0060
19 0.0513 0.0190 0.0430 0.9000 0.0184

20 0.0214 0.0202 0.0092 0.0080 0.0126

21 0.1744 0.1596 0.1860 0.1630 0.1666

22 0.1102 0.0000 0.2667 0.0068 0.0100

23 0.0332 0.0000 0.0734 0.0170 0.0000

AVG 0.1029(10) 0.0906(7) 0.0993(9) 0.0827(5) 0.0771(3)

Dataset VNS SA Memetic ILS MS

1 0.1166 0.1138 0.1160 0.1154 0.1167

2 0.0070 0.0036 0.0045 0.0056 0.0024

3 0.2434 0.2398 0.2478 0.2460 0.2413

4 0.1960 0.1940 0.1803 0.1888 0.1900

5 0.2116 0.1935 0.2170 0.2134 0.2170

6 0.1236 0.1238 0.1186 0.1162 0.1175

7 0.0648 0.0624 0.0618 0.0492 0.0582

8 0.0050 0.0050 0.0046 0.0080 0.0130

9 0.2230 0.2212 0.2268 0.2174 0.2210

10 0.0256 0.0225 0.0253 0.0232 0.0215

11 0.0494 0.0468 0.0510 0.0636 0.0460

12 0.1750 0.1690 0.1630 0.1631 0.1690

13 0.0060 0.0068 0.0100 0.0095 0.0137

14 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.0110 0.0125 0.0095 0.0115 0.0104

16 0.0524 0.0528 0.0483 0.0490 0.0502

17 0.2526 0.2518 0.2500 0.2504 0.2528

18 0.0100 0.0100 0.0067 0.0160 0.0140

19 0.9000 0.0108 0.0210 0.9000 0.9000

20 0.0100 0.0086 0.0086 0.0115 0.0065
21 0.1648 0.1572 0.1586 0.1616 0.1590

22 0.0000 0.0000 0.0000 0.0834 0.1915

23 0.0268 0.0000 0.0000 0.0298 0.0665

AVG 0.0788(4) 0.0754(2) 0.0751(1) 0.0837(6) 0.0913(8)

decision tree, k-NN, Naive Bayes and none. The ensemble
system is also composed of up to 10 individual classifiers.
In addition, it has a feature selection step, in which a ran-
dom selection of around 70% of the feature set is selected
for each individual classifier. The random forest method is
composed of decision trees and it was implemented as orig-
inally proposed. Finally, bagging and boosting methods are
composed of k-NN and combined by majority voting. In
this table, the bold numbers represent the ensemble gen-
eration methods that delivered the best performance of the
corresponding dataset.

As we can observe from Table 12, SA and Memetic algo-
rithms delivered the most accurate ensembles, for almost
80% of the analyzed datasets. This is a promising result
since bagging, boosting and random forest are classical
ensemble generation techniques that have been widely used
in the literature. In order to evaluate the performance of
these techniques, from a statistical point of view, we applied
the Friedman test in the results of Table 12 and we observed
that that there is a significant difference in performance of
all optimization algorithms (p-value = 0.0007). Then we
applied the post-hoc Test for each pair of techniques. The
p-values of the test are expressed in Table 13.

As we can see in Table 13, the improvement in perfor-
mance detected in both optimization techniques proved to
be statistically significant. In other words, both algorithms,
SA and Memetic, delivered more accurate ensemble sys-
tems, from a statistical point of view, when compared to
bagging, boosting, random forest and random methods.

5.5 Result analysis

In the previous sections, a huge variety of results were pre-
sented. In this section we will try to analyze and to explain
the obtained results. In the first analysis, ensemble size, the
maximum number of individual classifiers varied from N =
10 to 15 and 30. Unlike what was expected, the obtained
results were similar using all three ensemble sizes, for most
datasets. In cases where a statistical difference was detected,
it is favorable to the smallest ensemble size (N = 10). As
N represents the maximum number of individual classifiers,
we calculated the average size of the obtained ensemble sys-
tems and we observed that they are close to 10 (average size
9 for N = 10, 11 for N = 11 and 16 for N = 30). In other
words, even when we used a maximum number equal to
30, the final ensemble configurations returned by the opti-
mization techniques were much smaller. We believe that the
average ensemble sizes were close to 10 for two reasons:

– The used individual classifiers (k-NN, Naive Bayesian
and Decision Tree) have good computational power and
this may mean that their combination on a large het-
erogeneous ensemble does not bring benefits to the
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Table 11 p-values of the Post-
hoc Friedman test, comparing
the optimization algorithms

X TS GA ACO GRASP PSO VNS SA Mem ILS

TS – – – – – – – – –

GA 0.9260 – – – – – – – –

ACO 0.0190 0.5563 – – – – – – –

GRAS 0.0000 0.0000 0.0136 – – – – – –

PSO 0.0000 0.0000 0.0000 0.8919 – – – – –

VNS 0.0000 0.0000 0.0000 0.6626 1.0000 – – – –

SA 0.0000 0.0000 0.0000 0.0499 0.8165 0.9632 – – –

Mem 0.0000 0.0000 0.0000 0.0073 0.4350 0.7203 0.9999 – –

ILS 0.0000 0.0000 0.0037 1.0000 0.9783 0.8645 0.1292 0.0244 –

MS 0.0000 0.0000 0.0000 0.3638 0.9980 1.0000 0.9982 0.9293 0.6024

ensemble’s performance. In this case, the use of weaker
classifiers or homogeneous structures in this analysis
may modify this scenario;

– One of the stopping conditions for the optimization
techniques is time (varying from 30 to 120 minutes).
We observed that the processing time was the ending
condition used by most of the optimization techniques.

Table 12 Comparison with Classical Techniques

Base SA Memetic Bagging Boosting Random Random
Forest

1 0.1142 0.1160 0.1369 0.1280 0.1521 0.1726

2 0.0036 0.0045 0.0281 0.0225 0.0281 0.0169

3 0.2398 0.2478 0.5402 0.5307 0.3301 0.2541

4 0.1940 0.1803 0.3505 0.2113 0.2876 0.3144

5 0.1964 0.2170 0.3302 0.2642 0.3123 0.3113

6 0.1240 0.1186 0.2058 0.2261 0.1562 0.1580

7 0.0624 0.0618 0.1355 0.1097 0.1226 0.1097

8 0.0052 0.0046 0.0614 0.1228 0.0524 0.0063

9 0.2212 0.2268 0.3143 0.2095 0.3076 0.2762

10 0.0230 0.0253 0.0368 0.0805 0.0637 0.0414

11 0.0468 0.0510 0.0630 0.0426 0.0685 0.0685

12 0.1690 0.1630 0.3182 0.2727 0.2354 0.2020

13 0.0070 0.0100 0.1909 0.2747 0.1713 0.0414

14 0.0000 0.0000 0.0000 0.0000 0.0281 0.0000

15 0.0134 0.0095 0.0924 0.1223 0.0878 0.0299

16 0.0528 0.0483 0.0883 0.1795 0.1054 0.0712

17 0.2518 0.2500 0.3956 0.2747 0.3077 0.3352

18 0.0100 0.0067 0.0693 0.0000 0.0554 0.0396

19 0.0108 0.0210 0.0604 0.0626 0.0219 0.0191

20 0.0086 0.0086 0.0273 0.0109 0.0235 0.0464

21 0.1572 0.1586 0.2178 0.2195 0.2142 0.2161

22 0.0000 0.0000 0.2333 0.3833 0.1683 0.2167

23 0.0000 0.0000 0.6166 0.2500 0.1000 0.0833

NumWin 12 12 1 4 0 1

When N = 15 and N = 30, the optimization tech-
niques may need more processing time to validate all
the solutions and this might be reflecting in the obtained
results. In these cases, they exploit less problem space,
affecting their overall performance.

In the second analysis, we compared the performance
of the different objective sets. In general, we can conclude
that the use of the diversity measures in the mono-objective
algorithms did cause a decrease in the performance of the
ensemble systems, for all optimization techniques. This was
an expected result since we presumed that the use of a diver-
sity measure on its own would not surpass the performance
of the error rate in the guide to provide accurate ensemble
systems. However, an important observation must be high-
lighted, the inclusion of one diversity measure, along with
error rate, can have a positive affect in the search for accu-
rate ensemble systems. Table 14 summarizes the best results
(Table 4) obtained by the ensemble systems when using
only error rate (E) and when using error rate along with a
diversity measure (EB+EG).

In observing Table 14, we can observe that the inclu-
sion of one diversity measure caused an increase in the
obtained best results, for six optimization techniques (TS,
GA, ACO, PSO, SA and Memetic). It is important to
emphasize that among these six techniques, we can find
all analysed population-based techniques and one hybrid
technique (Memetic). Therefore, as the population-based

Table 13 Post Hoc - Comparison with Classical Techniques

x SA Memetic Boosting Bagging Random

SA – – – – –

Memetic 1.0000 – – – –

Boosting 0.0000 0.0000 – – –

Bagging 0.0002 0.0002 0.5835 – –

Random 0.0001 0.0001 0.7045 0.9997 –

Random Forest 0.0010 0.0020 0.1693 0.9739 0.9039
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Table 14 Comparison of the best results: Error rate (E) and Error rate
with one diversity measure (EG+EB)

x TS GA ACO GRASP PSO

E 7 4 4 17 11

EG+EB 12 20 14 6 14

x VNS SA Memetic ILS MS

E 15 9 8 15 16

EG+EB 10 17 16 5 8

algorithms tend to explore more rapidly the search space, it
would be important to use more than one criteria and the use
of a diversity measure can help the error rate in the search
for more accurate ensemble systems.

In the third analysis of this paper, an analysis of the
optimization algorithms, we can conclude that the best opti-
mization technique is Memetic, followed closely by SA
and PSO. The interesting aspect of these results is that
Memetic is a hybrid algorithm, PSO is a population-based
algorithm and SA is a neighborhood-based algorithm. In
fact, Memetic uses most of the genetic algorithm func-
tionality along with a local search (neighborhood-based
functionality). For instance, the Memetic performance is
better than GA performance, showing that the hybridization
used in the Memetic algorithm had a positive effect in the
automatic design of ensemble systems. Additionally, SA is
a neighborhood-based algorithm that emulated a physical
process in which a solid is slowly cooled so that when even-
tually its structure is ”frozen”. This elaborated metaheuristic
also led to the design of accurate ensembles, even when
compared to some population-based algorithms (ACO and
GA). Finally, PSO is a simple population-based algorithm
that applies a probabilistic selection of the direction to fol-
low (follow their own path; back to the best position found
so far; or follow the path of the best solution in the swarm).
This direction process is similar to the processes made
by some neighborhood-based algorithms, making PSO a
population-based algorithm with some functionalities of a
neighborhood-based algorithms. This combination also had
a positive effect in the PSO performance to produce accurate
ensemble systems.

6 Final remarks

This paper presented different ways to generate ensembles
through the use of several optimization algorithms in the
design of these systems, that were assessed in both mono
and multi-objective context. These optimization algorithms
were evaluated when searching the optimal values for the
number of individual classifiers and feature subsets to com-
pose the ensemble systems. In this analysis, we aimed at

evaluating the effect of using ten optimization techniques
in the selection of important components for ensemble sys-
tems. Therefore, we wanted to explore the full potential
of the optimization algorithms in the automatic design of
ensemble systems.

The obtained results showed that the use of the diver-
sity measures in the mono-objective algorithms did cause a
decrease in the performance of the ensemble systems, for
all optimization techniques. However, an important obser-
vation must be highlighted, the inclusion of one diversity
measure, along with error rate, can have a positive affect
in the search for accurate ensemble systems. The obtained
results also showed that the variation in the number indi-
vidual classifiers did not cause a significant improvement
in the performance of ensemble systems and, as it was not
expected, the best performance was achieved when using a
maximum of 10 individual classifiers (N = 10). In addi-
tion, when we compare all ten optimization techniques, in
a general perspective, we observed that two optimization
techniques, Memetic and SA, provided better performance
than the other techniques. When comparing these two algo-
rithms with classical ensemble techniques, bagging, boost-
ing, random forest and random selection, we observed that
both algorithms delivered more accurate ensemble systems.

The results obtained in this paper are very promising
and, as future work, we can think of using other opti-
mization techniques, for example, hybrid metaheuristics
(combination of two or more algorithms taking advantage
of the synergy between them). Thus, we aim at developing
hybrid metaheuristics with the combination of traditional
metaheuristics as genetic algorithms and tabu search to pro-
vide an algorithm that is more efficient than the individual
metaheuristics.
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