
Appl Intell (2018) 48:1979–1995

Graph bandit for diverse user coverage in online
recommendation

Mahmuda Rahman1 · Jae C. Oh1

Published online: 16 June 2017
© Springer Science+Business Media New York 2017

Abstract We study a recommendation system problem, in
which the system must be able to cover as many users’
preferences as possible while these preferences change over
time. This problem can be formulated as a variation of the
maximum coverage problem; specifically we introduced a
novel problem of Online k-Hitting Set, where the number
of sets and elements within the sets can change dynam-
ically. When the number of distinctive elements is large,
an exhaustive search for even a fixed number of elements
is known to be computationally expensive. Even the static
problem is known to be NP-hard (Hochba, ACM SIGACT
News 28(2):40–52, 1997) and many known algorithms tend
to have exponential growth in complexity. We propose a
novel graph based UCB1 algorithm that effectively mini-
mizes the number of elements to consider, thereby reducing
the search space greatly. The algorithm utilizes a new
rewarding scheme to choose items that satisfy more users
by balancing coverage and diversity as it construct a rela-
tional graph between items to recommend. Experiments
show that the new graph based algorithm performs better
than existing techniques such as Ranked Bandit (Radlinski
et al. 2008) and Independent Bandits (Kohli et al. 2013) in
terms of satisfying diverse types of users while minimizing
computational complexity.

� Mahmuda Rahman
mrahma01@syr.edu

Jae C. Oh
jcoh@syr.edu

1 DMA Lab, EECS, Syracuse University, Syracuse, NY, USA

Keywords Recommendation system · Online learning ·
Diversity · Multi armed bandit · Upper confidence bound ·
Directed graph

1 Introduction

Recommendation systems in the recent era not only need to
address the huge amount of users to satisfy but also their
rapidly changing patterns of preferences. With such a fast
and continuous shift of users’ preferences, a recommen-
dation system needs to learn quickly from the patterns of
choices in previous users to suggest items to the new user.
As diverse tastes of the incoming users induces a fast turn
over time for items, online recommendation systems get lit-
tle prior knowledge about the distribution of the preference
on items among the user population. Moreover, most recom-
mendation systems need to pick a limited number of items
to recommend to a user, yet they are still required that at
least one of these recommended items satisfies her taste.
Our graph-based online learning algorithm tries to produce a
substantially small but a diverse recommendation set from a
large number of items, at the same time satisfying many dif-
ferent user types. In this paper, we define a user by his or her
choice of items, therefore, users having the same preference
over items are considered to be the same user type.

The graph-based algorithm can discover correlations
among the items so that related items can be represented
by one of the items. In other words, if a recommendation
system (with a fixed small number of items to recommend)
could pick only one from a group of related items, it would
be able to satisfy all users of that user type. This method
effectively reduces the number of items to be considered

DOI 10.1007/s10489-017-0977-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-0977-1&domain=pdf
http://orcid.org/0000-0002-9307-3713
mailto:mrahma01@syr.edu
mailto:jcoh@syr.edu

1980 M. Rahman, J.C. Oh

thereby reducing computational complexity of the problem.
Consequently, the new algorithm can satisfy more diverse
user types.

As we need to address dynamically changing user pref-
erences over time, the correlation graph also changes as
data stream in. Therefore, an effective and efficient way to
update the correlation graph must be designed. Also, the
environment is partially observable, as feedback of a user
on a given recommended items does not expose other item
choices of that users. We formally defined this as Online
k-Hitting Set Problem and present an algorithm to address
this problem.

We list some of the challenges which made our problem
interesting. Then we state our contributions to overcome
those challenges.

– The problem of choosing the optimal set of recom-
mended items for a given user population is an NP
hard problem [13] even if all the user vectors are given
offline. This problem is equivalent to the maximum
coverage problem [8] .

– Partial observablity of the problem can only allow our
algorithm to examine the feedback from a user after the
recommendation is made. A negative feedback gives no
information about what would the user prefer instead.

– When a new user data streams in, the system must
make decision whether to categorize the new user to
an existing user type or create a new user type, if the
input data is significantly different from any existing
user types. This problem is common to all machine
learning classification and clustering problem. It is
also known as the open-set classification/identification
problem [3, 19].

User abandonments [9] in recommendation system is
that the system gives up satisfying certain user types. For
example, if a user type is quite unique and the popula-
tion within the type is small, it may be better to ignore
the user types to accommodate user type with larger pop-
ulation. However, a good recommendation system must
minimize user abandonments. Our method minimizes the
user abandonment while maximizing the payoff of the
system.

The contributions of this work minimizing the abandon-
ment are following:

– formally defining the novel problem of Online k-Hitting
Set and present a graph based anytime approximation
algorithm for applying it to online recommendation
system. Our robust problem formulation facilitates the
design of this graph based bandit algorithm.

– developing a graph based “update policy” and “selec-
tion policy” for UCB1 bandits for recommendation
systems to address the Online k-Hitting Set Problem,

unlike our previous work [22]. The main difference
between the previous work and the proposed approach
in this paper is that in this new approach, the recom-
mendation system (1) learns the dependency structure
among items though a novel Graph Based Update Pol-
icy and (2) selects the most promising items by calcu-
lating the potential of an item faster by a Graph Based
Selection Policy

– verifying the efficacy of our method for recommending
a small number of items from real data sets where there
are hundreds of users, each having thousands of choices
to pick from.

On an average, our proposed mechanism outperforms exist-
ing recommendation techniques in terms of covering user
types while keeping the computational complexity low.

This paper is organized in the following way: in Section 2
we discuss the online learning problem for recommenda-
tion system formulated as an Online k-Hitting Set Problem
under partial observation. In Section 3 we discuss the ban-
dit setting for the problem. In Section 4 we cite some of
the related works. Section 5 describes our past approach to
overcome the issues regarding bandit algorithm for online
recommendation system and illustrate the limitations of the
past approach. Section 6 details our proposed graph based
model to overcome the shortcomings of the past approach
as we detail our novel update policy and selection policy. In
Section 7 we analyze our approach and in Section 8 we give
empirical evaluation. In Section 9 we conclude the paper.

2 Coverage of diversity as online k-hitting set
problem

Our problem can be formulated as a variation of the hit-
ting [29] problem, where the number of sets and elements
within the sets can change dynamically. When the num-
ber of distinct elements is large, an exhaustive search for
even a fixed number of elements to form a hitting set is
known to be computationally expensive. Because a hit-
ting set contains at least one element from every subset
in a collection. It becomes more challenging when the
sets are streaming online an the system does not have
any knowledge about the distribution of elements over
these sets.
For our problem, the collection contains all the available

items to recommend from and every subset of the collec-
tion defines a user’s preferences. As users’ preferences are
diverse, these incoming sets to the learning system can
change over time, the recommendation set as a hitting set of
fixed size k needs to be adjusted with this change dynami-
cally. Also, we need to maximize the coverage of different

Graph bandit for diverse user coverage in online recommendation 1981

types of users over time. We call it as an Online k-Hitting
Set Problem.

The data stream in our problem is partially observable as
we can only examine the feedback from a new user after the
recommendation is made based on the earlier observations.
A negative feedback only notifies the system that none of
the element of our recommendation set is selected by the
user, but gives no information about what would the user
prefer instead. Therefore, we define our Online k-Hitting
Set Problem under partial observation by the following
definition:

Definition 1 Given a finite set of m elements U =
{e1, e2, ...em} and a collection of n finite non empty subsets,
C = {S1, S2, ..., Sn} s.t. Si ⊆ U for i = 1, 2, . . . n where n

is not known, let the set of elements exposed to the system
at time t is St

i (i.e. S
t
i ⊆ Si). For a positive integer k << m,

The Online k-Hitting Set Problem is, to find a set At ⊆ U at
a time step t before the incoming set for that time is exposed,
such that, |At | = k and St

i ∩ At �= ∅.

This definition helps us address the online recommenda-
tion problem with an intention to cover diverse users where
St

i is a user’s choice vector and At is the recommendation
set for that user at time t . If St

i ∩ At �= ∅ for a time step t ,
we set δt = 1 otherwise δt = 0 (here δt = 1 denotes that the
set At contains at least an element from the set St

i arriving
at time t). After T number of time steps, the performance

of our algorithm is measured by
�T

t=0δt

T
. Hence this novel

problem formulation helps us design an anytime approxima-
tion algorithm as a solution to the online recommendation
problem.

The difference between classical Hitting Set Problem and
our problem is that we want |S ′ | = k for the above defi-
nition where Si ∈ C for i = 1, 2, . . . n might be partially
observable i.e. not all e ∈ Si are exposed to our algorithm.
Also we do not know the number of unique sets in C, i.e n

is unknown as sets stream into our system one at a time. Our
algorithm constructs an online approximation for a hitting
set for the partially observed sets in the collection as seen
over a certain amount of time.

We apply our algorithm to the real data set for movie
recommendation where each incoming user can be treated
as a set with the index of the movie of her choice. Most
existing literature including [16] consider a recommenda-
tion system where n items {i1, i2, i3, ...in} are given. When
a user arrives, the system needs to show her a set of k items
where k << n. If she finds any one of them relevant, the
system gets a payoff of 1. If none of them is relevant to her
interest, then it gets a payoff of 0. Kohli et al. [16] defined a
user relevance vector as following:

Definition 2 Each user j can be represented by a {0, 1}n
vector Xj where X

j
i = 1 indicates that user j found

item i relevant where i ∈ {i1, i2, i3, ...in}. For example,
Xj = {0, 1, 0, 1, 0, 0, 0, 0, 0, 1} means user j finds 2nd ,
4th and 10th items relevant out of n = 10 items that
are given to the recommendation system to recommend
from.

Distribution of the user vectors is unknown to the sys-
tem but these vectors are assumed to express the “types” of
a users. We assume that there is a large degree of correla-
tion between these vectors as we treat them to be different
sets S coming from a single collection of sets C. It is impor-
tant to note that when the system successfully recommends
a set of items to a user, that recommendation set covers
other users of having at least those item of choice as in the
recommendation set.

At time t, after a recommendation set is generated, a
choices of a random user vector is disclosed to the sys-
tem and system gets its payoff. Then the system updates
the recommendation set for the next possible user so that
it maximizes its payoff and thus minimizes the abandon-
ment rate. Given a static dataset, to simulate an online
learning problem environment of the arrival of a random
user at time t , the algorithm chooses a vector Xt (as
Si in above definition) independent and identically dis-
tributed from an unknown distribution D from all user
vectors.

Then the recommendation system presents a set of k

items St (as At in above definition) without observing
Xt . We also adopted the definition of set relevance func-
tion F used by the above mentioned paper to follow the
convention:

Definition 3 F(Xt , St) is a submodular set function [26]
stands for the payoff of showing St to user with vector Xt .
Characterization of user click event is done by the following
conditions: if Xt

i = 1 for some i ∈ St then F(Xt , St) = 1
else F(Xt , St) = 0.

According to [16], the value of displaying a set St , is the
expected value E[F(St , X)] where the expectation is taken
over realization of the relevance vector X from the distri-
bution D. Once realized, for a fixed set S, it is denoted
as E[F(S)] (the fraction of users satisfied by at least one
item in S). Like [16], our target is to minimize abandon-
ment, so we need to maximize click through rate [15],
which is:

maximize E[F(S)]
subject to |S| = k

1982 M. Rahman, J.C. Oh

This is essentially same as our measurement metrics
for the Online k-Hitting Set Problem we formulated at the
beginning of this section (Fig. 1).

3 Background

It is crucial for our problem to find a representative element
which is common to a large number of sets in a collection
of sets. That will suffice an element to be a candidate for
our online hitting set. As we can pick at most k number of
elements at certain time, our problem is an Online k-Hitting
Set Problem with an intention to cover maximum possible
incoming sets.

We leverage Multi Armed Bandit [28] algorithm, specif-
ically UCB1 [2] to solve this problem. The Multi-Armed
Bandit (MAB) problem is the problem a gambler faces
given a slot machines with multiple levers (arm), deciding
which arm to play, how many times to play a specific arm
and the order to play them with an objective that the deci-
sion will maximize the sum of rewards earned through a
sequence of arms played. Playing each arm provides a ran-
dom reward from a distribution specific to that arm, which
is unknown to the gambler.

The most popular stochastic bandit algorithm, UCB1 [2]
has been used as our base, where each slot of k-element
set runs a UCB1 bandit to pick an element i from n avail-
able options. Here n is considered as the size of |U | defined
in our problem. UCB1 selects an element i for which the
following UCB value is maximum.

xi +
√
2 log(f)

fi

Here xi denotes the current average reward of the element i
in terms of being a candidate for our hitting set. fi denotes
the number of times element i has been picked so far in total

t rounds and f denotes the total count of all elements picked
so far as f = �t

i=1(fi).
After each pulling of arm, and reward, the corresponding

arm count gets updated for the next round. Hence UCB1 has
specific:

– update policy adjusting the the average reward xi after
the current trial

– selection policy based on the average reward xi added

with the term
√

2 log(f)
fi

.

For an online recommendation system, at each time t , from
n available items (arms), k items need to be picked by the
algorithm. So k instances of multi armed bandits are instan-
tiated, each having n arms to select from. Once an item
has been selected to place at j slots by the j th bandit,
that item will be unavailable from the rest of the bandits
j, j +1...kth bandits. Thus a set of k non-identical elements
is constructed. A random user’s choice is compared with this
recommended set and accordingly, reward is fed back to the
associated bandits.

This is called Upper Confidence Bound (UCB1) [2]
because this value can be interpreted as the upper bound of a
confidence interval, so that the true average reward of each
item i is below this upper confidence bound with high prob-
ability. If we have tried an item less often, our estimated
reward is less accurate so the confidence interval is larger. It
shrinks as we recommend that item more often.

Provided that a UCB1 algorithm has tried enough of each
items to be reasonably confident, it rules out the chance
that a selected item would be sub-optimal or inferior in
terms of achieving reward. While we would like to include
this apparently superior arm (item), we have to make sure
that the other arms (items) are sampled enough to be rea-
sonably confident that they are indeed inferior. UCB1 does
that for us, but unfortunately UCB1 assumes all n items
are independent. However, in many applications items are
not independent. For example, if a customer likes a certain
grocery item, she may also like other related items. Our

Fig. 1 Payoff for a
recommendation set according
to user’s click response

Graph bandit for diverse user coverage in online recommendation 1983

algorithm also addresses the dependencies among items. In
fact, our algorithm leverages the dependencies to maximize
the coverage of user preferences.

4 Related work

In the existing work, two different approaches have been
found to build a recommendation system by using UCB1
bandits. We discuss their advantages and disadvantages in
this section. The Ranked Bandit Algorithm (RBA) [21] used
each item in the recommendation set to satisfy a different
type of user and hence came up with a consensual set based
on diverse users. It used strong similarity measures (depen-
dency) between items and takes into account only the first
item selected by a user from the recommendation set to rep-
resent the group of users that share at least one common item
of interest. It specifically holds ith bandit responsible for
ith item in the recommendation set. But performance of ith

bandit is actually dependent on picking the appropriate item
(in proper order) on all other bandits preceding i. As a con-
sequence of this cascading effect, the learning for ith item
cannot really start before �(ni−1) time steps [16]. Accord-
ing to their setting, the probability of user x ∈ X selecting
the ith item from the recommendation set is denoted as pi

which is conditional on the fact that the user did not select
any of the items in that set presented in any earlier posi-
tions. Formally, pi = Pr(xi = 1|xi−1 = 0) for all i ∈ k

where the binary value {0, 1} of xi denotes the probability
of selecting the item i by the user x.

On its attempt to maximize the marginal gain of ith ban-
dit, where each bandit is a random binary variable, RBA
forms a Markov chain where the later bandits have to
wait for an earlier one to converge. To speed up the pro-
cess, Independent Bandit Algorithm (IBA) [16] assumed
independence between items and used Probability Ranking
Principle (PRP) [24] as a greedy method to select items to
recommend. PRP give equal credit to the item a user selects
within the recommendation set and each bandit responsible
for selecting an item of that user’s choice gets a reward of 1.
The overall payoff for the recommendation set is 1 even if
more than one item is selected by that user. But this solution
is sub-optimal in minimizing abandonment because diverse
users are likely to be a part of the minority, which might not
be covered by the top-k items PRP selects. So it often fails
to capture diversity.

We used both RBA and IBA as our baselines in the
experiment to compare with our past approach which we
call non graph based method and compared our graph
based approach with our past approach. Throughout this
paper we use the term ‘our past approach’ and ‘Non Graph
Based method’ interchangeably. Online Learning problem
has been also studied as a Multi Armed Bandit (MAB)

Problem in [27] as Restless Bandit based on Markov chain.
Mortal Bandit problem [7] is a close variant of MAB where
each arm is assigned a lifetime, the expiration of it calls in
for a new arm to take over. Thus the total number of arms
stays the same all the time. But their solution is based on a
number of predefined parameters, which need to be set by
empirical evaluation. Volatile bandit [5] extends the mortal
bandit with an update to exploration and exploitation trade
off.

Rahman and Oh [23] devised a synchronized and paral-
lel UCB2 algorithm for covering maximum variety of users
in an online setting and constructed a recommendation set
of items satisfying maximum heterogeneous users. Later
they used UCB1 for the same purpose [22]. They empiri-
cally showed that their approach works better and faster than
existing approaches like RBA [21] or IBA [16] to cover het-
erogeneous types of users with fixed size of recommended
items. Their problem is similar to ours as we are trying to
construct a limited size set incorporating elements which
belongs to maximum number of different sets in a collec-
tion of sets as our work treats each incoming user as a set
and generate an online hitting set of size k as a recommen-
dation set. However, they introduce reward bias to the first
item chosen by a user which can result in failure of covering
the minority user-types. This is discussed with illustrative
examples in the next section.

Apart from these, most recent graph based recommen-
dation system has been proposed by [17] where authors
used the concept of entropy and the linked items in the
graph on their attempt to find recommendations that are
both novel and relevant. Nevertheless, they mention that
their proposed system does come with its weaknesses; the
variance in the relevance of recommendations is high due
to the use of items with high entropy as novel items. Unlike
a defined trade off between exploration and exploitation of
items, there exists a degree of unexpectedness with irrele-
vant recommendations in their approach that rise from the
randomness and risk-taking by their entropy based method.
Also, it is difficult to explain specifically why the recom-
mendations were given aside from providing related items
from the user profile. Their approach is offline approach as
they need the entire user vector to search for the items to
recommend. Also, they were not concerned with the issue
of user coverage.

5 Preliminary approach: reward bias for bandits

Algorithm 1 shows our past approach we used in [22] for
introducing reward bias to shrink the search space for pos-
sible candidate items to generate a recommendation set.
According to this method, we initialize k number of ban-
dits UCB11(n), ...UCB1k(n) to construct a set of k items

1984 M. Rahman, J.C. Oh

where bandit i gets priority on selecting an item over bandit
i+1. Similar to [16], once an item gets selected by a preced-
ing bandit, it becomes unavailable to any later bandits (ref
line 6 and 7 of the algorithm). After the recommendation
set St is created this way, it is compared with a random user
vector Xt picked in time t (in line 9–11). The novelty of our
approach is in the rewarding scheme for the bandits (shown
in line 12, 13). If the recommendation set contains more
than one item preferred by the user, the first bandit respon-
sible for picking the preferred item gets a relatively much
higher reward as Fit for that item than any other bandits
who picked other items of that user’s preference. We set that
higher reward C to be equal to the accumulated reward of
all bandits who picked a preferred item for that user in that
recommendation set. In this way, we strengthen the aver-
age reward for the bandit who picked the first item the user
preferred. This creates a bias towards the first item a user
prefers and helps recommending users of same user type
with one preferred item; by finding one representative item
for each user-type, we can maximally utilize the recommen-
dation of vector size k. However, this approach only allows
the first item to be chosen in the user preference as the rep-
resentative item for a user type. We discuss this shortcoming
in the next section.

5.1 Shortcomings of the reward bias

One problem with our past approach is that the unequal
rewarding scheme still can exclude many user types with

smaller populations (we refer them as ‘minority user-
types.’) The basic idea behind our past approach [22]
follows Probability Ranking Principle (PRP) [24] which
allows to rank items in decreasing order of relevance prob-
ability without considering the correlations between them
as in [16]. But unlike [16], unequal rewarding for ban-
dits on selecting an item makes the highly rewarded bandit
choose a representative item covering all other items that
are correlated to it. Focus of this approach is to reduces
the chance of selecting more than one item preferred by
the same user type, thereby wasting the precious limit of
total number of items to be recommended, k. The idea is
that, we want to make it more effective in accommodating
a diverse user-types by representing those minority users
who have at least one of their preferred item overlapped
with the majority users; but due to the PRP principle, no
bandit could ever select that overlapping item which could
cover both the user-types. This problem is illustrated with
an example. Let there be a total of 100 users in the sys-
tem, each of them is represented by a user vector of size 10
(expressing their items of choice out of 10 available items).
Let’s also assume that we can only recommend 2 items out
of 10. I.e., k = 2 and n = 10. Say, there are 3 types of
users:

– user-type1: prefer item1, item3, item5, item7 and item9
together

– user-type2: prefer item2, item4, item6, item8 and item10
together

– user-type3: prefer item4, item6, item8 and item10
together

UCB1 ensures that an item is recommended enough number
of times to be reasonably confident about their chance of
getting rewarded. Now according to our scheme:

– For selecting item1, bandit1 will be rewarded with at
most a payoff of 2 (accumulated from items 1,3 or 1,5
or 1,7 or 1,9) provided that 2nd bandit picked either
items 3 or 5 or 7 or 9 and get a reward of 1.

– According to the same mechanism, bandit2 will be
rewarded more than others for picking item2.

– This may result in a recommendation set with item1 and
item2. This causes dominance of user-types 1 and 2,
depriving user-type 3, if the majority of the population
are of user-types 1 and 2.

– On the other hand, a closer look into these 3 user-types
can reveal that, if we could reward the 2nd bandit for
picking item4 instead of item2, it could cover both the
user-type2 and user-type3.

According to UCB1 policy, the average reward for a ban-
dit picking item2 will be decreased if more of the incoming
users are of user type-3 and eventually average reward of
a bandit selecting item4 will beat that of selecting item2.

Graph bandit for diverse user coverage in online recommendation 1985

But that will not happen until user-type3 data out num-
bers user-type2, which may take a long trial. Recall this
is an online learning problem. The limitation of choosing
only the first item to be the representative for a user-type
reduces the effectiveness of the algorithm, in particular in
online situation. We need to be able to change the represen-
tative items dynamically as needed. Figure 2 illustrates this
situation.

6 Proposed method: graph based UCB1 bandits

In this section we discuss the mechanism we devise to
modify the update policy and selection policy of UCB1
bandit to find the solution to our problem using graph based
bandits. To handle the partial observability of streaming
sets, our work leverages the relationship between elements
where each element is considered as a predefined node of a
dynamic graph.

Before any call for Update Policy, our algorithm will
select an unselected arm from all the available arms uni-
formly random. Algorithm 2 shows the overview of both
the selection and update of arms. According to this algo-
rithm, k number of bandits are responsible for selecting k

non identical elements for our hitting set as illustrated in
Fig. 1.

6.1 Update policy for graph based bandits

As we encounter the issues mentioned in the previous
section with our past approach [22], we realized that when
we increase the reward of a bandit for picking the first item
preferred by a user-type, we also need to make sure there
is a discount on that reward if that item is not sufficient
to address the satisfaction of other user-types. This inter-
user-type discount factor is not trivial to compute because
this requires remembering history. In our present work,

we introduced the Relevance relationship between items,
which remembers history of relationships among items in a
computationally efficient way:

Definition 4 Relevance between items in the recommen-
dation set is denoted by Rel(i, j). Rel(i, j) = 1 if items
i and item j are found in the same user vector. Otherwise
Rel(i, j) = 0

This Relevance is denoted as edges between items in our
graph based method and it impacts our rewarding scheme
for bandits responsible for picking the corresponding items
in the following way:

Definition 5 Reward for a bandit to select an item i where
i gets the first click from a user:
Rwd(i) = 1 + 1

1+|N |�j∈{N\i}Rel(i, j) where N is the set
of all items in the recommendation set

This term has been used as node weights in our proposed
graph based algorithm where each node represents an item.
This scheme is used to reduce the importance of an item if
it appears together with other items from the same user-type
historically and hence implicitly facilitate the selection of
an item preferred by minority user-types. The reward func-
tion of a bandit who picks an item selected by the user is a
logarithmic function of the weight of the node representing
that item in the graph.

6.1.1 Construction of relevance item graph

To keep track of relations among the items seen and recom-
mended so far in the online environment, we need to build
and update a relevant item graph each time the system sees
a user and a recommendation is made. We construct the
relevance item graph in the following way:

– At the beginning, there are n number of isolated nodes
representing the total number of items to choose from.

– Each node has a weight associated with it which denotes
the relevance of the item in the graph. Initially all nodes
have an identical weight of 0

– Each time a random user is shown a set of k items by
the recommendation system. This is a simulation of an
online environment.

– If the user selects (i.e., likes) more than one of these
recommended items then we draw a directed edge from
the node, which stands for the first choice of items to
the other items (nodes) chosen by the same user. For
example, if a user selects item1, item3, and item5. There
will be directed edges from item1 to item3 and from
item1 to item5.

Algorithm 3 shows how the graph is evolving dynamically.

1986 M. Rahman, J.C. Oh

6.1.2 Assignment of node weight

As we construct the graph dynamically and each user data
is encountered in an online fashion, weights of the nodes
get adjusted in the following manner- if the user chooses
one or more items from the recommendation set: the node
representing the first choice of the user gets an increment
of weight by 1 + 1

C
where C is the number of total items

in the recommendation set picked by that user according to
Definition 4.

This technique assigns less weight to each node as more
items are selected by the user at a time. Idea behind this
is, if more items in our recommendation system is chosen
together with an item a user first picks, then that item is not
a good representation of the specific user-type as opposed
to an item which is uniquely selected by the user. Other
items selected by the same user instance (but are not her
first pick), will have an increment by 1 in their respective
weights.

This weighting scheme also ensures that, if only one
item from the recommendation set is selected by that user,
it gets the maximum weight of 1 + 1

1 = 2 as that single
item is potentially single-handily covering that user-type. If

the user selects none of the items recommended, then each
node in the recommendation set will have an increment of
0 in its weight. Figure 3 shows how this weighting scheme
alleviates the issue related to our past approach and bet-
ter handles the overlapping items chosen by different user
types.

6.1.3 Discounting factor on correlation

As we select random sample of users over a period of time
for real simulation, we scale down the importance of older
correlations as opposed to the newer ones after every τ

time steps. We keep τ to be a fixed period of time which
we call an “epoch.” Within an epoch all items in the rec-
ommendation set that appears together and has a match
with the sampled user instances, is given same discount.
Node weights increase between epochs as we tend to give
more importance to relations between items coming from
the recent samples. As we are sampling a sufficient amount
of user instances in uniform random manner, it ensures our
algorithm to retain the popular items in the recommendation
set while facilitating diverse user instances according to our
novel rewarding mechanism. Algorithm 4 is developed on
this discounted reward for bandits.

6.1.4 Rewarding the corresponding bandit

We update the rewards of the corresponding bandits who
picked the items in the recommendation set after each
iteration, so that bandits gets incentives to pick the appro-
priate items to cover different user-types. The bandits who
are responsible for picking the corresponding items in the
recommendation system gets rewarded proportional to the
weight of the node representing that item in the graph. This
way, over the iterations, edges connect the nodes and their
associated weights are accumulated. Bigger the log differ-
ence among the weights of different items, better the bandit
selects the more rewarding item among them.

Graph bandit for diverse user coverage in online recommendation 1987

6.2 Selection policy for graph based bandits

In previous sections we mainly showed how we modify the
reward update policy for graph based bandits. This section
discusses how we further modify the update policy by anno-
tating the arms and incorporate new selection policy of
UCB1 bandit leveraging that annotation to find the solution
to our k-Hitting set problem which can result in a bet-
ter coverage when used in a Recommendation System. We
introduce annotation of arms in the update policy and com-
pliment this upgrade with a novel selection policy for graph
based UCB1 bandits.

6.2.1 Annotation of arms states

As described in our Online k-Hitting Set Problem, each ele-
ment in U is considered as an arm in our bandit algorithm
and hence a node in our graph. We further annotate these
Arms (nodes) to be in either of the following two states:

Definition 6 An arm is active for a time step if it is cur-
rently selected by our bandit algorithm. Such an arm (node)
have the most outgoing edges in our graph.

At the beginning, all arms are active because each of
them are equally likely to be selected.

Definition 7 An arm is dormant if it is selected by the ban-
dit but found to be a member of a number of sets for which
an active arm is already selected by another bandit at the
same time. They are the low rewarding neighbor of an active
node in the graph.

These arms are dormant in a sense that they equally
qualify to represent the sets they are member of.

Arms selected by bandits with no match in the incom-
ing set receive a reward of 0 but stay active. Because those
arms clearly indicate its failure to cover that specific incom-
ing set at a certain iteration, but our algorithm does not rule
out its potential for covering other incoming sets from the
collection.

Algorithm 5 shows a complete Graph Based UCB1
update policy for bandits with this annotation of Arms.

6.2.2 State transitions of arms

Transition of an arm from one state to the other occurs in
the following situations:

– An arm gradually becomes dormant from active with its
repeated failure to be the first element matched with the
incoming set

– An arm gradually becomes active from dormant if it
frequently matches with the first element from the
incoming sets

Transition of an arm from the dormant state to an active
state potentially results in covering more incoming sets. A
dormant arm can become active with the update policy as
well as the our adaptive selection policy.

We adopted an Adaptive Simulated Annealing [4] tech-
nique for the transition of an arm from one state to the other
because of the following reason where the change of state
of an arm is denoted by α,

– A positive value for α indicates an improvised solution
where a previously dormant arm is likely to achieve
more reward than the current active arm. This value is

1988 M. Rahman, J.C. Oh

Fig. 2 Limitation of Non Graph
Based method where T i labels
the 2 item recommendation set
at ith time step coming from 2
bandits b1 and b2 and ui

denotes the user vector it is
recommended to

also positive for an arm which is selected by the ban-
dits for our hitting set but does not find a match in the
incoming set.

– A negative value for α shows a downward in solution
quality where previously active arm becomes dormant
in the current iteration.

– A value of 0 for α denotes the similar quality for solu-
tion, for which a state transition does not promise any
improvement.

We use the direction of the change in α to modify our arm
selection policy of UCB1. We assign an annealing param-
eter r initialized with 0 for each arm of every bandit. We
update the counter in the following manner:

– If a dormant arm from the previous iteration becomes
active in current iteration, then r is set to 0.

– If (1) an active arm from the previous iteration becomes
dormant in current iteration, or (2) an dormant arm
selected by the bandit fails to get reward in current iter-
ation and goes back to active state then r is incremented
by one.

– If an arm stays in the same state then the value of r will
be unchanged.

The relationship between α and the counter r is the following:

rn =
⎧⎨
⎩
0, if α > 0
rn−1 + 1, if α < 0
rn−1, if α = 0

where rn denotes the r value of a specific arm of a bandit at
current iteration n.

While selecting an arm for each iteration, every bandit
needs to update the value of r . If an arm is found to be in
dormant state, UCB value for that arm is smoothed by the
parameter θ in following manner:

θ = 1 + log(1 + rn) (1)

Therefore, UCB value for every dormant arm i for a bandit
is:

xi + (1 − exp−1/θ)

√
2 log(f)

fi

(2)

By setting r = 0 for an arm which becomes active from a
dormant state, we keep the scaling factor in our algorithm
same as UCB1 algorithm. This gives our algorithm enough

Fig. 3 Emergence of item 4
with increasing weight as a
potential replacement of item 2
in the graph based method to
accommodate user type 3 as in
the illustrative example
mentioned in Fig. 2

Graph bandit for diverse user coverage in online recommendation 1989

opportunity to balance between exploration and exploita-
tion. On the other hand, by increasing the value of r for a
previously active arm which transformed as dormant in cur-
rent iteration, we scale down the UCB value of the arms
selected by the subsequent bandits by (1 − exp−1/θ). But
these arms can be reset to active in case it was not found in
certain incoming sets. This way, we give the dormant arm
ample scope to be active.

As a dormant arm with a reward update of 0 gets back
to active state, our algorithm needs to distinguish this tran-
sition from the transition where a dormant arm becomes
active by getting selected by the bandits for its high UCB
value. In former, we increment the counter r associated with
that arm, in the later, we reset the counter to 0 which helps us
leverage the value of r to adjust the exploration-exploitation
trade-off appropriately.

Our modified arms selection policy is shown in
Algorithm 6.

7 Analysis of our approach

Unlike the classic UCB1, which assumes all n items are
independent, for our case, there are dependency between
elements as they appear together in the same set and equally
qualify to represent that set. Therefore, we propose the
above modification in the selection policy for UCB1. This
way our algorithm achieves the coverage of as many unique
set element possible in our hitting set. As we introduce the
bias in the rewarding scheme introduced by graph based
bandit to resolve the dependency between elements, our
update policy always emphasizes more on selecting an

element for the hitting set which matches with the first ele-
ment of the incoming set. Our selection policy balances this
bias by giving dormant arms (which is not the first match) a
fair chance to be active and represent more sets to which it
belongs.

For example, let there be only one element to select from
two elements: i, j ∈ U to cover maximum number of the
sets in a collection and both of them have achieved same
average reward (xi and xj are the same) after some random
number of trials. Now, if element i has been tried more often
than element j , then fi > fj with same f as a numerator.

Then
√

2 log(f)
fi

<
√

2 log(f)
fj

. So confidence bound shrinks

for i more than j . Again, this bound grows if f gets higher.
This confidence on element i does not take into account any
correlation between i and j . But once i and j are found
together in certain number of sets, then one of them needs
to be selected for our hitting set and that element becomes a
candidate arm and hence become “active” to exploit.

Let i be the active and j be the dormant arm found in
certain time step. It is possible that arm j has not been tried
enough because i was always the first match and j was a
subsequent match in the incoming sets. So update policy has
always been biased towards i to represent the sets both i

and j belong. But selecting j could cover an incoming set
for which i is not a member. So selecting i more times may
result in poor online performance. Our modified selection
policy introduces a scaling factor to this confidence term in
UCB1 so that all candidate arms for an online hitting set get
equal opportunity to actively represent the sets they belong
and this way a set of k elements is constructed.

Provided that our algorithm has tried enough of each ele-
ment to be reasonably confident, it rules out the chance that
a selected element would be sub-optimal or inferior in terms
of achieving reward. While we would like to include this
apparently superior arm (element), we have to make sure
that the other arms (elements) are sampled enough to be
reasonably confident that they are indeed inferior by testing
their potential under a scaled down UCB value.

As for the complexity of the algorithm, [21] shows that
lower bound of the performance of RBA can be measured
by: (1 − 1/e)OPT − O(k(R(T)) where OPT denotes
the optimal performance scaled from the offline greedy
approach [14], k is the number of bandits, R(T) is the regret
for that specific type of Bandits. Later for IBA [16], it is
proved that for UCB1, this bound is (1 − 1/e)OPT −
O(kNlog(T)) where N is the number of arms. For our
case, as the number of effective arms are subset of nodes in
the graph of N nodes, the regret can be reduced more than
O(kNlog(T)), hence the lower bound of performance gets
higher.

Pandey et al. [18] addressed this dependency between
arms by using MDP to set policy to generate cluster of

1990 M. Rahman, J.C. Oh

dependent arms and then choose an arm from that clus-
ter. But their technique is computationally expensive. Graph
based bandit attempts to resolve the dependencies among
items by selecting a representative arm to represent such
a cluster by introducing a bias in the reward of that arm
based on its frequency of dependency on other arms. But
the modification of update policy was not sufficient for bet-
ter coverage, therefore, in this work we augment a novel
selection policy with it.

8 Empirical evaluation

In this section first we show the performance improvement
by our proposed graph based reward update policy over
the existing non graph based methods. Then we show how
incorporating our proposed selection policy facilitates the
coverage and diversity of recommendation sets.

8.1 Size of recommendation set

We used publicly available Jester dataset [11] and Movie-
lens1000 [12] data set for our experiments. Jester Project
has a small dataset is a collection of user ratings on jokes
where the range of rating runs from −1.0 (not funny at all)
to 10.0 (very funny). It consist of more than 17000 users
rating on 10 jokes (which most users have rated). The real
valued ratings has been converted to binary (relevant or not)
by using a threshold rule of exceeding θ which is set to 3.5
in our experiment. In Figs. 4 and 5, we show our results
for k = 3 and k = 5 as we recommend 3 or 5 items from
available 10.

From Figs. 4 and 5 it is found that for k = 3 all the meth-
ods performs lower than while k = 5 on an average. Which
is expected, as recommending more items have the potential

to cover more users. In fact, for k = 5 our graph bandits out-
performs RBA and in long run performs competitive with
other methods. But 5 out of 10 was too optimistic a range for
choices so we experimented next with Movielens dataset.

8.2 Variation of user choices

Movielens data set consists of 943 users rating on 1682
movies. The real valued ratings has been converted to binary
(relevant or not) by using a threshold θ as rating ranges
between 1 to 5. We show our result for θ = 2 and θ =
4 respectively in Figs. 6 and 7. Our recommendation set
selects k = 10 movies each time for a random user out of
available n = 1682 movies. This makes our method run
to solve for more than a thousand armed bandit problem -
which, to the best of our knowledge has never been tried
before.

From the experiments with Movielens dataset, it can be
observed that, on an average, our graph based bandit outper-
forms all other methods. For a high value of θ , performance
of graph based bandit is much higher than our previous non
graph based approach. In fact, non graph based approach is
the worst one in terms of performance as our cutoff value
θ rises. This is because our binary value for users’ choice
is based on a high cutoff value for θ and accordingly more
diverse users’ choices are identified which is better handled
by the graph based approach.

8.3 Benchmarking with offline greedy coverage

After incorporating the proposed selection policy for graph
bandits, we further compare our method with other online
methods as well as greedy offilne method in terms of its user
coverage. In this set of experiments, we show the result of
Movielens dataset with θ = 2 but other threshold value for

Fig. 4 Performance comparison
of recommending 3 jokes out of
10 from Jester dataset, Y-axis
showing x1000 times iteration

Graph bandit for diverse user coverage in online recommendation 1991

Fig. 5 Performance comparison
of recommending 5 jokes out of
10 from Jester dataset

Fig. 6 Performance comparison
of recommending 10 movies out
of 1682 in Movielens dataset for
low cutoff value θ

Fig. 7 Performance comparison
of recommending 10 movies out
of 1682 in Movielens dataset for
high cutoff value θ

1992 M. Rahman, J.C. Oh

Fig. 8 Normalized user
coverage of online algorithms
compared to offline baseline for
Movielens data set where θ = 2

θ also gives similar results. We evaluate the average perfor-
mance of each item in the recommendation set after 10K,
20K, 30K, 40K and 50K iteration over almost 1K static user
vectors. This gives the online algorithms ample observation
of total population to be benchmarked with offline greedy
coverage shown as the upper bound in Fig. 8 normalized by
the total population. According to this result, it is found that
our method outperforms other online algorithms in terms of
user coverage.

8.4 Diversity of recommendation set

We compared the effectiveness of recommendation set after
each 10 K iteration upto 50 K to observe its performance on
capturing diversity. We used the popular Intra-List Distance
(ILD) [30] metric where pairwise distance between items in
our recommendation set is defined by dist (i, j) = number

of user vectors (sets) containing item i but not j . The result
is shown in Fig. 9. As observed by this experiment, diverse
user types are covered more by our method than others. Our
method performs better than offline coverage based greedy
method which maximizes the number of users covered but
not essentially captures diversity.

8.5 Reduction of active arms

We incorporated our novel Selection Policy with the Update
Policy and experiment furtherwithMovielens data set for θ =
2 and found that the similar coverage of different types of
users found within a shorter amount of iteration if we incor-
porate our selection strategy with the updated rewarding
mechanism for the graph based bandit. Figure 10 shows the
average coverage over 50 K iterations. It is found that, with
our novel selection policy, the coverage of same fraction

Fig. 9 Normalized user
diversity captured by online
algorithms compared to greedy
coverage for Movielens data set
where θ = 2

Graph bandit for diverse user coverage in online recommendation 1993

Fig. 10 User coverage over the
x1000 iterations: with only our
Graph Based Update Policy
(labeled as Graph Based) and
our Graph Based Update Policy
augmented with our Graph
Based Selection Policy (labeled
as Graph Based with Selection)
with Movielens data where
θ = 2

of overall user is achievable within 10K iteration, whereas
without this modification the graph based bandit algorithm
takes around 20K to attain the same outcome. As active
arms are identified faster, our algorithm produce more effi-
cient and stable set. Even after introducing update policy for
the graph based bandit, it gives a low quality solution for a
longer time, unless we incorporate the novel selection policy
which leads to a better solution quality faster. The average
active arm counts over the iteration drops faster when selec-
tion policy compliment our update policy for graph bandits
as shown in Fig. 11.

9 Conclusion

Modern web-based applications require the ability to extract
important information from the vast amount of streaming
data. Big-data with its volume and velocity, challenges us to
design systems that can extract a small and limited amount
of critical information effectively and efficiently out of its
dynamically changing patterns. Online active learning is
an emerging area of research with special interest in Big
Data for its applicability to real world challenges such as,
developing a recommendation system.

Fig. 11 Average count of active
arms drops faster after
incorporating our novel
selection policy (labeled as
Graph Based with Selection) for
arms with Graph based reward
update (labeled as Graph Based)
for Movielens data where θ = 2

1994 M. Rahman, J.C. Oh

Reinforcement learning based recommendation systems
often need to predict preferences of individuals in terms of
the special interest group they belong to. The vast diversity
of users’ preference makes it difficult to find a small number
of representative items to denote these groups. Our inten-
tion is to capture the common interests of these diverse users
with limited number of recommended items so that our rec-
ommendation set can cover maximum users. We understand
that in an online learning environment, most Recommenda-
tion Systems require to learn quickly from choices of the
previous users to suggest items to a new user with little or no
prior knowledge about the distribution of items among the
user population. Hence learning the users’ choice online and
building a small set to accommodate their diverse choices is
a hard problem.

Unlike personalized recommendation systems [25]
which often use collaborative filtering [10, 11], content
based filtering [20] or a hybrid of these two [6], we develop
a recommendation system that satisfies a diverse number
of user types. An existing paper argued that dependency
among items can be ruled out by ignoring the correlation
gap [1, 16] . But we show that, the correlation between items
is an important criteria to identify diversity in terms of user
types. We proposed a effective graph based bandit reward-
ing mechanism, which aimed to incorporate this diversity
and our empirical evaluation showed that it outperformed
existing techniques for real data sets in terms of cover-
ing a large number of user types introducing no additional
complexity. In future, we want to extend this solution to a
distributed recommendation system to facilitate a scalable
and decentralized decision making for Big Data.

We define this need for “fast coverage of diverse user
choices with a limited number of items to suggest” as
an Online k-Hitting Set Problem and propose a graph-
based multi armed bandit algorithm to learn the correlations
among the items. Our method effectively reduces the num-
ber of items to be considered for satisfying the variety of
users as they have some common items of preference. As
a consequence, our approach reduces computational com-
plexity of the problem and produce a fast solution with a
considerably diverse coverage.

References

5. Bnaya Z, Puzis R, Stern R, Felner A (2013) Volatile multi-armed
bandits for guaranteed targeted social crawling. In: Late-breaking
developments in the field of artificial intelligence. Bellevue,
p 2013

6. Burke R (2007) The adaptive web. In: Brusilovsky P, Kobsa
A, Nejdl W (eds) Hybrid web recommender systems. Springer,
Berlin, pp 377–408

7. Chakrabarti D, Kumar R, Radlinski F, Upfal E (2008) Mor-
tal multi-armed bandits. In: Advances in neural information
processing systems 21, proceedings of the 22nd annual con-
ference on neural information processing systems. Vancouver,
pp 273–280

8. Cohen R, Katzir L (2008) The generalized maximum coverage
problem. Inf Process Lett 108(1):15–22

9. Diriye A, White R, Buscher G, Dumais S (2012) Leaving so
soon?: understanding and predicting web search abandonment
rationales. In: Proceedings of the 21st ACM international con-
ference on information and knowledge management CIKM ’12.
ACM, New York, pp 1025–1034

10. Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative fil-
tering recommender systems. Foundation and Trends in Human
Computer Interaction 4(2):81–173

11. Goldberg K, Roeder T, Gupta D, Perkins C (2001) Eigentaste: a
constant time collaborative filtering algorithm. Inf Retr 4(2):133–
151

12. Harper FM, Konstan JA (2015) The movielens datasets: history
and context. ACM Trans on Interactactive Intell Syst 5(4):19:1–
19:19

13. Hochba DS (1997) Approximation algorithms for np-hard prob-
lems. ACM SIGACT News 28(2):40–52

14. Hochbaum DS, Pathria A (1998) Analysis of the greedy approach
in problems of maximum k-coverage. Nav Res Logista (NRL)
45(6):615–627

15. Joachims T (2002) Optimizing search engines using clickthrough
data. In: Proceedings of the eighth ACM SIGKDD international
conference on knowledge discovery and data mining KDD ’02.
ACM, New York, pp 133–142

16. Kohli P, Salek M, Stoddard G (2013) A fast bandit algorithm for
recommendations to users with heterogeneous tastes. In: Proceed-
ings of the 27th AAAI conference on artificial intelligence AAAI
’13. AAAI Press, pp 1135–1141

17. Lee K, Lee K (2015) Escaping your comfort zone: a graph-based
recommender system for finding novel recommendations among
relevant items. Expert Syst Appl 42(10):4851–4858

18. Pandey S, Chakrabarti D, Agarwal D (2007) Multi-armed bandit
problems with dependent arms. In: Proceedings of the 24th inter-
national conference on machine learning ICML ’07. ACM, New
York, pp 721–728

19. Park W, Oh JC, Blowers MK, Wolf MB (2006) An open-set
speaker identification system using genetic learning classifier sys-
tem. In: Proceedings of the 8th annual conference on genetic
and evolutionary computation GECCO ’06. ACM, New York, pp
1597–1598

20. Pazzani MJ, Billsus D (2007) Content-based recommendation
systems. In: The adaptive web: method and strategies of web
personalization. Vol 4321 of lecture notes in computer science.
Springer, pp 325–341

21. Radlinski F, Kleinberg R, Joachims T (2008) Learning diverse
rankings with multi-armed bandits. In: Proceedings of the 25th
international conference on machine learning ICML ’08. ACM,
New York, pp 784–791

22. Rahman M, Oh JC (2015) Fast online learning to recommend a
diverse set from big data. In: The 28th international conference on
industrial, engineering and other application of applied intelligent
systems IEA/AIE ’15. Springer, Switzerland, pp 361–370

1. Agrawal S (2011) Optimization under uncertainty: bounding the
correlation gap. Ph D Thesis. Stanford University

2. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of
the multiarmed bandit problem. Mach Learn 47(2-3):235–256

3. Ausiello G, Boria N, Giannakos A, Lucarelli G, Paschos VT
(2011) Online maximum k-coverage. In: International symposium
on fundamentals of computation theory. Springer, pp 181–192

4. Azizi N, Zolfaghari S (2004) Adaptive temperature control for
simulated annealing: a comparative study. Comput Oper Res
31(14):2439–2451

Graph bandit for diverse user coverage in online recommendation 1995

Mahmuda Rahman is a PhD
Candidate in Computer Science
Department of Syracuse Uni-
versity. She is currently work-
ing in the Distributed Multi
Agent Lab. Her research inter-
est includes Machine Learn-
ing and Game theory. She is
also interested in Big Data,
Social Networks, Data Min-
ing and Recommendation Sys-
tems. Currently she is an
Assistant Professor in the Uni-
versity of Dhaka and on study
leave. She did research intern-
ships with eBay, Huawei and

IUPUI. She is an external reviewer/sub reviewer of IEA/AIE since
2014.

Jae C. Oh Ph.D. is a faculty
member in the Computer
Science program in the
Department of Electrical
Engineering and Computer
Science at Syracuse Univer-
sity. Oh’s research interests
include understanding inter-
action dynamics among
autonomous agents and study-
ing problems that arise among
distributed entities such as
robots and software processes.
Oh’s research also involves in
Big-Data analysis and visu-
alizations, social networks,

recommendation systems, multi-robot coordination, and text and
data mining using various machine-learning algorithms. Jae Oh’s
projects have been funded by various funding agencies including the
US National Science Foundation, US Air Force Office of Scientific
Research, the State of New York, IBM, and several private companies.
Jae Oh chaired or co-chaired several conferences and he is a member
of technical program committee for numerous conferences. He is an
Associate Editor for International Journal of Computer Information
Systems and Industrial Management Applications since 2013. Jae Oh
has earned a Ph.D. degree in Computer Science from the University
of Pittsburgh, Pittsburgh, PA.

23. Rahman M, Oh JC (2015) Parallel and synchronized UCB2
for online recommendation systems. In: IEEE/WIC/ACM inter-
national conference on web intelligence and intelligent agent
technology, WI-IAT 2015, vol I. Singapore, pp 413–416

24. Robertson SE (1997) In: Sparck Jones K, Willett P (eds) Readings
in information retrieval. Morgan Kaufmann Publishers Inc., San
Francisco, pp 281–286

25. Shani G, Gunawardana A (2011) Evaluating recommendation sys-
tems. In: Recommender systems handbook. Springer, pp 257–297

26. Sviridenko M (2004) A note on maximizing a submodular set
function subject to a knapsack constraint. Oper Res Lett 32(1):41–43

27. Tekin C, Liu M (2012) Online learning of rested and restless
bandits. IEEE Trans Inf Theory 58(8):5588–5611

28. Vermorel J, Mohri M (2005) Multi-armed bandit algorithms
and empirical evaluation. In: Proceedings of the 16th european
conference on machine learning ECML ’05. Springer, Berlin,
pp 437–448

29. Vinterbo SA, Øhrn A (2000) Minimal approximate hitting sets and
rule templates. Int J Approx Reason 25:123–143

30. Zhang M, Hurley N (2008) Avoiding monotony: improving the
diversity of recommendation lists. In: Proceedings of the 2008
ACM conference on recommender systems RecSys ’08. ACM,
New York, pp 123–130

	Graph bandit for diverse user coverage in online recommendation
	Abstract
	Introduction
	Coverage of diversity as online k-hitting set problem*.2pt
	Background
	Related work
	Preliminary approach: reward bias for bandits
	Shortcomings of the reward bias

	Proposed method: graph based UCB1 bandits
	Update policy for graph based bandits
	Construction of relevance item graph
	Assignment of node weight
	Discounting factor on correlation
	Rewarding the corresponding bandit

	Selection policy for graph based bandits
	Annotation of arms states
	State transitions of arms

	Analysis of our approach
	Empirical evaluation
	Size of recommendation set
	Variation of user choices
	Benchmarking with offline greedy coverage
	Diversity of recommendation set
	Reduction of active arms

	Conclusion
	References

