
Appl Intell (2018) 48:357–380
DOI 10.1007/s10489-017-0972-6

A k-means binarization framework applied
to multidimensional knapsack problem

José Garcı́a1,2 · Broderick Crawford2 · Ricardo Soto2 · Carlos Castro3 ·
Fernando Paredes4

Published online: 11 July 2017
© Springer Science+Business Media New York 2017

Abstract The multidimensional knapsack problem (MKP)
is one of the widely known integer programming prob-
lems. The MKP has received significant attention from
the operational research community for its large number
of applications. Solving this NP-hard problem remains a
very interesting challenge, especially when the number of
constraints increases. In this paper we present a k-means
transition ranking (KMTR) framework to solve the MKP.
This framework has the property to binarize continuous
population-based metaheuristics using a data mining k-
means technique. In particular we binarize a Cuckoo Search
and Black Hole metaheuristics. These techniques were cho-
sen by the difference between their iteration mechanisms.
We provide necessary experiments to investigate the role of
key ingredients of the framework. Finally to demonstrate the
efficiency of our proposal, MKP benchmark instances of the

� José Garcı́a
joseantonio.garcia@telefonica.com

Broderick Crawford
broderick.crawford@pucv.cl

Ricardo Soto
ricardo.soto@pucv.cl

1 Telefónica I+D, Av. Manuel Montt 1404, Third Floor,
Providencia, Santiago, Chile

2 Pontificia Universidad Católica de Valparaı́so, 2362807
Valparaı́so, Chile

3 Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile

4 Escuela de Ingenierı́a Industrial, Universidad Diego Portales,
Santiago, Chile

literature show that KMTR competes with the state-of-the-
art algorithms.

Keywords Metaheuristics · Multidimensional knapsack
problem · Binarization · Data mining · k-means

1 Introduction

The knapsack problem has multiple applications in science
and engineering. For example capital budgeting and project
selection applications [47, 54, 71]. The MKP has also been
introduced to model problems like cutting stock [25], load-
ing problems [62], allocation of processors in a distributed
data processing [22], delivery in vehicles with multiple
compartments [10] and self-sufficiency problems [64].

Numerous methods have been developed to solve the
MKP. The exact methods were applied in the 80’s to
solve MKP [5, 20, 46]. They generate a variety of meth-
ods including dynamic programming, branch-and-bound,
network approach and reduction schemes. The exact meth-
ods have made possible the solution of middle size MKP
instances. The major drawback of these methods remains
the temporal complexity when dealing with large instances.
Therefore, many researchers focus on heuristic and meta-
heuristic search methods which can produce solutions of
good qualities in a reasonable amount of time. In recent
years, many bio-inspired methods, such as Genetic algo-
rithms [45], Particle Swarm Optimization (PSO) [6, 14]
Firefly algorithm [7], Ant Colony Optimization [12], and
a binary Fruitfly [70] have been proposed to solve large
instances of the MKP.

Many of these bio-inspired methods, are working in
continuous spaces and they have had to be adapted to a
binary version. Examples of these adaptations are found in

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-0972-6&domain=pdf
http://orcid.org/0000-0003-3126-8352
mailto:joseantonio.garcia@telefonica.com
mailto:broderick.crawford@pucv.cl
mailto:ricardo.soto@pucv.cl

358 J. Garcı́a et al.

Harmony Search (HS) [23], Swarm Intelligence [9], Wind
driven optimization [83],Differential Evolution Algorithm
(DE) [26, 82], PSO [33], Magnetic Optimization Algorithm
(MOA) [68], and Gravitational Search Algorithm (GSA)
[58], Swarm Intelligence [53], and Black Hole [21].

In many of these adaptations, the transfer functions
are used as a general mechanism to perform binarization.
Examples of using transfer functions are found in the fire-
fly algorithm [50, 57], PSO [33, 35], Artificial Bee Colony
[16], Cuckoo search [65], Teach learning [1]. In [80] a
binary artificial algae algorithm (BAAA) solves medium
and large MKP with very good results. This algorithm in
addition to transfer function, used an interesting heuristics
for solution repair, and elitist local search to improve the
solutions. In [43] the authors propose a binary differencial
search (BDS) algorithm also with good results to solve the
knapsack problem based in Brownian motion and a v-shape
transfer function. A hybrid harmony search-based algo-
rithm (HHS) [78] obtained interesting results in problems of
medium size.

In this paper, a general framework is proposed to bina-
rize continuous metaheuristics. This framework is called
k-means transition ranking (KMTR) which is composed of
three operators. The main operator corresponds to k-means
transition operator. This operator performs the binarization
process and is complemented with local search and pertur-
bation operators. The main goal of this work corresponds
to evaluate our framework when dealing with an NP-hard
combinatorial optimization problem such as the MKP. To
develop the evaluation, we used two metaheuristics: Cuckoo
Search and Black Hole. These metaheuristics were cho-
sen by the difference between their iteration mechanisms.
Cuckoo uses iteration through Lévy flights while Black
Hole uses a simplified PSO mechanism. Additionally, it is
interesting to use our framework in metaheuristics that have
already solved the MKP as Cuckoo Search [24, 38] and oth-
ers like Black Hole that to our knowledge have not been
solved the MKP.

For appropriate evaluation of our framework, a method
of estimating parameters is developed. Subsequently exper-
iments were developed that shed light on the contribution of
the different operators at the end result. Finally our frame-
work was compared with recent algorithms that use transfer
functions as binarization method. For this purpose we use
different sets of tests problems from the OR-Library.1 We
compared our framework with the BAAA algorithm pub-
lished by [80], and the algorithms TR-BDS and TE-BDS
reported in [43], both algorithms are state of the art pub-
lished in 2016. The numerical results show that KMTR
achieves highly competitive results.

1OR-Library: http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the Knapsack problem. In
Section 3 other binarization works are presented. In
Section 4 we explain the k-means transition ranking frame-
work. The results of numerical experiment are presented in
Section 5. Finally we provide the conclusions of our work.

2 KnapSack problem

The multidimensional knapsack problem [72] belongs to the
class of NP-hard problems. MKP corresponds to a model
of resource allocation, whose objective is to select a subset
of objects that produce the greatest benefit considering cer-
tain capacity constraints. Each object j consumes a different
amount of resources in each dimension. Also each object
has a profit associated. Formally the MKP can be set as:

maximize
n∑

j=1

pjxj (1)

subjected to
n∑

j=1

cij xj ≤ bi , i ∈ {1, ..., m} (2)

with xj ∈ {0, 1} , j ∈ {1, ..., n} (3)

Where pj is the profit for the item j, cij corresponds to
the consumption of resources of item j in the dimension i,
and bi is the capacity constraint of each dimension i. The
representation of a solution of the problem is modelled nat-
urally in binary form where 0 in the j-th position means that
the j item is not included in the Knapsack and 1 indicates
that j is included.

3 Related work

There is a set of metaheuristic techniques that were designed
to operate in continuous spaces. Examples of these tech-
niques are Artificial Bee Colony [34], Particle Swarm
Optimization [61], Black Hole [29], Cuckoo Search [75],
Bat Algorithm [74], FireFly Algorithm [73], FruitFly [52],
Artificial Fish Swarm [42], Gravitational Search Algorithm
[58]. Moreover, in operational research, there are a lot of
problems that are combinatorial and non-polynomial type
[37]. So naturally, the idea arises of applying these contin-
uous metaheuristics to combinatorial problems which are
solved in discrete spaces. These adaptations are generally
not trivial and have given rise at different lines of research.

When a review is made in the literature of binariza-
tion techniques, two main groups appear. A first group
corresponds to general binarization frameworks. In these
frameworks there is a mechanism that allows to transform
any continuous metaheuristics in a binary one, without
altering the metaheuristics operators. In this category the

http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html

A k-means binarization framework applied to multidimensional knapsack problem 359

main frameworks used are: Transfer Functions and Angle
Modulation. The second group corresponds to binarizations
developed specifically for a metaheuristic. Within this sec-
ond group we found techniques such as Quantum Binary
and Set based approach.

Transfer functions The transfer function is the most used
binarization method. It was introduced by [33]. The transfer
function is a very cheap operator, his range provides proba-
bilities values and tries to model the transition of the particle
positions. This function is responsible for the first step of the
binarization method which corresponds to map the Rn solu-
tions in [0, 1]n solutions. Two types of functions have been
used in the literature, the S-shaped [76], and V-shaped [17].
The Second Step is to apply a binarization rule to the result
of the transfer function. Examples of binarization rules are
complement, roulette, static probability, and elitist [17].

In [35], this framework was used to optimize sizing of
Capacitor Banks in Radial Distribution Feeders. In [59],
transfer functions were used for the analysis of bulk power
systems. This approach has also been used to solve the set
covering problem using Binary Firefly Algorithm [17]. Soto
et al. [65] used Cuckoo Search Algorithm applied to the set
covering problem. To solve the unit commitment problem
Yang et al. in [76] used Firefly and PSO algorithms. The
knapsack crystosystem was approached in [50]. Network
and reliability constrained problems were solved in [11] and
the Knapsack problem was solved by Zhang et al. [80] all
using using Firefly algorithm.

Angle modulation This method uses the trigonometric
function shown in (4). This function has four parameters
which control the frequency and shift of the trigonometric
function.
gi(xj) = sin(2π(xj − ai)bi cos(2π(xj − ai)ci)) + di (4)

This method was first applied in PSO, using a set of
benchmark functions. Let a binary problem of n-dimension,
and X = (x1, x2, ...xn) a solution. We start with a four
dimensional search space. Each dimension represents a
coefficient of the (4). Then every solution (ai, bi, ci, di) is
associated to a gi trigonometric function. For each element
xj the rule (5) is applied:

bij =
{

1 if gi(xj) ≥ 0
0 otherwise

(5)

Then for each initial 4-dimension solution (ai, bi, ci, di),
we get a binary n-dimension solution (bi1, bi2, ..., bin). This
is a feasible solution of our n-binary problem. The Angle
modulate technique has been applied to network recon-
figuration problems [44] using a binary PSO method, to
multi-user detection technique [66] using a binary adaptive
evolution algorithm, and to the antenna position problem
using a angle modulate binary bat algorithm [77].

Quantum binary approach In the line of research that
involves the areas of Evolutionary Computing (EC) and
Quantum Computing, there are three categories of algo-
rithms [79]

1. Quantum evolutionary algorithms: These algorithms
focus on the application of EC algorithms in a quantum
computing environment.

2. Evolutionary-designed quantum algorithms: These
algorithms try to automate the generation of new quan-
tum algorithms using Evolutionary Algorithms.

3. Quantum-inspired evolutionary algorithms: These algo-
rithms concentrate on the generation of new EC algo-
rithms using some concepts and principles of Quantum
Computing.

In particular the Quantum Binary Approach, belongs
to Quantum-inspired evolutionary algorithms. In this sense
these algorithms adapt the concepts of q-bits and superposi-
tion to work on normal computers.

In the quantum binary approach method, each feasible
solution has a position X = (x1, x2, .., xn) and the quantum
q-bits vector Q = [Q1, Q2, ...,Qn]. Q represents the proba-
bility of xj take the value 1. For each dimension j, a random
number between [0,1] is generated and compared with Qj ,
if rand < Qj , then xj = 1, else xj = 0. The upgrade
mechanism of Q vector is specific to each metaheuristic.

The Quantum Swarm optimization algorithm has been
applied to a combinatorial optimization in [69], coopera-
tive approach in [81], knapsack problem in [63], and power
quality monitor in [31]. The Quantum Differential Evolu-
tion algorithm was applied to the knapsack problem in [30],
combinatorial problems [3], and image threshold methods in
[18]. Using Cuckoo search metaheuristic a Quantum algo-
rithm was applied to the knapsack problem [38], and bin
packing problem [40]. A Quantum Ant Colony Optimiza-
tion was applied to image threshold in [18]. Using Harmony
Search in [39], and Monkey algorithm in [84], quantum
binarizations were applied to the knapsack problem.

The general binarization frameworks have the difficulty
of producing Spacial Disconnect [41]. The Spacial Dis-
connect, occurs when close solutions generated by meta-
heuristics in the continuous space, are not converted into
close solutions in discrete space. Informally we can think
in a loss of framework continuity. This phenomenon of
Spacial Disconnect has the consequence that the proper-
ties of exploration and exploitation are altered and therefore
the precision and convergence of the metaheuristic worsen.
A study of how transfer functions affect exploration and
exploitation properties was developed in [60]. For Angle
Modulation the study was developed in [41].

On the other hand, specific binarization algorithms,
which modify the operators of the metaheuristic, are suscep-
tible to problems such as Hamming cliffs, loss of precision,

360 J. Garcı́a et al.

search space discretization and the curse of dimension [41].
This was studied by Pampara in [51] and for the particular
case of PSO by Chen in [13]. In the investigation of Chen,
he observed that the parameters of the Binary PSO change
the speed behavior of the original metaheuristic.

In this article, a k-means binarization framework is pro-
posed which does not modify the original metaheuristic.
The main operator of this framework, establishes a rela-
tion between the displacement of particles in the continuous
space and the transition of probability in the discrete space.
This relationship is established through the clustering of
the displacements. To each group generated by clustering a
transition probability is assigned. With this mechanism, it
is expected that the exploration and exploitation properties
will not be altered, and therefore to observe good results of
convergence and precision of the binarized algorithms in the
resolution of combinatorial problems.

4 k-means transition ranking framework

The Proposed KMTR framework has four main modules.
The first module corresponds to the initialization of the fea-
sible solutions (Section 4.1). Once the initialization of the

particles is performed, it is consulted if the detention cri-
terion is satisfied. This criterion includes a maximum of
iterations. In the case that the optimal solution is known,
this is also included as stopping criterion. Subsequently if
the criterion is not satisfied, the transition ranking opera-
tor is executed (Section 4.2). This module is responsible for
performing the iteration of solutions. Once the transitions
of the different solutions are made, we compare the result-
ing solutions with the best solution previously obtained. In
the event that a superior solution is found, this replaces the
previous one. When a replacement occurs, the new solu-
tion is subjected to a local search operator. This operator
corresponds to our third module (Section 4.4). Finally, hav-
ing met a number of iterations where there has not been a
replacement for the best solution, a perturbation operator is
used (Section 4.5). The general algorithm scheme is detailed
in Fig. 1.

4.1 Initialization and element weighting

KMTR framework uses a binarization of population-based
metaheuristics to try to find the optimum. Each of these pos-
sible solutions, is generated as follows: First we select an
item randomly. Subsequently we consulted the constraints

Fig. 1 Flowchart of general framework of k-means transition ranking algorithm

A k-means binarization framework applied to multidimensional knapsack problem 361

of our problem if there are other elements that can be incor-
porated. The list of possible elements to be incorporated
is obtained, the weight for each of these elements is cal-
culated and the best element is selected. The procedure
continues until no more elements can be incorporated. The
initialization algorithm is detailed in Fig. 2.

Several techniques were proposed in the literatures,
to calculate the weight of each element. For example
[55] introduced the pseudo-utility in the surrogate duality
approach. The pseudo-utility of each variable was given in
(6). The variable wj is the surrogate multiplier between 0
and 1 which can be viewed as shadow prices of the j-th
constraint in the linear programming(LP) relaxation of the
original MKP

δi = pi∑m
j=1wjcij

(6)

Another more intuitive measure is proposed by [36]. This
measure is focused on the average occupancy of resources.
Its equation is shown in (7).

δi =
∑m

j=1
cij

mbj

pi

(7)

Fig. 2 Flowchart of generation of a new solution

In this paper, we propose a variation of this last measure
focused on the average occupation. However this variation
considers the elements that exist in backpacks to calcu-
late the average occupancy. In each iteration depending on
the selected items in the solution the measure is calculated
again. The equation of this new measure is shown in (8).

δi =
∑m

j=1
cij

m(bj −∑
i∈S cij)

pi

(8)

4.2 k-means transition ranking operator

Consider that our metaheuristic is continuous and popula-
tion based. Due to its iterative nature, it needs to update the
position of particles at each iteration. When the metaheuris-
tic is continuous, this update is performed in R

n space. In
(9), the update position is presented in a general manner.
The xt+1 variable represents the x position of the particle
at time t+1. This position is obtained from the position x at
time t plus a � function calculated at time t+1. The function
� is proper to each metaheuristic and produces values in R

n.
For example in Cuckoo Search �(x) = α ⊕ Levy(λ)(x), in
Black Hole �(x) = rand × (xbh(t) − x(t)) and in the Fire-
fly, Bat and PSO algorithms � can be written in simplified
form as �(x) = v(x).

xt+1 = xt + �t+1(x(t)) (9)

In the k-means transition ranking operator, a model for
transitions in a discrete space is proposed. This model
is based on considering the movements generated by the
metaheuristic in each dimension for all particles. �i(x)

corresponds to the magnitude of the displacement �(x)

in the i-th position. Subsequently these displacement are
grouped using the magnitude of the displacement �i(x).
This grouping is done using the k-means technique where k
represents the number of clusters used. Finally, a generic Ptr

function given by the (10) is proposed to assign a transition
probability.

Ptr : Z/kZ → [0, 1] (10)

A transition probability through the function Ptr is
assigned to each group. Naturally, this Ptr function is mod-
elled as a cumulative probability function. For the case of
this study, we particularly use the linear function given in
(11). In this equation, N(xi) indicates the location of the
group to which �i(x) belongs. The α coefficient, corre-
sponds to the transition probability and β to the transition
separation coefficient. Both parameters are estimated in
each metaheuristic. For our particular case, N(xi) = 0 cor-
responds to elements belonging to the group that has the

362 J. Garcı́a et al.

Fig. 3 Flowchart of transition ranking operator

lowest �i values. N(xi) = 7 corresponds to the group of
elements that have the greatest �i values.

Ptr (x
i) = Ptr (N(xi)) = α + βN(xi)α (11)

The algorithm flow chart is described in Fig. 3, and an illus-
tration is shown in Fig. 4. The k-means transition ranking
operator starts calculating �i for each of the particles. This
step is specific in each metaheuristic. Subsequently the par-
ticles are grouped using k-means clustering technique and
the magnitude of �i as distance. With the group assigned
to each particle we obtain the probability of transition using
(11). Afterwards the transition of each particle is performed.
In the case of Cuckoo search the rule (13) is used to
perform the transition, where x̂i is the complement of xi .
For the Black Hole the rule (12) is used, where xi

bh is the
position of the best solution obtained after the last pertur-
bation. Finally, each solution is repaired using the repair
operator shown in Algorithm 1.

xi(t + 1) :=
{

xi
bh(t), if rand < Ptg(x

i)

xi(t), otherwise
(12)

xi(t + 1) :=
{

x̂i (t), if rand < Ptg(x
i)

xi(t), otherwise
(13)

4.3 Repair operator

In each movement performed by operators: transition rank-
ing , local search and perturbation, it is possible to generate
solutions that are infeasible. Therefore, each candidate solu-
tion must be checked and modified to meet every constraint.
This verification and subsequent repairing is performed
using the measure defined in Section 4.1 (8). The proce-
dure is shown in Algorithm 1. As input the repair operator
receives the solution Sin to repair, and the output of the
repair operator gives the repaired solution Sout . As a first
step, the repair algorithm asks whether the solution needs
to be repaired. In the case that the solution needs repair, a
weight is calculated for each element of the solution using
the measure defined in (8). The element of the solution with
the largest measure is returned and removed from the solu-
tion. This element is named smax . This process is iterated
until our solution does not require repair. The next step is to
improve the solution. The (8) is again used for obtaining the
element with the smallest measure that meets the constraints
smin and add smin to the solution. In the case of absence
of elements, empty is returned. The algorithm iterates until
there are no elements that satisfy the constraints.

4.4 Local search operator

When the algorithm KMTR finds a solution having a fit-
ness value higher than the best solution obtained until now,
KMTR makes a call to the local search operator. This algo-
rithm aims to perform a local search to improve the quality
of the solution. The main idea of the local search operator

A k-means binarization framework applied to multidimensional knapsack problem 363

is to add an element of the ones that are not in the solu-
tion, then to perform the repair of the solution using the
repair operator. Finally it is evaluated if a better solution
is obtained. To this new solution (S), another element of
the complement is added, repeating the repair and com-
parison operations. This is iterated until incorporated all
elements that were not in the initial solution. Subsequently
we consider again our initial solution (Sin), An element is
removed from it, then the solution(S) is repaired and com-
pared. In this case, it is iterated over all elements of the
solution. The pseudo-code is shown in Algorithm 2.

4.5 Perturbation operator

The k-means transition ranking operator is responsible for
performing the movements to find the optimum. However
our algorithm can get trapped in a local optimum. To exit out
of this local deep optimum, the transition ranking operator is
complemented by a perturbation operator. This perturbation
operator makes ην random deletions. Later the perturbed
solution is completed using the repair operator. The number
ην is obtained by considering the total length of the solution
and multiplying by the factor ν. This factor ν is a parame-
ter of the algorithm and must be estimated . This parameter
controls the strength of the perturbation. This perturbation
is applied to the xbest and to the list of feasible solutions.
The procedure is outlined in Algorithm 3

5 Results

For an adequate evaluation of our framework, we present
computational results of 270 instances of the OR-library
[8]. As a starting point, the methodology for obtaining the
parameters of metaheuritics and binarization is detailed.
Later the analysis of the key ingredients of our framework
is developed. Finally, comparisons were made with recently
published algorithms that use transfer functions and Quan-
tum approach as binarization techniques. To perform the
statistical analysis in this study, the non-parametric test of
wilcoxon signed-rank test and violin charts are used. The
violin chart is a combination of Box Plot and Kernel Density
Plot widely used in machine learning and data mining [4, 28,
32]. The analysis is performed by comparing the dispersion,
median and the interquartile range of the distributions.

Benchmark instances The problems were generated by
varying the number of constraints m ∈ {5, 10, 30} and the
number of elements n ∈ {100, 250, 500}. For each condition
(n, m) 30 problems were generated. Each set of 30 prob-
lems is divided into groups associated with the capabilities
bi where bi = t × ∑

j∈N aij . t ∈ {0.25, 0.5, 0.75} corre-
sponds to the tightness ratio. Each problem group used the
following cb.n.m nomenclature. Where n corresponds to the
total number of elements, and m the number of constraints.

For the execution of the instances we use a PC with win-
dows 10, Intel Core i7-4770 processor with 16GB in RAM,
and programmed in Python 2.7. The techniques used in
the binarization were Black Hole and Cuckoo search which
were named KMTR-BH and KMTR-Cuckoo respectively.

5.1 Parameter setting

As a starting point, we describe the methodology used
to perform the estimation of parameters for each of the
metaheuristics used. The parameters settings are shown
in Tables 1 and 2. The Value column indicates the final
value used by the parameter. The Range column indicates

364 J. Garcı́a et al.

Fig. 4 Mapping the continuous search space to a discrete search space

the scanned values to obtain the final setting. To per-
form the scan settings, three problems were chosen for
each of the groups cb.100.5, cb.250.5, cb.500.5, cb.100.10,
cb.250.10,cb.500.10, cb.100.30, cb.250.30,cb.500.30. In
each problem and configuration, the KMTR algorithm was
executed 10 times for each metaheuristics and combination.
Four measures were defined for the setting selection of the
algorithm.

Table 1 Setting of parameters for black hole algorithm

Parameters Description Value Range

α Transition probability 0.1 [0.08, 0.1, 0.12]

coefficient

β Transition separation 1

coefficient

ν Coefficient for the 3% [3, 4, 5]

perturbation operator

N Number of particles 20 [15, 20, 25]

G Number of transition 8 [7,8,9,10]

groups

Iteration number Maximum iterations 800 [800]

1. The percentage deviation of the best value obtained in
the ten executions compared with the best known value,
see (14)

bSolution = 1 − KnownBestV alue − BestV alue

KnownBestV alue
(14)

Table 2 Setting of parameters for cuckoo search algorithm

Parameters Description Value Range

α Transition probability 0.1 [0.08, 0.1, 0.12]

coefficient

β Transition separation 1

coefficient

ν Coefficient for the 3% [2, 3, 4]

perturbation operator

N Number of nest 20 [15, 20, 25]

G Number of transition 8 [7,8,9,10]

groups

γ Step length 0.01 [0.009,0.01,0.011]

κ Levy distribution 1.5 [1.4,1.5,1.6]

parameter

Iteration number Maximum iterations 800 [800]

A k-means binarization framework applied to multidimensional knapsack problem 365

2. The percentage deviation of the worst value obtained in
the ten executions compared with the best known value,
see (15)

wSolution = 1 − KnownBestV alue − WorstV alue

KnownBestV alue
(15)

3. The percentage deviation of the average value obtained
in the ten executions compared with the best known
value, see (16)

aSolution = 1− KnownBestV alue − AverageV alue

KnownBestV alue
(16)

4. The convergence time for the best value in each experi-
ment normalized according to the (17)

nT ime = 1 − convergenceT ime − minT ime

maxT ime − minT ime
(17)

Because we have four distinct measures, we used the area
of the radar charts to evaluate the best performance config-
uration. Radar charts are widely used in data mining and
bioinformatic [2, 67]. Each axis of the chart corresponds
to one of the measures defined above. These measures take
values between 0 and 1 where 1 is the best value that can
be obtained. Therefore the comparison between the differ-
ent configurations is the area that contains the results of the
four measures. The larger the area, the better the associated
configuration performs. In Fig. 5 the four best configura-
tion results are shown as an example for the KMTR-BH
algorithm.

5.2 Insight of KMTR framework

In this section we investigate some important ingredients of
KMTR to get insight into the behavior of the proposed algo-
rithm. To carry out this comparison the first 10 problems
of the set cb.5.250 of the OR library and KMTR-BH were

Fig. 5 Radar graphics examples for the black hole configuration

366 J. Garcı́a et al.

Table 3 Evaluation of element
weighting Set Best Best Best Avg Avg

Known KMTR-BH-AO KMTR-BH KMTR-BH-AO KMTR-BH

cb.5.250-0 59312 59225 59225 59141.6 59150.2

cb.5.250-1 61472 61428 61472 61342.3 61356.2

cb.5.250-2 62130 62032 62074 61946.7 61961.0

cb.5.250-3 59463 59446 59446 59304.7 59318.6

cb.5.250-4 58951 58914 58951 58799.3 58825.9

cb.5.250-5 60077 60015 60056 59919.3 59945.3

cb.5.250-6 60414 60355 60355 60286.4 60289.1

cb.5.250-7 61472 61383 61383 61319.4 61341.8

cb.5.250-8 61885 61885 61885 61747.8 61758.4

cb.5.250-9 58959 58866 58866 58785.1 58786.9

Average 60413.5 60354.9 60371.3 60259.3 60273.3

p-value 2.11 e-05

chosen. The contribution of operators perturbation, k-means
transition ranking and local search on the final performance
of the algorithm was studied. To compare the distributions
of the results of the different experiments we use a violin
chart. The horizontal axis corresponds to the problems. The
Y axis uses the measure % - Gap defined in (18)

% − Gap = 100
BestKnown − SolutionV alue

BestKnown
(18)

Furthermore, a non-parametric Wilcoxon signed-rank
test is carried out to determine if the results of KMTR with

respect to other algorithms have significant difference or
not.

5.2.1 Evaluation of the element weighting

To evaluate the contribution of the element weighting to
the performance of the algorithm we compared the KMTR-
BH algorithm which includes Dynamic Average Occupancy
given in (8) with KMRT-BH-AO algorithm which uses the
average occupancy given in (7). The results are shown in
Table 3 and in Fig. 6. The table shows that for both the best
value and the average KMTR-BH is higher than KMTR-

Fig. 6 Evaluation of element
weighting

A k-means binarization framework applied to multidimensional knapsack problem 367

Table 4 Evaluation of
perturbation operator Set Best Best Best Avg Avg

known KMTR-BH-wp KMTR-BH KMTR-BH-wp KMTR-BH

cb.5.250-0 59312 59211 59225 59112.7 59150.2

cb.5.250-1 61472 61409 61472 61314.7 61356.2

cb.5.250-2 62130 62032 62074 61901.7 61961.0

cb.5.250-3 59463 59330 59446 59218.6 59318.6

cb.5.250-4 58951 58881 58951 58686.4 58825.9

cb.5.250-5 60077 60015 60056 59905.6 59945.3

cb.5.250-6 60414 60348 60355 60218.1 60289.1

cb.5.250-7 61472 61383 61383 61283.0 61341.8

cb.5.250-8 61885 61829 61885 61712.8 61758.4

cb.5.250-9 58959 58826 58866 58727.1 58786.9

Average 60413.5 60326.4 60371.3 60208.1 60273.3

p-value 3.73 e-04

BH-AO. In Fig. 6, distributions of results are compared. It
is observed that the dispersions are quite similar, however
in the interquartile ranges KMTR-BH is superior in most
cases. The Wilcoxon test indicates that this difference is sig-
nificant therefore in the following experiments the Dynamic
Average Occupancy will be used as element weight.

5.2.2 Evaluation of perturbation operator

This section aims to investigate the contribution of pertur-
bation operator in the result of our KMTR-BH algorithm.
To do this research, the KMTR-BH algorithm is configured

without the perturbation operator. This algorithm is denoted
by KMTR-BH-wp. The KMTR-BH-wp algorithm is com-
pared with our perturbation operator version KMTR-BH. In
both cases default parameters are used (Section 5.1). The
results are shown in Table 4 and Fig. 7.

When we compare the results of the Table 4. We note
that KMTR-BH is consistently better to obtain best values
and averages than KMTR-wp. A Wilcoxon statistical test
is performed to determine the difference between distribu-
tions of averages of both algorithms. The result indicates the
distributions of the averages differ (p − values < 0.05).
The results of the difference between the distributions are

Fig. 7 Evaluation of
perturbation operator

368 J. Garcı́a et al.

Table 5 Evaluation of k-means transition operator

Set Best Best Best Best Best Avg Avg Avg Avg

Known 05.pe KMTR 05.wpe wpe 05.pe KMTR 05.wpe wpe

cb.5.250-0 59312 59211 59225 59158 59158 59132.1 59150.2 59071.8 59123.5
cb.5.250-1 61472 61435 61472 61409 61381 61324.6 61356.2 61288.3 61350.7
cb.5.250-2 62130 62036 62074 61969 61969 61894.4 61961.0 61801.6 61925.5
cb.5.250-3 59463 59367 59446 59365 59365 59257.8 59318.6 59136.1 59260.5
cb.5.250-4 58951 58914 58951 58883 58830 58725.6 58825.9 58693.6 58777.1
cb.5.250-5 60077 60015 60056 59990 59976 59904.6 59945.3 59837.8 59946.6
cb.5.250-6 60414 60355 60355 60348 60349 60208.2 60289.1 60230.6 60327.0
cb.5.250-7 61472 61436 61383 61407 61407 61290.8 61341.8 61233.9 61337.0
cb.5.250-8 61885 61829 61885 61790 61782 61737.1 61758.4 61644.9 61746.6
cb.5.250-9 58959 58832 58866 58822 58787 58769.1 58786.9 58653.7 58738.2
Average 60413.5 60343 60371.3 60314.1 60300.4 60224.4 60273.3 60159.2 60253.3
p-value 2.67 e-06 1.54 e-07

shown in Fig. 7. In the violin chart, the median value and the
interquartile range of KMTR-BH-wp are displaced toward
larger values of the %-Gap indicator. This suggests that the
perturbation operator contributes to get better values. More-
over when we observe the dispersion of the distributions, it
is observed that only problems 1 and 3, KMTR-BH-wp have
a greater dispersion than the KMTR-BH case.

5.2.3 Evaluation of k-means transition ranking operator

To evaluate the contribution of the k-mean transition ranking
operator to the final result we designed a random oper-
ator. This random operator executes the transition with a
fixed probability (0.5) without considering the ranking of

the particle. Two scenarios were established. In the first one
the perturbation and local search operators are included. In
the second one these operators are excluded. KMTR-BH
corresponds to our standard algorithm. 05.pe is the ran-
dom variant that includes the perturbation and local search
operators. wpe corresponds to the version with k-means
transition operator without perturbation and local search
operators. Finally 05.wpe describes the random algorithm
without perturbation and local search operators.

When we compared the Best Values between KMTR-BH
and 05.pe algorithms in Table 5. KMTR-BH outperforms
to 05.pe except for problem 7. However the Best Values
between both algorithms are very close. In the Averages
comparison, KMTR outperforms 05.pe in all problems.

Fig. 8 Evaluation of k-means
transition operator with
perturbation and Local Search
operators

A k-means binarization framework applied to multidimensional knapsack problem 369

Fig. 9 Evaluation of k-means
transition operator without
perturbation and local search
operators

The comparison of distributions is shown in Fig. 8. We
see the dispersion of the 05.pe distributions are bigger
than the dispersions of KMTR. In particular this can be
appreciated in the problems 3, 4, 5, 6 and 7. Then, the k-
means transition ranking operator together with perturbation
operators and local search contribute to the stability of the
solution. Also, the KMTR distributions are closer to zero
than 05.pe distributions, indicating that KMTR has a better
performance than 05.pe.

Our next step is trying to separate the contribution of
local search and perturbation operator from the k-mean tran-
sition operator. For this, we compared the algorithms wpe
and 05.wpe.

When we check the Best Values shown in the Table 5,
We see that the wpe and random 05.wpe algorithms obtain

similar results for the best indicator. However 05.wpe
slightly outperforms wpe in some cases. When we compare
the Averages, the situation is reversed obtaining a clear
supremacy of wpe by about 05.wpe. Even more, when we
compare the distributions shown in Fig. 9 we see that wpe
has solutions dispersion much smaller than 05.wpe.

5.2.4 Evaluation of local search operator

This section aims to understand the contribution of the local
search operator on the final result in the optimal tracking.
Again the comparison was made with the first 10 instances
of the cb.5.250 group and the binarization of the Black Hole
algorithm was used. We compared the KMTR-BH algo-
rithm with the modified algorithm which did not execute

Table 6 Evaluation of local
search operator Set Best best best avg avg

Known KMTR-BH-WLS KMTR-BH KMTR-BH-WLS KMTR-BH

cb.5.250-0 59312 59211 59225 59129.6 59150.2
cb.5.250-1 61472 61377 61472 61343.8 61356.2
cb.5.250-2 62130 62002 62074 61919.8 61961.0
cb.5.250-3 59463 59317 59446 59244.6 59318.6
cb.5.250-4 58951 58914 58951 58726.2 58825.9
cb.5.250-5 60077 60007 60056 59925.2 59945.3
cb.5.250-6 60414 60348 60355 60288.4 60289.1
cb.5.250-7 61472 61382 61383 61306.8 61341.8
cb.5.250-8 61885 61829 61885 61721.4 61758.4
cb.5.250-9 58959 58822 58866 58786.3 58786.9
Average 60413.5 60320.9 60371.3 60239.2 60273.3
p-value 1.58 e-06

370 J. Garcı́a et al.

the local search. To this modified algorithm, it was denoted by
KMTR-BH-WLS. In the Table 6, the comparison is shown.
KMTR-BH shows higher results than KMTR-BH-WLS for
the Best Value and Average indicators in all tests. The sta-
tistical verification using the Wilcoxon signed rank test
indicates that this difference is significant between both
algorithms. When we compared the distributions through
the graphic violin Fig. 10, we see that in general the
distributions have similar dispersion ranges. However, the
distributions of KMTR-BH-WLS are shifted towards greater
values of %-Gap than in the case of KMTR-BH. This indi-
cates that the contribution of our perturbation operator is to
improve the final values, without affecting the dispersion of
the solutions.

5.3 KMTR framework comparisons

In this section, we describe the comparisons that were made
of our framework with other recently published algorithms.
Three groups of problems were chosen for the compar-
ison. cb.5.500, cb.10.500 y cb.30.500 correspond to the
larger problems of the OR-library. The first algorithm cor-
responds to Binary Artificial Algae Algorithm (BAAA)
developed by Zhang [80]. This algorithm uses V-shape
transfer function as a binarization mechanism. The set of
problems cb.5.500 was used for comparison. The second
algorithm is a Binary differential search algorithm (BDS)
developed by Liu [43]. This algorithm also uses a V-shape
transfer function as a binarization mechanism. The set of

Table 7 Summary of comparisons

KMTR-BH KMTR-Cuckoo

Best Value Average Best Value Average

BAAA 6BAAA/24BH 2/26 12/18 2/22

TR-DBS 6/23 1/29 7/23 1/29

TE-DBS 22/8 10/20 22/8 9/21

QPSO* 30/0 30/0 30/0 30/0

problems cb.10.500 was used for comparison. Finally, in the
third comparison a Hybrid Quantum Particle Swarm Opti-
mization (QPSO*) developed by Haddar [27] was used to
compare the cb.30.500 group. The comparisons were made
using the Best value indicator, which corresponds to the best
value obtained by the algorithm in the different executions
and the Average indicator which corresponds to the average
of the results obtained considering all executions. For clarity
of the comparisons between the algorithms, Table 7 is incor-
porated. This table summarizes the results of best values and
averages, where the comparisons are made considering the
algorithms in pairs. In the case that both algorithms have the
same value, this is not considered in the accounting.

5.3.1 Comparison with BAAA

In this section we evaluate the performance of our KMTR-
framework with the algorithm BAAA developed in [80].

Fig. 10 Evaluation of k-means
transition operator without local
search operator

A k-means binarization framework applied to multidimensional knapsack problem 371

Table 8 OR-Library benchmarks MKP cb.5.500

Instance Best BAAA Avg std KMTR-BH Avg Time(s) std KMTR-Cuckoo Avg Time(s) std

Known Best Best Best

0 120148 120066 120013.7 21.57 120096 120029.9 475 25.3++(2.7) 120082 120036.8 256 25.5++(3.7)

1 117879 117702 117560.5 11.4 117730 117617.5 512 55.8++(5.5) 117656 117570.6 278 57.3+(0.4)

2 121131 120951 120782.9 87.96 121039 120937.9 366 50.3++(8.4) 120923 120855.1 238 39.8++(4.0)

3 120804 120572 120340.6 106.01 120683 120522.8 467 71.6++(7.8) 120683 120455.7 219 32.1++(5.7)

4 122319 122231 122101.8 56.95 122280 122165.2 429 50.2++(4.5) 122212 122136.4 209 39.4++(2.7)

5 122024 121957 121741.8 84.33 121982 121868.7 428 52.2++(7.0) 121946 121824.6 198 35.4++(4.9)

6 119127 119070 118913.4 63.01 119068 118950.0 486 52.9++(2.4) 118956 118895.5 217 40.1−(1.3)

7 120568 120472 120331.2 69.09 120463 120336.6 389 45.7+(0.4) 120392 120320.4 267 43.0−(0.7)

8 121586 121052 120683.6 834.88 121377 121161.9 410 91.3++(3.1) 121201 121126.3 235 54.5++(2.9)

9 120717 120499 120296.3 110.06 120524 120362.9 397 89.0++(2.6) 120467 120335.5 213 62.2+(1.7)

Average 120630.3 120457.2 120276.5 154.5 120524.2 120395.3 435.9 58.4 120451 120355.7 233 43.0

p-value 2.43 e-4

10 218428 218185 217984.7 123.94 218296 218163.7 412 50.7++(7.3) 218291 218208.9 340 47.8++(9.2)

11 221202 220852 220527.5 169.16 220951 220813.9 379 65.3++(8.7) 220969 220862.3 319 63.9++(10.1)

12 217542 217258 217056.7 104.95 217349 217254.3 397 51.4++(9.3) 217356 217293.0 298 53.3++(10.9)

13 223560 223510 223450.9 26.02 223518 223455.2 405 32.8+(06) 223516 223455.6 341 45.4+(0.4)

14 218966 218811 218634.3 97.52 218848 218771.5 402 44.0++(7.0) 218884 218794.0 289 49.0++(8.0)

15 220530 220429 220375.9 31.86 220441 220342.2 379 56.6−−(2.8) 220433 220352.7 269 40.8−−(2.4)

16 219989 219785 219619.3 93.01 219858 219717.9 398 60.1++(4.9) 219943 219732.8 297 47.2++(5.9)

17 218215 218032 217813.2 115.37 218010 217890.1 386 57.3++(3.3) 218094 217928.7 295 55.4++(4.9)

18 216976 216940 216862.0 32.51 216866 216798.8 468 41.2−−(6.6) 216873 216829.8 345 39.5−−(3.4)

19 219719 219602 219435.1 54.45 219631 219520.0 429 52.4++(6.2) 219693 219558.9 321 54.9++(8.8)

Average 219512.7 219340.4 219175.9 84.8 219376.8 219272.7 405.5 51.2 219405.2 219301.1 311.4 49.7

p-value 1.45 e-5

20 295828 295652 295505.0 76.30 295717 295628.4 348 48.9++(7.5) 295688 295608.8 275 33.1++(6.8)

21 308086 307783 307577.5 135.94 307924 307860.6 564 55.7++(10.6) 308065 307914.8 309 59.1++(12.5)

22 299796 299727 299664.1 28.81 299796 299717.8 394 89.9++(3.1) 299684 299660.9 257 12.1−(0.6)

23 306480 306469 306385.0 31.64 306480 306445.2 437 96.1++(3.3) 306415 306397.3 285 17.1+(1.8)

24 300342 300240 300136.7 51.84 300245 300202.5 428 26.4++(6.2) 300207 300184.4 274 16.9++(4.8)

25 302571 302492 302376.0 53.94 302481 302442.3 439 24.1++(6.1) 302474 302435.6 298 24.0++(5.5)

26 301339 301272 301158.0 44.3 301284 301238.3 386 37.9++(7.5) 301284 301239.7 278 24.1++(8.9)

27 306454 306290 306138.4 84.56 306325 306264.2 468 45.4++(7.2) 306331 306276.4 286 23.8++(8.6)

28 302828 302769 302690.1 34.11 302749 302721.4 401 22.4++(4.2) 302781 302716.9 268 32.0++(3.1)

29 299910 299757 299702.3 31.66 299774 299722.7 397 34.1++(2.4) 299828 299766.0 297 45.5++(6.3)

Average 302363.4 302245.1 302133.3 57.3 302277.5 302224.3 426.2 48.1 302275.7 302220.1 282.7 28.8

p-value 3.29 e-4

Bold represents the algorithm that had the best performance

BAAA uses transfer functions as a general mechanism of

binarization. In particular BAAA used the tanh = eτ |x|−1
eτ |x|+1

function to perform the transference. The parameter τ

of the tanh function was set to a value 1.5. Addition-
ally a elite local search procedure was used by BAAA
to improve solutions. As maximum number of iterations

BAAA used 35000. The computer configuration used to run
the BAAA algorithm was: PC Intel Core(TM) 2 dual CPU
Q9300@2.5GHz, 4GB RAM and 64-bit Windows 7 oper-
ating system. In our KMTR-framework, the configurations
are the same used in the previous experiments. These are
described in the Tables 1 and 2. In addition, in order to

372 J. Garcı́a et al.

Fig. 11 Transition group histograms

determine if KMTR average is significantly different than
averages obtained by BAAA, we have performed Student’s
t-test. The t statistic has the following form:

t = X̂1 − X̂2√
(n1−1)SD2

1+(n2−1)SD2
2

n1+n2−2
n1+n2
n1n2

(19)

Where:

X̂1: Average of BAAA for each instance
SD1: Standard deviation of BAAA for each instance
n1: number of test for BAAA for each instance
X̂2: Average of KMTR-BH or KMTR-Cuckoo for each
instance

Fig. 12 Comparison between
KMTR-BH and KMTR-Cuckoo
for cb.5.500 instances

A k-means binarization framework applied to multidimensional knapsack problem 373

Table 9 OR-Library benchmarks MKP cb.10.500

Instance Best TR-DBS Avg TE-DBS Avg KMTR-BH Avg Time(s) KMTR-Cuckoo Avg Time

Known Best Best Best Best

0 117821 114716 114425.4 117811 117801.2 117558 117293.0 584 117509 117302.8 467

1 119249 119232 119223.0 119249 118024.0 119232 118980.8 547 119072 118936.2 437

2 119215 119215 117625.6 119215 117801.4 118940 118840.5 548 119039 118723.0 423

3 118829 118813 117625.8 118813 117801.2 118598 118516.2 539 118586 118433.9 428

4 116530 114687 114312.4 116509 114357.2 116186 116095.5 532 116312 116013.8 410

5 119504 119504 112503.7 119504 117612.8 119257 119113.2 437 119257 119065.7 439

6 119827 116094 115629.1 119827 119827.4 119691 119556.7 463 119663 119506.6 419

7 118344 116642 115531.9 118301 117653.3 118016 117907.3 437 118058 117760.3 436

8 117815 114654 114204.0 117815 115236.4 117550 117363.0 483 117550 117235.0 417

9 119251 114016 113622.8 119231 118295.1 118896 118739.0 485 118962 118514.2 414

Average 118638.5 116757.3 115470.3 118627.5 117441 118392 118240.5 505.5 118400.8 118149.1 429

p-value 1.93 e-5

10 217377 209191 208710.2 217377 212570.3 216990 216892.0 446 217126 216892.0 394

11 219077 219077 217277.2 219077 218570.2 218672 218592.0 437 218872 218592.4 389

12 217847 210282 210172.3 217377 212570.4 217447 217358.8 428 217573 217542.3 412

13 216868 209242 206178.6 216868 216868.9 216570 216484.5 457 216570 216469.9 394

14 213873 207017 206656.0 207017 206455.0 213474 213374.0 427 213474 213363.5 378

15 215086 204643 203989.5 215086 215086.0 214761 214638.7 420 214829 214702.6 356

16 217940 205439 204828.9 217940 217940.5 217583 217484.2 438 217629 217567.1 395

17 219990 208712 207881.6 219984 209990.2 219589 219496.8 428 219675 219554.4 374

18 214382 210503 209787.6 210735 211038.2 214015 213862.7 429 214045 213939.4 389

19 220899 205020 204435.7 220899 219986.8 220488 220391.3 436 220582 220515.1 369

Average 217333.9 208912.6 207991.7 216236 214107.6 216958.9 216857.5 434.6 217037 216913.8 385

p-value 4.85 e-4

20 304387 304387 302658.8 304387 304264.5 304102 303991.6 419 304116 304019.1 344

21 302379 302379 301658.6 302379 302164.4 302138 302078.2 441 302263 302156.3 328

22 302417 290931 290859.9 302416 302014.6 302103 301968.2 438 302118 302061.6 349

23 300784 290859 290021.4 291295 291170.6 300542 300480.4 429 300566 300498.3 358

24 304374 289365 288950.1 304374 304374.0 304267 304168.7 427 304229 304187.7 338

25 301836 292411 292061.8 301836 301836.0 301730 301461.8 420 301445 301332.1 324

26 304952 291446 290516.2 291446 291446.0 304833 304778.1 413 304905 304814.6 348

27 296478 293662 293125.5 295342 294125.5 296263 296194.0 441 296361 296288.9 364

28 301359 285907 285293.4 288907 287923.4 301085 301026.0 426 301085 301031.2 326

29 307089 290300 289552.4 295358 290525.2 306881 306786.6 419 306881 306786.6 351

Average 302605.5 293164.7 292469.8 297774 296984.4 302394.4 302293.3 427.3 302396.9 302317.6 343

p-value 5.27 e-4

Bold represents the algorithm that had the best performance

SD2: Standard deviation KMTR-BH or KMTR-Cuckoo
for each instance
n2: number of test for KMTR-BH or KMTR-Cuckoo
for each instance

The t values can be positive, neutral, or negative. The
double positive value (++) of t indicates that KMTR is sig-
nificantly better than BAAA. In the opposite case (−−),

KMTR obtains significant worse solutions. If t is single pos-
itive (+), KMTR shows to be better but not significantly. On
the other hand, if the result is single negative (−), KMTR
demonstrates to be worse, but not in a significant way.
Finally, a neutral value of t depicts equality in the results.
We stated confidence interval at the 95% confidence level.
For the case of comparative summary shown in Table 7, we
consider only the results that have significance.

374 J. Garcı́a et al.

Fig. 13 Comparison between
KMTR-BH and KMTR-Cuckoo
for cb.10.500 instances

The results are shown in Table 8. The comparison was
performed for the set cb.5.500 of the OR-library. The
results for KMTR-BH and KMTR-Cuckoo were obtained
from 30 executions for each problem. In black, the best
results are marked for both indicators the Best Value and
the Average. We must emphasize that although BAAA has
quite good results, KMTR-BH and KMTR-Cuckoo exceed
it in practically all problems. In the Best Value indicator,
BAAA was higher in three instances, KMTR-BH in 15 and
KMTR-Cuckoo in 13. It should be noted that in instance
4 KMTR-BH and KMTR-Cuckoo obtained the same value.
In the averages indicator BAAA was higher in 1 instance,
KMTR-BH in 15 and KMTR-Cuckoo in 14.

By observing the execution times, we see that Cuckoo
has better runtime than BH. Inquiring about the causes
of this difference, a sampling of the displacements (�)
of both metaheuristics was considered. With these sam-
pling, histograms were constructed to quantify the amount
of displacements assigned to the different transition groups
obtained by k-means. The result is shown in Fig. 11. In the
case of Black Hole, the distribution of transition groups is
far more homogeneous than in Cuckoo. In Cuckoo most
of the transitions are concentrated in the first 3 groups.
This property has as a consequence that Cuckoo has fewer
transitions than BH.

Finally we compare KMTR-BH y KMTR-Cuckoo. For
comparison, we organized the problems into three groups 0
to 9, 10 to 19 and 20 to 29. The Wilcoxon test shown in
Table 8 and violin charts shown in Fig. 12 were used for
comparison. In all three groups there are differences between

distributions, KMTR-BH obtained better solutions for the
first group and KMTR-Cuckoo in the second. Although
the Wilcoxon test and the transition histograms shown in
Fig. 11 indicates that the distributions of the KMTR-BH and
KMTR-Cuckoo results are different, when we observe the
distributions in detail with the violin graph, we observe that
they are similar in form, values and dispersion. The main
differences that distinguish both distributions correspond to
the median values and interquartile range.

5.3.2 Comparison with DBS

In this section we evaluate the performance of our KMTR-
framework with the algorithms TR-DBS (Tanh Random)
and TE-DBS (Tanh Elitist) developed in [43]. DBS uses
transfer functions as a general mechanism of binarization. In

particular DBS used the tanh = eτ |x|−1
eτ |x|+1

function to perform
the transference. The parameter τ of the tanh function was
set to a value 2.5. As maximum number of iterations DBS
used 10000. All computational experiments were conducted
in Matlab 7.5 on a PC equipped with an Intel Pentium Dual-
Core i7-4770 processor (3.40 GHz) with 16GB of RAM in
the Windows OS. In our KMTR-framework, the configura-
tions are the same used in the previous experiments. These
are described in the Tables 1 and 2.

The results are shown in Table 9. The comparison was
performed for the set cb.10.500 of the OR library. The
results for KMTR-BH and KMTR-Cuckoo were obtained
from 30 executions for each problem. The best results for
the Best Value and Average indicators are marked in black.

A k-means binarization framework applied to multidimensional knapsack problem 375

Table 10 OR-Library benchmarks MKP cb.30.500

Instance Best QPSO* KMTR-BH KMTR-Cuckoo

Known Best Avg Best Avg Time(s) std Best Avg Time(s) std

0 116056 115991 115906.0 115449 115236.6 638 151.5 115526 115341.7 464 81.8

1 114810 114684 114661.0 114352 114172.2 610 124.0 114405 114291.5 429 77.6

2 116741 116712 116642.5 116158 116065.5 578 78.8 116256 116093.8 489 78.5

3 115354 115354 115062.5 114739 114574.4 570 125.0 114782 114673.9 578 52.1

4 116525 116435 116378.5 115994 115881.2 594 148.8 115995 115872.7 548 82.9

5 115741 115594 115583.5 115244 115149.5 610 111.5 115342 115143.0 486 114.6

6 114181 113987 113936.5 113593 113433.7 629 158.5 113712 113527.5 528 112.6

7 114348 114184 114135.5 113610 113522.0 649 89.7 113626 113516.5 519 79.5

8 115419 115419 115271.0 114705 114684.2 628 62.4 114822 114633.4 589 85.4

9 117116 116909 116909.0 116382 116374.5 638 22.5 116467 116338.6 519 90.0

Average 115629,1 115526,9 115448,6 115022,6 114909,3 614.4 107,2 115093,3 114943,26 514.9 85.5

p-value 1.86 e-7

10 218104 218068 218068.0 217607 217574.8 573 34.4 217776 217619.2 539 72.8

11 214648 214626 214546.5 214110 214089.5 539 61.5 214110 214002.7 530 58.9

12 215978 215839 215839.0 215580 215506.5 528 59.3 215638 215494.8 486 62.7

13 217910 217816 217816.0 217201 217136.0 568 55.0 217301 217215.8 549 54.0

14 215689 215544 215544.0 215036 214974.7 563 32.7 215116 214992.6 520 70.8

15 215919 215753 215753.0 215326 215223.6 510 130.0 215408 215219.7 269 112.1

16 215907 215789 215784.5 215516 215449.1 529 46.7 215576 215486.9 538 55.7

17 216542 216387 216387.0 215999 215981.6 521 35.5 216057 216002.6 549 27.3

18 217340 217217 217211.0 216882 216867.8 534 27.3 217013 216886.2 520 72.4

19 214739 214739 214686.5 214194 214127.3 542 46.2 214332 214127.3 517 46.2

Average 216277.6 216177.8 216163.5 215745.1 215693.1 540.7 52.8 215818.9 215704.8 501.7 63.3

p-value 5.13 e-5

20 301675 301643 301635.0 301343 301200.8 562 59.2 301343 301241.0 592 59.6

21 300055 299965 299963.5 299636 299556.8 536 53.9 299720 299579.9 538 70.6

22 305087 305038 305038.0 304850 304774.5 569 38.0 304852 304748.2 549 62.0

23 302032 301982 301982.0 301658 301536.7 567 61.7 301645 301583.2 584 50.5

24 304462 304346 304346.0 304186 304082.4 578 61.5 304186 304106.1 529 53.5

25 297012 296892 296892.0 296450 296413.0 546 18.0 296521 296420.5 520 35.6

26 303364 303287 303287.0 302917 302841.6 548 68.9 302941 302843.8 519 71.6

27 307007 306915 306915.0 306616 306450.7 542 68.8 306616 306451.3 502 69.1

28 303199 303169 303169.0 302636 302550.3 563 49.7 302791 302565.8 510 85.4

29 300572 300449 300449.0 300170 300061.5 549 63.9 300170 300063.8 531 65.8

Average 302446.5 302368.6 302367.6 302046,2 301946.8 556 54.4 302078.5 301960.3 537.4 62.4

p-value 4.19 e-5

Bold represents the algorithm that had the best performance

When we compare the four algorithms, we see that TE-
DBS obtained the biggest amount of Best Values with a
total of 20 of the 30 problems. It was followed by KMTR-
Cuckoo with 7, then TR-DBS with 3 and KMTR-BH with
0. When the average indicator is analyzed, the situation
is different. KMTR-Cuckoo obtained 12, then TE-DBS
with 9, KMTR-BH with 7 and finally TR-DBS with 4.
When we compare the Average indicator by groups of

problems, where group 1 corresponds to problems 0-9,
group two problems 10-19 and group 3 problems 20-
29, KMTR-Cuckoo scored better in Groups 2 and 3 for
both Best Value and Average, TE-DBS for Best Value in
Group 1 and KMTR-BH for Group 1 in Average indi-
cator. This indicates that although the TR-DBS and TE-
DBS algorithms obtain high Best Values, these algorithm
are not consistent in obtaining them, considering that the

376 J. Garcı́a et al.

Fig. 14 Comparison between
KMTR-BH and KMTR-Cuckoo
for cb.30.500 instances

number of maximum iterations is 10000. The average
execution times in TR-DBS and TE-DBS cases are over
5000 (s) and 6000 (s) respectively, where KMTR-BH and
KMTR-Cuckoo are below 600(s). The calculation was made
on equivalent computers.

Finally we compare KMTR-BH and KMTR-Cuckoo,
considering the three previously defined groups. The
Wilcoxon test shown in Table 9 and violin charts shown in
Fig. 13 were used for comparison. In all three groups there
are differences between distributions, KMTR-BH obtained
better solutions for the first group and KMTR-Cuckoo
in the second and third groups. Although the Wilcoxon
test indicates that the distributions of the KMTR-BH and
KMTR-Cuckoo results are different, when we observe the
distributions in detail with the violin graph, we observe that
they are similar in form, values and dispersion. The main
differences that distinguish both distributions correspond to
the median values and interquartile range.

5.3.3 Comparison with QPSO*

In this section, we compare the performance of our KMTR-
framework with the Quantum PSO (QPSO*) algorithm
developed by [27]. This QPSO* algorithm additionally uses
a local search method and a repair algorithm based on the
notion of the pseudo-utility ratio. The algorithm was coded
in C language, and experimental tests were performed on a
Personal Computer with a 2.2 GHz Core 2 Duo processor

and 3GB RAM. The number of iterations were 500, and the
number of executions were 30. For our framework, the con-
figuration was the same used in the previous experiments,
described in the Tables 1 and 2.

The comparison was made using the set of problems
cb.30.500 from the OR-library. The results are shown in
the Table 10. In this case the superiority of QPSO* com-
pared to our binarizations was complete in both indicators,
Best Value and Average. Considering groups 0-9,10-19 and
20-29, we calculate the difference between QPSO* and
our binarizations, for the Best Value and Average indi-
cators. The maximum difference corresponds to group 1,
where the comparison of the QPSO* Best Value indicator
with KMTR-BH has a 0.43% deviation and KMTR-Cuckoo
a 0.37%. For the case of the average indicator, group 1
obtained the difference of 0.46% for KMTR-BH 0.43% for
KMTR-Cuckoo. In group 2, the differences for the Best
value were 0.20 and 0.16. For the Average differences were
0.22% and 0.21% respectively. Finally for group 3 the dif-
ferences in the Best Value were of 0.1% and 0.09%. For the
average, 0.14% and 0.13%.

When we compared KMTR-BH and KMTR-Cuckoo, the
results of the test Wilcoxon shown in the Table 10, indicate
that there are differences between them. In the Fig. 14, their
distributions are compared. It is observed that the difference
is mainly due to the values of their medians and interquartile
ranges. The dispersion and the shape of the distributions are
similar in both binarizations.

A k-means binarization framework applied to multidimensional knapsack problem 377

Table 11 Detailed
performance of KMTR-BH and
KMTR-Cuckoo on OR-Library
instances (based on average
%-Gap)

Problem Set KMTR-BH Average KMTR-Cuckoo Average

Average %-Gap std Time(s) Average %-Gap std Time(s)

cb.5.100.25 0.15 0.11 63.1 0.14 0.1 53.1

cb.5.100.50 0.13 0.09 61.8 0.09 0.08 51.4

cb.5.100.75 0.01 0.05 57.5 0.01 0.05 50.3

cb.5.250.25 0.23 0.13 147.6 0.25 0.14 142.8

cb.5.250.50 0.19 0.08 142.8 0.20 0.07 140.4

cb.5.250.75 0.04 0.04 142.5 0.04 0.03 137.8

cb.5.500.25 0.21 0.08 435.9 0.22 0.06 233

cb.5.500.50 0.11 0.04 405.5 0.09 0.03 311.4

cb.5.500.75 0.05 0.02 426.2 0.05 0.01 282.7

cb.10.100.25 0.41 0.31 64.1 0.36 0.18 58.2

cb.10.100.50 0.21 0.15 62.4 0.2 0.12 53.9

cb.10.100.75 0.39 0.11 59.3 0.36 0.1 54.6

cb.10.250.25 0.21 0.15 168.3 0.20 0.13 154.5

cb.10.250.50 0.11 0.07 165.8 0.1 0.06 152.5

cb.10.250.75 0.05 0.03 162.9 0.03 0.03 148.5

cb.10.500.25 0.34 0.08 505.5 0.37 0.1 429

cb.10.500.50 0.22 0.03 434.6 0.20 0.03 385

cb.10.500.75 0.11 0.03 427.3 0.09 0.03 343

cb.30.100.25 0.41 0.28 67.3 0.39 0.27 59.3

cb.30.100.50 0.28 0.17 63.6 0.26 0.16 58.7

cb.30.100.75 0.11 0.08 62.9 0.09 0.07 54.2

cb.30.250.25 0.67 0.16 164.3 0.69 0.17 152.4

cb.30.250.50 0.31 0.07 162.6 0.29 0.08 150.5

cb.30.250.75 0.16 0.03 162.5 0.14 0.02 147.4

cb.30.500.25 0.62 0.12 614.4 0.59 0.10 514.9

cb.30.500.50 0.27 0.05 540.7 0.26 0.05 501.7

cb.30.500.75 0.17 0.03 556 0.16 0.03 537.4

Average 0.24 0.1 245.6 0.22 0.09 205.7

5.3.4 Other comparisons

Finally, in the Table 11, the results are summarized for
the 270 instances of OR-library, solved by the binariza-
tions KMTR-BH and KMTR-Cuckoo. In addition to these
results, we added Table 12. It is a comparative of differ-
ent techniques that have solved the OR-library problems.
We consider the results of the hyper-heuristic (CF-LAS,
2016) developed in [19], CPLEX (IBM, 2014) [48], which
is a general-purpose mixed-integer programming (MIP)
package used to solve linear optimisation problems. A
Genetic Algorithm developed by Chu and Beasley [15],
other Genetic algorithm developed by Raidl [56], and a
Memetic algorihtm reported in [49].

Both k-means binarizations outperform the other meth-
ods. The average results for KMTR-BH was 0.24 and for
KMTR-Cuckoo of 0.22. Regarding the mean times KMTR-
BH obtained 245.6(s) and KMTR-Cuckoo 205.7(s).

The configuration of the algorithms was the same as in
previous executions. Every problem was executed in 30
instances.

Table 12 Detailed performance of KMTR-BH and KMTR-Cuckoo
on OR-Library instances (based on average %-Gap)

Type Reference %-Gap

KMTR-Cuckoo Kmeans-Transition 0.22

KMTR-BH Kmeans-Transition 0.24

MIP CPLEX 12.5 (IBM 2014) 0.52

GA Raidl (1998) 0.53

GA Chu and Beasley (1998) 0.54

Hyper-heuristic CF-LAS (2016) 0.70

MA Ozcan and Basaran (2009) 0.92

378 J. Garcı́a et al.

6 Conclusion and future work

In this article, we proposed a framework whose main
function is to binarize continuous population-based meta-
heuristics. the performance of our framework, and the mul-
tidimensional knapsack problem was used together with
the Cuckoo Search and Black Hole metaheuristics. The
contribution of the different operators of the framework
was evaluated, finding that the k-means transition ranking
operator contributes significantly to improve the preci-
sion of the solutions. Moreover the operators Perturbation
and Local Search help to improve the quality and pre-
cision of the solutions. Finally, in comparison with state
of the art algorithms our framework showed a good
performance.

In future works we want to investigate the behaviour
of other metaheuristics in the framework. Furthermore, the
framework must be verified with other NP-hard problems.
Moreover, to simplify the choice of the appropriate con-
figuration, it is important to explore adaptive techniques.
From an understanding point of view of how the frame-
work performs binarization, it is interesting to understand
how the framework alters the properties of exploration and
exploitation. It is also interesting to study how the velocities
and positions generated by continuous metaheuristics are
mapped to positions in the discrete space. Finally, we wish
to explore the possibility of adapting concepts of Quantum
computing to incorporate them within the framework.

Acknowledgments Broderick Crawford is supported by grant CON-
ICYT/FONDECYT/REGULAR 1171243, Ricardo Soto is supported
by Grant CONICYT /FONDECYT /REGULAR /1160455, and José
Garcı́a is supported by INF-PUCV 2016.

References

1. Akhlaghi M, Emami F, Nozhat N (2014) Binary tlbo algorithm
assisted for designing plasmonic nano bi-pyramids-based absorp-
tion coefficient. J Mod Opt 61(13):1092–1096

2. Albo Y, Lanir J, Bak Px, Rafaeli S (2016) Off the radar Com-
parative evaluation of radial visualization solutions for composite
indicators. IEEE Trans Vis Comput Graph 22(1):569–578

3. Alegrıa J, Túpac Y (2014) A generalized quantum-inspired evo-
lutionary algorithm for combinatorial optimization problems. In:
XXXII international conference of the Chilean computer science
society SCCC, November, pp 11–15

4. Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Belinda Ding
B, Hilda Ye B, Califano A (2016) Functional characterization
of somatic mutations in cancer using network-based inference of
protein activity. Nat Genet

5. Balas E, Zemel E (1980) An algorithm for large zero-one knapsack
problems. Oper Res 28(5):1130–1154

6. Bansal JC, Deep K (2012) A modified binary particle swarm
optimization for knapsack problems. Appl Math Comput
218(22):11042–11061

7. Baykasoġlu A, Ozsoydan FB (2014) An improved firefly algo-
rithm for solving dynamic multidimensional knapsack problems.
Expert Syst Appl 41(8):3712–3725

8. Beasley JE (1990) Or-library: distributing test problems by elec-
tronic mail. J Oper Res Soc 41(11):1069–1072

9. Bhattacharjee KK, Sarmah SP (2016) Modified swarm intelli-
gence based techniques for the knapsack problem. Appl Intell, 1–
22

10. Chajakis E, Guignard M (1992) A model for delivery of groceries
in vehicle with multiple compartments and lagrangean approxima-
tion schemes. In: Proceedings of congreso latino ibero-americano
de investigación de operaciones e ingenierı́a de sistemas

11. Chandrasekaran K, Simon SP (2012) Network and reliability con-
strained unit commitment problem using binary real coded firefly
algorithm. Int J Electr Power Energy Syst 43(1):921–932

12. Changdar C, Mahapatra GS, Pal RK (2013) An ant colony opti-
mization approach for binary knapsack problem under fuzziness.
Appl Math Comput 223:243–253

13. Chen E, Li J, Liu X (2011) In search of the essential binary
discrete particle swarm. Appl Soft Comput 11(3):3260–3269

14. Chih M (2015) Self-adaptive check and repair operator-based
particle swarm optimization for the multidimensional knapsack
problem. Appl Soft Comput 26:378–389

15. Chu PC, Beasley JE (1998) A genetic algorithm for the multidi-
mensional knapsack problem. J Heuristics 4(1):63–86

16. Crawford B, Soto R, Cuesta R, Olivares-Suárez M, Johnson
F, Olguin E (2014) Two swarm intelligence algorithms for the
set covering problem. In: 2014 9th international conference on
software engineering and applications (ICSOFT-EA), pp 60–69

17. Crawford B, Soto R, Olivares-Suarez M, Palma W, Paredes F,
Olguin E, Norero E (2014) A binary coded firefly algorithm that
solves the set covering problem. Romanian J Inf Sci Technol
17(3):252–264

18. Dey S, Bhattacharyya S, Maulik U (2015) New quantum inspired
meta-heuristic techniques for multi-level colour image threshold-
ing. Appl Soft Comput 888:999

19. Drake JH, Özcan E, Burke EK (2016) A case study of control-
ling crossover in a selection hyper-heuristic framework using the
multidimensional knapsack problem. Evol Comput 24(1):113–141

20. Fayard D, Plateau G (1982) An algorithm for the solution of the
0–1 knapsack problem. Computing 28(3):269–287

21. Garcı́a J, Crawford B, Soto R, Garcı́a P (2017) A multi dynamic
binary black hole algorithm applied to set covering problem. In:
International conference on harmony search algorithm. Springer,
pp 42–51

22. Gavish B, Pirkul H (1982) Allocation of databases and proces-
sors in a distributed computing system. Manag Distributed Data
Process 31:215–231

23. Geem Z, Kim J, Loganathan GV (2001) A new heuristic optimiza-
tion algorithm: harmony search. Simulation 76(2):60–68

24. Gherboudj A, Layeb A, Chikhi S (2012) Solving 0-1 knapsack
problems by a discrete binary version of cuckoo search algorithm.
Int J Bio-Inspired Comput 4(4):229–236

25. Gilmore PC, Gomory RE (1966) The theory and computation of
knapsack functions. Oper Res 14(6):1045–1074

26. Gong T, Tuson AL (2007) Differential evolution for binary
encoding. In: Soft computing in industrial applications. Springer,
pp 251–262

27. Haddar B, Khemakhem M, Hanafi S, Wilbaut C (2016) A hybrid
quantum particle swarm optimization for the multidimensional
knapsack problem. Eng Appl Artif Intell 55:1–13

28. Hamilton R, Fuller J, Baldwin K, Vespa P, Xiao H, Bergsneider
M (2016) Relative position of the third characteristic peak of the
intracranial pressure pulse waveform morphology differentiates

A k-means binarization framework applied to multidimensional knapsack problem 379

normal-pressure hydrocephalus shunt responders and nonrespon-
ders. In: Intracranial pressure and brain monitoring XV. Springer,
pp 339–345

29. Hatamlou A (2013) Black hole: A new heuristic optimization
approach for data clustering. Inf Sci 222:175–184

30. Hota AR, Pat A (2010) An adaptive quantum-inspired differential
evolution algorithm for 0–1 knapsack problem. In: 2010 2nd world
congress on nature and biologically inspired computing (naBIC),
pp 703–708

31. Ibrahim AA, Mohamed A, Shareef H, Ghoshal SP (2011)
An effective power quality monitor placement method utilizing
quantum-inspired particle swarm optimization. In: 2011 inter-
national conference on electrical engineering and informatics
(ICEEI), pp 1–6

32. Ionita-Laza I, McCallum K, Bin X, Buxbaum JD (2016) A spectral
approach integrating functional genomic annotations for coding
and noncoding variants. Nat Genet 48(2):214–220

33. Kennedy JJ, Eberhart R (1997) A discrete binary version of the
particle swarm algorithm. IEEE 4105:4104–4108

34. Karaboga D (2005) An idea based on honey bee swarm for
numerical optimization. Technical report, Technical report-tr06,
Erciyes University, Engineering Faculty, Computer Engineering
Department

35. Khalil T, Youseef H, Aziz M (2006) A binary particle swarm opti-
mization for optimal placement and sizing of capacitor banks in
radial distribution feeders with distorted substation voltages. In:
Proceedings of AIML international conference, pp 137–143

36. Kong X, Gao L, Ouyang H, Li S (2015) Solving large-scale mul-
tidimensional knapsack problems with a new binary harmony
search algorithm. Comput Oper Res 63:7–22

37. Kotthoff L (2014) Algorithm selection for combinatorial search
problems. Surv AI Mag 35(3):48–60

38. Layeb A (2011) A novel quantum inspired cuckoo search for
knapsack problems. Int J Bio-Inspired Comput 3(5):297–305

39. Layeb A (2013) A hybrid quantum inspired harmony search
algorithm for 0–1 optimization problems. J Comput Appl Math
253:14–25

40. Layeb A, Boussalia SR (2012) A novel quantum inspired cuckoo
search algorithm for bin packing problem. Int J Inf Technol
Comput Sci (IJITCS) 4(5):58

41. Leonard BJ, Engelbrecht AP, Cleghorn CW (2015) Critical con-
siderations on angle modulated particle swarm optimisers. Swarm
Intell 9(4):291–314

42. Li X-L, Shao Z-J, Qian J-X (2002) An optimizing method based
on autonomous animats: fish-swarm algorithm. Syst Eng Theory
Pract 22(11):32–38

43. Liu J, Changzhi W, Cao J, Wang X, Teo KL (2016) A binary dif-
ferential search algorithm for the 0–1 multidimensional knapsack
problem. Appl Math Model

44. Liu W, Liu L, Cartes D (2007) Angle modulated particle swarm
optimization based defensive islanding of large scale power sys-
tems. In: IEEE power engineering society conference and exposi-
tion in Africa, pp 1–8

45. Long Q, Changzhi W, Huang T, Wang X (2015) A genetic algo-
rithm for unconstrained multi-objective optimization. Swarm Evol
Comput 22:1–14

46. Martello S, Toth P (1988) A new algorithm for the 0-1 knapsack
problem. Manag Sci 34(5):633–644

47. McMillan C, Plaine DR (1973) Resource allocation via 0–1
programming. Decis Sci 4:119–132

48. (2014). IBM IBM ILOG CPLEX Optimizer. http://www.ibm.
com/software/commerce/optimization/cplex-optimizer/. Cited on,
page 1

49. Özcan E, Baṡaran C (2009) A case study of memetic algorithms
for constraint optimization. Soft Comput 13(8-9):871–882

50. Palit S, Sinha SN, Molla MA, Khanra A, Kule M (2011) A
cryptanalytic attack on the knapsack cryptosystem using binary
firefly algorithm. In: International conference on computer and
communication technology (ICCCT), vol 2, pp 428–432

51. Pampara G (2012) Angle modulated population based algorithms
to solve binary problems. Phd thesis, University of Pretoria,
Pretoria

52. Pan W-T (2012) A new fruit fly optimization algorithm: taking the
financial distress model as an example. Knowl-Based Syst 26:69–
74

53. Pandiri V, Singh A (2016) Swarm intelligence approaches for
multidepot salesmen problems with load balancing. Appl Intell
44(4):849–861

54. Petersen CC (1967) Computational experience with variants of the
balas algorithm applied to the selection of r&d projects. Manag
Sci 13(9):736–750

55. Pirkul H (1987) A heuristic solution procedure for the multicon-
straint zero? One knapsack problem. Nav Res Logist 34(2):161–
172

56. Raidl GR (1998) An improved genetic algorithm for the multicon-
strained 0-1 knapsack problem. In: The 1998 IEEE international
conference on evolutionary computation proceedings, 1998. IEEE
World Congress on Computational Intelligence, pp 207–211

57. Rajalakshmi N, Padma Subramanian D, Thamizhavel K (2015)
Performance enhancement of radial distributed system with
distributed generators by reconfiguration using binary firefly algo-
rithm. J Inst Eng (India): B 96(1):91–99

58. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravi-
tational search algorithm. Inf Sci 179(13):2232–2248

59. Robinson D (2005) Reliability analysis of bulk power systems
using swarm intelligence. In: IEEE, pp 96–102

60. Saremi S, Mirjalili S, Lewis A (2015) How important is a transfer
function in discrete heuristic algorithms. Neural Comput Applic
26(3):625–640

61. Shi Y et al (2001) Particle swarm optimization: developments,
applications and resources. In: Proceedings of the 2001 congress
on evolutionary computation, 2001, vol 1, pp 81–86

62. Shih W (1979) A branch and bound method for the multiconstraint
zero-one knapsack problem. J Oper Res Soc 30(4):369–378

63. Shuyuan Y, Min W, Licheng J (2004) A quantum particle swarm
optimization. IEEE Congress Evol Comput 1:19–23

64. Simon J, Apte A, Regnier E (2016) An application of the multiple
knapsack problem: The self-sufficient marine. Eur J Oper Res

65. Soto R, Crawford B, Olivares R, Barraza J, Johnson F, Paredes F
(2015) A binary cuckoo search algorithm for solving the set cov-
ering problem. In: Bioinspired computation in artificial systems.
Springer, pp 88–97

66. Swagatam D, Rohan M, Rupam K (2013) Multi-user detection
in multi-carrier cdma wireless broadband system using a binary
adaptive differential evolution algorithm. In: Proceedings of the
15th annual conference on genetic and evolutionary computation,
GECCO, pp 1245–1252

67. Thaker NG et al (2016) Radar charts show value of prostate cancer
treatment options. Pharmaco Econ Outcomes News 762:33–24

68. Totonchi A, Reza M (2008) Magnetic optimization algorithms, a
new synthesis. In: IEEE international conference on evolutionary
computations

69. Wang I, Zhang Y, Zhou Y (2008) Discrete quantum-behaved par-
ticle swarm optimization based on estimation of distribution for
combinatorial optimization. In: IEEE evolutionary computation,
pp 897–904

70. Wang L, Zheng X-L, Wang S-Y (2013) A novel binary fruit fly
optimization algorithm for solving the multidimensional knapsack
problem. Knowl-Based Syst 48:17–23

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

380 J. Garcı́a et al.

71. Weingartner HM (1963) Mathematical programming and the anal-
ysis of capital budgeting problems. Markham Pub. Co.

72. Weingartner MH, Ness DN (1967) Methods for the solution of the
multidimensional 0/1 knapsack problem. Oper Res 15(1):83–103

73. Yang X-S (2009) Firefly algorithms for multimodal optimization.
In: International symposium on stochastic algorithms. Springer,
pp 169–178

74. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In:
Nature inspired cooperative strategies for optimization (NICSO
2010). Springer, pp 65–74

75. Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: World
congress on nature & biologically inspired computing, 2009.
naBIC 2009, pp 210–214

76. Yang Y, Yi M, Yang P, Jiang Y (2013) The unit commitment prob-
lem based on an improved firefly and particle swarm optimization
hybrid algorithm. In: Chinese automation congress (CAC), 2013,
pp 718–722

77. Zakaria D, Chaker D (2015) Binary bat algorithm: on the effi-
ciency of mapping functions when handling binary problems
using continuous-variable-based metaheuristics. Comput Sci Appl
456:3–14

78. Zhang B, Pan Q-K, Zhang X-L, Duan P-Y (2015) An
effective hybrid harmony search-based algorithm for solving
multidimensional knapsack problems. Appl Soft Comput 29:
288–297

79. Zhang G (2011) Quantum-inspired evolutionary algorithms: a
survey and empirical study. J Heuristics 17(3):303–351

80. Zhang X, Changzhi W, Li J, Wang X, Yang Z, Lee J-M,
Jung K-H (2016) Binary artificial algae algorithm for multidimen-
sional knapsack problems. Appl Soft Comput 43:583–595

81. Zhao J, Sun J, Wenbo X (2005) A binary quantum-behaved parti-
cle swarm optimization algorithm with cooperative approach. Int
J Comput Sci 10(2):112–118

82. Zhifeng W, Houkuan H, Xiang11 Z (2008) A binary-encoding dif-
ferential evolution algorithm for agent coalition. J Comput Res
Dev 5:019

83. Zhou Y, Bao Z, Luo Q, Zhang S (2016) A complex-valued encod-
ing wind driven optimization for the 0-1 knapsack problem. Appl
Intell, 1–19

84. Zhou Y, Chen X, Zhou G (2016) An improved monkey algo-
rithm for a 0-1 knapsack problem. Appl Soft Comput 38:817–
830

	A k-means binarization framework applied to multidimensional knapsack problem
	Abstract
	Introduction
	KnapSack problem
	Related work
	Transfer functions
	Angle modulation
	Quantum binary approach

	k-means transition ranking framework
	Initialization and element weighting
	k-means transition ranking operator
	Repair operator
	Local search operator
	Perturbation operator

	Results
	Benchmark instances
	Parameter setting
	Insight of KMTR framework
	Evaluation of the element weighting
	Evaluation of perturbation operator
	Evaluation of k-means transition ranking operator
	Evaluation of local search operator

	KMTR framework comparisons
	Comparison with BAAA
	Comparison with DBS
	Comparison with QPSO*
	Other comparisons

	Conclusion and future work
	Acknowledgments
	References

