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Abstract This paper proposes a fuzzy group decision-
making model based on a logarithm compatibility measure
with multiplicative trapezoidal fuzzy preference relations
(MTFPRs) based on a continuous ordered weighted geo-
metric averaging (COWGA) operator. New concepts are
presented to measure deviation between MTFPR and its
expected fuzzy preference relation. Then, an iterative algo-
rithm is developed to help individual MTFPR reach accept-
able compatibility. To determine the weights of decision
makers, an optimal model is constructed using group log-
arithm compatibility index COWGA operator. Finally, we
illustrate an example to show how it works and compare
it with the existing methods. The main advantages of the
proposed approach are the following: (1) The COWGA
operator makes decision making more flexible; (2) an iter-
ative and convergent algorithm is proposed to improve the
compatibility of MTFPR; (3) decision makers’ weights in
group decision making are determined by an optimal model
based on a logarithm compatibility measure.
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1 Introduction

Due to the limitation of the decision maker’s (DM’s) values,
attitude and background, it is difficult for a single DM to
take all possible aspects into consideration in the decision-
making process. Group decision making (GDM) with pref-
erence relations is a common tool in human activities that
consist of determining the most reasonable alternatives as
realized by a group of DMs, preference information for
each pairwise comparison between different alternatives,
collective preference relations by aggregating DMs’ prefer-
ence relations, and selection of optimal alternatives using
aggregation techniques. In recent years, different preference
relations have been investigated for addressing GDM prob-
lems, including multiplicative preference relations [9, 20,
30, 44, 57, 58, 76], fuzzy preference relations [8, 32, 38],
linguistic preference relations [18, 31, 47], and intuitionistic
fuzzy preference relations [2, 23, 33].

Satty [44] proposed the multiplicative preference rela-
tion. However, because of the complexity of decision mak-
ing and the lack of knowledge of the DMs, preference
relations consisting of exact values do not satisfy decision-
making requests. Orlovsky [42] proposed the fuzzy prefer-
ence relation to show a DM’s opinion in decision processes.
Satty and Vargas [46] put forward interval multiplicative
preference relation in the decision making process. Xu [59]
defined the interval fuzzy preference relation. Buckley [3]
extended the analytic hierarchy process (AHP) to fuzzy
environment and introduced the MTFPR.
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The key to solving GDM problems with preference
relations is to effectively aggregate all of the individual
preference relations, which are divided into two aspects.
The first is to determine whether all of the individual pref-
erence relations are aggregated, which takes into account
consistency and compatibility. Consistency is to ensure that
preference relations are neither random nor illogical in pair-
wise comparisons. Lack of consistency in decision making
with preference relations causes inconsistent conclusions.
Compatibility guarantees that all individual preference rela-
tions can be aggregated effectively. It can be used to
measure the consensus of ranking between the group and
individual.

Satty [45] was the first to discuss the compatibility of
preference relations. Studies that address different compat-
ibilities of difference preference relations are demonstrated
in Table 1. From Table 1, we can see that few studies have
addressed the compatibility of two MTFPRs.

The second crucial procedure in GDM is aggregation.
During the aggregation phase, the weighting method is of
great importance because the weighting vector is able to
affect the final aggregation results directly. At present, many
methods have been developed to obtain the weighting vector
in GDM. These methods are summarized in Table 2. From
Table 2, we can see that no optimization model is utilized to
obtain the weighting vector in GDM with MTFPRs.

However, it is necessary to accurately take into account
the risk attitudes of DMs. To address this issue, continuous
interval information aggregation operators are employed to
address the interval values. Based on the ordered weighted
averaging (OWA) operator [64], Yager developed the con-
tinuous ordered weighted averaging (COWA) operator

Table 1 Discussions of related works addressing the compatibilities
for different preference relations

Types of preference rela-
tions (PRs)

References

Multiplicative PRs Chen and Chen [10]; Satty [45]

Interval multiplica-
tive PRs

Satty and Vargas [46]; Wang et al. [50];

Wu et al. [51]; Xu [63]; Zhou et al. [75];

Zhou et al. [76]

Multiplicative linguis-
tic PRs

Wu et al. [52]; Zhou et al. [72, 74]

Interval fuzzy linguis-
tic PRs

Chen et al. [12]; Xu [63];

Zhou and Chen [73];

Interval fuzzy PRs Xu [59, 63]

Triangular Fuzzy PRs Xu [63]; Yao and Xu [67]

Intuitionistic
multiplicative
PRs

Jiang et al. [33, 34]; Xu [60]

Table 2 Discussions of different weighting methods

Weighting method References

Optimization models Chen et al. [12]; Dong et al. [19];

Wang et al. [50]; Xu and Wu [56];

Zhou et al. [75]; Zhou et al. [76];

Zhou and Chen [73]

Straightforward construction
methods

Wu et al. [51]; Wu et al.[53]; Xu [61]

The entropy weight methods Chen and Zhou [13];

Zamri and Abdullah [70]

The Shapley value methods Tao et al. [48]

The linguistic quanti-
fier’s methods

Dong et al. [18]; Tapia Garcia et al.
[49];

Yager [65]

Intelligent optimization
algorithm

Cabrerizo et al. [5]

[65], which is a famous continuous interval information
aggregation operator. In addition, encouraged by the COWA
operator and geometric mean, Yager and Xu [66] introduced
the continuous ordered weighted geometric (COWGA)
operator. From Table 1, we see that Refs. [76, 77] consider
the risk attitude of DMs based on the COWGA operator.
However, few studies have addressed GDM while taking
into account MTFPRs.

Furthermore, Gong, Lin and Yao [24] say that “the
research on preference relations of trapezoidal fuzzy num-
bers is of theoretical and practical significance”. Based on
the discussion above, the main motivations of this paper
are the following: (1) The consistency improving algorithm
adjusts a pair of elements in each round, but most existing
algorithms adjust the elements of the preference relations
in each round, which leads to a loss of preference informa-
tion; (2) An optimal model to derive the weights of DMs is
constructed, but many models of consistency and consensus
do not address the determination of the weighting vector;
(3) we change TFPRs into ordinary preference relations by
using a risk attitude parameter for the DMs.

The aim of this work is to define a logarithm com-
patibility to measure the MTFPRs in GDM based on the
COWGA operator. By using α-cut, we obtain the expected
interval value of the trapezoidal fuzzy number based on
the COWGA operator. Next, we present the expected fuzzy
preference relation corresponding to MTFPR. Then, a log-
arithm compatibility index is proposed, and some desirable
properties are discussed. At the same time, a compatibility-
improving algorithm is presented to guarantee that each
modified MTFPR is of acceptable compatibility. More-
over, we prove the property that the collective MTFPR
and its expected fuzzy preference relation are of accept-
able compatibility under the condition that all MTFPRs
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given by DMs and their expected fuzzy preference relations
are acceptably compatible. Furthermore, we construct an
optimal model to determine the weights of DMs based
on the criterion of minimizing the logarithm compatibil-
ity index of MTFPRs, which ensures the objectivity of
GDM. Then, a new approach of GDM with MTFPRs
based on the logarithm compatibility is developed, which
ensures the rationality of GDM. Finally, an illustrative
example shows the availability and feasibility of the new
approach.

Although some existing approaches have already been
successfully applied to GDM problems with different kinds
of preference relations, there have some difference between
the existing methods and our proposed method. The reasons
are as follows: (1) Our proposed method takes the risk atti-
tude of DMs into account, which makes the decision more
reasonable in GDM but it was ignored in existing methods
[5, 19, 35, 50, 53, 54, 77, 78]. (2) The mechanism to gener-
ate experts’ weights and the form of compatibility measure
make the proposed method more effective, which are very
different from Refs. [5, 19, 35, 53].

The work is set out as follows. In Section 2, some of
the basic concepts are briefly reviewed. In Section 3, the
concepts of the compatibility index of the MTFPRs are
presented, a compatibility-improving algorithm is devel-
oped, and the optimal model is put forward to deter-
mine the optimal DMs’ weights in GDM. Section 4 is
devoted to proposing a complete flow for GDM with
multiplicative trapezoidal fuzzy preference relations. In
Section 5, a numerical example is developed. Finally,
the main conclusions of the paper are summarized in
Section 6.

2 Preliminaries

2.1 Trapezoidal fuzzy number and its expected interval

To rationalize uncertainty associated with impression or
vagueness, Zadeh [69] proposed the fuzzy set theory, which
includes a trapezoidal fuzzy number that is defined as
follows.

Definition 1 Let ã = (a1, a2, a3, a4), a1 ≤ a2 ≤ a3 ≤
a4; then, ã is called a trapezoidal fuzzy number, and the
membership function μã(x) : R → [0, 1] is defined as
follows:

μã(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x−a1
a2−a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,

x−a4
a3−a4

, a3 ≤ x ≤ a4,

0, otherwise,

(1)

Let ã = (a1, a2, a3, a4) and b̃ = (b1, b2, b3, b4) be two
trapezoidal fuzzy numbers, β ∈ R+; then, operational laws
on trapezoidal fuzzy numbers are as follows [14].

(1) ã ⊕ b̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4);
(2) ã � b̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1);
(3) ã ⊗ b̃ ∼= (a1 × b1, a2 × b2, a3 × b3, a4 × b4);

(4) ã 	 b̃ =
(

a1
b4

,
a2
b3

,
a3
b2

,
a4
b1

)
;

(5) βã = (βa1, βa2, βa3, βa4);
(6) (ã)β = ((a1)

β, (a2)
β, (a3)

β, (a4)
β).

The α-cut set of a trapezoidal fuzzy number ã, denoted
by ãα , is defined as [1, 16, 68] ãα = {x ∈ R |μã(x) ≥ α }
for all α ∈ [0, 1]. Every α-cut is a closed interval ãα =
[aL

α , aU
α ] ⊂ �, where aL

α = inf {x ∈ � |μã(x) ≥ α } and
aU
α = sup {x ∈ � |μã(x) ≥ α} for any α ∈ [0, 1]. By (1),

we obtain

ãα =
[
aL
α , aU

α

]
= [αa2 + (1 − α)a1, αa3 + (1 − α)a4]. (2)

The expected interval EI (ã) of a trapezoidal fuzzy number
ã is defined by [1]:

EI (ã) = [E∗(ã), E∗(ã)] =
[∫ 1

0
aL
α dα,

∫ 1

0
aU
α dα

]

. (3)

Based on (2) and (3), we obtain EI (ã) = [
a1+a2

2 ,
a3+a4

2

]
.

2.2 Multiplicative preference relation

Saaty [44] first proposed multiplicative preference relation,
which is widely used. Let X = {x1, x2, ..., xn} be a finite
set of alternatives. Then, a multiplicative preference relation
can be defined as follows.

Definition 2 Let A = (aij )n×n be a matrix. If

aij aji = 1, aii = 1, aij > 0, ∀ i, j = 1, 2, ..., n,

then A is called a multiplicative preference relation, where
aij denotes the preference degree of alternative xi over xj .

In particular, aij = 1 indicates indifference between xi

and xj , aij > 1 indicates that xi is preferred over xj , and
aij < 1 indicates that xj is preferred over xi .

2.3 Multiplicative trapezoidal fuzzy preference relation

Due to the complexity of the decision-making environment,
Buckley [3] extended the analytic hierarchy process (AHP)
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to the fuzzy environment and introduced the MTFPR, which
is defined as follows:

Definition 3 A MTFPR Ã is defined as Ã = (ãij )n×n,
which satisfies

aij1 × aji4 = aij2 × aji3 = aij3 × aji2 = aij4 × aji1 = 1,

ãii = (1, 1, 1, 1),

for all i, j = 1, 2, · · · , n, where ãij = (aij1, aij2, aij3, aij4)

indicates the trapezoidal fuzzy preference degree of the ith
alternative over the j th alternative.

For simplicity, in the following, we take Mn as the set of
all n × n MTFPRs.

In [55], Xia and Chen defined the consistency of
MTFPR, which is an important axiom in the construction of
preference. It can be defined as follows.

Definition 4 A MTFPR Ã = (ãij )n×n is completely
consistent if and only if it satisfies the multiplicative transi-
tivity:

ãij ⊗ ãlk = ãlj ⊗ ãik, i, j, k, l = 1, 2, ..., n. (4)

2.4 The COWGA operator

Yager and Xu [66] developed a continuous ordered
weighted geometric averaging (COWGA) operator, which
is based on the continuous ordered weighted averaging
(COWA) operator and geometric mean.

Definition 5 A continuous ordered weighted geometric
(COWGA) operator is a mapping g: �+ → R+ which has
associated with it a BUM function: Q : [0, 1] → [0, 1] hav-
ing the properties: (1) Q(0) = 0; (2) Q(1) = 1; and (3)
Q(x) ≥ Q(y) if x > y, such that

gQ([a, b]) = b
(a

b

)∫ 1
0 (dQ(y)/dy)ydy

, (5)

where �+ is the set of closed intervals, in which the lower
limits of all closed intervals are positive, R+ is the set of
positive real numbers, and [a, b] is a closed interval in �+.

If λ = ∫ 1
0 Q(y)dy is the attitudinal character of Q,

a general formulation of gQ([a, b]) can be obtained as
follows:

gλ([a, b]) = a1−λbλ.

As we can see from the above, the COWGA operator gλ is a
linear convex exponential combination of a and b based on
the attitudinal character.

3 The logarithm compatibility measure
for MTFPRs

3.1 The logarithm compatibility measure

To begin with, we change the MTFPR into an expected
interval multiplicative preference relation via the α-cut.
Next, the expected interval multiplicative preference rela-
tion is transformed into the expected multiplicative prefer-
ence relation based on the COWGA operator.

Definition 6 Let Ã = (ãij )n×n ∈ Mn be a MTFPR, where
ãij = (aij1, aij2, aij3, aij4). If

aL
ij =

{
E∗(ãij ), i ≤ j

1/E∗(ãj i), i > j
, aU

ij =
{

E∗(ãij ), i ≤ j

1/E∗(ãj i), i > j
,

(6)

then ˜̂
A = ( ˜̂aij )n×n =

([
aL
ij , a

U
ij

])

n×n
is called the expected

interval matrix corresponding to Ã, where E∗(ãij ) =
aij1+aij2

2 , E∗(ãij ) = aij3+aij4
2 .

It can be easily found that the expected interval matrix
satisfies aL

ij × aU
ji = aU

ij × aL
ji = 1, so the expected inter-

val matrix is also called the expected interval multiplicative
preference relation (EIMPR).

Based on Definition 6, we get the expected matrix Â

corresponding to the EIMPR ˜̂
A.

Definition 7 Let Ã = (ãij )n×n ∈ Mn be a MTFPR,

and ˜̂
A = ( ˜̂aij )n×n =

([
aL
ij , a

U
ij

])

n×n
is the EIMPR

of Ã. If âij = gQ

([
E∗

(
ãij

)
, E∗ (

ãij

)]) =
E∗(ãij )

(
E∗(ãij )
E∗(ãij )

)∫ 1
0 (dQ(y)/dy)ydy

, âj i = 1/âij , for all

i ≤ j , then Â = (âij )n×n is called the expected matrix
corresponding to Ã. Obviously, the expected matrix is the
expected multiplicative preference relation (EMPR).

Next, the expected fuzzy preference relation correspond-
ing to MTFPR is defined as follows.

Definition 8 Let Ã = (ãij )n×n ∈ Mn be a MTFPR, where
ãij = (aij1, aij2, aij3, aij4). If for t = 1, 2, 3, 4,

fijt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n2

√
n∏

k=1

n∏

l=1

(
aikt×alj t

alkt

) 1
3
, i < j,

1, i = j,

f −1
ji(5−t), i > j,

(7)

then F̃ = (f̃ij )n×n is called the expected fuzzy preference
relation of Ã, where f̃ij = (fij1, fij2, fij3, fij4).
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Theorem 1 If F̃ is the expected fuzzy preference relation of
MTFPR Ã, then

(1) F̃ = (f̃ij )n×n ∈ Mn;
(2) F̃ = (f̃ij )n×n is consistent.

Proof (1) Based on Definition 8, we can easily find that
F̃ = (f̃ij )n×n ∈ Mn;

(2) If i > j for all t , by (7), we obtain

fijt = 1
/
fji(5−t) = 1

/

n2

√
√
√
√

n∏

k=1

n∏

l=1

(
ajk(5−t) × ali(5−t)

alk(5−t)

) 1
3

= n2

√
√
√
√

n∏

k=1

n∏

l=1

{
1

/[(
ajk(5−t) × ali(5−t)

) /
alk(5−t)

] } 1
3

= n2

√
√
√
√

n∏

k=1

n∏

l=1

(
akjt × ailt

aklt

) 1
3

= n2

√
√
√
√

n∏

k=1

n∏

l=1

(
ailt × akjt

aklt

) 1
3 = n2

√
√
√
√

n∏

k=1

n∏

l=1

(
aikt × alj t

alkt

) 1
3

.

Then, we have

fijt = n2

√
√
√
√

n∏

k=1

n∏

l=1

(
aikt × alj t

alkt

) 1
3

,

frst = n2

√
√
√
√

n∏

k=1

n∏

l=1

(
arkt × alst

alkt

) 1
3

.

It follows that

fijt × frst = n2

√
√
√
√

n∏

k=1

n∏

l=1

(
aikt × alj t

alkt

) 1
3 × n2

√
√
√
√

n∏

k=1

n∏

l=1

(
arkt × alst

alkt

) 1
3

= n2

√
√
√
√

n∏

k=1

n∏

l=1

(
aikt × alj t

alkt

) 1
3

(
arkt × alst

alkt

) 1
3

= n2

√
√
√
√

n∏

k=1

n∏

l=1

(
aikt × alj t

alkt

× arkt × alst

alkt

) 1
3

= n2

√
√
√
√

n∏

k=1

n∏

l=1

(
aikt × alst

alkt

) 1
3

(
arkt × alj t

alkt

) 1
3

= n2

√
√
√
√

n∏

k=1

n∏

l=1

(
arkt × alj t

alkt

) 1
3 × n2

√
√
√
√

n∏

k=1

n∏

l=1

(
aikt × alst

alkt

) 1
3

= frjt × fist .

Therefore, based on Definition 3, F̃ = (f̃ij )n×n is consis-
tent.

Based on theorem 1, we clearly know the expected fuzzy
preference relation is a consistent MTFPR. For all MTF-
PRs, we are able to obtain their expected fuzzy preference

relation, so we measure the consistency of MTFPR by its
expected fuzzy preference relation.

Definition 9 Let Ã = (ãij )n×n ∈ Mn, F̃ = (f̃ij )n×n be the
expected fuzzy preference relation; then,

L − CI (Ã, F̃ ) = 2

n(n − 1)

∑

i<j

(
log âij − log f̂ij

)2
, (8)

is called the logarithm compatibility index of Ã and F̃ ,
where Â = (âij )n×n = (gλ([E∗(ãij ), E

∗(ãij )]))n×n, F̃ =
(f̃ij )n×n = (gλ([E∗(f̃ij ), E

∗(f̃ ij )]))n×n.

It can be seen that the compatibility index L−CI (Ã, F̃ )

measures the average difference between Ã and F̃ , which
considers the risk attitude of a DM based on the COWGA
operator. The DM can choose different parameter λ accord-
ing to his/her risk attitude. When 0 < λ < 0.5, the
DM’s attitude is pessimistic. When 0.5 < λ < 1, the
DM’s attitude is optimistic. When λ = 0.5, the DM’s atti-
tude is neutral. Obviously, the logarithm compatibility index
satisfies the following properties.

Theorem 2 Let Ã = (ãij )n×n ∈ Mn, F̃ = (f̃ij )n×n be as
before. Then,

(1) L − CI (Ã, F̃ ) ≥ 0,
(2) L − CI (Ã, Ã) = 0,
(3) L − CI (Ã, F̃ ) = L − CI (F̃ , Ã).

Theorem 2 indicates that the logarithm compatibility
index is nonnegative, reflexive, and commutative.

Definition 10 Let Ã = (ãij )n×n ∈ Mn, F̃ = (f̃ij )n×n be
as before. If L − CI (Ã, F̃ ) = 0, then Ã and F̃ are perfectly
compatible.

Definition 11 Let Ã = (ãij )n×n ∈ Mn, F̃ = (f̃ij )n×n be as
before. If

L − CI (Ã, F̃ ) ≤ υ, (9)

then Ã and F̃ are of acceptable compatibility, where υ is the
threshold of acceptable compatibility. Based on Ref. [11],
we know that a lack of acceptable compatibility results in
an unsatisfied decision.

As illustrated in [45], based on a different number of
alternatives, we take υ with different values as the threshold
of acceptable compatibility.

Theorem 3 If Ã = (ãij )n×n ∈ Mn and F̃ = (f̃ij )n×n

are perfectly compatible, then Ã and F̃ are of acceptable
compatibility.



A fuzzy group decision making model with trapezoidal fuzzy preference relations 51

Proof The theorem can be obtained by Definitions 10 and
11 immediately.

3.2 Compatibility improving method

In real-world GDM problems, the individual MTFPR is
often of unacceptable compatibility. Thus, reaching an
acceptable compatibility usually requires the decision mak-
ers to modify their initial opinion. Inspired by [4], a basic
procedure for the compatibility control process is depicted
in Fig. 1.

The compatibility-improving process (CIP) to reach an
acceptable compatibility in GDM problems is a dynamic
and iterative discussion process, which is frequently coordi-
nated by a human moderator, who is responsible for guiding
the DMs in the CIP.

Algorithm 1 Input: The initial individual MTFPR Ã =
(ãij )n×n, the threshold α and the parameter θ ∈ (0, 1).

Output: The modified MTFPR Ā and the logarithm
compatibility index.

Step 1. Let Ã0 = (ãij,0)n×n = (ãij )n×n and z = 0.
Where z is the number of iterations.

Step 2. Compute the F̃z by (7) and the logarithm compat-
ibility index L − CI (Ãz, F̃z), where

L − CI
(
Ãz, F̃z

)
= 2

n(n−1)

∑

i<j

(
log

(
gλ

([
E∗

(
ãij

)
, E∗ (

ãij

)]))

− log
(
gλ

([
E∗

(
f̃ij

)
, E∗ (

f̃ ij

)])))2
.

Step 3. If L − CI (Ãz, F̃z) ≤ υ, go to Step 5; otherwise,
go to the next Step.

Step 4. Employ the following strategy to modify the last
matrix Ãz = (ãij,z)n×n.

δij,z = (
log

(
gλ

([
E∗

(
ãij

)
, E∗ (

ãij

)]))

− log
(
gλ

([
E∗

(
f̃ij

)
, E∗ (

f̃ ij

)])))2
.

Let δi0j0,z = max
i<j

δij,z; if i < j , then

ãij,z+1 =
{

(ãij,z)
θ (f̃ij,z)

1−θ , i = i0, j = j0,

ãij,z. otherwise,

else, ãij,z+1 = 1̃ 	 ãj i,z+1; where θ ∈ (0, 1). Let
z = z + 1, and return to Step 2.

Step 5. Let Ā = Ãz. Output Ā and L − CI (Āz, F̄z).
Step 6. End.

Theorem 4 Algorithm 1 is convergent. Thus, assume that
Ã is a MTFPR, θ ∈ (0, 1) is the adjusted parameter, and Ãz

is the modified MTFPR obtained by Algorithm 1; then, we
have L − CI (Ãz+1, F̃z+1) < L − CI (Ãz, F̃z) for each z,
and lim

z→+∞ L − CI (Ãz, F̃z) < υ.

Proof By (5) and (6), we only need to prove that L −
CI (Ãz+1, F̃z+1) < L − CI (Ãz, F̃z). In the following, we
will prove that for i = i0, j = j0,

| log aijt,z+1 − log fijt,z+1| < | log aijt,z − log fijt,z|.
By (5), for i < j , we get

fijt,z+1 = n2

√
√
√
√

n∏

k=1

n∏

l=1

(
aikt,z+1 × alj t,z+1

alkt,z+1

) 1
3

,

and for i = i0, j = j0

aijt,z+1 = (aij t,z)
θ (fij t,z)

1−θ .

Then, we obtain

fi0j0t,z+1 = n2

√
√
√
√

(
ai0j0t,z+1 × ai0j0t,z+1

ai0j0t,z+1

) 1
3

× n2

√
√
√
√

n∏

l �=i0,k �=j0

(
ai0kt,z+1 × alj0t,z+1

alkt,z+1

) 1
3

= n2

√
((

ai0j0t,z

)θ (
fi0j0t,z

)1−θ
) 1

3

Fig. 1 Compatibility-improving
process
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× n2

√
√
√
√

n∏

l �=i0,k �=j0

(
ai0kt,z × alj0t,z

alkt,z

) 1
3

= n2

√
((

ai0j0t,z

)θ (
fi0j0t,z

)1−θ
) 1

3

× n2

√
√
√
√

n∏

k=1,l=1,

(
ai0kt,z × alj0t,z

alkt,z

) 1
3

= (
ai0j0t,z

) θ−1
3n2 × (

fi0j0t,z

) 1−θ

3n2 × fi0j0t,z.

Thus,
∣
∣log ai0j0t,z+1 − log fi0j0t,z+1

∣
∣

=
∣
∣
∣
∣θ log ai0j0t,z + (1 − θ) log fi0j0t,z − θ − 1

3n2
log ai0j0t,z

−1 − θ

3n2
log fi0j0t,z − log fi0j0t,z

∣
∣
∣
∣

=
∣
∣
∣
∣

(

θ + 1 − θ

3n2

)
(
log ai0j0t,z − log fi0j0t,z

)
∣
∣
∣
∣

<
∣
∣log ai0j0t,z − log fi0j0t,z

∣
∣ . (10)

Consequently,

L − CI (Ãz+1, F̃z+1) < L − CI (Ãz, F̃z),

which means that {L − CI (Ãz, F̃z)}z is monotonically
decreasing with a low bound, and then there exists

lim
z→+∞ L − CI (Ãz, F̃z). Based on the proof by the con-

tradiction and monotonicity of {L − CI (Ãz, F̃z)}z, we get
lim

z→+∞ L − CI (Ãz, F̃z) < υ.

By algorithm 1, the individual MTFPR with maximum
compatibility index has a better compatibility index.

3.3 To determine the weights of decision makers
in GDM with MTFPRs

Let D = {d1, d2, ..., dm} be a finite set of DMs and Ã(k) =
(ã

(k)
ij )n×n ∈ Mn be the MTFPR provided by DM dk , k =

1, 2, ..., m; then the collective matrix of Ã(1), Ã(2), ..., Ã(m)

is defined as follows:

Definition 12 [3]. Let Ã(k) = (ã
(k)
ij )n×n ∈ Mn for k =

1, 2, ..., m. If

ãij = m⊗
k=1

(
ã

(k)
ij

)lk
, i, j = 1, 2, ..., n. (11)

then Ã = (ãij )n×n is called the collective matrix of Ã(k),
where L = (l1, l2, ..., lm)T is the weighting vector of
DMs, which satisfies lk ≥ 0 for k = 1, 2, ..., m and
m∑

k=1
lk = 1.

Theorem 5 LetÃ(k) =
(
ã

(k)
ij

)

n×n
∈ Mn, k = 1, 2, ..., m;

then the collective matrix Ã = (ãij )n×n ∈ Mn.

Proof BecauseÃ(k) =
(
ã

(k)
ij

)

n×n
∈ Mn, ã

(k)
ij =

(
a

(k)
ij1, a

(k)
ij2, a

(k)
ij3, a

(k)
ij4

)
, we obtain

a
(k)
ij1 × a

(k)
ji4 = a

(k)
ij2 × a

(k)
ji3 = a

(k)
ij3 × a

(k)
ji2 = a

(k)
ij4 × a

(k)
ji1

= 1, i, j = 1, 2, ..., n, i �= j.

Thus, for i �= j

ãij = m⊗
k=1

(
ã

(k)
ij

)lk = m⊗
k=1

((
a

(k)
ij1, a

(k)
ij2, a

(k)
ij3, a

(k)
ij4

))lk

= m⊗
k=1

((
a

(k)
ij1

)lk
,
(
a

(k)
ij2

)lk
,
(
a

(k)
ij3

)lk
,
(
a

(k)
ij4

)lk
)

,

=
(

m∏

k=1

(
a

(k)
ij1

)lk
,

m∏

k=1

(
a

(k)
ij2

)lk
,

m∏

k=1

(
a

(k)
ij3

)lk
,

m∏

k=1

(
a

(k)
ij4

)lk

)

, i, j =1, 2, ..., n,

which means that

aij1 =
m∏

k=1

(
a

(k)
ij1

)lk
, aij2 =

m∏

k=1

(
a

(k)
ij2

)lk
, aij3 =

m∏

k=1

(
a

(k)
ij3

)lk
, aij4

=
m∏

k=1

(
a

(k)
ij4

)lk
.

Similarly,

ãj i =
(

m∏

k=1

(
a

(k)
ji1

)lk
,

m∏

k=1

(
a

(k)
ji2

)lk
,

m∏

k=1

(
a

(k)
ji3

)lk
,

m∏

k=1

(
a

(k)
ji4

)lk
)

,

i.e.,

aji1 =
m∏

k=1

(
a

(k)
ji1

)lk
, aji2 =

m∏

k=1

(
a

(k)
ji2

)lk
,

aji3 =
m∏

k=1

(
a

(k)
ji3

)lk
, aji4 =

m∏

k=1

(
a

(k)
ji4

)lk
.

Therefore, for i �= j

aij1 × aji4 =
m∏

k=1

(
a

(k)
ij1

)lk ×
m∏

k=1

(
a

(k)
ji4

)lk

=
m∏

k=1

{(
a

(k)
ij1

)lk ×
(
a

(k)
ji4

)lk
}
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=
m∏

k=1

(
a

(k)
ij1 × a

(k)
ji4

)lk =
m∏

k=1

1lk = 1,

aij2 × aji3 =
m∏

k=1

(
a

(k)
ij2

)lk ×
m∏

k=1

(
a

(k)
ji3

)lk

=
m∏

k=1

{(
a

(k)
ij2

)lk ×
(
a

(k)
ji3

)lk
}

=
m∏

k=1

(
a

(k)
ij2 × a

(k)
ji3

)lk =
m∏

k=1

1lk = 1,

aij3 × aji2 =
m∏

k=1

(
a

(k)
ij3

)lk ×
m∏

k=1

(
a

(k)
ji2

)lk

=
m∏

k=1

{(
a

(k)
ij3

)lk ×
(
a

(k)
ji2

)lk
}

=
m∏

k=1

(
a

(k)
ij3 × a

(k)
ji2

)lk =
m∏

k=1

1lk = 1,

aij4 × aji1 =
m∏

k=1

(
a

(k)
ij4

)lk ×
m∏

k=1

(
a

(k)
ji1

)lk

=
m∏

k=1

{(
a

(k)
ij4

)lk ×
(
a

(k)
ji1

)lk
}

=
m∏

k=1

(
a

(k)
ij4 × a

(k)
ji1

)lk =
m∏

k=1

1lk = 1.

It is easy to obtain ãii = (1, 1, 1, 1); thus, Ã =
(ãij )n×n ∈ Mn.

Note that the collective matrix Ã is also called the
collective fuzzy preference relation of Ã(k).

Definition 13 Let Ã(k) = (ã
(k)
ij )n×n be the MTFPR of

DM dk and L = (l1, l2, ..., lm)T be the weighting vec-

tor of DMs, satisfying lk ≥ 0,
m∑

k=1
lk = 1. Assume that

F̃ (k) =
(
f̃

(k)
ij

)

n×n
∈ Mn is the expected fuzzy preference

relations of Ã(k); if

f̃ij = m⊗
k=1

(
f̃

(k)
ij

)lk
, (12)

then F̃ = (f̃ij )n×n is called a collective expected fuzzy
preference relation of F̃ (k).

By Definition 3 and 13, the collective expected fuzzy
preference relation F̃ ∈ Mn.

Definition 14 Let Ã(k) ∈ Mn, F̃ (k) ∈ Mn, Ã and F̃ be as
before.

L − CI (Ã(k), F̃ (k)) = 2

n(n − 1)

∑

i<j

(
log â

(k)
ij − log f̂

(k)
ij

)2

is called the individual logarithm compatibility index of DM
dk , and

L − CI (Ã, F̃ ) = 2

n(n − 1)

∑

i<j

(
log âij − log f̂ij

)2

is called the group logarithm compatibility index.

Theorem 6 Let Ã(k) =
(
ã

(k)
ij

)

n×n
∈ Mn, and F̃ (k) =

(
f̃

(k)
ij

)

n×n
be the expected preference relation of Ã(k); and

let Ã = (ãij )n×n ∈ Mn and F̃ = (f̃ij )n×n ∈ Mn be as
before. If L − CI (Ã(k), F̃ (k)) ≤ υ, then

L − CI (Ã, F̃ ) ≤ υ. (13)

Proof Because L − CI (Ã(k), F̃ (k)) ≤ υ, we obtain

L − CI (Ã, F̃ ) = 2

n(n − 1)

∑

i<j

(
log âij − log f̂ij

)2

= 2

n(n − 1)

∑

i<j

⎛

⎝log

(
m∏

k=1

â
(k)
ij

)lk

− log

(
m∏

k=1

f̂
(k)
ij

)lk
⎞

⎠

2

= 2

n(n − 1)

∑

i<j

(
m∑

k=1

lk log â
(k)
ij −

m∑

k=1

lk log f̂
(k)
ij

)2

= 2

n(n − 1)

∑

i<j

(
m∑

k=1

lk(log â
(k)
ij − log f̂

(k)
ij )

)2

≤ 2

n(n − 1)

∑

i<j

m∑

k=1

lk

(
log â

(k)
ij − log f̂

(k)
ij

)2

= 2

n(n − 1)

m∑

k=1

∑

i<j

lk

(
log â

(k)
ij − log f̂

(k)
ij

)2

=
m∑

k=1

lk

⎛

⎝
2

n(n − 1)

∑

i<j

(
log â

(k)
ij − log f̂

(k)
ij

)2

⎞

⎠

≤
m∑

k=1

lkυ = υ.

Therefore, the weights of DMs may depend on the com-
patibility index of Ã and F̃ . To determine the weights of
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DMs in group decision making with MTFPRs based on
α-cut and the COWGA operator, we can minimize the

compatibility index of Ã and F̃ . From Definition 7, it
follows that

L − CI (Ã, F̃ ) = 2

n(n − 1)

∑

i<j

(
log âij − log f̂ij

)2

= 2

n(n − 1)

∑

i<j

⎛

⎝log

(
m∏

k=1

â
(k)
ij

)lk

− log

(
m∏

k=1

f̂
(k)
ij

)lk
⎞

⎠

2

= 2

n(n − 1)

∑

i<j

(
m∑

k=1

lk log â
(k)
ij −

m∑

k=1

lk log f̂
(k)
ij

)2

= 2

n(n − 1)

∑

i<j

(
m∑

k=1

lk

(
log â

(k)
ij − log f̂

(k)
ij

)
)2

= 2

n(n − 1)

∑

i<j

⎛

⎝
m∑

k=1

lk

⎛

⎝log gλ

⎛

⎝

⎡

⎣
a

(k)
ij1 + a

(k)
ij2

2
,
a

(k)
ij3 + a

(k)
ij4

2

⎤

⎦

⎞

⎠

− log gλ

⎛

⎝

⎡

⎣
f

(k)
ij1 + f

(k)
ij2

2
,
f

(k)
ij3 + f

(k)
ij4

2

⎤

⎦

⎞

⎠

⎞

⎠

⎞

⎠

2

=
m∑

k1=1

m∑

k2=1

lk1 lk2

⎛

⎜
⎝

2

n(n − 1)

∑

i<j

⎛

⎜
⎝log

⎛

⎜
⎝

⎛

⎝
a

(k1)
ij1 + a

(k1)
ij2

2

⎞

⎠

1−λ ⎛

⎝
a

(k1)
ij3 + a

(k1)
ij4

2

⎞

⎠

λ
⎞

⎟
⎠

− log

⎛

⎜
⎝

⎛

⎝
f

(k1)
ij1 + f

(k1)
ij2

2

⎞

⎠

1−λ ⎛

⎝
f

(k1)
ij3 + f

(k1)
ij4

2

⎞

⎠

λ
⎞

⎟
⎠

⎞

⎟
⎠

⎛

⎜
⎝log

⎛

⎜
⎝

⎛

⎝
a

(k2)
ij1 + a

(k2)
ij2

2

⎞

⎠

1−λ ⎛

⎝
a

(k2)
ij3 + a

(k2)
ij4

2

⎞

⎠

λ
⎞

⎟
⎠

− log

⎛

⎜
⎝

⎛

⎝
f

(k2)
ij1 + f

(k2)
ij2

2

⎞

⎠

1−λ ⎛

⎝
f

(k2)
ij3 + f

(k2)
ij4

2

⎞

⎠

λ
⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠ . (14)

Let � = (δk1k2)m×m, where

δk1k2 = 2

n(n − 1)

∑

i<j

⎛

⎜
⎝log

⎛

⎜
⎝

⎛

⎝
a

(k1)
ij1 + a

(k1)
ij2

2

⎞

⎠

1−λ ⎛

⎝
a

(k1)
ij3 + a

(k1)
ij4

2

⎞

⎠

λ
⎞

⎟
⎠− log

⎛

⎜
⎝

⎛

⎝
f

(k1)
ij1 + f

(k1)
ij2

2

⎞

⎠

1−λ ⎛

⎝
f

(k1)
ij3 + f

(k1)
ij4

2

⎞

⎠

λ
⎞

⎟
⎠

⎞

⎟
⎠

⎛

⎜
⎝log

⎛

⎜
⎝

⎛

⎝
a

(k2)
ij1 + a

(k2)
ij2

2

⎞

⎠

1−λ ⎛

⎝
a

(k2)
ij3 + a

(k2)
ij4

2

⎞

⎠

λ
⎞

⎟
⎠ − log

⎛

⎜
⎝

⎛

⎝
f

(k2)
ij1 + f

(k2)
ij2

2

⎞

⎠

1−λ ⎛

⎝
f

(k2)
ij3 + f

(k2)
ij4

2

⎞

⎠

λ
⎞

⎟
⎠

⎞

⎟
⎠

Equation (14) is then rewritten as

L − CI (Ã, F̃ ) = LT �L. (15)

Thus, the optimal model for determining weights of experts
based on the logarithm compatibility index of MTFPRs is
expressed as follows:

Model (1) min L − CI (Ã, F̃ ) = LT �L, (16)

s.t.

⎧
⎨

⎩

m∑

k=1
lk = 1,

lk ≥ 0, k = 1, 2, ..., m.
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Let R = (1, 1, ..., 1)Tm×1; (15) can then be rewritten as
follows:

min L − CI (Ã, F̃ ) = LT �L (17)

s.t.

{
RT L = 1,

L ≥ 0.

If we don’t consider � ≥ 0, we have

Model(2) min L − CI (Ã, F̃ ) = LT �L

s.t.RT L = 1. (18)

Theorem 7 If Ã and F̃ are not perfectly compatible, the
solution to the model (2) is

L∗ = �−1R

RT �−1R
. (19)

Proof By (14), � is a symmetrical matrix. If Ã and F̃ are
not perfectly compatible, thenÃ �= F̃ ; thus, there exists
i0, j0 ∈ {1, 2, ..., n} , i0 �= j0 satisfying ãi0j0 �= f̃i0j0 , where

ãi0j0 = (ai0j01, ai0j02, ai0j03, ai0j04),

f̃i0j0 = (fi0j01, fi0j02, fi0j03, fi0j04),

which means that
(

log gλ

([
ai0j01 + ai0j02

2
,
ai0j03 + ai0j04

2

])

− log gλ

([
fi0j01 + fi0j02

2
,
fi0j03 + fi0j04

2

]))2

> 0,

it follows that (log âi0j0 − log f̂i0j0)
2 > 0. Thus, L −

CI (Ã, F̃ ) > 0, which means that � is a positive definite
and invertible matrix, and �−1 is also a positive defi-
nite matrix. Then, we construct the Lagrange function as
follows.

J (L, λ) = LT �L + μ(RT L − 1), (20)

where μ is a Lagrange multiplier. According to the nec-
essary conditions of the existence of extremum, by taking
partial derivatives equal to zero with respect to L and μ, we
can get
{

∂J (L,μ)
∂L

= 0,
∂J (L,μ)

∂μ
= 0.

Then,
{

2�L + μR = 0,

RT L − 1 = 0.
(21)

By solving (19), we have

L∗ = �−1R

RT �−1R
.

Because ∂2J (L,μ)

∂L2 = 2� is a positive definite matrix,

J (L, μ) is a strictly convex function. Thus, L∗ = �−1R

RT �−1R
is the unique optimal solution to model (2).

4 GDM with MTFPRs based on compatibility
measure

In this section, the compatibility proposed in this paper
will be applied to GDM problems with MTFPRs, as clearly
shown in Fig. 2.

Consider a GDM problem. Let D = {d1, d2, ..., dm}
be the set of DMs and S = {s1, s2 , ..., sn} be the set of
alternatives. Each DM provides his/her own decision matrix
Ã(k) = (ã

(k)
ij )n×n, which is a MTFPR provided by the dk .

This method is shown as follows.

Step 1. Calculate the expected fuzzy preference relations
F̃ (k)corresponding to MTFPRs Ã(k).

Step 2. Compute the logarithm compatibility index L −
CI (Ã(k), F̃ (k)), where

L−CI
(
Ãz, F̃z

)
= 2

n(n − 1)

∑

i<j

(
log

(
gλ

([
E∗

(
ã

(k)
ij

)
, E∗ (

ã
(k)
ij

)]))

− log
(
gλ

([
E∗

(
f̃

(k)
ij

)
, E∗ (

f̃
(k)
ij

)])))2

If the logarithm compatibility index L −
CI (Ã(k), F̃ (k)) > υ, we use Algorithm 1 to
adjust the logarithm compatibility index to reach
acceptable compatibility.

Step 3. Calculate the optimal weights for each DM.
Utilize model (1) to determine the optimal

weights for each DM, which is denoted as L∗ =
(l∗1 , l∗2 , ..., l∗m)T .

Step 4. Calculate the collective multiplicative pref-
erence relation [6] Â = (âij )n×n =(

m∏

k=1
(â

(k)
ij )lk

)

n×n

based on the optimal weights of

DMs.
Step 5. Calculate the expected values āi using the follow-

ing formula:

āi =
⎛

⎝
n∏

j=1

aij

⎞

⎠

1/n

, (22)

Step 6. Rank the expected values in descending order.
Step 7. Rank all the alternatives and select the best one(s)

in accordance with the ranking of expected values.
Step 8. End.
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Fig. 2 A GDM process with
MTFPRs
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5 Illustrative Example

5.1 The GDM problem

The Sing China (Zhong Guo Xin Ge Sheng), previously
known as The Voice of China, is a Chinese reality televi-
sion competition, airing on Zhejiang Television. One of the
important premises of the show is the quality of the singing
talent. Four coaches, themselves popular performing artists,
train the talents in their group and occasionally perform
with them. Talents are selected in blind auditions, where the
coaches cannot see, but only hear the candidates’ demos.

Blind auditions..

The first televised stage is the blind auditions, where
competitors sing in front of the official coaches. All coaches
will be sitting on a chair that is turned back from the stage.
The coaches will first judge and only judge by the power,
clarity, type and uniqueness of the artists singing prowess. If
they like what they hear and want to mentor the artist for the
next stage, they will push a button by their chair that would

turn the chair around to face the stage for the first time and
also see the artists for the first time after they sing to avoid
any undue bias according to characteristics and personality.
If more than one coach turns around, the power to pick goes
to the artist who will be given the chance to pick his/her
coach of choice. If no coach turns his/her chair the audition-
ing artist’s journey ends. At the end, each of the coaches will
have a certain number of artists in his or her team who will
be advancing to the next round.

The Battle rounds..

The second stage, ‘the Battle rounds’, is where two artists
are mentored and then developed by their respective coach.
The coaches of the team will “dedicate themselves to devel-
oping their artists, giving them advice, and sharing the
secrets of their success in the music industry”. Every mem-
ber of their team battles against another member from their
team. They sing the same song simultaneously, while their
coach decides who should continue in the competition. The
coaches have to choose ten extraordinary participants from
the four individual “battles”, and take them to the live round.
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Table 3 The linguistic variables and trapezoidal fuzzy numbers for
the evaluation

Linguistic variables Abbreviation Trapezoidal
fuzzy number

Reciprocal Absolutely important RA (1/9,1/9,2/17,1/8)

Intermediate RA and RV IRARV (1/9,2/17,2/15,1/7)

Reciprocal Very strongly
important

RV (1/8,2/15,2/13,1/6)

Intermediate RV and RE IRVRE (1/7,2/13,2/11,1/5)

Reciprocal Essentially important RE (1/6,2/11,2/9,1/4)

Intermediate RE and RW IRERW (1/5,2/9,2/7,1/3)

Reciprocal Weakly important RW (1/4,2/7,2/5,1/2)

Intermediate RW and EI IRWEI (1/3,2/5,2/3,1)

Equally important EI (1,1,1,1)

Intermediate WI and EI IWIEI (1,3/2,5/2,3)

Weakly important WI (2,5/2,7/2,4)

Intermediate WI and ES IWIES (3, 7/2,9/2,5)

Essentially important ES (4,9/2,11/2,6)

Intermediate ES and VS IESVS (5,11/2,13/2,7)

Very strongly important VS (6,13/2,15/2,8)

Intermediate VS and AI IVSAI (7,15/2,17/2,9)

Absolutely important AI (8,17/2,9,9)

Live shows..

The final stage, dubbed as the ‘Live shows’, is where
the surviving combatants perform in front of the coaches,
audience and broadcast live, once held in the National Sta-
dium in Beijing. Each coach has four artists in their team
to begin with and the artists will go head-to-head in the
competition to win the public votes. These will determine
which artist advances to the final eight. The remaining three
artists’ future in the show will be determined by the coaches,
choosing who will progress.

The final eight artists will compete in a live broadcast.
However, the coaches will have a 50/50 say with the audi-
ence and the public in deciding which artists move on to the
’final four’ phase. In the latter, each coach will have one

Table 4 The linguistic assessments presented by d1

C1 C2 C3 C4

C1 EI RE WI IRERW

C2 ES EI VS WI

C3 RW RV EI IRVRE

C4 IWIES RW IESVS EI

Table 5 The linguistic assessments presented by d2

C1 C2 C3 C4

C1 EI ES WI IESVS

C2 RE EI ES RW

C3 RW RE EI WI

C4 IRVRE WI RW EI

member who will continue. The final (the winner round)
will be decided upon by the public vote. Throughout the
final the coaches will frequently perform with their artists.
The winner will be crowned The Sing China.

In a blind audition, there are four coaches turned around
to the same competitor, so this competitor should select
his/her best coach. Based on his/her friends and his/her own
opinion, he/she would choose the best coach from Jay Chou,
Ying Na, Feng Wang, and Harlem Yu. Let C1 be Jay Chou,
C2 be Ying Na, C3 be Feng Wang, and C4 be Harlem Yu. To
make the result more objective and more reasonable, three
friends (d1, d2, d3) of competitor (d4) and competitor him-
self/herself use the linguistic variables (shown in Table 3
[71]) to construct their linguistic fuzzy preference relations,
which are shown in Tables 4, 5, 6 and 7.

The linguistic assessments given by DMs are transformed
into MTFPRs Ã(k)(k = 1, 2, 3, 4). They are shown as
follows:

Ã(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(1, 1, 1, 1)
(

1
6 , 2

11 , 2
9 , 1

4

) (
2, 5

2 , 7
2 , 4

) (
1
5 , 2

9 , 2
7 , 1

3

)

(
4, 9

2 , 11
2 , 6

)
(1, 1, 1, 1)

(
6, 13

2 , 15
2 , 8

) (
2, 5

2 , 7
2 , 4

)

(
1
4 , 2

7 , 2
5 , 1

2

) (
1
8 , 2

15 , 2
13 , 1

6

)
(1, 1, 1, 1)

(
1
7 , 2

13 , 2
11 , 1

5

)

(
3, 7

2 , 9
2 , 5

) (
1
4 , 2

7 , 2
5 , 1

2

) (
5, 11

2 , 13
2 , 7

)
(1, 1, 1, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ã(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(1, 1, 1, 1)
(

4, 9
2 , 11

2 , 6
) (

2, 5
2 , 7

2 , 4
) (

5, 11
2 , 13

2 , 7
)

(
1
6 , 2

11 , 2
9 , 1

4

)
(1, 1, 1, 1)

(
4, 9

2 , 11
2 , 6

) (
1
4 , 2

7 , 2
5 , 1

2

)

(
1
4 , 2

7 , 2
5 , 1

2

) (
1
6 , 2

11 , 2
9 , 1

4

)
(1, 1, 1, 1)

(
2, 5

2 , 7
2 , 4

)

(
1
7 , 2

13 , 2
11 , 1

5

) (
2, 5

2 , 7
2 , 4

) (
1
4 , 2

7 , 2
5 , 1

2

)
(1, 1, 1, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ã(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(1, 1, 1, 1)
(

2, 5
2 , 7

2 , 4
) (

1
4 , 2

7 , 2
5 , 1

2

) (
1
3 , 2

5 , 2
3 , 1

)

(
1
4 , 2

7 , 2
5 , 1

2

)
(1, 1, 1, 1)

(
1
6 , 2

11 , 2
9 , 1

4

) (
4, 9

2 , 11
2 , 6

)

(
2, 5

2 , 7
2 , 4

) (
4, 9

2 , 11
2 , 6

)
(1, 1, 1, 1)

(
1
7 , 2

13 , 2
11 , 1

5

)

(
1, 3

2 , 5
2 , 3

) (
1
6 , 2

11 , 2
9 , 1

4

) (
5, 11

2 , 13
2 , 7

)
(1, 1, 1, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ã(4) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(1, 1, 1, 1)
(

1
5 , 2

9 , 2
7 , 1

3

) (
3, 7

2 , 9
2 , 5

) (
4, 9

2 , 11
2 , 6

)

(
3, 7

2 , 9
2 , 5

)
(1, 1, 1, 1)

(
1
3 , 2

5 , 2
3 , 1

) (
4, 9

2 , 11
2 , 6

)

(
1
5 , 2

9 , 2
7 , 1

3

) (
1, 3

2 , 5
2 , 3

)
(1, 1, 1, 1)

(
1
5 , 2

9 , 2
7 , 1

3

)

(
1
6 , 2

11 , 2
9 , 1

4

) (
1
6 , 2

11 , 2
9 , 1

4

) (
3, 7

2 , 9
2 , 5

)
(1, 1, 1, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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Step 1. Calculate the initial expected fuzzy preference
relations of Ã(1), Ã(2), Ã(3)and Ã(4) by (7); then,
we obtain F̃ (k)(k = 1, 2, 3, 4) as follows:

F̃ (1) =

⎡

⎢
⎢
⎣

(1, 1, 1, 1) (0.5192, 0.5326, 0.5623, 0.5796) (1.1641, 1.2137, 1.2995, 1.3386) (1.5577, 1.5920, 1.6660, 1.7108)

(1.7255, 1.7785, 1.8775, 1.9260) (1, 1, 1, 1) (0.9135, 0.9281, 0.9585, 0.9736) (2.1739, 2.2437, 2.3473, 2.3819)

(0.7471, 0.7695, 0.8239, 0.8591) (0.4198, 0.4260, 0.4457, 0.4600) (1, 1, 1, 1) (0.5872, 0.5989, 0.6322, 0.6554)

(1.2110, 1.2538, 1.3355, 1.3771) (0.6805, 0.6941, 0.7224, 0.7374) (1.5258, 1.5817, 1.6697, 1.7031) (1, 1, 1, 1)

⎤

⎥
⎥
⎦ ,

F̃ (2) =

⎡

⎢
⎢
⎣

(1, 1, 1, 1) (1.4897, 1.5469, 1.6334, 1.6638) (1.5409, 1.6063, 1.7154, 1.7627) (1.5699, 1.6334, 1.7395, 1.7855)

(0.6011, 0.6122, 0.6465, 0.6713) (1, 1, 1, 1) (0.9760, 1.0091, 1.0807, 1.1229) (0.9943, 1.0261, 1.0958, 1.1374)

(0.5673, 0.5829, 0.6226, 0.6490) (0.8906, 0.9253, 0.9910, 1.0246) (1, 1, 1, 1) (0.9385, 0.9771, 1.0553, 1.0996)

(0.5601, 0.5749, 0.6122, 0.6370) (0.8792, 0.9126, 0.9746, 1.0057) (0.9094, 0.9476, 1.0235, 1.0656) (1, 1, 1, 1)

⎤

⎥
⎥
⎦ ,

F̃ (3) =

⎡

⎢
⎢
⎣

(1, 1, 1, 1) (0.9529, 0.9925, 1.0813, 1.1388) (0.8013, 0.8284, 0.9025, 0.9576) (0.8208, 0.8519, 0.9418, 1.0145)

(0.8781, 0.9248, 1.0076, 1.0494) (1, 1, 1, 1) (0.8013, 0.8146, 0.8552, 0.8825) (0.8208, 0.8378, 0.8923, 0.9349)

(1.0443, 1.1080, 1.2072, 1.2480) (1.1332, 1.1694, 1.2276, 1.2480) (1, 1, 1, 1) (0.9760, 1.0038, 1.0691, 1.1118)

(0.9857, 1.0619, 1.1738, 1.2184) (1.0696, 1.1206, 1.1936, 1.2184) (0.8994, 0.9353, 0.9963, 1.0246) (1, 1, 1, 1)

⎤

⎥
⎥
⎦ .

F̃ (3) =

⎡

⎢
⎢
⎣

(1, 1, 1, 1) (0.8704, 0.9098, 0.9752, 1.0047) (1.2664, 1.3120, 1.4123, 1.4746) (1.2733, 1.3027, 1.3607, 1.3871)

(0.9954, 1.0254, 1.0991, 1.1489) (1, 1, 1, 1) (1.3215, 1.3779, 1.5156, 1.6160) (1.3286, 1.3681, 1.4603, 1.5201)

(0.6781, 0.7081, 0.7622, 0.7896) (0.6188, 0.6598, 0.7258, 0.7567) (1, 1, 1, 1) (0.9052, 0.9447, 1.0127, 1.0448)

(0.7209, 0.7349, 0.7676, 0.7854) (0.6578, 0.6848, 0.7309, 0.7526) (0.9571, 0.9875, 1.0585, 1.1047) (1, 1, 1, 1)

⎤

⎥
⎥
⎦ .

Step 2. Without loss of generality, we take Q(y) = y, and
then λ = ∫ 1

0 Q(y)dy = 1
2 . By (8), we calculate the

logarithm compatibility index L−CI (Ã(k), F̃ (k))

of each individual MTFPRs Ã(k) and its expected
fuzzy preference relations F̃ (k):

L − CI
(
Ã(1), F̃ (1)

)
= 1.0660, L − CI

(
Ã(2), F̃ (2)

)

= 1.3303,

L − CI
(
Ã(3), F̃ (3)

)
= 1.7477, L − CI

(
Ã(4), F̃ (4)

)

= 1.4705.

We take the threshold value υ = 1.053, and
we can then see that all the MTFPRs and their
expected fuzzy preference relations are not of
acceptable compatibility. Thus, we need to carry
out Algorithm 1 to adjust each individual MTFPR
Ã(k) to satisfy L−CI (Ã(k), F̃ (k)) < υ. By setting
parameter θ = 0.6, the result of the iterative pro-
cess is shown in Table 8, and the final logarithm
compatibility indexes are as follows:

L − CI
(
Ã(1), F̃ (1)

)
= 0.9607,

× L − CI
(
Ã(2), F̃ (2)

)
= 0.9373,

L − CI
(
Ã(3), F̃ (3)

)
= 1.0403,

× L − CI
(
Ã(4), F̃ (4)

)
= 0.9449.

Step 3. Utilize model (1) to determine the optimal weights
of each DM, which are shown in the following:

l∗1 = 0.06, l∗2 = 0.47, l∗3 = 0.10, l∗4 = 0.37.

Step 4. Calculate the collective multiplicative preference

relation Â = (âij )n×n =
(

m∏

k=1
(â

(k)
ij )lk

)

n×n

based

on the optimal weights of DMs.

Â =

⎡

⎢
⎢
⎣

1.0000 1.5679 2.6266 2.8597
0.6378 1.0000 1.2172 1.0676
0.3807 0.8216 1.0000 1.0101
0.3497 0.9367 0.9900 1.0000

⎤

⎥
⎥
⎦ .

Step 5. From the collective multiplicative preference rela-
tion Â, we obtain the expected values of the
preference degree by (22).

ā1 = 1.8525, ā2 = 0.9541, ā3 = 0.7497, ā4 = 0.7546.

Step 6. The results of āi (i = 1, 2, 3, 4) are ranked in
descending order as follows:

ā1 > ā2 > ā4 > ā3.

Step 7. Rank all the alternatives si(i = 1, 2, 3, 4) in
accordance with the āi (i = 1, 2, 3, 4), and we
have

C1 � C2 � C4 � C3.

Note that “�” means preferred to.
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Table 6 The linguistic assessments presented by d3

C1 C2 C3 C4

C1 EI WI RW IRWEI

C2 RW EI RE ES

C3 WI ES EI IRVRE

C4 IWIEI RE IESVS EI

Thus, the most desirable coach is Jay Chou (C1) in this
GDM problem. The group logarithm compatibility index
is L − CI (Ã, F̃ ) = 0.1791, and the individual logarithm
compatibility index are shown as follows:

L − CI (Ã(1), F̃ (1)) = 0.9607,

L − CI (Ã(2), F̃ (2)) = 0.9373,

L − CI (Ã(3), F̃ (3)) = 1.0403,

L − CI (Ã(4), F̃ (4)) = 0.9449.

Then, we have L − CI (Ã(k), F̃ (k)) ≤ υ = 1.053 for k =
1, 2, 3, 4. We can see that the group logarithm compatibility
index is less than each individual logarithm compatibility
index, i.e., L − CI (Ã, F̃ ) ≤ L − CI (Ã(k), F̃ (k)) for all k.
Therefore, we obtain that the group logarithm compatibility
index is superior to the individual logarithm compatibility
index.

Afterward, we perform an analysis to determine how the
different weights of DMs may affect the compatibility index
and what role the different attitude character λ plays in the
problem.

Furthermore, to analyze the role of the attitude charac-
ter λ in this GDM problem, we consider λ ∈ [0, 1] with
different values given by the DMs. The weights of DMs
and different values λ are shown in Fig. 3, and the results
āi (i = 1, 2, 3, 4) are shown in Fig. 4.

It is apparent from Fig. 3 that l1, l2 and l3 always increase
as λ increases when λ ∈ [0, 0.4], but l4 decreases when
λ ∈ [0, 0.4]. This tendency also shows when λ ∈ [0.5, 0.9].
When λ ∈ [0.4, 0.5], l4 is monotonically increasing, l1,
l2 and l3 all are monotonically decreasing as λ increases.
And when λ ∈ [0.9, 1], l1 and l4 decrease and l2 and l3
increase as λ increases. Moreover, Fig. 4 indicates that the
final choice depends on the attitude parameter λ that is used.
However, it seems that the coach C1 is the best choice.

Table 7 The linguistic assessments presented by d4

C1 C2 C3 C4

C1 EI IRERW IWIES ES

C2 IWIES EI IRWEI ES

C3 IRERW IWIEI EI IRERW

C4 RE RE IWIES EI

Table 8 Logarithm compatibility index (L-CI) and the number of
iterations (z) for Ã(k)(k = 1, 2, 3, 4)

Ã(1) Ã(2) Ã(4) Ã(4)

z L-CI z L-CI z L-CI z L-CI

1 0.9607 1 1.3812 1 1.2749 1 1.2691

2 0.9373 2 1.0403 2 1.0836

3 0.9449

It is also noteworthy to take into account the DM weights
determined under different λ and θ . The concrete results are
shown in Figs. 5, 6, 7 and 8.

Based on Figs. 5, 6, 7 and 8, l1, l2, l3 and l4 all show dif-
ferent degrees of fluctuation with different λ and θ . It shows
that the logarithm compatibility based on the COWGA oper-
ator are effective at deriving the optimal DMs’ weights,
which will be used in the aggregation phase.

5.2 Comparison with other methods

In this subsection, we will make comparisons to validate the
feasibility of the proposed GDM method with MTFPRs.

5.2.1 Comparison analysis with the expected value
of the fuzzy number

Based on the expected interval of the fuzzy number,
Heilpren [29] proposed the expected value of the fuzzy
number, which is denoted byEV (ã), i.e. EV (ã) = [E∗(ã)+
E∗(ã)]/2, where E∗(ã) and E∗(ã) are defined as before.
To perform a comparison, we use the expected value of the
trapezoidal fuzzy number, and then we obtain the ordinary
multiplicative preference relations as follows:




A(1) =

⎡

⎢
⎢
⎣

1.0000 0.2052 3.0000 0.2603
4.8738 1.0000 7.0000 3.0000
0.3333 0.1429 1.0000 0.1696
3.8415 0.3333 5.8952 1.0000

⎤

⎥
⎥
⎦ ,




A(2) =

⎡

⎢
⎢
⎣

1.0000 5.0000 3.0000 6.0000
0.2000 1.0000 5.0000 0.3589
0.3333 0.2000 1.0000 3.0000
0.1667 2.7861 0.3333 1.0000

⎤

⎥
⎥
⎦ ,




A(3) =

⎡

⎢
⎢
⎣

1.0000 3.0000 0.3589 0.6000
0.3333 1.0000 0.2052 5.0000
2.7861 4.8738 1.0000 0.1696
1.6667 0.2000 5.8952 1.0000

⎤

⎥
⎥
⎦ ,




A(4) =

⎡

⎢
⎢
⎣

1.0000 0.2603 4.0000 5.0000
3.8415 1.0000 0.6000 5.0000
0.2500 1.6667 1.0000 0.2603
0.2000 0.2000 3.8415 1.0000

⎤

⎥
⎥
⎦ .
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Fig. 3 Weights of DMs with
different λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



l k

l1
l2
l3
l4

Here, we omit the characteristic preference relations



W(k). By using Model (1) or (19), we obtain the optimal
DM weights as follows:

l1 = 0.2146, l2 = 0.5295, l3 = 0.1534, l4 = 0.1025.

Then we have the collective multiplicative preference rela-
tion, which is omitted here. Using (22), we obtain:

ā1 = 1.6870, ā2 = 1.1436, ā3 = 0.6087, ā4 = 0.8516.

Thus, we have C1 � C2 � C4 � C3.

As we can see, the decision is the same as the proposed
method. Compared to the method with the expected values
of the fuzzy number, we observe that:

(1) The proposed method uses the COWGA operator
rather than the expected value of the fuzzy num-
ber. The former is more effective in aggregating
information. The latter is a simple mean, which
may cause a loss of information in the aggregation
process.

Fig. 4 Values āi with different λ
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Fig. 5 The weight of d1
determined by different λ and θ
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(2) The proposed method considers the risk attitudes of
DMs, which makes the decision more reasonable and
humanized in the GDM problem.

(3) We can obtain the optimal DM weights, which is
objective and rational by using the optimal model
based on the criterion of minimizing the group loga-
rithm compatibility index.

5.2.2 Comparison analysis with the existing method using
the interval multiplicative fuzzy preference relation

To further illustrate the effectiveness of the proposed
method in this paper, trapezoidal fuzzy numbers are trans-
formed into interval fuzzy numbers by combining their
lower and upper bounds. The values of the illustrated exam-
ple that have been converted are shown as follows.

˜̃
A(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[1, 1]
[

1
6 , 1

4

]
[2, 4]

[
1
5 , 1

3

]

[4, 6] [1, 1] [6, 8] [2, 4][
1
4 , 1

2

] [
1
8 , 1

6

]
[1, 1]

[
1
7 , 1

5

]

[3, 5]
[

1
7 , 1

5

]
[5, 7] [1, 1]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

˜̃
A(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[1, 1] [4, 6] [2, 4] [5, 7][
1
6 , 1

4

]
[1, 1] [4, 6]

[
1
4 , 1

2

]

[
1
4 , 1

2

] [
1
6 , 1

4

]
[1, 1] [2, 4]

[
1
7 , 1

5

]
[2, 4]

[
1
4 , 1

2

]
[1, 1]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

˜̃
A(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

[1, 1] [2, 4]
[

1
4 , 1

2

] [
1
3 , 1

]

[
1
4 , 1

2

]
[1, 1]

[
1
6 , 1

4

]
[4, 6]

[2, 4] [4, 6] [1, 1]
[

1
7 , 1

5

]

[1, 3]
[

1
6 , 1

4

]
[5, 7] [1, 1]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

˜̃
A(4) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

[1, 1]
[

1
5 , 1

3

]
[3, 5] [4, 6]

[3, 5] [1, 1]
[

1
3 , 1

]
[4, 6]

[
1
5 , 1

3

]
[1, 3] [1, 1]

[
1
5 , 1

3

]

[
1
6 , 1

4

] [
1
6 , 1

4

]
[3, 5] [1, 1]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The priority vectors of the ˜̃
A(k) for k = 1, 2, 3, 4 can be gen-

erated using method [3], and the method of ranking interval
numbers is given by literature [62]. Then, we utilize the
method proposed by Wang, Chen and Zhou [50]:

CIWang(
˜̃
A,

˜̃
W)= 1

2n2

n∑

i=1

n∑

j=1

(∣
∣
∣log aL

ij −log wL
ij

∣
∣
∣ +

∣
∣
∣log aU

ij − log wU
ij

∣
∣
∣

)
.

Finally, we get C2 � C4 � C1 � C3. This is different
from the results of our method. Compared to the method
developed in [50], we observe that:

(1) An iterative and convergent algorithm is proposed to
improve the compatibility of MTFPR in this paper, but
it was ignored in [50].

(2) CIWang can be seen as the sum of the logarithm abso-
lute deviation of preference relations, which is based
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on the two endpoints of each interval. That is to say,
CIWang only depends on the two simple endpoints
of each interval rather than the whole interval, which
is very different from the approach developed in this
paper.

(3) The proposed method considers the risk attitude of
DMs, which makes the decision more reasonable in the
GDM problem.

On the other hand, Wu et al. [53] used induced continuous
ordered weighted geometric operators to solve GDM prob-
lems with interval multiplicative preference relations. By
using this approach, the alternative weights are generated
by the geometric mean, and the global preference relation
degrees zi(i = 1, 2, 3, 4) of the alternatives are calculated
as follows:

z1 = 0.8105; z2 = 2.5259; z3 = 0.3596; z4 = 1.3583.

Therefore, z2 > z4 > z1 > z3, we get C2 � C4 � C1 � C3.
It can be seen that the ranking based on the method pro-

posed by Wu et al. is different from the result by using the

method proposed in this paper. Compared to the method in
[53], we observe that:

(1) The logarithm compatibility index of MTFPRs used in
this paper are more suitable for expressing the evalua-
tion information of DMs because they can be extended
to other environments and are more flexible.

(2) The proposed method in this paper starts with lin-
guistic variables rather than intervals, which is very
different from the approach developed in [53].

5.2.3 Comparison analysis with the existing method using
the multiplicative trapezoidal fuzzy preference relations

In order to verify our method, we will use the method pre-
sented by Wu et al. [54]. All parameters are the same as the
literature [54], and the main results are shown as follows.

(1) Compute the adjusted multiplicative trapezoidal fuzzy
preference relations Ā(k)(k = 1, 2, 3, 4) of Ã(1), Ã(2),
Ã(3) and Ã(4).

Ā(1) =

⎡

⎢
⎢
⎣

(1.0000, 1.0000, 1.0000, 1.0000) (0.1667,0.1818,0.2222,0.2500) (2.0000,2.5000,3.500,4.0000) (0.2000,0.2222,0.2857,0.3333)

(4.0000,4.5000, 5.5000,6.0000) (1.0000, 1.0000, 1.0000, 1.0000) (6.0000,6.5000,7.5000,8.0000) (2.0000,2.5000,3.5000,4.0000)

(0.2500,0.2857,0.4000,0.5000) (0.1250,0.1333,0.1538,0.1667) (1.0000, 1.0000, 1.0000, 1.0000) (0.1429,0.1539,0.1818,0.2000)

(3.0000,3.5000, 4.5000,5.5000) (0.2500, 0.2857,0.4000, 0.5000) (5.0000,5.5000, 6.5000,7.0000) (1.0000, 1.0000, 1.0000, 1.0000)

⎤

⎥
⎥
⎦ ,

Ā(4) =

⎡

⎢
⎢
⎣

(1.0000, 1.0000, 1.0000, 1.0000) (4.0000,4.5000, 5.5000,6.0000) (2.0000,2.5000,3.5000,4.0000) (5.0000,5.5000,6.5000,7.0000)

(0.1667,0.1818,0.2222,0.2500) (1.0000, 1.0000, 1.0000, 1.0000) (2.3842,2.6007,3.0290,3.2462) (0.2500,0.2857,0.4000,0.5000)

(0.2500,0.2857,0.4000,0.5000) (0.3081,0.3301,0.3845,0.4194) (1.0000, 1.0000, 1.0000, 1.0000) (2.0000,2.5000,3.5000,4.0000)

(0.1429,0.1538, 0.1818, 0.2000) (2.0000,2.5000,3.5000,4.0000) (0.2500,0.2857,0.4000,0.5000) (1.0000, 1.0000, 1.0000, 1.0000)

⎤

⎥
⎥
⎦ ,

Ā(3) =

⎡

⎢
⎢
⎣

(1.0000, 1.0000, 1.0000, 1.0000) (2.0000,2.5000, 3.5000,4.0000) (0.2500,0.2857, 0.4000,0.5000) (0.3333,0.4000,0.6667,1.0000)

(0.2500,0.2857, 0.4000,0.5000) (1.0000, 1.0000, 1.0000, 1.0000) (0.1667,0.1818,0.2222,0.2500) (2.2622,2.2554,2.8512,3.0629)

(0.2000,0.2500,0.3500,0.4000) (4.0000,4.5000,5.5000,6.0000) (1.0000, 1.0000, 1.0000, 1.0000) (0.2845,0.3011,0.3420,0.3681)

(1.0000,1.5000, 2.5000,3.0000) (0.3265,0.3507,0.4073,0.4420) (2.7164,2.9241,3.3212,3.5145) (1.0000, 1.0000, 1.0000, 1.0000)

⎤

⎥
⎥
⎦ ,

Ā(4) =

⎡

⎢
⎢
⎣

(1.0000, 1.0000, 1.0000, 1.0000) (0.2683,0.2495, 0.3653,0.4158) (3.0000,3.5000, 4.5000,5.0000) (3.2113,3.5444,4.1955,4.5130)

(2.4053,2.7376,3.3950,3.7270) (1.0000, 1.0000, 1.0000, 1.0000) (0.3333,0.4000,0.6667,1.0000) (3.1985,3.5334,4.1955,4.5368)

(0.2000,0.2222,0.2857,0.3333) (1.0000,1.5000,2.5000,3.0000) (1.0000, 1.0000, 1.0000, 1.0000) (0.2705,0.2968,0.3680,0.4189)

(0.2216,0.2383, 0.2821, 0.3114) (0.2204,0.2381,0.2830,0.3126) (2.3872,2.7175,3.3690,3.6968) (1.0000, 1.0000, 1.0000, 1.0000)

⎤

⎥
⎥
⎦ ,

(2) The optimal weighting vector of DMs is obtained in
the following:

V ∗ = (v∗
1 , v∗

2 , v∗
3 , v∗

4)T = (0.0000, 0.3381, 0.0000, 0.6619)T .

(3) Based on the optimal weights of DMs, we obtain the
synthetic fuzzy preference relation as follows:

Ãs =
⎡

⎢
⎣

(1, 1, 1, 1) (0.6689,0.7404,0.9137,1.0252) (2.6157,3.1236,4.1334,4.6367) (3.7299,4.1121,4.8648,5.2350)
(0.9754,1.0944,1.3506,1.4950) (1, 1, 1, 1) (0.6483,0.7533,1.1122,1.4890) (1.3510,1.5097,1.8965,2.1524)
(0.2157,0.2419,0.3201,0.3823) (0.6716,0.8991,1.3276,1.5425) (1, 1, 1, 1) (0.5320,0.6101,0.7881,0.8983)
(0.1910,0.2056,0.2432,0.2681) (0.4646,0.5273,0.6624,0.7402) (1.1132,1.2689,1.6392,1.8797) (1,1,1,1)

⎤

⎥
⎦

(4) The fuzzy priority vectors of synthetic fuzzy prefer-
ence relation Ãs are calculated below:

ω̃1 = (0.4382,0.4692,0.5026,0.5026); ω̃2 = (0.2636,0.2822,0.3154,0.3330);
ω̃3 = (0.1445,0.1613,0.1847,0.1920); ω̃4 = (0.1537,0.1627,0.1740,0.1759).
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Fig. 6 The weight of d2
determined by different λ and θ
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(5) By the fuzzy priority vectors, we get:

R(ω̃1) = 0.1689, R(ω̃2) = 0.1091,

R(ω̃3) = 0.0631, R(ω̃4) = 0.0584.

Therefore, we haveC1 � C2 � C3 � C4, which means that
Jay Zhou is the best choice for the competitor and it is the
same as the result computed by our proposed method.

Compared to the method developed in [54], we observe
that the risk attitude of DMs is taken into account proposed
in this paper, but Ref. [54] ignores it. And the compatibility
index based on the COWGA operator can be used to deal
with the multiplicative trapezoidal fuzzy preference rela-
tions with more flexibility due to the fact that the decision
maker can choose a different value of the parameter λ

according to his/her own opinion.

Fig. 7 The weight of d3
determined by different λ and θ

0
0.2

0.4
0.6

0.8
1

0

0.2
0.4

0.6

0.8
1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3



l 3



64 P. Wu et al.

Fig. 8 The weight of d4
determined by different λ and θ
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In addition, the proposed method is very different from
the approach developed in [35]. In [35], Li et al. pro-
posed a personalized individual semantics model to derive
consistency and consensus of 2-tuple linguistic preference
relations. They personalized individual semantics directly
rather than translating the linguistic terms into trapezoidal
fuzzy numbers. And they put forward a consistency-driven
optimization-based model, but the optimal model presented
in this paper is based on the compatibility measure with
COWGA operator. Moreover, the additional emphasis of the
proposed method is to derive experts’ weights by means of
compatibility-driven optimization-based model.

Moreover, Dong, Zhang and Herrera-Viedma [19] pre-
sented a self-management mechanism to generate experts’
weights, in which the experts’ weights are dynamically derived
from the multi-attribute mutual evaluation matrices. The app-
roach developed in [19] is different from the proposed method
in this paper, the reasons are as follows: (1) The mechanisms
to generate experts’ weights are different, Ref.[19] derived
weights of experts by using a self-management mecha-
nism, but this paper focuses on optimization-based model
by means of compatibility measure with the COWGA oper-
ator. (2) The proposed method emphasizes the GDM with
trapezoidal fuzzy preference relations rather than the GDM
with [0,1] fuzzy preference relations.

In [5], Cabrerizo, Herrera-Viedma and Pedrycz put for-
ward an approach to deriving weights of experts with
heterogeneous linguistic contexts in which the experts have
associated importance degrees reflecting their ability to

handle the problem, and the weights are obtained by using
the particle swarm optimization. But the characteristic of the
proposed method is to derive experts’ weights on the basis
of compatibility-driven model.

In [77], Zhou et al. developed a new compatibility
between additive trapezoidal fuzzy preference relation and
its characteristic preference relation, and priority vectors
are derived utilizing a least deviation model. However,
the proposed method concentrates on GDM with MTFPRs
rather than the GDM with additive trapezoidal fuzzy pref-
erence relations. Moreover, the proposed approach uses the
COWGA operator to transform the MTFPRs into ordinary
MPRs. And a compatibility improving algorithm makes
MTFPRs acceptably compatible but it has not been consid-
ered in Ref.[77].

In [78], Zhou et al. presented an approach to deal with
the GDM with additive trapezoidal fuzzy preference rela-
tions by using compatibility measure and a compatibility
improving algorithm. Compared to [78], we find that the
FPRs discussed in this paper are two different PRs, and the
proposed method takes the attitude of DMs into account by
using the COWGA operator.

6 Conclusion

In this paper, we develop the logarithm compatibility mea-
sure with MTFPRs based on the COWGA operator. The
main work of this paper is summarized as follows:
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(1) By the α-cut, we obtain the expected interval value
from the trapezoidal fuzzy number. We get a real num-
ber from the expected interval value based on the
COWGA operator. Thus, we can translate the MTFPR
into an MPR via the α-cut and the COWGA opera-
tor. Based on the above, we presented the logarithm
compatibility measure with MTFPRs. At the same
time, we investigated some desirable properties of the
compatibility index.

(2) An iterative and convergent algorithm to adjust each
MTFPR automatically guarantees that all the adjusted
MTFPRs are of acceptable compatibility.

(3) We have further proposed the optimal model to deter-
mine the DMs’ weights by minimizing the logarithm
compatibility index in GDM with the collective fuzzy
preference relation.

(4) A numerical example is developed to ensure the valid-
ity of the proposed method in the whole GDM process
with MTFPRs via α-cut and the COWGA operator.

The main contribution of this paper is to offer a new
approach to GDM problems with MTFPRs based on the
logarithm compatibility measure. The contributions of this
paper are the following:

(1) The new approach is more flexible and reasonable
because it not only utilizes the trapezoidal fuzzy num-
bers but also considers the DM’s risk attitude.

(2) The proposed method uses an iterative and conver-
gent algorithm to help each DM’s preference relation
achieve acceptable compatibility.

(3) Using the optimal model based on the criterion for
the minimization of the group logarithm compatibility
index, we are able to obtain the DMs’ weights, which
is objective and rational.

Based on the linguistic models [35, 40], future research
may be performed to extend our compatibility measure and
compatibility improving process to other type preference
relations, including linguistic preference relation [18, 31,
47], interval-valued fuzzy preference relation [17], hetero-
geneous linguistic contexts [5], etc. Additional research on
application of proposed approach should be implemented,
for example, the proposed approach can be combined with
data envelopment analysis (DEA) [7, 43], analytic net-
work process (ANP) [36, 41], Dempster-Shafer theory [7,
21], utility theory [25, 26] and fuzzy set qualitative com-
parative analysis (fsQCA) [22, 37] and can be applied to
performance evaluations [27, 28], management information
systems [15], computing with words [35, 39], etc.
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