
Appl Intell (2018) 48:271–299
DOI 10.1007/s10489-017-0946-8

An adaptive super-peer selection algorithm considering
peers capacity utilizing asynchronous dynamic cellular
learning automata

Ali Mohammad Saghiri1 ·Mohammad Reza Meybodi1

Published online: 1 July 2017
© Springer Science+Business Media New York 2017

Abstract Super-peer networks refer to a class of peer-to-
peer networks in which some peers called super-peers are
in charge of managing the network. A group of super-peer
selection algorithms use the capacity of the peers for the
purpose of super-peer selection where the capacity of a
peer is defined as a general concept that can be calculated
by some properties, such as bandwidth and computational
capabilities of that peer. One of the drawbacks of these
algorithms is that they do not take into consideration the
dynamic nature of peer-to-peer networks in the process of
selecting super-peers. In this paper, an adaptive super-peer
selection algorithm considering peers capacity based on an
asynchronous dynamic cellular learning automaton has been
proposed. The proposed cellular learning automaton uses
the model of fungal growth as it happens in nature to adjust
the attributes of the cells of the cellular learning automaton
in order to take into consideration the dynamicity that exists
in peer-to-peer networks in the process of super-peers selec-
tion. Several computer simulations have been conducted to
compare the performance of the proposed super-peer selec-
tion algorithm with the performance of existing algorithms
with respect to the number of super-peers, and capacity
utilization. Simulation results have shown the superiority
of the proposed super-peer selection algorithm over the
existing algorithms.

� Mohammad Reza Meybodi
mmeybodi@aut.ac.ir

Ali Mohammad Saghiri
saghiri@aut.ac.ir

1 Soft Computing Laboratory, Computer Engineering
and Information Technology Department, Amirkabir
University of Technology (Tehran Polytechnic), Tehran, Iran

Keywords Dynamic cellular learning automata ·
Peer-to-Peer networks · Super-Peer selection problem

1 Introduction

Peer-to-peer networks are large scale computer networks in
which each peer simultaneously plays two roles: “client”
and “server”. These networks can be extremely dynamic
because the peers freely join and leave the network. In
these networks, peers can be very different from each
other in their properties (such as size of storage, and
computational power). Peer-to-peer networks can be clas-
sified into two classes [1]: pure peer-to-peer networks and
super-peer networks. In pure peer-to-peer networks, the
network management algorithms are distributed among all
peers. In super-peer networks, some peers are selected to
manage the network. In these networks, each super-peer
manages a set of peers. Reported algorithms for super-
peer selection can be categorized into two categories as
described below.

• Non-adaptive super-peer selection algorithms: In
these algorithms, the selection is performed locally at
each peer without considering conditions of peers of the
network. Because of simplicity, some of peer-to-peer
networks such as those reported in [2–7] utilize non-
adaptive super-peer selection algorithms. In real appli-
cations of peer-to-peer network, non-adaptive super-
peer selection algorithms suffer from several draw-
backs; lack of scalability and lack of robustness to the
changes that occur in the network.

• Adaptive super-peer selection algorithms: In these
algorithms such as those reported in [8–15], the super-
peer selection algorithms select super-peers based on

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-0946-8&domain=pdf
mailto:mmeybodi@aut.ac.ir
mailto:saghiri@aut.ac.ir

272 A.M. Saghiri, M.R. Meybodi

information about conditions of peers such as number
of peers, computational power of peers, or current load
on super-peers in a self-organized manner. A group of
adaptive super-peer selection algorithms such as those
reported in [8, 11, 15, 16] uses the capacity of the peers
where the capacity of a peer is computed based on prop-
erties such as bandwidth and computational capabilities
of that peer.

An approach for designing management algorithms in peer-
to-peer networks is based on biologically inspired self-
organized models such as models of fungal growth and
growing neural gas because they have attractive charac-
teristics such as self-healing, which leads to resilience to
changes in the network [11, 14, 17–22]. In real applica-
tions of peer-to-peer networks, the management algorithms
should be resilient to changes in the network because of high
rate of changes in the network caused by joining or leav-
ing peers. In order to solve the super-peer selection problem
considering peers capacity based on biologically inspired
self-organized model, Myconet algorithm was reported in
[11]. Myconet algorithm utilizes a self-organized model
inspired from a model of growth pattern of fungi to manage
the growth and maintenance of the super-peer network.

A problem of Myconet is that its self-organized model
has no adaptive mechanism to adjust its rules and param-
eters with the dynamic conditions of the peer-to-peer net-
works and also avoid local optima. Therefore, the network
dynamicity caused by catastrophic failures and joining
(or leaving) peers may conduct the super-peer network to
rapidly converge to local optima.

Cellular learning automata(CLAs) are obtained from
combination of cellular automata and learning automata
[23]. CLAs inherit the distributed computation from the
CAs and learning in unknown environments from the LAs.
Because of distributed adaptation capability of the CLAs,
they have found application in computer networks [24–27].
These models have been also used in areas such as social
networks [28], Petri nets [29], and evolutionary computing
[30] to mention a few. Recently, dynamic models of CLAs
(DCLAs) have been reported in [24, 31], and [32].

In this paper, an adaptive super-peer selection algo-
rithm considering peers capacity based on an asynchronous
dynamic cellular learning automaton will be proposed. The
proposed cellular learning automaton uses the model of fun-
gal growth to adjust the attributes of the cells of the cellular
learning automaton in order to take into consideration the
dynamicity that exists in peer-to-peer networks in the pro-
cess of super-peers selection. The proposed CLA in which
a model of fungal growth is used to adjust the attributes
of its cells will be used as a mechanism for selection
of the super-peers in peer-to-peer networks. The differ-
ence between the super-peer selection algorithm proposed
in this paper and Myconet algorithm [11] which also uses

a model of fungal growth is that 1.) the fungal growth
model is fused with a dynamic CLA used for the purpose of
super peer selection and 2.) the fungal growth model fused
with CLA is different from the one used in Myconet algo-
rithm. The fusion of fungal growth model with CLA brings
together adaptive and distributed computation characteris-
tics in unknown environments from CLA and resilience to
changes in the environment from fungal growth model. In
contrast to Myconet which uses a simple fungal growth
model and it is not able to escape from local optima solu-
tions, this fusion enables the fungal growth model to escape
from local optima solutions because of distributed adapta-
tion capability of the CLA. In order to study the performance
of this model, two metrics: entropy and potential energy will
be introduced. Computer experimentations have been con-
ducted to study the performance of the proposed super-peer
selection algorithm. The results of experiments show that
the proposed CLA based super selection algorithm outper-
forms the existing algorithms with respect to the number
of super-peers, and capacity utilization. The remainder of
the paper is organized as follows. The problem statement is
given in Section 2. In Section 3, related works are briefly
described. Section 4 is dedicated to some preliminaries used
in this paper. In Section 5, an adaptive algorithm for super-
peer selection has been proposed. The results of simulations
are reported in Sections 6 and 7 is the conclusion.

2 Problem statement

Consider n peers which are connected to each other through
a peer-to-peer network. The topology of the peer-to-peer
network can be represented by each graph such as G =
(V , E) in which V = {peer1, peer2, ..., peern} is a set of
peers and E ⊆ V × V is a set of links connecting the peers
in the network. In super-peer networks, some peers must be
selected as super-peers. The peers which are not selected
as super-peers are called as ordinary-peers. The topology
of the super-peers network can be represented by a graph
Gs = (V s, Es) in which V s ⊆ V is a set of super-peers
and Es ⊆ V × V is a set of links connecting the super-
peers in the super-peer network. In a super-peer network,
each super-peer in V s is mapped to several ordinary-peers
in V according to an one-to-many function H : V s → V .
Figure 1 shows an example of a peer-to-peer network which
uses three super-peers. In this example, peerm, peerj , and
peerq are three super-peers.

In the super-peer networks, the network management
responsibilities are handled by the super-peers. In these
networks, the network communications are done among
super-peers. A super-peer network with a large number of
super-peers imposes a large overhead to the network with
respect to control messages generated by the management

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 273

Fig. 1 An example of super-peer network with three super-peers

algorithms of the super-peers. Therefore the existing algo-
rithms such as those reported [8, 11, 15, 16] try to adaptively
select a small set of super-peers considering some metrics
such as peers capacity in distributed fashion.

In [33], different types of the super-peer selection prob-
lems has been compared with classic problems such as
dominating set, p-centers, and leader election. In super-peer
networks such as those reported in [8, 11, 15, 16], variable
ci (called capacity) to save the number of peers that can be
handled by peeri if peeri is selected as super-peer in the net-
work is defined. The value of variable ci is determined when
peeri joins the network and it remains constant throughout
the operation of the network. Since, the goal of super-peer
selection considering peers capacity sounds a lot like capac-
itated minimum vertex cover algorithms, some required
definitions about capacitated minimum vertex cover are
given as below.

Definition 1 A vertex cover V c of graph is a subset of V

such that (u, v) ∈ E → u ∈ V c or v ∈ V c. Such a set is
said to vertex cover of G [34].

Definition 2 A minimum vertex cover is a vertex cover
which it has the smallest possible size. The problem of find-
ing a minimum vertex cover is an NP-hard problem [34].

Definition 3 A capacitated minimum vertex cover is a min-
imum vertex cover in which there is a limit to the number of
edges that a vertex can cover [35].

According to the mathematical formulation of capaci-
tated vertex cover problem reported in [35], In order to solve
the super-peer selection problem considering peers capacity
the following problem should be solved.

min z =
∑

v
xv (1)

yeu + yev = 1 e = {u, v} ∈ E (2)

cvxv −
∑

e∈E(v)

yev ≥ 0 v ∈ V (3)

xv ≥ yev v ∈ e ∈ E (4)

yev ∈ {0, 1} v ∈ e ∈ E (5)

xv ∈ {0, 1} v ∈ V (6)

In (1), the values of xv correspond to cost of selecting a
peer peerv as a super-peer for a super-peer network. In (2),
yev = 1 if and only if the link corresponding to edge e ∈ E

is connected to peer peerv . Constraint (2) says that every
peer must be connected to one super-peer. For any peer
peerv , let E (v) denote the set of links peerv . In (3), cv

denotes the capacity of peer peerv (we assume that cv is an
integer). Constraint (3) guarantees that the number of links
of a peer peerv cannot be more than its capacity. Constraint
(4) guarantees that ordinary-peers cannot connect to another
ordinary-peer.

Since no global knowledge about the network exists and
the conditions of the network are highly dynamic, mini-
mizing (1) subject to (3)–(6) by the super-peer selection
algorithm leading to a challenging problem. Therefore the
existing algorithms such as those reported [8, 11, 15, 16] try
to adaptively select a small set of super-peers considering
capacity of the peers.

3 Related work

In the review of the relevant literature, we focus on adap-
tive super-peer selection algorithms. In adaptive super-peer
selection algorithms, the selection algorithms use local
information (such as lifetime and capacity of peers) or
global information (such as end-to-end delay or lifetime)
about peers.

In [10], Dynamic Layer Management (DLM) which is a
layered management mechanism is reported for file sharing
applications. DLM tries to select super-peers using informa-
tion about age and capacity of peers adaptively. In DLM,
capacity is defined as the ability of a peer to process and
relay queries and age is defined as the length of time during
which the peer participates in the network since it joined
the network. In [36], DLM is improved by particle swarm
optimization algorithm. In [37], a weighted metric based
on content similarity is used to select super-peers for file
sharing applications. In [38], an algorithm for super-peer
selection is proposed which uses upload capacity of the
peers in its super-peer selection algorithm. This algorithm
is specific for video streaming system. In [39–42], seman-
tic similarity of peers is used to create super-peer network.
The peers that share the same interest are connected to the
same super-peers. These algorithms are designed to improve
the search efficiency rather than the efficiency of creating
super-peer network. In [43], the online time of peers is used
to construct a super-peer network. This algorithm is appro-
priate for live streaming systems. A main problem of [10,

274 A.M. Saghiri, M.R. Meybodi

36–43], is that these algorithms are specific to file-sharing
and video streaming applications and we cannot easily
extend them to other type of peer-to-peer applications.

In [13, 44–46], gradient topologies are reported. In gradi-
ent topologies, the super-peer selection algorithm utilizes a
function called utility function, which can be defined based
on every computable metric in the peer. A problem of gra-
dient topologies is that they do not consider the proximity
among peers in its super-peer selection algorithm. In [14], a
super-peer selection algorithm based on growing neural gas
model is presented. This algorithm considers the proximity
among peers in its super-peer selection algorithm in order
to decrease the communication delay between peers. This
algorithm does not consider the capacities of the peers. In
SG-1 [8], the super-peer selection algorithm uses a general
concept called capacity in its selection algorithm. Capacity
is defined as a general metric that can be calculated by some
properties such as bandwidth and size of storage and com-
putational power. The goal of SG-1 is to adaptively select
super-peers considering peer capacities. SG-1 does not con-
sider several important factors such as proximity of peers
which affects communication delay among peers. To solve
this problem, SG-2 is reported in [9]. SG-2 is an extension
to SG-1 which uses information about proximity of peers
in selecting super-peers. SG-2 tries to localize the super-
peer selection algorithm of SG-1, but many problems are
still remaining. A problem of SG-1 is that its convergence
speed is low. This is because each peer in SG-1 uses lim-
ited information about the network. To solve this problem
SPS was proposed in [16]. SPS uses the structure of SG-1

and utilizes local search operations to provide enough infor-
mation for each peer which leads to improving the speed
of convergence of the algorithm. Since providing informa-
tion for the peers of the network by the search operations
results in generating many messages, the overhead of the
SPS is higher than SG-1. One of the problems of both SG-
1 and SG-2 is that they are not able to adapt themselves to
dynamic conditions of peer-to-peer networks. In [15], SG-
LA which is an adaptive version of SG-1 is reported. SG-LA
improves the super-peer selection algorithm of SG-1 with
learning capability of learning automata.

All SG-1, SG-LA, and SPS algorithms suffer from lack
of a self-organizing mechanism which is resilient to the
changes that occur in the network. This problem is solved by
Myconet algorithm which is a biologically inspired super-
peer selection algorithm [11]. In this algorithm, a model of
growth pattern of fungi is used as a self-organizing model
in the super-peer selection algorithm in order to improve the
self-healing capability of the super-peer network. A prob-
lem of Myconet is that its self-organizing model has no
adaptive mechanism to escape from local optima solutions
and also adapt with dynamic conditions in peer-to-peer net-
works. This problem affects the efficiency of the super-peer
selection algorithm of Myconet. In [12], a super-peer selec-
tion algorithm based on peer’s capacity and online time was
given which is able to select appropriate stable peers. Note
that the online time was not used in SG-1, SG-2, Myconet
and SG-LA.

Table 1 summarizes the related works with respect to
requirements on management algorithms in peer-to-peer

Table 1 The specifications of related works

Reference Name Specifications

[10, 36] DLM • Information about age and capacity of peers are required.

• Limited to file-sharing applications.

[37, 39–42] − • Limited to file-sharing applications.

[38, 43] − • Limited to video streaming applications.

[13, 44–46] Gradient topology • Self-organized.

• Information about capacity of peers is required.

[14] − • Self-organized.

• Information about proximity among peers is required.

[8] SG-1 • Information about capacity of peers is required.

[16] SPS • Information about capacity of peers is required.

• Fast convergence in management routines.

[9] SG-2 • Information about capacity and proximity of peers are required.

[15] SG-LA • Robust.

• Information about capacity of peers is required.

[8] Myconet • Robust.

• Scalable.

• Information about capacity of peers is required.

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 275

network such as scalability, self-organization, and robust-
ness. In addition, other specifications explicitly mentioned
in the literature such as application dependency and extra
information usages are also reported in this table.

In this paper, an adaptive algorithm utilizing a new model
of CLAs for super-peer selection will be proposed. The algo-
rithm proposed in this paper similar to SG-1, SG-2, SG-LA,
SPS and Myconet algorithms use capacities of the peers and
similar to Myconet algorithm is inspired from growth pat-
tern of fungi. The difference between the super selection
algorithm proposed in this paper and Myconet algorithm
[11] which also uses a model of fungal growth is that 1.
The fungal growth model is fused with a dynamic CLA used
for the purpose of super peer selection and 2. The fungal
growth model fused with CLA is different from the one used
in Myconet algorithm.

4 Preliminaries

In this section, in order to provide basic information for
the remainder of the paper, we present a brief overview
of cellular learning automata and growth pattern of fungi
reported.

4.1 Cellular learning automata

In this section, cellular automata, learning automata and
cellular learning automata are reviewed.

Cellular Automata (CAs) CAs are computational models
which are composed of independent and identical cells. In
these models, the cells are arranged into a lattice. In aCA,
each cell selects a state from a finite set of states. A cell
uses the previous states of a set of cells, including the cell
itself, and its neighbors and then updates its state using a
rule called local rule. CAs evolves in discrete time steps [47,
48]. CAs can be also classified as static CAs or dynamic
CAs. In static CAs, the structure of the cells remains fixed
during the evolution of the CA whereas In dynamic CAs,
the structure of the cells or the local rule changes dur-
ing the evolution of the CA [49, 50] and [51]. CAs can be
classified as synchronous CAs or asynchronous CAs. In syn-
chronous CAs the states of all cells in different cells are
updated synchronously whereas in asynchronous CAs the
states in different cells are updated asynchronously. Differ-
ent types of cell activation methods for asynchronous CAs
have been described in the literature [52–54] some of which
are described below:

• The random independent: in this method, a cell is
randomly selected at each time step and then activated.

• The random order: in this method, a random order of
cells is determined at each time step. This order is used
to activate the cells during that time step. A new random
order of cells will be used for cells activation for the
next time step.

• Cyclic: in this method, at each time step, a node is cho-
sen according to a fixed activation order which is part
of the definition of the CA.

• Clocked: in this method, each cell has an independent
timer. The timer is initialized to a random period. When
the period has expired, the cell is activated and then the
timer is reset.

CAs depending on their structure can be also classified as
regular CAs or irregular CAs. In Irregular CAs, the structure
regularity assumption has been relaxed [55]. The irregular
CAs and CAs with structural dynamism, can be generalized
and obtain models which are known as automata networks
in the literature. An automata network is a mathematical
system consisting of a network of nodes that evolves over
time according to a predetermined rules [56, 57]. Since the
definition of automata networks has fewer restrictions on
the network of nodes and also evolution of the structure
of the automata than the CAs, the automata networks are
considered as a general model for CAs.

Learning Automata (LAs) LAs are models for adaptive
decision making in random environments. The relationship
between an LA and its environment is shown in Fig. 2.
A set of actions has been defined for this model. Each
action has a probability which is unknown for the LA for
getting rewarded by the environment. This model tries to
find an appropriate action through repeated interaction with
the environment. The appropriate action is an action with the
highest probability of getting reward by the environment.
Each time the LA interacts with its environment, it randomly
selects an action based on a probability vector. According to
the response of the environment (reward or penalty) to the
selected action, the LA updates its action probability vector
and then the procedure is repeated. The updating algorithm

Fig. 2 Learning Automaton (LA)

276 A.M. Saghiri, M.R. Meybodi

for the action probability vector is called the reinforcement
scheme or the learning algorithm. If the learning algorithm
is chosen properly, then the iterative process of interacting
with the environment can be set up to result in selection
of the optimal action. The interaction between LA and the
environment is shown in.

Learning automata can be classified into two main fami-
lies, fixed and variable structure learning automata [58, 59].
Variable structure learning automata which are used in this
paper is represented by sextuple <β, φ, α, P, G, T>, where
β is a set of inputs actions (called response or reinforcement
signal), φ is a set of internal states, α is a set of outputs,
P denotes the state probability vector governing the choice
of the state at each stage k, G is the output mapping, and
T is learning algorithm. The learning algorithm is a recur-
rence relation and is used to modify the state probability
vector.

It is evident that the crucial factor affecting the perfor-
mance of the variable structure learning automata is the
learning algorithm for updating the action probabilities. Let
αi ∈ {α1, α2, . . . , αr} be the action chosen at time k as a
sample realization from distribution p(k). The linear reward-
penalty algorithm (LRP) is one of the earliest schemes. In an
LRP scheme the recurrence equation for updating probabil-
ity vector p is defined by (7) for favorable responses (β =1),
and (8) for unfavorable response (β =0).

pi(k + 1) = pi(k) + a × (1 − pi(k))

pj (k + 1) = pj (k) − a × pj (k), ∀j �= i (7)

pi(k + 1) = (1 − b) × pi(k)

pj (k + 1) = b

r − 1
+ (1 − b) × pj (k), ∀j �= i (8)

The parameters a and b represent reward and penalty
parameters, respectively. The parameter a(b) determines the
amount of increase (decreases) of the action probabilities.
Learning automata have found applications in many areas
such as sensor networks [24, 30], stochastic graphs [60],
peer-to-peer networks [15, 61–64], channel assignment
[65], mobile cloud computing [66] to mention a few.

Cellular Learning Automata (CLAs) [23] A CLA is a CA
in which a LA is assigned to each cell (Fig. 3). The LA resid-
ing in a particular cell determines its state (action) according
to its action probability vector. This model is superior to CA
because of its ability to learn and is also superior to single
LA because it consists of a collection of LAs interacting with
each other. Like CA, there is a local rule that the CLA oper-
ates under. The local rule of the CLA and the actions selected
by the neighboring LAs of any particular LA determine the
reinforcement signal to that LA. The neighboring LAs (cells)
of any particular LA (cell) constitute the local environment
of that LA (cell).

Fig. 3 A cellular learning automaton [23]

Several models of CLAs are reported in the literature. The
reported models can be classified into two main classes as
described below.

• Static CLAs (SCLAs): In a SCLA, the structure of the
cells remains fixed during the evolution of the SCLA
[28, 67–71]. SCLAs can be either closed or open. In
closed SCLAs, the states of neighboring cells of each
cell called local environment affects on the action select
ion process of the LA of that cell whereas in open
SCLAs, the local environment of each cell, a global
environment, and an exclusive environment effects on
the action selection process of the LA of that cell. In
an open SCLA, each cell has its own exclusive environ-
ment and one global environment defined for the whole
SCLA. SCLAs can be further classified as either syn-
chronous or asynchronous. In a synchronous SCLA, all
cells perform their local rules at the same time [67].
This model assumes that there is an external clock
which triggers synchronous events for the cells. In asyn-
chronous SCLA, at a given time only some cells are
activated and the state of the rest of cells remains
unchanged [68]. In [69], a model of SCLA with multi-
ple LAs in each cell was reported. In this model, the set
of LAs of a cell remains fixed during the evolution of
the SCLA. SCLA depending on its structure can be also
classified as regular [23] or irregular [70]. In Irregular
SCLA, the structure regularity assumption is removed.

• Dynamic CLAs(DCLAs): In a DCLA, one of its aspects
such as structure, local rule, attributes or neighbor-
hood radius may change over time. DCLAs can be
classified as either closed DCLAs [24, 31, 32, 72]
or open DCLAs. DCLAs can also be also classified
as synchronous DCLAs or asynchronous DCLAs. In
synchronous DCLAs, all LAs in different cells are acti-
vated synchronously whereas in asynchronous DCLAs
the LAs in different cells are activated asynchronously.

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 277

Asynchronous DCLAs can be either time-driven or step-
driven [31]. In time-driven asynchronous DCLAs, each
cell is assumed to have an internal clock which wakes
up the LA associated to that cell while in step-driven
asynchronous DCLAs, a cell is selected in fixed or ran-
dom sequence. Note that, the problem of the definition
of asynchronous DCLAs is application dependent. All
the reported DCLAs are closed and asynchronous [24,
31, 32, 72]. DCLAs can be also classified as interest
based DCLAs [24, 31] or attribute based DCLAs [32].
In interest based DCLAs, a set of interests is defined for
describing the dynamicity of the CLA and in attribute
based DCLAs, a set of attributes is defined for describ-
ing the dynamicity of the CLA. A main drawback of
both interest based DCLAs and attribute based DCLAs
is that there is no formal definitions for the rules which
determine the changes in the attributes or interests
of the cells. Therefore the existing models of DCLAs
are unable to support dynamicity in a wide range of
application with changing attributes or interests. In this
paper, this problem will be solved by suggesting a
dynamic model of the CLA with changing attributes.

4.2 A brief description about the growth pattern of fungi

In nature, fungi reproduce by extending filamentous strands
through a growth medium such as the soil (Fig. 4). The
filamentous strands are called Hyphae. A Hypha (plural
Hyphae) is a long, branching filamentous structure of a fun-
gus. Fungi follow an interesting pattern of growth. They do
not follow a fixed evolutionary pathway. The growth pattern
of a fungus is very flexible because all cells of a Hyphae
may initiate a colony. The mechanism used for formation of
colonies of fungi is determined by the water and nutrients
of the soil of the environment. Hypha cells are able to sense
reproductive cells from distance, and grow towards them.
In order to find new resources, Hypha cells are also able
to penetrate to the permeable surfaces during reproduction.

Fig. 4 An example for growth pattern of fungi [74]

Different classifications considering the cell, structure, and
growth pattern of fungi are reported in the literature [73, 74].

5 Proposed algorithm

In this section, we first present a state machine inspired
from growth pattern of fungi, then suggest a new model of
CLAs, and finally outline the proposed super-peer selection
algorithm.

5.1 A state machine inspired from growth pattern
of fungi

The state machine is described as follows (Fig. 5). Each
cell takes one of three types: Unattached-Cell, Attached-
Cell, and Colony-Manager. The initial type of all cells is set
to Unattached-Cell. Each Unattached-Cell cell tries to find
a Colony-Manager cell from its neighbors. In Unattached-
Cell celli , after finding a Colony-Manager cellj , celli
changes its type to Attached-Cell (Transition 1). If celli
couldn’t find any Colony-Manager cell then it changes
its type to Colony-Manager (Transition 2). If a Colony-
Manager celli is connected to a Colony-Manager cellj
which the capacity of cellj is greater than the capaci
ty of celli , then celli changes its type to Attached-Cell
(Transition 3). If an Attached-Cell celli is connected to
Colony-Manager cellj and the capacity of celli is greater
than the capacity of cellj , and all Attached-Cell cells that
are connected to the cellj then celli changes its type to
Colony-Manager (Transition 4).

Each Colony-Manager cell takes one of two states:
Colony-Extender, and Colony-Immobilizer. If the state of
a cell is equal to Colony-Extender, the cell can be con-
nected to Colony-Extender, and Colony-Immobilizer cells.
If the state of a cell is equal to Colony-Immobilizer, the cell
can be connected to Colony-Immobilizer cells. A Colony-
Immobilizer cell is able to absorb the Attached-Cell cells
of other Colony-Immobilizer and Colony Extender cells. A
Colony-Extender cell is able to absorb the Attached-Cell
cells of other Colony-Extender cells.

Unattached-
Cell

Attached-Cell

Colony-
Manager

Start

Transition.2 Transition.3

Transition.4

Transition.1

Fig. 5 The state machine inspired from growth pattern of fungi

278 A.M. Saghiri, M.R. Meybodi

Since, this state machine is merged into the ADCLA, the
mechanisms used for selecting the state of a cell, and chang-
ing the connections among the cell will be described in more
details later in the proposed algorithm.

5.2 Asynchronous dynamic cellular learning automaton
with changing attribute (ADCLA-CH)

An ADCLA-CH is a network of cells whose struc-
ture and the attributes of the cells change with time.
This model can be formally defined by a 10-tuple
ADCLA − CH = (G, A, N, �, �, F1, F2, F3, F4, F5),
where:

• G = (V , E) is an undirected graph which determines
the structure of ADCLA-CH where

V = {cell1, cell2, . . . , celln} is the set of vertices and E is
the set of edges.

• A = {LA1, LA2, . . . , LAn} is a set of LAs each of
which is assigned to one cell of ADCLA-CH. The set of
actions of automaton for a cell is the same as the set of
states for that cell.

• N = {N1, N2, . . . , Nn} where Ni ={
cellj∈V | dist

(
celli , cellj

)
< θi

}
where θi is the

neighborhood radius of celli and dist
(
celli , cellj

)
is

the length of the shortest path between celli and cellj
in G. N1

i determines the immediate neighbors of celli
which constitute its local environment.

• � = {�1, �2, . . . , �n} where � i ={(
j, Xj

) | cellj ∈ Ni

}
denotes the attribute of cellj

where Xj ⊆ {x1, x2, . . . , xs}. {x1, x2, . . . , xs} is the set
of allowable attributes. �1

i determines the attribute of
celli when θi = 1.

• � = {�1,�2, . . . ,�n} where �i = {
(j, αl)| cellj ∈ Ni

and action αl has been chosen by LAj

}
denotes the

state of celli . �1
i determines the state of celli when

θi = 1.
• F1 : (

�
) → (ζ) is the restructuring function. In each

cell, the restructuring function computes the restructur-
ing signal based on the attributes of the cell and its
neighboring cells. For example, in celli , the restructur-
ing function takes < �i > and then returns a value from
the closed interval [0,1] for ζ 1

i which is the restructuring

signal of celli . we define ζi =
{(

j, ζ 1
j

)
| cellj ∈ Ni

}
to

be the set of restructuring signals of neighbors of celli .
In a cell, depending on the application, the value of the
restructuring signal determines whether the neighbors
of that cell should be changed or not. If the ζ 1

i is equal
to zero (one) this means that the neighbors of celli are
appropriate (not appropriate).

• F2 :
(
N, �, ζ

)
→ (N1) is the structure updating

rule. In each cell, the structure updating rule finds the

immediate neighbors of the cell based on the restruc-
turing signal computed by the cell, the attributes of the
neighbors of the cell, and the neighbors of the cell. For
example, in celli , < Ni, �i, ζi, > and returns < N1

i >.

• F3 :
(
ζ
)

→ (ν) is the automaton trigger function.

Upon activation of a cell, automaton trigger function
is called to determine whether the learning automata
residing in that cell are to be triggered or not. If
the automaton trigger function returns true, then the
learning automata of the cell will be triggered. The
automaton trigger function in celli takes < ζi > and
returns a value from {true, false} for νi where νi is called
automaton trigger signal. In a cell, since the value of the
restructuring signal affects the changes in the compo-
sition of the neighboring cells of that cell, the value of
the restructuring signal is used to determine the value of
the automaton trigger signal. In celli , if the νi is equal
to true (false), then the learning automata of celli are
triggered (not triggered).

• F4 : (
�, �

) →
(
β
)

is the local rule of ADCLA-CH.

In each cell, the local rule computes the reinforcement
signal for the learning automata of that cell based on the
states and the attributes of that cell and its neighboring
cells. For example, in celli , local rule takes < �i, �i >

and then computes the reinforcement signal < βi > for
the learning automata of celli .

• F5 : (�) → (�) is the attribute transition rule. In each
cell, the attribute transition rule computes the attribute
of the cell. For example, in celli , attribute transition rule
takes < �i > and returns set �i as the set of attributes
of celli .

The application determines which cell must be activated.
Upon the activation of a cell, the cell performs a process
which has three phases: preparation, structure updating and
state updating. These three phases are described below.

1) Preparation phase: In this phase, a cell performs the
following steps.

Step.1 : The cell computes its attribute using the
attribute transition rule (F5).

Step.2 : The cell and its neighboring cells compute
their restructuring signals using the restructur-
ing function (F1).

2) Structure updating phase: In this phase, a cell per-
forms the following steps.

Step.1 : The neighborhood structure of the cell is
updated using the structure updating rule (F2) if
the value of the restructuring signal of that cell
is 1.

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 279

Step.2 : The automata trigger function (F3) depending
on the restructuring signal determines whether
the set of LAs of the cell must be triggered or not.

Step.3 : If the LAs are triggered then the cell goes to the
state updating phase

Step.4 : If the set of LAs of the cell are not triggered
then the activation process terminates.

3) State updating phase: In this phase, a cell performs
the following steps.

Step.1 : Each LA of the cell selects one of its actions.
The set of actions selected by the set of LAs in
the cell determines the new state for that cell.

Step.2 : The local rule (F4) is applied and a reinforce-
ment signal is generated according to which the
action probability vectors of the LAs of the cell
are updated.

The internal structure of celli and its interaction
with local environments is shown in Fig. 6. In this
model, each cell has a LA and four components:
attribute updater, restructuring signal generator, struc-
ture updater, and automata trigger function as explained
below.

1. Attribute updater: this unit computes the attribute
using the attribute transition rule.

2. Restructuring signal generator: this unit computes
the restructuring signal using the restructuring function.

3. Structure updater: this unit updates the set of neigh-
boring cells of the cell according to the restructuring
signal and structure updating rule.

4. Automata trigger function: this unit determines
whether the set of LAs of the cell to be triggered or not
according to the value of the restructuring signal.

Restructuring Signal

Generator

LA
i

Action

Celli

Local Environment

Structure updater

1

Ф

Attribute updater

Automaton Trigger

Function

Fig. 6 Internal structure of celli and its interaction with the local
environment

5.3 Proposed algorithm: X-NET

Initially, an ADCLA-CH isomorphic to the peer-to-peer net-
work is created which involves defining the initial structure,
local rule, structure updating rule, automata trigger func-
tion, restructuring function, and local environments (Fig. 7).
each peer peeri corresponds to the cell celli in ADCLA-CH.
Each peer may play one of three roles: unattached, ordinary
or super. Each peer uses its corresponding cell to set its role
and execute appropriate management operation. Each cell
may have one of two states: Colony-Extender, and Colony-
Immobilizer. Each cell is equipped with a LA which has two
actions: Colony-Extender, andColony- Immobilizer to deter-
mine the state of the cell. The attribute of celli consists of
two parts: capacity ci and type ti . For a cell, capacity is
defined as maximum number of cells which can connect to
the cell simultaneously. A cell may take one of three types:
Unattached-Cell, Attached-Cell, and Colony-Manager. In
each peer, the role of the peer is determined by the type of its
corresponding cell (will be described in more details later).
The remaining parts of the ADCLA-CH are described later
in the rest of this section.

Once the ADCLA-CH is created, the proposed algorithm
utilizes it to manage the roles of the peers. The process
executed by each peer peeri when joining to the network
consists of three phases: initialization Phase, construction
phase, and maintenance phase. These phases are briefly
described as below.

• Initializationphase: During this phase performed by a
peer, the peer establishes its connections to other peers
of the network, and initializes its corresponding cell.
Then the cell goes to construction phase. During the
initialization of the cell, the following settings are used.

◦ The initial state of the cell is set to Colony-
Extender.

◦ The initial type of the cell is set to Unattached-
Cell.

◦ The neighborhood radius of the cell is set to 2.
◦ The value of capacity is determined.

Fig. 7 Asynchronous Dynamic Cellular Learning Automata and Peer-
to-peer network

280 A.M. Saghiri, M.R. Meybodi

Attribute updater

Fig. 8 Input and output of the attribute transition rule of celli

• Construction phase: During this phase performed by a
peer, the peer determines its role using its corresponding
cell In this phase, the peer activates its corresponding
cell. After executing the activation procedure of celli ,
peeri sets its role using the type of celli and goes to
maintenance phase. peeri sets its role to super if the
type of celli is equal to Colony-Manager. peeri sets its
role to ordinary if the type of celli is Attached-Cell.
peeri sets its role to unattached if the type of celli is
Unattached-Cell.

• Maintenance phase: In this phase, an ever going pro-
cess is executed to handle events occurs for the peer or
the neighbors.

Now, we complete the description of the algorithm by
describing the 1) Attribute updater, 2) Restructuring sig-
nal generator, 3) Automata trigger function, 4) Local
rule and 5) Structure updater for the ADCLA-CH used by
activation procedure in the proposed algorithm.

1) Attribute updater: The input and output of this unit
are shown in Fig. 8. This unit applies the attribute transi-
tion rule which is described as below.

1. Attribute transition rule: In order to change the
attribute of the cells, the Attribute transition rule will
use the state machine that has been suggested before
for growth pattern of fungi. It should be noted that,
this state machine is used to change the type of the
cells.

2) Restructuring signal generator: The input and out-
put of this unit are shown in Fig. 9. Based on the
restructuring function, this unit takes information about
neighbors of a cell as input and returns a restructuring
signal. The restructuring function is described as below.

• Restructuring function: In a cell, the restructuring
signal is set to 1 if the type of that cell is equal to
Colony-Manager and 0 otherwise.

3) Automata Trigger Function: The input and output of
this unit are shown Fig. 10. Based on the automata trigger
function, this unit takes the restructuring signal of a cell
as input and then returns true or false which determines

Restructuring signal

generator

Fig. 9 Input and output of the restructuring signal generator of celli

Automaton trigger

function

Fig. 10 Input and output of the automaton trigger function of celli

the learning automata of the cell are activated or not. The
automata function is described as below.

• Automaton trigger function: In a cell, the automa-
ton trigger function returns true if the restructuring
signal of that cell is equal to 1 and false otherwise.

4) Local environment: The input and output of this unit
are shown in Fig. 11. In this environment, the reinforce-
ment signal βi is computed by applying the local rule.
The local rule is described as below.

• Local rule: The local rule of celli returns 1 in three
cases described as follows. In the first case, the
capacity of the celli is lower than the capacity of
majority of neighboring cells, and the state of celli
is equal to Colony-Extender. In the second case, the
capacity of the celli is higher than the capacity of
majority of neighboring cells, and the state of celli
and the majority of states of immediate neighboring
cells are equal to Colony-Immobilizer. In the third
case, the unused capacity of the celli is equal to zero,
and the state of celli is equal to Colony-Extender. In
other cases, the local rule returns 0.

5) Structure updater: The input and output of this unit are
shown in Fig. 12. This unit applies the structure updating
rule to find the immediate neighbors which determine the
local environment. This unit is described as below.

• Structure updating rule: Structure updating rule is
implemented using an operator called Absorb opera-
tor. Figure 13 shows an example of usage of Absorb
operator. In this figure, if the restructuring signal of
celli is equal to 1, and celli has unused capacity then
the structure updating rule selects cellj using a func-
tion called candidate-selector() and then randomly
chose some of the neighbors of cellj and uses the
Absorb operator to transfer the chosen neighbors to
celli for filling the unused capacity of celli . Function
candidate-selector() is described as follows. This
function takes information about the neighbors of a
cell and then returns one of the neighbors of that cell
as output. If the state of a cell is Colony-Immobilizer,
then function candidate-selector() randomly selects

Local environment

Fig. 11 Input and output of the local environment of celli

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 281

Structure Updater

Fig. 12 Input and output of the structure updater of celli

one of neighboring cell which its state is equal to
Colony-Immobilizer, or Colony-Extender, and then
returns it. If the type of a cell is Colony-Extender
then function candidate-selector() randomly selects
one of neighboring cell which its type is equal
to Colony-Extender, and then returns it. If func-
tion candidate-selector() couldn’t select any cell, the
neighbors of celli remains unchanged.

Now, we give the detailed descriptions of the proposed algo-
rithm. The pseudo code of the process executed by a peeri
when joining to the network is given in Fig. 14. This process
consists of three phases: initialization Phase, construction
phase, and maintenance phase. The detailed descriptions of
these phases are given in the rest of this section.

During initialization phase, peeri establishes its connec-
tions to other peers of the network, and initializes its cor-
responding cell celli . In the initialization phase, peeri finds
some peers using Newscast protocol [75] to connect the
network. Note that the Newscast protocol is also used in SG-
LA, SG-1, and Myconet for establishing initial connections.
After establishing the initial connections, peeri initializes
its corresponding cell celli . During initializing celli , the
capacity of celli is computed and the type of celli is set to
Unattached-Cell. Then peeri goes to construction phase.

During construction phase, peeri determines its role. In
the construction phase, peeri executes the activation proce-
dure of its corresponding cell that is celli . Figure 15 shows
the pseudo code of the procedure which each cell of CLA
executes after activation. After executing the activation pro-
cedure of celli , peeri sets its role using the type of celli and
goes to maintenance phase. peeri sets its role to super-peer
if the type of celli is equal to Colony-Manager. peeri sets
its role to ordinary-peer if the type of celli is Attached-Cell.
peeri sets its role to unattached-peer if the type of celli is
Unattached-Cell.

During the maintenance phase, which is an ever going
process, peeri continually waits for one of the events leav-
ing a peer, joining a peer, request for execution of Absorb
operation, and request for exchanging information.

Algorithm peer_management()

Notation: cell denotes the cell corresponds to the peer;

01 Begin
02 // initialization phase //
03 Establish the connections of the peer;

04 Initialize the cell of the peer;

05 // construction phase //
06 Call function Activate() of the cell;

 // the pseudo code of this function is given in Fig. 15 //

07 Refine the list of the neighbors of the peer;

 // according to the changes made by procedure Activate //
08 Set the role of the peer;

 // according to the attribute of the cell //
09 // maintenance phase //
10 Wait until some event occurs;

11 If (peer has detected that it has no neighboring peers) Then
12 Goto initialization phase; // goto line 02 //

13 EndIf
14 If (peer has detected that join, leave, Absorb Operation, or

 cellular operation has been occurred in its neighborhood)

Then
15 Perform appropriate management operation;

Then

 // considering the operation occurred in the neighborhood //

16 Refine the list of the neighbors of the peer;

 // considering the effect of the management operation //

17 Goto construction phase; // goto line 05 //

18 EndIf
19 If (peer has been activated to exchange information with peerj)

20 Exchange information with peerj;

21 Goto maintenance phase; // goto line 09 //

22 EndIf
23 End

Fig. 14 Pseudo code of the proposed algorithm

If peeri has detected that it has no neighboring peers, it
goes to initialization phase. If peeri has detected that join,
leave , Absorb operation, or cellular operation has occurred
in its neighborhood, it performs appropriate management
operation. The management operations are described as
below:

• If peeri has received a request for joining peer from
peerj , peeri connects to peerj .

• If peeri has detected that one of its neighboring peers
has left, peeri removes information about that neigh-
bors form the list of its neighbors.

• If peeri has been activated by a peerj to execute Absorb
operation then peeri executes Absorb operation with
peerj .

Fig. 13 An example for Absorb
operation

282 A.M. Saghiri, M.R. Meybodi

Algorithm Activate ()

Input: celli

Output: the list for new neighbors of the cell
Notations: celli denotes the cell corresponds to the peeri;

 F1 denotes the restructuring function

 F2 denotes the structure updating rule

 F3 denotes the automata trigger function

 F4 denotes the local rule

 F5 denotes the attribute transition rule

 denotes the attribute of celli

 denotes the state of celli

 denotes the restructuring signal of celli

 denotes the automata trigger signal of celli

denotes the set of neighbors of celli

 denotes the reinforcement signal of the learning

 automata of celli

Begin
// preparation phase //

 Compute ; // using F5 //

 Compute ; // using F1 //

 Ask from neighboring cells of celli to compute their

restructuring signals;

 Gather the restructuring signals of the Neighboring cells;

 // structure updating phase //
 If (the value of is 1) Then
 Compute and ; // using F2 //

 EndIf
 Call F3 to determine the value of ;

 // state updating phase //
 If (the value of is true) Then
 Each LA of celli chooses one of its actions;

 Set ; // set to be the set of actions chosen by the set

 of learning automata in celli //

 Compute ; // using F4 //

 Update the action probabilities of LAs of celli using ;
 EndIf

End

Fig. 15 Pseudo code of the procedure which each cell executes after
activation

• If peeri has been activated by a peerj to execute a
cellular operation (such as computing restructuring sig-
nal, gathering attributes and etc) then peeri executes
appropriate operation with peerj .

After executing the management operation, peeri refines the
list of its neighbors considering the effects of the manage-
ment operations and then goes to the construction phase.
If peeri has been activated to exchange information with
its neighbors, then peeri exchanges information with its
neighbors and then restarts the maintenance phase.

6 Experimental results

All simulations have been implemented using OverSim [76].
OverSim is an overlay network simulation framework for

peer-to-peer networks which is based on OMNeT++. The
performance of the proposed algorithm which we call itX-
NET is compared with four different algorithms Myconet
[11], SG-1 [8], SPS [16], and SG-LA [15] among which
SG-1 is a well-known super-peer selection algorithm. The
reason for selecting these algorithms is that the concept
of peer capacity used in these algorithms is similar to the
concept of peer capacity used in X-NET.

In order to evaluate the performance of the X-NET, we
used two groups of metrics. In the first group, four metrics:
Number of Super-Peer (NSP), Peer Transfer Overhead
(PTO), Control Message Overhead (CMO), and Capac-
ity Utilization (CU) are used to compare the performance
of the X-NET with other super-peer selection algorithms.
The definitions of these metrics are given below.

• NSP is the sum of number of super-peers of the net-
work (z in (1)). The super-peer selection algorithms try
to decrease NSP. Higher value of NSP leading to a large
set of super-peers which is not appropriate. This metric
is used in [8, 11, 15, 16].

• PTO is the number of peers which are transferred
between super-peers. This metric implicitly shows the
changes which were made by the operators (such as
Absorb operator) of the management algorithms. PTO
can be used to study the changes occur in the conf igu-
ration of the super-peer network. Higher value of PTO
indicates higher changes in the configuration of the
network which is bad. This metric is used in [15, 16].

• CMO is the number of extra control messages gen-
erated by the management algorithm. This metric is
used in [15, 16]. Higher value of CMO indicates higher
traffic in the network.

• CU is the ratio of current number of attached clients
to total capacity provided by super-peer as given in
(9). In (9), let S denote the number of selected super-
peers. This metric is used in [11, 15]. If the value of
CU becomes one, then the capacity of all super-peers is
used. High value for CU is preferred.

CU = #Attached OrdinaryP eer
s∑

i=1
ci

(9)

In the second group of metrics we have two metrics
Entropy and Potential Energy. Theses metrics which are
defined below are used to study the performance of ADCLA-
CH of the X-NET.

• Entropy of ADCLA-CH is measured using (10). In the
(10), n is the number of LAs of the ADCLA-CH. rk is
the number of actions of the LAk . pkl(t) is the proba-
bility of selecting action αl of the LAk at iteration tof
the ADCLA-CH. Entropy of the ADCLA-CH can be
used to study the changes that occur in the states of the
cells of ADCLA-CH. The value of zero for H(t) means

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 283

that the LAs of the cells no longer change their action.
Higher values of H(t) mean higher rates of changes in
the actions selected by LAs residing in the cells of the
ADCLA-CH [24, 31].

H(t) = −
n∑

k=1

rk∑

l=1

pkl(t). ln(pkl(t)) (10)

• Potential Energy of ADCLA-CH is measured using
(11). ζ 1

i (t) is the restructuring signal of celli at iteration
t . The value of A(t) is used to study the changes in the
structure of ADCLA-CH. Potential energy can be used
to study the changes in the structure of ADCLA-CH as
it interacts with the environment. If the value of A(t)

becomes zero then no further change needs to be made
to the structure. Higher value of A(t) indicates higher
disorder in the structure of ADCLA-CH.

A(t) =
n∑

i=1

ζ 1
i (t) (11)

Results reported are averages over 50 different runs. For
both X-NET and SG-LA, each peer is equipped with a vari-
able structure learning automaton of type LRP . The reward
parameter a and penalty parameter b for LRP are set to 0.25
and 0.25, respectively. To generate the capacities of peers
Pareto distribution and Uniform distribution are used. For
Pareto distribution the maximum capacity is set to 100 and
the parameter D is set to 2, and for Uniform distribution the
maximum capacity is set to 100.

Experiment 1 is conducted to study the performance of
X-NET with respect to NSP, PTO, CMO, CU, Entropy and
Potential Energy. In experiment 2 to experiment 5, X-NET is
compared with SG-1, SG-LA, Myconet, and SPS algorithms
with respect to NSP, CMO, PTO, and CU. In order to study
the performance of X-NET in long run, experiment 1 is perf
ormed for 1000 rounds. Other experiments are performed
for 100 rounds

Experiment 1:

This experiment is conducted to study the performance
of the proposed algorithm with respect to NSP, PTO, CMO,
CU, Entropy and Potential Energy. In this experiment, the
network size is 10000 and the power-law distribution is used
to generate the capacities of peers. The results of this exper-
iment are given in Figs. 16–21. According to the results of
this experiment, we may conclude the following.

• Figure 16 plots the Entropy versus round during the
execution of the algorithm. This figure shows that the
value of Entropy is high at early rounds and gradually
decreases. This means that the changes in the role taken
by a peer frequently occur during the early rounds and
becomes less frequent in the later rounds.

• Figure 17 plots the Potential Energy versus round. This
figure shows that the value of Potential Energy is high
during the early rounds and gradually decreases which
indicates that the network approaching a fixed structure.

• Figure 18 plots NSP versus round during the execution
of the algorithm. This figure shows that the value of
NSP is high at initial rounds but gradually decreases.
Lower NSP means smaller set of super-peers selected
by the algorithm.

• Figures 19 and 20 show the value of CMO and PTO per
round. At the early rounds, both CMO and PTO are high.
Each CMO or PTO eventually reaches a fixed value.

• Figure 21 show the plot of CU versus round for proposed
algorithm. This figure indicates that the value of CU app-
roaches one which means that if the proposed algorithm
is used as super-peers selection algorithm, then every
super-peer will eventually reaches its full capacity.

Experiment 2:

This experiment is conducted to study the impact of network
size on the performance of the proposed algorithm when
the capacity of the peers is generated by power-law dis-
tribution. The network sizes used in this experiment are
1000, 10000, and 100000. The results obtained are com-
pared with the results obtained for SG-1, SG-LA, SPS, and
Myconet algorithms with respect to NSP, PTO, CMO, and
CU. According to the results of this experiment which are
shown in Figs. 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 and
33 one may conclude that X-NET algorithm performs better
than other algorithms with respect to NSP and CU. It can
be noted from the results, that as the time passes the perfor-
mance of the proposed algorithm in terms of PTO, and CMO
improves. Low performance of the proposed algorithm in
the early rounds of the simulation is caused by inappropriate
configuration of super-peers in overlay network at the early
stages of operation of the network.

Experiment 3:

This experiment is conducted to study the performance of the
proposed algorithm when the distribution of capacities is a
uniform distribution. In this experiment the network size is
10000. The results obtained are compared with the results
obtained for SG-1, SG-LA, SPS, and Myconet algorithms
with respect to NSP, PTO, CMO, and CU. From the results
of this experiment given in Figs. 34, 35, 36 and 37 we may
conclude that under uniform distribution, the proposed algo-
rithm performs better than other algorithms in terms of NSP
and CU.

Experiment 4:

This experiment is conducted to study the impact of catas-
trophic failure on the performance of the proposed algo-
rithm. For this purpose, we removed different percentages

284 A.M. Saghiri, M.R. Meybodi

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

En
tro

py

Round

Fig. 16 Entropy of the proposed algorithm

(30 and 60) of super-peers from the network at the begin-
ning of round 30 of the simulation. It should be noted that,
the removed peers were added (at the same time of removing
peers) to the network as unattached-peers. In this experi-
ment, the network size is 10000 and the power-law distribu-
tion is used to generate the capacities of peers. The results
obtained are compared with the results obtained for SG-1,
SG-LA, SPS, and Myconet algorithms with respect to NSP,
PTO, CMO, and CU. From the result of this experiment
given in Figs. 38, 39, 40, 41, 42, 43, 44 and 45, we may
conclude the following:

• In terms of NSP and CU, the proposed algorithm per-
forms better than other algorithms under catastrophic
failure. The results also have shown, the number of
rounds required by the proposed algorithm in order to
reach a appropriate configuration after a catastrophic
failure is fewer as compared to other algorithms.

Experiment 5:

This experiment is conducted to study the impact of dif-
ferent churn models on the performance of the proposed
algorithm. In this experiment, the network size is 10000 and

the power-law distribution is used to generate the capacities
of the peers. The churn models used in this experiment are
described as below.

• Random churn.1 is designated based on Random
churn model reported in [76]. Random churn model
has two parameters: joining probability and leaving
probability. In Random churn.1, joining probability

and leaving probability parameters are set to 0.7 and
0.3 respectively.

• Pareto churn.1 is designated based on Pareto churn
model reported in [76]. Pareto churn model has
two parameters: LifetimeMean and DeadtimeMean.
In Pareto churn.1, LifetimeMean and DeadtimeMean
parameters are set to 50sec and 20sec respectively.

The results obtained are compared with the results
obtained for SG-1, SG-LA, SPS, and Myconet algorithms
with respect to NSP, PTO, CMO, and CU. From the result of
this experiment given in Figs. 46, 47, 48, 49, 50, 51, 52 and
53, we may conclude the following:

• In terms of NSP and CU the proposed algorithm per-
forms better than other algorithms.

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

Po
te

nt
ia

l E
ne

rg
y

Round

Fig. 17 Potential Energy of the proposed algorithm

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 285

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

N
SP

Round

Fig. 18 NSP of the proposed algorithm

0
1000
2000
3000
4000
5000
6000
7000

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

PT
O

Round

Fig. 19 PTO of the proposed algorithm

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0
27

0
28

0
29

0
30

0
31

0
32

0
33

0
34

0
35

0
36

0
37

0
38

0
39

0
40

0
41

0
42

0
43

0
44

0
45

0
46

0
47

0
48

0
49

0
50

0

C
M

O

Round

Fig. 20 CMO of the proposed algorithm

0.75

0.8

0.85

0.9

0.95

1

1.05

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

C
U

Round

Fig. 21 CU of the proposed algorithm

286 A.M. Saghiri, M.R. Meybodi

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

N
SP

Round

Network Size=1000

SG-1 SG-LA SPS Myconet X-NET

Fig. 22 Comparison of different algorithms with X-NET with respect to NSP when network size is 1000

0
100
200
300
400
500
600
700
800

10 20 40 50 60 70 80 90 100

PT
O

Round

Network Size=1000

SG-1 SG-LA SPS Myconet X-NET

Fig. 23 Comparison of different algorithms with X-NET with respect to PTO when network size is 1000

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100

C
M

O

Round

Network Size=1000

SG-1 SG-LA SPS Myconet X-NET

Fig. 24 Comparison of different algorithms with X-NET with respect to CMO when network size is 1000

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 287

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70 80 90 100

C
U

Round

Network size=1000

SG-1 SG-LA SPS Myconet X-NET

Fig. 25 Comparison of different algorithms with X-NET with respect to CU when network size is 1000

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

N
SP

Round

Network Size=10000

SG-1 SG-LA SPS Myconet X-NET

Fig. 26 Comparison of different algorithms with X-NET with respect to NSP when network size is 10000

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

PT
O

Round

Network Size=10000

SG-1 SG-LA SPS Myconet X-NET

Fig. 27 Comparison of different algorithms with X-NET with respect to PTO when network size is 10000

288 A.M. Saghiri, M.R. Meybodi

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90 100

C
M

O

Round

Network Size=10000

SG-1 SG-LA SPS Myconet X-NET

Fig. 28 Comparison of different algorithms with X-NET with respect to CMO when network size is 10000

0.0
0.2
0.4
0.6
0.8
1.0
1.2

10 20 30 40 50 60 70 80 90 100

C
U

Round

Network size=10000

SG-1 SG-LA SPS Myconet X-NET

Fig. 29 Comparison of different algorithms with X-NET with respect to CU when network size is 10000

0

20000

40000

60000

80000

100000

10 20 30 40 50 60 70 80 90 100

N
SP

Round

Network Size=100000

SG-1 SG-LA SPS Myconet X-NET

Fig. 30 Comparison of different algorithms with X-NET with respect to NSP when network size is 100000

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 289

0

20000

40000

60000

80000

100000

10 20 30 40 50 60 70 80 90 100

PT
O

Round

Network Size=100000

SG-1 SG-LA SPS Myconet X-NET

Fig. 31 Comparison of different algorithms with X-NET with respect to PTO when network size is 100000

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100

C
M

O

Round

Network Size=100000

SG-1 SG-LA SPS Myconet X-NET

Fig. 32 Comparison of different algorithms with X-NET with respect to CMO when network size is 100000

0.0
0.2

0.4
0.6

0.8
1.0

1.2

10 20 30 40 50 60 70 80 90 100

C
U

Round

Network size=100000

SG-1 SG-LA SPS Myconet X-NET

Fig. 33 Comparison of different algorithms with X-NET with respect to CU when network size is 100000

Please delete this during xml conversion. This is for
layout purposes only.

Please delete this during xml conversion. This is for
layout purposes only.

290 A.M. Saghiri, M.R. Meybodi

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100

N
SP

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 34 Comparison of different algorithms with X-NET with respect to NSP when uniform distribution is used to generate peers capacities

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100

PT
O

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 35 Comparison of different algorithms with X-NET with respect to PTO when uniform distribution is used to generate peers capacities

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

10 20 30 40 50 60 70 80 90 100

C
M

O

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 36 Comparison of different algorithms with X-NET with respect to CMO when uniform distribution is used to generate peers capacities

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 291

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70 80 90 100

C
U

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 37 Comparison of different algorithms with X-NET with respect to CU when uniform distribution is used to generate peers capacities

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

N
SP

Round

30 percent of peers are removed at round 30

SG-1 SG-LA SPS Myconet X-NET

Fig. 38 Comparison of different algorithms with X-NET with respect to NSP when 30 percent of peers are removed

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 20 30 40 50 60 70 80 90 100

PT
O

Round

30 percent of peers are removed at round 30

SG-1 SG-LA SPS Myconet X-NET

Fig. 39 Comparison of different algorithms with X-NET with respect to PTO when 30 percent of peers are removed

292 A.M. Saghiri, M.R. Meybodi

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90 100

C
M

O

Round

30 percent of peers are removed at round 30

SG-1 SG-LA SPS Myconet X-NET

Fig. 40 Comparison of different algorithms with X-NET with respect to CMO when 30 percent of peers are removed

0.0
0.2
0.4
0.6
0.8
1.0
1.2

10 20 30 40 50 60 70 80 90 100

C
U

Round

30 percent of peers are removed at round 30

SG-1 SG-LA SPS Myconet X-NET

Fig. 41 Comparison of different algorithms with X-NET with respect to CU when 30 percent of peers are removed

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

N
SP

Round

60 percent of peers are removed at round 30

SG-1 SG-LA SPS Myconet X-NET

Fig. 42 Comparison of different algorithms with X-NET with respect to NSP when 60 percent of peers are removed

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 293

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

PT
O

Round

60 percent of peers are removed at round 30

SG-1 SG-LA SPS Myconet X-NET

Fig. 43 Comparison of different algorithms with X-NET with respect to PTO when 60 percent of peers are removed

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90 100

C
M

O

Round

60 percent of peers are removed at round 30

SG-1 SG-LA SPS Myconet X-NET

Fig. 44 Comparison of different algorithms with X-NET with respect to CMO when 60 percent of peers are removed

0.0
0.2
0.4
0.6
0.8
1.0
1.2

10 20 30 40 50 60 70 80 90 100

C
U

Round

60 percent of peers are removed at round 30

SG-1 SG-LA SPS Myconet X-NET

Fig. 45 Comparison of different algorithms with X-NET with respect to CU when 60 percent of peers are removed

Please delete this during xml conversion. This is for
layout purposes only. Thank you.

Please delete this during xml conversion. This is for
layout purposes only. Thank you.

294 A.M. Saghiri, M.R. Meybodi

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

N
SP

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 46 Comparison of different algorithms with X-NET with respect to NSP when Random churn.1 is used

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

10 20 30 40 50 60 70 80 90 100

PT
O

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 47 Comparison of different algorithms with X-NET with respect to PTO when Random churn.1 is used

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90 100

C
M

O

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 48 Comparison of different algorithms with X-NET with respect to CMO when Random churn.1 is used

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 295

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70 80 90 100

C
U

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 49 Comparison of different algorithms with X-NET with respect to CU when Random churn.1 is used

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

N
SP

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 50 Comparison of different algorithms with X-NET with respect to NSP when Pareto churn.1 is used

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

PT
O

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 51 Comparison of different algorithms with X-NET with respect to PTO when Pareto churn.1 is used

296 A.M. Saghiri, M.R. Meybodi

0

5000

10000

15000

20000

25000

30000

10 20 30 40 50 60 70 80 90 100

C
M

O

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 52 Comparison of different algorithms with X-NET with respect to CMO when Pareto churn.1 is used

• The values CMO and PTO are high at early rounds of
operation of the network during which the peers try to
gather information about each other for the purpose of
searching an appropriate configuration. Higher values
for CMO and PTO throughout the operation of the net-
work especially at the early rounds is the price that we
need to pay if we want to find a configuration for which
NSP attains it lowest possible value and CU attains its
highest possible value.

7 Conclusion

In this paper, a new dynamic model of CLAs was utilized
to design an adaptive algorithm for super-peer selection
considering peers capacity. The proposed CLA in which a
model of fungal growth is used to adjust the attributes of
its cells was used as a mechanism for selection of the super

peers in peer-to-peer networks. The proposed super-peer
selection algorithm is able to adaptively select super-peers
during the operation of the network. To evaluate the pro-
posed algorithm several experiments have been conducted
using OverSim simulator. The results of simulation have
shown the superiority of the proposed algorithm over the
existing algorithms with respect to capacity utilization and
number of super-peers.

The proposed algorithm is superior to SG-1, SG-LA, and
SPS because it inherits capabilities such as flexibility and
resiliency to changes in the environment from fungal growth
model. It is also superior to Myconet because it is able
to escape from local optima solutions by distributed adap-
tation capability of the CLA. Note that, Myconet uses a
simple fungal growth model and it is not able to escape from
local optima solutions. Customizing the proposed super-
peer selection algorithm for mobile peer-to-peer networks,
designing new algorithms based on the proposed model of

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70 80 90 100

C
U

Round

SG-1 SG-LA SPS Myconet X-NET

Fig. 53 Comparison of different algorithms with X-NET with respect to CU when Pareto churn.1 is used

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 297

CLA for problems such as those reported in [77, 78] may be
considered as some of the research lines that can be pursued.

References

1. Kwok YK (2011) Computing, Peer-to-Peer: Applications, Archi-
tecture, Protocols, and challenges. CRC Press, United States

2. Liang J, Kumar R, Ross K (2004) The kazaa overlay: A measure-
ment study. In: Proceedings of the 19th IEEE annual computer
communications workshop, Bonita Springs, Florida, pp 17–20

3. Kubiatowicz J et al (2000) Oceanstore: An architecture for
global-scale persistent storage. In: Proceedings of the ninth
international conference on architectural support for program-
ming languages and operating systems, NY, USA, pp 190–
201

4. Rhea SC, Eaton PR, Geels D, Weatherspoon H, Zhao BY, Kubia-
towicz J (2003) Pond: The oceanstore prototype. In: Proceedings
of the 2nd USENIX conference on file and storage technologies,
CA, USA, vol 3, pp 1–14

5. Beverly Yang B, Garcia-Molina H (2003) Designing a super-peer
network. In: 19th international conference on data engineering,
Bangalore, India, pp 49–60

6. Xu Z, Hu Y (2003) SBARC: A supernode based peer-to-peer file
sharing system. In: Proceedings of eighth IEEE international sym-
posium on computers and communication, Antalya, Turkey, pp
1053–1058

7. Gong L (2001) JXTA: A network programming environment.
IEEE Internet Comput 5(3):88–95

8. Montresor A (2004) A robust protocol for building superpeer over-
lay topologies. In: Proceedings of the 4th international conference
on peer-to-peer computing, Zurich, Switzerland, pp 202–209

9. Jesi GP, Montresor A, Babaoglu Ö (2006) Proximity-aware super-
peer overlay topologies. In: 2nd IEEE international workshop on
self-managed networks, systems, and services, Dublin, Ireland, pp
41–50

10. Xiao L, Zhuang Z, Liu Y (2005) Dynamic layer management
in superpeer architectures. IEEE Trans Parallel Distrib Syst
16(11):1078–1091

11. Snyder PL, Greenstadt R, Valetto G (2009) Myconet: A fungi-
inspired model for superpeer-based peer-to-peer overlay topolo-
gies. In: Third IEEE international conference on self-adaptive and
self-organizing systems, San Francisco, CA, pp 40–50

12. Gao Z, Gu Z, Wang W (2012) SPSI: A hybrid super-node election
method based on information theory. In: 14th international confer-
ence on advanced communication technology, Pyeong Chang, pp
1076–1081

13. Sacha J, Dowling J (2005) A gradient topology for master-slave
replication in peer-to-peer environments. In: Proceedings of the
international conference on databases, information systems, and
peer-to-peer computing, Trondheim, Norway, pp 86–97

14. Dumitrescu M, Andonie R (2012) Clustering superpeers in p2p
networks by growing neural gas. In: 20th euromicro international
conference on parallel, distributed and network-based processing,
Munich, Germany, pp 311–318

15. Gholami S, Meybodi M, Saghiri AM (2014) A learning automata-
based version of SG-1 protocol for super-Peer selection in
peer-to-peer networks. In: Proceedings of the 10th international
conference on computing and information technology, Phuket,
Thailand, pp 189–201

16. Liu M, Harjula E, Ylianttila M (2013) An efficient selection
algorithm for building a super-peer overlay. J Internet Serv Appl
4(1):1–12

17. Forestiero A, Mastroianni C, Meo M (2009) Self-Chord: A bio-
inspired algorithm for structured P2P systems. In: IEEE/ACM
international symposium on cluster computing and the grid,
Shanghai, China, pp 44–51

18. Babaoglu O, Meling H, Montresor A (2002) Anthill: a frame-
work for the development of agent-based peer-to-peer systems. In:
22nd international conference on distributed computing systems,
Vienna, Austria, pp 15–22

19. Ganguly N, Deutsch A (2004) A cellular automata model for
immune based search algorithm. In: 6th international confer-
ence on cellular automata for research and industry, Amsterdam,
Netherlands, pp 142–150

20. Sharifkhani F, Pakravan MR (2014) Bacterial foraging search
in unstructured P2P networks. In: 27th canadian conference on
electrical and computer engineering, Toronto, ON, pp 1–8

21. Singh A, Haahr M (2007) Decentralized clustering in pure p2p
overlay networks using schelling’s model. In: IEEE international
conference on communications, Glasgow, Scotland, pp 1860–
1866

22. Snyder PL, Giuseppe V (2015) SODAP: Self-organized topology
protection for superpeer P2P networks. Scalable Comput: Pract
Exper 16(3):271–288

23. Beigy H, Meybodi M (2004) A mathematical framework for
cellular learning automata. Adv Compl Syst 3(4):295–319

24. Esnaashari M, Meybodi M (2011) A cellular learning automata-
based deployment strategy for mobile wireless sensor networks. J
Parallel Distrib Comput 71(5):988–1001

25. Esnaashari M, Meybodi M (2008) A cellular learning automata
based clustering algorithm for wireless sensor networks. Sensor
Lett 6(5):723–735

26. Beigy H, Meybodi M (2003) A self-organizing channel assign-
ment algorithm: A cellular learning automata approach. Intell Data
Eng Autom Learn 14:119–126

27. Asnaashari M, Meybodi M (2007) Irregular Cellular Learning
Automata and Its Application to Clustering in Sensor Networks.
In: Proceedings of 15th conference on electrical engineering,
Tehran, Iran, pp 21–28

28. Zhao Y, Jiang W, Li S, Ma Y, Su G, Lin X (2015) A cellular learn-
ing automata based algorithm for detecting community structure
in complex networks. Neurocomputing 151:1216–1226

29. Vahidipour M, Meybodi M, Esnaashari M (2016) Adaptive petri
net based on irregular cellular learning automata and its applica-
tion in vertex coloring problem systems with unknown parameters.
Applied Intelligence

30. Rastegar R, Meybodi M, Hariri A (2006) A new fine-grained
evolutionary algorithm based on cellular learning automata. Int J
Hybrid Intell Syst 3(2):83–98

31. Esnaashari M, Meybodi M (2013) Deployment of a mobile wire-
less sensor network with k-coverage constraint: A cellular learning
automata approach. Wirel Netw 19(5):945–968

32. Saghiri AM, Meybodi M (2016) An approach for designing cog-
nitive engines in cognitive peer-to-peer networks. J Netw Comput
Appl 70:17–40

33. Lo V, Zhou D, Liu Y, GauthierDickey C, Li J (2005) Scal-
able supernode selection in peer-to-peer overlay networks. In: Hot
topics in peer-to-peer systems, DC, USA, 18–25

34. Irit D, Safra S (2005) On the hardness of approximating minimum
vertex cover. Ann Math 162(1):439–485

298 A.M. Saghiri, M.R. Meybodi

35. Rajiv G, Halperin E, Khuller S, Kortsarz G, Srinivasan A (2006)
An improved approximation algorithm for vertex cover with hard
capacities. J Comput Syst Sci 72(1):16–33

36. Sachez-Artigas M, Garcia-Lopez P, Skarmeta AFG (2008) On
the feasibility of dynamic superpeer ratio maintenance. In: Eighth
international conference on peer-to-peer computing, Germany,
Aachen, pp 333–342

37. Min S-H, Holliday J, Cho D-S (2006)Optimal super-peer selection
for large-scale p2p system. In: International conference on hybrid
information technology, Jeju Island, Korea, vol 2, pp 588–593

38. Chen J, Wang R-M, Li L, Zhang Z-H, Dong X-S (2013) A
distributed dynamic super peer selection method based on evo-
lutionary game for heterogeneous P2P streaming systems. Math
Probl Eng 2013

39. Paweł G, Epema DHJ, Van Steen M (2010) The design and evalu-
ation of a selforganizing superpeer network. IEEE Trans Comput
59(3):317–331

40. Alexander L, Naumann F, Siberski W, Nejdl W, Thaden U
(2004) Semantic overlay clusters within super-peer networks.
In: Databases, information systems, and peer-to-peer computing,
Berlin, Heidelberg, 33–47

41. Nejdl W, Wolpers M, Siberski W, Schmitz C, Schlosser M, Brunk-
horst I, Löser A (2004) Super-peer-based routing and clustering
strategies for RDF-based peer-to-peer networks. Web Semant: Sci,
Serv Agents World Wide Web 1(2):177–186

42. Garbacki P, Epema DHJ, Van Steen M (2007) Optimizing Peer
Relationships in a Super-Peer Network. In: 27th international
conference on distributed computing systems, Toronto, ON, pp
31–41

43. Feng W, Liu J, Xiong Y (2008) Stable peers, existence, impor-
tance, and application in Peer-To-Peer live video streaming. pre-
sented at the the 27th conference on computer communications,
AZ, USA, 1364–1372

44. Sacha J, Dowling J, Cunningham R, Meier R (2006) Using aggre-
gation for adaptive super-peer discovery on the gradient topology.
In: Second IEEE international conference on self-managed net-
works, systems, and services, Dublin, Ireland, pp 73–86

45. Payberah AH, Dowling J, Haridi S (2011) Glive: The gradient
overlay as a market maker for mesh-based p2p live stream-
ing. In: 10th international symposium on parallel and distributed
computing. Cluj Napoca, pp 153–162

46. Fathipour S, Saghiri AM, Meybodi M (2016) An Adaptive Algo-
rithm for Managing Gradient Topology in Peer-to-Peer networks.
In: The eight international conference on information and knowl-
edge technology (IKT 2016), Hamedan, Iran

47. Wolfram S (1986) Theory and applications of cellular automata.
World Scientific Publication

48. Kroc J, Sloot PMA, Georgius Hoekstra A (2010) Simulating
complex systems by cellular automata. Understanding Complex
Systems. Springer

49. Somarakis C, Papavassilopoulos G, Udwadia F (2008) A dynamic
rule in cellular automata. In: 22nd european conference on mod-
elling and simulation, Nicosia, Cyprus, pp 164–170

50. Dantchev S (2011) Dynamic neighbourhood cellular automata.
Comput J 54(1):26–32

51. Ilachinski A, Halpern P (1987) Structurally dynamic cellular
automata. Complex Syst 1(3):503–527

52. Cornforth D, Green DG, Newth D (2005) Ordered asynchronous
processes in multi-agent systems. Phys D 204:70–82

53. Bandini S, Bonomi A, Vizzari G (2012) An analysis of different
types and effects of asynchronicity in cellular automata update
schemes. Nat Comput 11:277–287

54. Fatès N (2014) Guided tour of asynchronous cellular automata. J
Cellular Autom 9:387–416

55. Barreira-Gonzalez P, Barros J (2016) Configuring the neighbour-
hood effect in irregular cellular automata based models. Int J
Geogr Inf Sci: 1–20

56. Goles E, Martı́nez S (2013) Neural and Automata Networks
Dynamical Behavior and Applications. Springer Science and
Business Media

57. Li R, Hong Y (2015) On observability of automata networks via
computational algebra. In: International conference on language
and automata theory and applications, pp 249–262

58. Narendra KS, Thathachar MAL (1989) Learning automata: An
introduction. Prentice-Hall, Englewood Cliffs, NJ

59. Thathachar M, Sastry PS (2004) Networks of learning automata:
Techniques for online stochastic optimization. Kluwer Academic
Publishers, Dordrecht, Netherlands

60. Rezvanian AR, Meybodi M (2015) Finding maximum clique
in stochastic graphs using distributed learning automata. Int J
Uncertain, Fuzziness Knowl-Based Syst 23(1):1–31

61. Ghorbani M, Meybodi M, Saghiri AM (2013) A new version
of k-random walks algorithm in peer-to-peer networks utiliz-
ing learning automata. In: 5th conference on information and
knowledge technology, Shiraz, Iran, pp 1–6

62. Ghorbani M, Meybodi M, Saghiri AM (2013) A novel self-
adaptive search algorithm for unstructured peer-to-peer networks
utilizing learning automata. In: 3rd joint conference of ai andamp;
robotics and 5th robocup iran open international symposium,
Qazvin, Iran, pp 1–6

63. Saghiri AM, Meybodi M (2015) A distributed adaptive landmark
clustering algorithm based on mOverlay and learning automata
for topology mismatch problem in unstructured peer-to-peer net-
works. Int J Commun Syst

64. Saghiri AM, Meybodi M (2015) A self-adaptive algorithm for
topology matching in unstructured peer-to-peer networks. J Netw
Syst Manag

65. Beigy H, Meybodi M (2015) A learning Automata-based adap-
tive uniform fractional guard channel algorithm. J. Supercomput
71(3):871–893

66. Venkata Krishna P, Misra S, Nagaraju D, Saritha V, Obaidat MS
(2016) Learning automata based decision making algorithm for
task offloading in mobile cloud. In: International conference on
computer, information and telecommunication systems (CITS),
Kunming, China, pp 1–6

67. Beigy H, Meybodi M (2007) Open synchronous cellular learning
automata. Adv Complex Syst 10(4):527–556

68. Beigy H, Meybodi M (2008) Asynchronous cellular learning
automata. Automatica 44(5):1350–1357

69. Beigy H, Meybodi M (2010) Cellular learning automata with mul-
tiple learning automata in each cell and its applications. IEEE
Trans Syst, Man, Cybern, Part B: Cybern 40(1):54–65

70. Esnaashari M, Meybodi M (2014) Irregular cellular learning
automata. IEEE Trans Cybern 99:1

71. Mozafari M, Shiri ME, Beigy H (2015) A cooperative learning
method based on cellular learning automata and its application in
optimization problems. Journal of Computational Science

72. Saghiri AM, Meybodi M (2017) A closed asynchronous dynamic
model of cellular learning automata and its application to peer-to-
peer networks. Genet Program Evolvable Mach: 1–37

73. Robson G, Van West P, Gadd G Exploitation of Fungi. Cambridge
University Press

74. Meškauskas A, Fricker MD, Moore D (2004) Simulating colo-
nial growth of fungi with the Neighbour-Sensing model of hyphal
growth. Mycol Res 108(11):1241–1256

75. Jelasity M, Kowalczyk W, Van Steen M (2003) Newscast com-
puting. Vrije Universiteit Amsterdam, Department of Computer
Science, Amsterdam, Netherlands Technical Report IR-CS-006

A super-peer selection algorithm utilizing a dynamic model of cellular learning automata 299

76. Baumgart I, Heep B, Krause S (2009) OverSim: A scalable and
flexible overlay framework for simulation and real network appli-
cations. In: Peer-to-peer computing, Washington, USA, pp 87–88

77. Villatoro D, Sabater-Mir J, Sen S (2013) Robust convention
emergence in social networks through self-reinforcing structures
dissolution. ACM Trans Auton Adapt Syst 8(1)

78. Henri Collet J, Fanchon J (2015) Crystallization and tile separation
in the multi-agent systems. Phys A 436:405–417

Ali Mohammad Saghiri
received the B. Sc. and M. Sc.
degrees in computer engineer-
ing in Iran, in 2008 and 2010,
respectively. He is currently
the Ph.D. student of computer
engineering in AmirKabir Uni-
versity of Technology, Tehran,
Iran. His research interests
include distributed systems, ma-
chine learning, parallel algo-
rithms, and soft computing.

Mohammad Reza Meybodi
received the B.S. and M.S.
degrees in Economics from
Shahid Beheshti University in
Iran, in 1973 and 1977, respec-
tively. He also received the
M.S. and Ph.D. degree from
Oklahoma University, USA,
in 1980 and 1983, respec-
tively in Computer Science.
Currently, he is a full profes-
sor in Computer Engineering
Department, Amirkabir Uni-
versity of Technology, Tehran,
Iran. Prior to current position,
he worked from 1983 to 1985

as an assistant professor at Western Michigan University, and from
1985 to 1991 as an associate professor at Ohio University, USA. His
research interests include wireless networks, fault tolerant systems,
learning systems, parallel algorithms, softcomputing and software
development.

	A super-peer selection algorithm utilizing a dynamic model of cellular learning automata
	Abstract
	Introduction
	Problem statement
	Related work
	Preliminaries
	Cellular learning automata
	Cellular Automata (CAs)
	Learning Automata (LAs)
	Cellular Learning Automata (CLAs)

	A brief description about the growth pattern of fungi

	Proposed algorithm
	A state machine inspired from growth pattern of fungi
	Asynchronous dynamic cellular learning automaton with changing attribute (ADCLA-CH)
	Proposed algorithm: X-NET

	Experimental results
	Conclusion
	References

