
Appl Intell (2017) 47:721–742
DOI 10.1007/s10489-017-0927-y

Multi-objective hybrid artificial bee colony algorithm
enhanced with Lévy flight and self-adaption for cloud
manufacturing service composition

Jiajun Zhou1 ·Xifan Yao1

Published online: 19 April 2017
© Springer Science+Business Media New York 2017

Abstract Service composition and optimal selection
(SCOS) is a key problem in cloud manufacturing (CMfg).
The present study proposed a multi-objective hybrid arti-
ficial bee colony (HABC) algorithm to address the SCOS
problem in consideration of both quality of service (QoS)
and energy consumption, to which an improved solution
update equation with multiple dimensions of perturbation
was adopted in the employed bee phase. Likewise, a cuckoo
search-inspired Lévy flight was employed in the onlooker
bee phase to overcome basic artificial bee colony (ABC)
drawbacks such as poor exploitation and slow convergence.
Moreover, a parameter adaptive strategy was applied to
adjust the perturbation rate and step size of the Lévy flight
to improve the performance of the algorithm. The proposed
algorithm was first tested on 21 multi-objective bench-
mark problems and compared with four other state-of-the-art
multi-objective evolutionary algorithms (MOEAs). The effect
of the improvement strategies was then experimentally verified.
Finally, the HABC was applied to solve multiscale SCOS
problems using comparison experiments, which resulted in
more competitive results and outperformed other MOEAs.

Keywords Cloud manufacturing · Multi-objective
optimization · Lévy flight · Artificial bee colony
algorithm · Service composition

� Xifan Yao
mexfyao@scut.edu.cn

Jiajun Zhou
jiajunzhou163@163.com

1 School of Mechanical and Automotive Engineering,
South China University of Technology, Guangzhou,
510640, Guangdong, China

1 Introduction

Information technology advances bring unprecedented
opportunities for many industries, especially in the recent
rise of several cutting-edge technologies such as cloud com-
puting, cyber-physical systems and the Internet of Things
(IoT). The increased integration of manufacturing things
(resources) with sensors in the cloud-based Internet pre-
ceded the emergence of cloud manufacturing (CMfg) [1].
Well-established connections between various manufactur-
ing resources and capabilities (MR&Cs) and the Internet
[2] assist CMfg in providing users with full sharing and
on-demand use of MR&Cs in service form to change the
way enterprises execute business plans. As such, CMfg is
predicted to alter the manufacturing industry by means of
improved perception, faster planning, more accurate execu-
tions, and user self-provisioning based on the pay-as-you-go
principle and other techniques.

CMfg has many issues, e.g. task semantic modeling [3],
formal description of manufacturing capability [4], resource
virtualization [5] and sharing strategies [6], and service
composition and optimal selection (SCOS) [7], wherein
SCOS has been deemed a principal challenge. In a CMfg
system, distributed MR&Cs are virtualized and encapsu-
lated as cloud services to ease user searches and assembly
when executing tasks. The exuberant growth of services in
the CMfg resource pool increased the difficulty for the com-
bination of multiple single services into a more capable and
powerful composite service that meets the user’s require-
ments while maintaining optimal service performances.
This difficulty is one of the most important issues that
require further examination. Due to the large-scale char-
acteristic of SCOS, the application of exact approaches or
exhaustive search algorithms is limited. Evolutionary algo-
rithms have been developed to solve the problem, such as

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-0927-y&domain=pdf
mailto:mexfyao@scut.edu.cn
mailto:jiajunzhou163@163.com


722 X. Yao, J. Zhou

chaos optimization [7–9], genetic algorithm (GA) [10, 11],
ant colony optimization (ACO) [12], and ABC [13].

Evolutionary algorithms can obtain near-optimal solu-
tions within a short period of time and have become a
thriving area of research and academic efforts. Although
SCOS is a multi-objective problem (MOP), almost all exist-
ing studies are focused only on QoS and have only obtained
a single appropriate solution. However, it is more sensible to
provide MOP decision-makers with a set of non-dominated
solutions. The growing interest in solving sustainability
issues has garnered an urgent need to consider the eco-
nomic, environmental, and social aspects of manufacturing
system [14]. In particular, the escalating demand for energy
poses serious challenges to sustainable manufacturing [15]
and thus requires continuous efforts to produce more sus-
tainable manufactured products [16], which may involve
multi-objective tradeoffs between the economic and envi-
ronmental aspects of SCOS. The present study aims to
provide an efficient approach for SCOS in consideration of
these economic and environmental aspects.

ABC is one of the most recently developed metaheuris-
tic algorithms based on the intelligent foraging behavior of
a honey bee swarm [17]. ABC has been widely used in
many fields [18–20] as it is easy to implement and has fewer
control parameters [21, 22]. ABC performs a neighborhood
search of food locations throughout the whole search pro-
cess. This characteristic highlights ABC’s applicability for
good exploration but poor exploitation capabilities, which
result in relatively slow convergences of ABC in address-
ing certain complex issues. Yang and Deb recently proposed
another novel evolutionary algorithm, namely the cuckoo
search (CS) [23]. CS with Lévy flight performs an exploita-
tive local or neighborhood search combined with occasional
long jumps, which allow more efficient search space explo-
rations to escape from the local optima. Comparison studies
illustrate a more robust and precise search using CS than
by using algorithms such as GA and ABC for complex
multi-model optimization problems [24]. However, the con-
vergence speed of the CS is relatively slow. The present
study proposes a hybrid MOEA based on the hybridization
of ABC and CS to deal with multi-objective SCOS, which
ultimately takes advantage of CS and minimizes shortcom-
ings of ABC. In addition, the original design of the onlooker
bee’s movement only considers a single dimension, which
results in insufficient information sharing when handling
complex problems. To overcome this limitation, a multi-
dimension perturbation mechanism was designed for the
employed bees.

The rest of the paper is organized as follows: Section 2
reviews relevant works. In Section 3, SCOS that mini-
mizes energy consumption while simultaneously maximizes
QoS is mathematically formulated. In Section 4, HABC
details are provided to address SCOS. Section 5 presents the

experimental studies on benchmark problems. In Section 6,
HABC is applied to solve SCOS. Finally, Section 7 summarizes
the research conclusions and discusses future directives.

2 Related works

Although CMfg services may expose many operations,
a single service generally acts fairly for atomic, low-
level functions and cannot satisfy the various complicated
requirements of many real-world cases, particularly in the
presence of complex and diverse customer-generated tasks
in personalized customization. Thus, service composition is
one of the best approaches when encountering these chal-
lenges. However, selecting an optimal composition service
is an NP-hard problem.

Traditionally, exact methods such as integer program-
ming [25] and mixed integer programming [26] have long
been applied to address these issues, though they perform
well in some specific situations but fail in more complex
situations. SCOS is generally an NP-hard problem in an n-
dimensional hyperspace, where the QoS variables can be
large and have complex non linear influence on the objec-
tive function of SCOS. Identifying the optimal solution
using exact methods is computationally expensive and can-
not be accomplished within limited time constraints, thereby
resulting in the development of evolutionary algorithms to
achieve better scalability. Zhang et al. [27] designed an
improved GA for enterprise partner selection in consider-
ation of the green criteria. Zhao et al. [28] proposed an
improved particle swarm optimization (PSO) for SCOS.
Wang et al. [12] constructed a culture max-min ant system
(C-MMAS) algorithm to solve SCOS for virtual enterprises.
However, research has focused on very limited and popu-
lar approaches, such as GA, PSO, and ACO, which have
already been widely reported. Minimal efforts have been
observed in exploring promising new algorithms for SCOS.
To address such issues, the present study will introduce
newly developed algorithms such as the cuckoo search (CS)
and ABC to address SCOS. The superior performance of CS
compared to other well-known algorithms has been demon-
strated in [23, 24, 29]. Therefore we attempted to introduce
the CS into ABC for solving SCOS.

Although service composition problems have been
widely studied, research on service selection and scheduling
in cloud system and CMfg is still in its initial stages. Zhang
et al. [30] investigated the flexible management of ser-
vice composition in CMfg. However, the formal description
and algorithm for SCOS was not addressed. Wang et al.
[11] proposed a cloud service composition method based
on GA. In [10], a hybrid approach using GA and fruit
fly optimization was introduced to solve SCOS in cloud
computing. In [13], the authors adopted a global best-guided



Multi-objective hybrid artificial bee colony algorithm... 723

ABC to solve cloud service composition. Laili et al. [9]
proposed the ranking-based chaos optimization by simulta-
neously considering SCOS and the allocation of computing
resources. Huang et al. [8] designed chaos optimization
with consideration of the energy consumption for cloud ser-
vice selection. In [7], an adaptive chaos optimization called
full connection based parallel adaptive chaos optimization
with reflex migration (FC-PACO-RM) was developed to
solve SCOS. However, these studies treated multi-objective
SCOS problems as single objective optimization ones [8, 13].

MOEAs have garnered attention for simultaneously
addressing multiple objectives for MOPs as well as obtain-
ing a set of representative and well-distributed solutions in
a single run, specifically with MOEAs such as the Non-
dominated Sorting Genetic Algorithm II (NSGA-II), micro-
GA, Strength Pareto Evolutionary Algorithm 2 (SPEA2),
and multi-objective PSO (MOPSO) [31]. Currently, some
typical MOEAs have been applied in MOPs. Ramacher et
al. [32] presented an improved NSGA-II to determine the
Pareto solutions for service selection. In [33], SPEA2 was
introduced to multi-objective SCOS to achieve the Pareto
solutions with a well-spread distribution. In [34], set evolu-
tion MOPSO was proposed to solve multi-objective prob-
lems. In [35], the performance of several classical MOEAs
for SCOS was compared. Despite exhibiting good perfor-
mances in their specified domains, classic MOEAs such as
NSGA-II, micro-GA , SPEA2, and MOPSO were extended
from the well-known GA and PSO, with many publica-
tions have reported on their enhancements and applications.
Nevertheless, limited efforts have been pursued on more
recently developed algorithms for SCOS, such as multi-
objective grey wolf optimizer [36], multi-objective artificial
raindrop algorithm [37], multi-objective gravitational search
algorithm [38], multi-objective cat swarm optimization [39],
multi-objective teaching learning based optimization [40],
and multi-objective ABC (MOABC) algorithm [41], some
of which truly support MOPs, especially MOABC, which is
easily implementable and relatively efficient in comparison
with others. Despite its impressive performance in practical
applications [19, 41, 42], MOABC has not yet been applied
to solve a multi-objective SCOS problem.

The classic ABC has presented some drawbacks, specif-
ically prematurity and slow convergence, in finding near-
optimal solutions for complex MOPs. To overcome such
drawbacks, a hybrid ABC (HABC) is proposed. In HABC,
the multi-dimension perturbation mechanism is employed
to improve convergence speed, while the Lévy flight of CS
is adopted to avoid prematurity. Lévy flight has an infinite
mean and variance, thus it can explore the search space more
efficiently as compared to algorithms with random per-
mutation. This advantage, combined with the multidimen-
sional perturbation mechanism designed for employed bees,
allows the search space to be explored more efficiently.

Furthermore, HABC parameters are dynamically config-
ured based on the previous performances of generating
promising solutions.

3 Problem statement

Generally, a complex task in CMfg is decomposed into sev-
eral subtasks and fulfilled by a composite service. SCOS
involves the determination and selection of manufactur-
ing services (MSs) for each subtask such that the obtained
composite service satisfies both the functional and QoS
requirements. The SCOS process can be divided into fol-
lowing steps: (1) Task decomposition; (2) Service searching
and matching; (3) Qualified candidate services set acqui-
sition; (4) Composition of optimal services. More detailed
matching and composition flows were investigated in the
authors’ previous work [43].

Unlike single-objective problems, multi-objective SCOS
problems try to simultaneously optimize all objectives by
balancing multiple conflict objectives to get a set of non-
dominated solutions. Concerns for the SCOS in the present
study are focused on both providing the best QoS and
reducing energy consumption.

3.1 QoS evaluation

QoS consists of several attributes for evaluating the MSs
from different aspects, such as time (T ), cost (C), availabil-
ity (Av), reliability (Re) [7, 44]. The aggregation value of
QoS for a composite manufacturing service (CMS) is evalu-
ated based on composite structures (i.e., sequential, parallel,
conditional, and loop). The related mathematical model was
built in the authors’ previous work [45]. The QoS for CMS
can be calculated as follows:

QoS(CMS) =
r∑

k=1

wk × NormQk(CMS) (1)

subject to

∀k∈{1, 2, ...r}
{
agg(Qk)≥Qk0, if Qk is a positive attribute
agg(Qk)≤Qk0, if Qk is a negative attribute

(2)

where NormQk(CMS) represents the normalized value of
the kth attribute for CMS, r is the number of attributes,
wk represents the weight of the kth attribute, wk ∈[0, 1],∑r

k=1 wk = 1, and Qk0 denotes the lowest requirement of
the kth attribute.



724 X. Yao, J. Zhou

3.2 Energy consumption evaluation

Although many criteria have been considered in the QoS
evaluation of cloud services, “green criterion” such as car-
bon emission and energy consumption have been minimally
considered. However, the increasing public awareness of
environmental protection have gradually rendered green
considerations as a significant factor in selecting quali-
fied manufacturing service (MS) [8, 27, 46], among which
energy consumption has become a significant component
in such a way that it has been selected as one of the
optimization goals for SCOS in this study.

Traditionally, services are deployed into a fixed computer
and require specific maintenance, whereas the cloud ser-
vices in CMfg have a larger scale and are mainly supported
by virtual machines (VMs) [9]. In CMfg, VM-supported
cloud services not only include software services (SSs) such
as simulation and design software, but also include hard-
ware services (HSs) such as machine tools and manufac-
turing equipment. The modeling and evaluation of energy
consumption for SSs and HSs must be analyzed separately
due to their different characteristics [47].

3.2.1 Energy consumption evaluation for SSs

SSs in CMfg are running with the support of VMs,
which are the virtual division of the underlying comput-
ing resources. The resource information of SS, S1, can be
represented as:

S1 = (s, v, p, c, q, f, u, g)

where s represents the service execution efficiency in bits
per second; v and p denote the minimum required speed
and running speed of VM, respectively, in bits per second;
c denotes the input communication amount from the pre-
decessor node, in bytes; q denotes the transmission rate of
VM, in bits per second; f denotes the failure probability of
VM; u denotes the recovery time if VM fails; and g denotes
the average energy consumption of VM per unit time.

If the data size of a decomposed subtask is w and the
input communication amount is c, then the total energy con-
sumption En(S1) of the software service can be calculated:

En(S1) = T1g =
(

vw

ps
+ c

q
+ f u

)
g (3)

where T1 denotes the total execution time.

3.2.2 Energy consumption evaluation for HSs

Unlike SSs, most HSs require supervision or control dur-
ing execution, thus VMs are deemed indispensable as they
are employed to control and supervise HSs. The transmis-
sion path of the control commands for SSs is ‘user-VM’,

whereas the transmission path for HSs is ‘user-VM-HSs’.
Such a process will increase service execution time and pro-
duce a large amount of energy consumption [9]. For this
reason, more factors must be considered in the energy con-
sumption of HSs and VMs, namely ζ , η and e, that require
additional consideration. The resource information of HS,
S2, can be represented as

S2 = (s, v, p, c, q, f, u, g, ζ, η, e)

where ζ denotes the average control rate, η represents
the transferring rate of data between VM and HSs, and e

denotes the average energy consumption of HS per unit
time.

The other parameters, namely s, v, p, c, q, f , u, and g,
have been previously explained. The total energy consump-
tion En(S2) can be calculated as follows:

En(S2) = T2(g+e) = (
vw(η + sζ )

psη
+ c

q
+f u)(g+e) (4)

where T2 denotes the total execution time of HS. If the HS
does not require external commands, then ζ = 0.

3.2.3 Objective function of energy consumption

Let X denote the mapping between the subtask and the
corresponding service, such that X(i) = j signifies that
subtask ST i has been assigned to service MSij . For i ∈{1,
2, ..., n}, X(i) ∈{1, 2, ..., mi}, where n is the number of sub-
tasks and mi is the number of candidate services for ST i .
Then the objective function is stated as follows:

En(CMS) = En1(CMS) + En2(CMS) (5)

where

En1(CMS) =
ns1∑

i=1

(
viwi

pi,X(i)si,X(i)

+ ci

qi,X(i)

+ fi,X(i)u

)
gi,X(i), CMS ∈ S1; (6)

En2(CMS) =
ns2∑

i=1

(
viwi(η + si,X(i)ζ )

pi,X(i)si,X(i)η
+ ci

qi,X(i)

+fi,X(i)u

)
(gi,X(i)+ ei,X(i)), CMS ∈ S2.(7)

Here, ns1 and ns2 are the number of SSs and HSs, respec-
tively; and En1(CMS) and En2(CMS) represent the energy
consumption of the SSs and HSs, respectively.

3.3 Objective functions of multi-objective SCOS

As previously stated, QoS and energy consumption are con-
sidered as two objectives in SCOS, where time (T ), cost



Multi-objective hybrid artificial bee colony algorithm... 725

(C), availability (Av), and reliability (Re) are treated as con-
straints. The problem can be then formalized as follows:

Min F (CMS) = {1 − QoS(CMS),En(CMS)} (8)

St.

{
agg(Qk) ≥ Qk0, if Qk is a positive attribute
agg(Qk) ≤ Qk0, if Qk is a negative attribute

∀k ∈ {1, 2, ...r } (9)

where the constraint in (9) requires the QoS criteria to
satisfy the lowest requirement of each subtask.

4 Multi-objective hybrid ABC algorithm

This section starts with a brief review on Pareto solutions
as well as the standard ABC and CS algorithms to propose
the HABC using a multi-dimension perturbation mechanism
and Lévy flight with adaptive parameter settings.

4.1 Pareto solutions for MOPs

For a minimization MOP, a solution X1 is said to dominate
another solution X2 (denoted as X1 ≺ X2), if and only if:

fi(X1) ≤ fi(X2), i = 1, 2, · · · , M, (10)

fj (X1) < fj (X2), ∃j ∈ {1, 2, · · · , M} (11)

where f denotes the objective functions and M is the num-
ber of objectives. Considering Pareto dominance, a vector
X0 is called the Pareto solution if and only if ¬∃X ∈ S such
that X ≺ X0. The Pareto solution set (PS) is defined as
follows:

PS = {X0| ¬∃X ∈ S and X ≺ X0} (12)

where S denotes the search space. Figure 1 graphically
shows an example of Pareto solutions (marked as the black
circles) and dominated solutions (marked as the empty cir-
cles) for a two-objective optimization problem, in which
both objectives require minimization.

4.2 Basic ABC algorithm

Karaboga proposed the ABC algorithm to simulate honey
bee behavior during the foraging cycle [17]. The top level
pseudocode of ABC is provided in Algorithm 1.

Algorithm 1 ABC top level pseudocode

1: Initialization.
Repeat
2: Send employed bees to exploit potential food sources.
3: Send onlooker bees to exploit promising food sources.
4: Send scout bees to search for new food sources.
5: Memorize the best solution found so far.
Until termination criterion met.

In initialization, the food sources (solutions) of ABC are
randomly generated as follows:

xij = xmin
j + rand(0, 1)(xmax

j − xmin
j ) (13)

where xij denotes the j th dimension of the ith solution,
[xmax

j , xmin
j ] is the boundary of the j th dimension, and rand

(0, 1) is a random number uniformly generated within the
range [0,1].

An employed bee, i, tries to improve a solution, Xi =
(xi1, xi2,. . . ,xij ,. . . ,xid), by modifying one dimension as
follows:

vij = xij + ϕij (xij − xkj ) (14)

where vij is the j th dimension of V i and V i = (vi1, vi2, .
. . , vid ) is the updated solution; ϕij is a random number
within the range [−1, 1]; and i, k, and j are randomly cho-
sen indexes with i, k ∈{1, 2, . . . , SN}(i �= k), and j ∈{1, 2,
. . . ,d}, where SN is the number of onlookers. The greedy
selection is then performed between V i and Xi to obtain
and retain the better solution.

An onlooker bee chooses a solution depending on the
probability value, pi , as follows:

pi = fi/
∑SN

k=1
fk (15)

Pareto solution

Dominated solution

Objective 1

O
b

je
ct

iv
e 

2

Fig. 1 Illustration of Pareto solutions for a two-objective problem



726 X. Yao, J. Zhou

where fi represents the fitness of the ith solution, i ∈ {1, 2,
. . . , SN}, and SN is the total number of onlooker bees in the
population.

If one solution has not improved over a predefined num-
ber of times in both the employed bee and onlooker phases,
a scout bee generates a new random solution based on (13),
which replaces the exhausted one [21, 22].

4.3 Cuckoo search with Lévy flight

Cuckoo search (CS) is one of the latest nature-inspired
metaheuristic algorithms. Yang and Deb [23] developed the
algorithm in 2009 after gaining inspiration from the obligate
brood parasitic behavior of some cuckoo species in com-
bination with the Lévy flight behavior of albatrosses, fruit
flies, and spider monkeys. Preliminary studies deem it very
promising and far more efficient than existing algorithms
such as GA, PSO, and differential evolution (DE) [24, 29, 48].

Each cuckoo in a CS nest represents an existing solution,
while a cuckoo egg represents a new solution. The main
steps can be summarized as follows:

Given that a new solution, Xi,new, for cuckoo egg i is
generated from a randomly selected cuckoo/solution, Xi , a
Lévy flight can then be performed as follows:

Xi,new = Xi + α ⊕ Levy(β) (16)

where the product⊕deals with an entry-wise multiplications
process, and α is the step size parameter related to the scale
of the problem, which can be expressed as follows:

α = SF(Xi − Xbest ) (17)

where Xbest is the current best solution. For MOPs, Xbest

can be a non-dominated solution that is randomly selected
from external Pareto archive sets, and the scaling factor
(SF) is a constant. Levy(β) obeys the Lévy distribution as
follows:

Levy(β) ∼ u = t−1−β, 0 < β ≤ 2 (18)

where β ∈(0, 2] defines the index and determines the shape
of the distribution, and t denotes the step length. For the
convenience of calculation, a simplified scheme of Levy(β)
can be written as follows:

Levy(β) ∼ φ × u

|v|1/β (19)

where u and v obey the standard normal distributions as
follows:

u ∼ N(0, 1) and v ∼ N(0, 1) (20)

and

φ =
{

�(1 + β) × sin(π × β/2)

�[(1 + β)/2] × β × 2(β−1)/2

}1/β

(21)

where � is the standard Gamma function as calculated
below:

�(1 + β) =
∫ ∞

0
tβe−t dt (22)

Mantegna [49] suggested specific β values, i.e., 0.75� β �
1.95, to create a faster and more efficient algorithm. The
value 1.5 was determined most suitable among the different
β values. According to (18), (19), (20), (21), and (22), a
new solution with a Lévy distribution can be calculated as
follows:

Xi,new = Xi + SF
φ × u

|v|1/β (Xi − Xbest ) (23)

Lévy flights consist majorly of small steps and occasion-
ally large steps or long-distance jumps. Such long jumps can
significantly improve the search performance of the cuckoo
search for some cases, especially in a large-scale irregular
solution space.

4.4 Proposed hybrid ABC algorithm to address
multi-objective SCOS problems

A hybrid Pareto-based ABC algorithm for solving the SCOS
is proposed, wherein the global search ability of ABC and
the exploitation ability of Lévy flight is combined. Firstly,
the multi-dimension perturbation mechanism is introduced
in the employed bee phase of ABC for more efficient global
search space explorations. The cuckoo search with Lévy
flight is then incorporated in the onlooker bee phase of ABC
to refine the exploitation. In addition, the control parameters
are gradually self-adapted by learning from their previous
experiences in generating promising solutions.

4.4.1 Solution encoding

The integer coding method is applied to encode the can-
didate services and map the composition services into the
position vectors, where the integer value of each vector
dimension represents the index of a concrete service from
the corresponding candidate set, as depicted in Fig. 2. It is
assumed that a task consists of n subtasks. Under the inte-
ger array coding scheme, the position vector of a bee is
denoted by an n-dimension array, Xi = {xi1, xi2, ..., xin},
wherein each element xij denotes the candidate service,
MSi,j . For example, the corresponding array of the position
vector shown in Fig. 2 is {2, 1, ..., m}.

4.4.2 External Pareto archive set

HABC uses an external Pareto archive set which acts as an
elite archive to store non-dominated solutions found dur-
ing the search process, unlike the general single-objective



Multi-objective hybrid artificial bee colony algorithm... 727

Fig. 2 Array integer encoding
of solution ST1

ST2

.

.

.

STn

MS1,1 MS1,2 MS1,m

MS2,1 MS2,2 MS2,m

MSn,1 MSn,2 MSn,m

. . .

. . .

. . .

. . .

MS1,2

MS2,1

MSn,m

2

1

.

.

.

m

Task Candidate service set (CSS) CodeService selected

optimization process. At the end of each iteration, the non-
dominated solutions are stored in the set and the dominated
members in the set are deleted. The external archive set is
updated at each iteration.

4.4.3 Initialization

A random set of feasible solutions is generated to initialize
food sources, to which non-dominated solutions are added.
The initialization procedure for food sources is depicted in
Algorithm 2. First, a set of integer solutions is randomly
generated within the range of [1, m], where m denotes the
number of candidate services for each subtask. The solu-
tions are then judged on their feasibility, which requires the
satisfaction of the constraints in (9). Otherwise, the solu-
tion will be regenerated. In this way, the selected initial food
sources (solutions) will have better performances [27].

Algorithm 2 Pseudocode for food source initialization

Repeat
1: Randomly generate a set of solutions.
2: If it is not feasible, go to Step 1.
3: Add the non-dominated solutions to the food sources.
Until (the SN food sources are obtained).

4.4.4 Employed bees with multi-dimension parameter
perturbation

In the employed bee phase of ABC, an employed forager
probabilistically produces a modification on the food source
position (solution) with a single dimension to generate a
new solution, which may result in a slow convergence speed
and poor exploitation ability in the ABC algorithm when
working with complicated composite and non-separable
functions. In order to overcome the drawback caused by
the single-dimension parameter perturbation, a perturbation
rate (PR) that controls the perturbation frequency is intro-
duced to the solution-updating equation such that multiple

dimensions of a food source are changed at each iteration in
the employed bee stage.

By means of such a modification, a new candidate food
source is generated for each food source, xij , as follows:

vij =
{

xij + ϕij (xij − xkj ), if rij < PR

vij , otherwise
(24)

where rij is a random number uniformly generated within
the range [0, 1]; k ∈{1, 2,. . . , SN}is a randomly chosen
index and k �= i; the dimension j ∈{1, . . . , n} is uni-
formly selected at random; and PR is the perturbation rate
with a value between 0 and 1. A lower PR value results in
a slow convergence rate, whereas an extremely high value
may cause too much diversity in a population.

4.4.5 Probability calculation

In the basic ABC, solutions are assigned fitness values and
onlookers select the individuals for mutation based on the
probability in (15). However, in the multi-objective ABC
version, the fitness function is not available given the exis-
tence of a set of non-dominated solutions. For this reason,
a new metric fitness calculation method is introduced to
compute the fitness of an individual that is selected by the
onlookers for exploitation as follows:

f it (Xi ) = (2R(Xi ) + 1
1+de(Xi )

)−1 (25)

where R(Xi) is the Pareto rank value of individual Xi ,
and de(Xi) is the crowding entropy that is calculated by
the fast non-dominated sorting crowding distance measure
method [50] and the distribution entropy technique [51].
The combination of the crowding distance and the distribu-
tion entropy can exactly reflect the crowding degree of a
solution in the objective function space. As such, individuals
are selected based on their ranks and crowding entropies. An
individual with a lower rank and higher crowding entropy is
more desirable.



728 X. Yao, J. Zhou

4.4.6 The onlooker bee phase improved by cuckoo search
with Lévy flight

In ABC, the solution search equation for onlookers is sim-
ilar to that of employed bees. An onlooker updates its
position using the information provided by a randomly
selected potential solution, therefore the obtained solution
may be significantly influenced by a random selected solu-
tion. Meanwhile, a forager flies at random between the
position itself and a randomly selected solution, with the
updated solution depending highly on the step size. If the
step size is large, for example, in the case where the differ-
ence between the current and randomly selected solution is
large with a high absolute value of ϕij , then there is a higher
likelihood for onlookers to skip the true solution. On the
other hand, if the step size is small, the convergence speed
of ABC may significantly decrease.

In order to overcome such a drawback, the cuckoo
search-inspired Lévy flight is incorporated into the onlooker
bee search phase. Lévy flight uses Lévy distributions
instead of uniform and/or Gaussian distributions as mecha-
nisms to generate step sizes. Frequent short steps generated
by Lévy distributions intensifies the exploitative local or
neighborhood search around the current promising food
sources more precisely, which helps the colony search for
food sources more quickly and efficiently and enhances
the exploitation capability of ABC. Meanwhile, occasional
Lévy distribution-produced long jumps explore very differ-
ent areas of the current search space to scout for potential
solutions, which helps foragers escape from the local optima
using an exploratory global search.

Lévy flight motions are considered more efficient than
stochastic search, especially with no prior knowledge on the
locations of food sources, because Lévy flight paths exhibit
the characteristics of a series of scale-free moves and Lévy
distributions. Various empirical and theoretical studies have
validated the characteristics of these Lévy flight patterns
[52]. Equation (18) illustrate the scale-free Lévy flights,
which consist of sequences of independent and randomly
oriented steps that obey an inverse power law distribution
with a heavy and long tail. Lévy movements are comprised
of many short moves that are punctuated by rare longer
moves, which can be used as the optimal local search for
onlooker bees. Thus, Lévy flight was chosen as the local
search strategy to closely examine the surroundings of some
promising regions.

It is important to note the trade-off between the global
and local searches for Lévy flights, given that the step length
of Lévy flights is controlled by a scaling factor (SF). A
lower value of SF allows onlooker bees to finely tune the
search process using smaller steps at a slower convergence
rate. A higher value of SF accelerates the search process

and presents the global random walk, but reduces the
exploitation capability of the perturbation process. Thus, we
tuned SF with the adaptive parameter configuration strategy
described in the following section.

4.4.7 Self-adaptation of PR and SF

As mentioned earlier, PR and SF control the perturbation
rate of the food sources and step length of the Lévy flight,
respectively. The control parameters, PR and SF, have a
great impact on the exploration/exploitation abilities of the
ABC search process. PR decides the difference between the
parent solution and the generated trial solution and it largely
impacts the coverage speed of the algorithm. A larger PR
value promotes the perturbation of food sources such that
the algorithm can explore the search space to find more
promising new solutions. A lower PR value favors the local
search, thereby improving the exploitation performance.
Similarly, a high SF value is devoted to exploring new
solutions, thus inducing a raise in the population diversity,
whereas a small SF value favors short-distance exploitation
and enhances the local exploitation ability of the algorithm.
For this reason, both PR and SF should be adapted to partic-
ular problems or particular phases of a search process. The
present study proposed a novel adaptive dynamic parame-
ter configuration mechanism to determine the best values
of PR and SF based on previous experiences so as to bal-
ance the exploitative local search and exploratory global
search during the evolution process, which are described as
follows.

Firstly, a current parameter configuration list (CPCL)
with a specified length (Fig. 3a) is generated to reserve the
parameter sets of PR and SF, both of which are randomly
generated within a uniform distribution range [0, 1]. A
parameter set is then selected from the CPCL and assigned
to the solution-updating equation of the employed bees and
onlookers, respectively. If the updated solution replaces the
old one by using the selected parameter set and enters into
the next generation, the associated parameter set is then
added into a successful parameter configuration list (SPCL)
(Fig. 3b) and cleared away from the CPCL.

Index PR SF
1 PR 1 SF 1

2 PR 2 SF 2

... ... ...

L PR L SF L

CPCL

Index PR SF
1 PR S1 SF S1

2 PR S2 SF S2

... ... ...

L PR SL SF SL

SPCL

(a) Current parameter

configuration list

(b) Successful parameter

configuration list

Fig. 3 Parameter configuration list



Multi-objective hybrid artificial bee colony algorithm... 729

Once the CPCL was empty, the PR and SF median val-
ues stored in the SPCL were calculated and denoted as mPR
and mSF, respectively. The CPCL was then refilled with the
values of PR and SF that were randomly generated based on
the normal distributions, namely N(mPR, 0.1) and N(mSF,
0.1), respectively. That is to say, CPCL elements were ran-
domly sampled from the successful parameter configuration
list (SPCL). The above process was repeated until the ter-
mination condition was satisfied. As a result, the proper
parameter set for PR and SF gradually self-adapted by
learning from previous experiences of generating promising
solutions. If the SPCL overflows, the earliest records stored
in the SPCL were removed so that the current successful
parameter sets can be stored in the list, which can avoid any
inappropriate long-term accumulation effects. The present
study set the length (L) of both CPCL and SPCL at 200. A
small variation in length L was verified as not having any
significant influence on the performance of the proposed
algorithm.

4.4.8 Pareto greedy selection

Considering both a parent solution, Xi and an offspring
solution, V i , the better solution is maintained by the Pareto
greedy selection in Algorithm 3, where V i is added into the
external archive (EXA) only if the new solution, V i, is not
dominated by any member of the EXA. After such a selec-
tion, the number of exploitations, triali , is incremented by 1,
if Xi is maintained (Xi dominates V i). When triali exceeds
the limit parameter, Xi will be explored by the scouts.

Algorithm 3. Pareto greedy selection (Vi, Xi)

1: If (Vi dominates Xi)
2: Xi =Vi

3: triali=0
4: Else if (Vi and Xi are non-dominated with each other)
5: If (Vi is added into EXA)
6: Xi =Vi

7: triali=0
8: Else
9: triali= triali+1
10: End if
11: Else
12: triali= triali+1
13: End if

4.4.9 Update external Pareto archive set

As stated in Section 4.4.2, an external archive (EXA) was
employed to preserve the non-dominated solutions obtained
during the search process. At the end of each iteration, the

members of the EXA were updated. However, the num-
ber of Pareto-optimal solutions for most problems is very
large and may include an infinite number of individuals.
A larger number of Pareto-optimal solutions results in a
greater computational burden such that the EXA size must
be restricted to a predefined value. The present study used
the fast non-dominated sorting method to decrease the size
of the archive set and maintain the diversity of the Pareto
solutions. The crowding distances [50] of all the archive
members were calculated and sorted from largest to small-
est once the number of non-dominated solutions exceeded
the allowed archive size. The top Nmax (maximum size of
the EXA) members were maintained, whereas the remain-
ing crowded members were removed to maintain a diverse
distribution among the archive members.

4.4.10 The procedure for the proposed hybrid approach

The pseudocode for the proposed HABC is presented in
Algorithm 4, where every key element has been explained
as before.

5 Experimental studies on benchmark problems

Widely used benchmark problems were used to examine the
proposed HABC algorithm in a computational environment
with MATLAB R2013b for a 64-bit Windows 7 operating
system on a 2.5 GHz PC with 4 GB RAM.

5.1 Test problems

For the performance comparison, the present study selected
21 benchmark problems, that are often used in research to
test MOEAs for MOPs, including:

(1) The ZDT bi-objective problems: ZDT1-ZDT4, ZDT6
[53].

(2) The DTLZ tri-objective problems: DTLZ1- DTLZ5,
DTLZ7 [54].

(3) The CEC09 benchmark problems: UF1-UF10,
wherein UF1-UF7 are bi-objective and UF8-UF10 are
tri-objective [55].

5.2 Performance metrics

The performance metrics were classified into three cate-
gories depending on their ability to measure convergence,
diversity of the obtained solutions, or both criteria. We
adopted two widely used metrics, namely the invert gen-
erational distance (IGD) [53] and the hyper-volume (HV)
[34], to measure both the convergence and diversity of the
obtained solutions.



730 X. Yao, J. Zhou

Algorithm 4. The proposed HABC algorithm

1:Initialize the food source position solutions (FS). /* see in Section 4.4.3*/
2: FS Generate employed bees(SN).
3: FS Fast non-dominated sort(FS, SN).
4: FS Crowding distance assignment(FS, SN).
5: Add the non-dominated solutions in food sources to the external archive.
6: while <no termination conditions satisfied> do
7: /* Employed bees Phase in Section 4.4.4 */.
8: for i=1:SN
9: Select PR from CPCL;
10: Update FSi by employed bee search with multiple dimension perturbation;
11: PR is added to SPCL and removed from CPCL once FSi is improved;
12: End
13: /* Onlookers Phase in Section 4.4.6*/.
14: Calculate probabilities p(i) for onlookers by Eq.(25) /* see in Section 4.4.5*/
15: i 1;s 0;
16: while s<SN /*Onlooker bee phase: send onlookers to food sources*/

17 r rand(0,1);

18 if r<p(i) then /*Stochastic sampling*/
19 s s+1; /*Select SF from CPCL*/
20 Update FSi by onlooker bee search improved by Levy flight;
21 SF is Added to SPCL and removed from CPCL once FSi is improved;

22 end

23 i (i+1) mod (SN);
24: end
25: /* Scouts Phase */.
26: for i=1:SN
27: If triali>limit then /* Determine the abandoned solutions */
28: FSi randomly generate a new solution by standard scout bee search,
29: and then set triali=0;
30: End
31: End
32: FS Fast non-dominated sort(FS, SN).
33: FS Crowding distance assignment(FS, SN).
34: Update the external archive/* see in Section 4.4.9*/
35:End while

IGD was used to evaluate the average distance between
the set of true Pareto solutions, P*, and the obtained approx-
imation set of non-dominated solutions, P , which can be
defined as follows:

IGD(P ∗, P ) =
√∑

v∈P ∗d(v, P )2

|P ∗| (26)

where d(v, P ) is the minimum Euclidean distance between
v and the points in P , and |P*|is the number of P* points,
wherein the small value of IGD-metric is preferred.

The hyper-volume (HV) criterion is used to assess both
the convergence and diversity. Given the approximation
set, P , and a reference point, R, HV is transformed into a
measurement of the region that is simultaneously dominated

by P and bounded above by R, which is formally described
as follows:

HV (P,R) = V olume(
⋃

F∈P

{x |F ≺ x ≺ R}) (27)

where the reference point, R, for the HV-metric is the worst
value in each objective dimension. A higher value of HV
signifies a better approximation set.

5.3 Parameter setting

The proposed HABC was compared to several state-of-the-
art MOEAs such as NSGA-II [50], AbYSS [56], MOsaDE
[57], and SMPSO [58]. The parameter settings are listed
below.



Multi-objective hybrid artificial bee colony algorithm... 731

• Public parameters:

– Population size SN: 100 for bi-objective prob-
lems, 300 for tri-objective problems.

– Maximal function evaluations FEs: 300,000.

• Parameters of NSGA-II are set the same as those in
[50]:

– Crossover probability: 0.9
– SBX distribution index: 20
– Mutation probability: 1/n
– Mutation distribution index: 20

• Parameters of AbYSS are set the same as those in [56]:

– Distribution index of the polynomialmutation: 20
– Size of reference set: 10
– Crossover probability: 1
– Mutation probability: 1/n

• Parameters of MOsaDE are set the same as those in [57]:
– Crossover probability CR: with normal distri-

bution of mean 0.5 and standard deviation 0.1.
– Scaling factor SF: with linearly reducing mean

value from 1.0 to 0.05 and standard deviation 0.1

• Parameters of SMPSO are set the same as those in [58]:

– Mutation distribution index: 20
– Mutation probability: 1/n

where n is the number of decision variables. In addition, 30
runswere independently conducted for each algorithmwith res-
pect to each instance to obtain statistically sound conclusions.
Likewise, the parameter limit for HABC was set at 100.

5.4 Experimental results

Tables 1 and 2 respectively present the mean and stan-
dard deviation of the HV and IGD metric values of the
non-dominated solutions obtained by each algorithm for the
21 problems. The paired Wilcoxon signed-rank test was
conducted to examine the statistical significance between
HABC and the other algorithms. In Tables 1 and 2, signs
“+”, “=”, and “–” indicate a respectively better than, similar
to, or worse HABC performance as compared to its com-
petitor based on the Wilcoxon signed-ranked test at a 0.05
significance level. The results are summarized as “w/t/ l”
on the last row of the two tables, which counts the number
of problems that the proposed HABC significantly outper-
forms, performs similar to, or worse than its competitor in
the corresponding column. In addition, the best results are
highlighted in boldface based on the average metric value.

The proposed HABC algorithm provided the best results
for 16 out of the 21 problems based on the average met-
ric values in Table 1, wherein MOsaDE had the best

Table 1 Comparison results of HV between HABC and other MOEAs

HV HABC NSGA-II AbYSS MOsaDE SMPSO

ZDT1 6.656e−01(1.741e−05) 6.602e−01(2.648e−04)+ 6.621e−01(1.601e−05)+ 6.619e−01(2.509e−05)+ 6.621e−01(1.370e−05)+
ZDT2 3.323e−01(1.991e−05) 3.272e−01(3.203e−04)+ 3.288e−01(1.745e−05)+ 3.286e−01(2.795e−05)+ 3.288e−01(1.922e−05)+
ZDT3 5.167e−01(4.075e−06) 5.153e−01(1.004e−04)+ 5.159e−01(1.055e−05)+ 5.158e−01(1.361e−05)+ 5.159e−01(7.500e−06)+
ZDT4 6.656e−01(4.136e−06) 6.608e−01(2.410e−04)+ 6.620e−01(7.093e−05)+ 6.618e−01(2.353e−05)+ 6.620e−01(1.868e−05)+
ZDT6 4.054e−01(3.256e−07) 3.981e−01(5.567e−04)+ 4.006e−01(7.210e−05)+ 4.013e−01(1.841e−05)+ 4.014e−01(4.975e−05)+
DTLZ1 8.001e−01(2.030e−04) 7.619e−01(6.769e−03)+ 7.612e−01(7.126e−03)+ 7.679e−01(4.621e−03)+ 7.413e−01(5.163e−03)+
DTLZ2 4.447e−01(6.227e−04) 3.867e−01(4.595e−03)+ 3.952e−01(5.434e−03)+ 3.924e−01(3.405e−03)+ 3.737e−01(5.542e−03)+
DTLZ3 4.410e−01(8.073e−04) 3.877e−01(5.471e−03)+ 3.897e−01(4.642e−03)+ 3.861e−01(3.519e−03)+ 3.720e−01(3.898e−03)+
DTLZ4 4.506e−01(1.952e−02) 3.997e−01(4.244e−03)+ 4.092e−01(4.363e−03)+ 3.988e−01(4.192e−03)+ 3.858e−01(6.098e−03)+
DTLZ5 9.483e−02(5.494e−06) 9.234e−02(1.626e−04)+ 9.354e−02(1.721e−05)+ 9.350e−02(2.316e−05)+ 9.354e−02(2.235e−05)+
DTLZ7 3.083e−01(1.181e−02) 2.993e−01(3.584e−03)+ 2.651e−01(3.284e−02)+ 3.086e−01(3.003e−03)− 2.916e−01(4.577e−03)+
UF1 6.655e−01(5.364e−05) 5.596e−01(3.899e−02)+ 5.512e−01(4.518e−02)+ 5.700e−01(1.281e−02)+ 5.626e−01(9.477e−03)+
UF2 6.631e−01(1.035e−03) 6.310e−01(7.548e−03)+ 6.363e−01(6.228e−03)+ 6.330e−01(6.879e−03)+ 6.353e−01(3.097e−03)+
UF3 6.584e−01(9.183e−03) 4.823e−01(3.990e−02)+ 4.021e−01(6.646e−02)+ 3.149e−01(3.798e−02)+ 4.822e−01(5.702e−02)+
UF4 3.391e−01(5.298e−03) 3.484e−01(1.254e−03)− 3.439e−01(4.384e−03)− 3.600e−01(3.475e−04)− 3.452e−01(3.176e−03)−
UF5 7.682e−02(1.000e−01) 1.734e−01(7.114e−02)− 1.663e−01(5.257e−02)− 0.000e+00(0.000e+00)+ 0.000e+00(0.000e+00)+
UF6 2.192e−01(8.181e−02) 2.435e−01(6.736e−02)= 2.590e−01(5.482e−02)= 1.336e−01(1.208e−01)+ 2.057e−02(8.995e−03)+
UF7 4.990e−01(1.724e−04) 3.880e−01(9.360e−02)+ 3.061e−01(1.035e−01)+ 4.528e−01(3.492e−03)+ 4.595e−01(4.837e−03)+
UF8 7.067e−01(8.530e−03) 4.192e−01(2.539e−01)+ 4.135e−01(1.823e−01)+ 1.102e−01(2.102e−02)+ 2.003e−01(1.237e−01)+
UF9 9.276e−01(6.296e−02) 7.678e−01(1.360e−01)+ 7.402e−01(1.305e−01)+ 8.801e−01(1.098e−01)+ 4.499e−01(1.147e−01)+
UF10 1.088e−01(2.608e−02) 5.778e−02(5.583e−02)+ 1.272e−01(1.018e−01)= 8.896e−02(5.649e−02)= 1.728e−01(1.052e−02)−
w/t/ l ‘18/1/2’ ‘17/2/2’ ‘18/1/2’ ‘19/0/2’



732 X. Yao, J. Zhou

Table 2 Comparison results of IGD between HABC and other MOEAs

IGD HABC NSGA-II AbYSS MOsaDE SMPSO

ZDT1 1.567e−05(1.280e−07) 5.532e−05(2.609e−06)+ 3.873e−05(4.160e−07)+ 4.127e−05(4.272e−07)+ 3.875e−05(4.630e−07)+
ZDT2 7.325e−06(9.781e−09) 5.345e−05(2.539e−06)+ 3.807e−05(3.358e−07)+ 4.072e−05(3.890e−07)+ 3.801e−05(3.639e−07)+
ZDT3 1.746e−05(2.599e−08) 3.827e−05(1.478e−06)+ 2.718e−05(5.833e−07)+ 2.849e−05(4.342e−07)+ 2.707e−05(4.667e−07)+
ZDT4 1.562e−05(3.504e−08) 5.267e−05(2.210e−06)+ 3.849e−05(3.432e−07)+ 4.097e−05(4.011e−07)+ 3.847e−05(3.095e−07)+
ZDT6 3.287e−06(3.797e−10) 4.955e−05(3.619e−06)+ 2.895e−05(1.162e−07)+ 3.039e−05(2.478e−07)+ 2.903e−05(5.168e−07)+
DTLZ1 1.344e−04(2.262e−07) 4.616e−04(3.864e−05)+ 4.659e−04(4.751e−05)+ 3.964e−04(1.473e−05)+ 4.584e−04(1.651e−05)+
DTLZ2 1.887e−04(7.805e−07) 6.368e−04(2.599e−05)+ 6.461e−04(3.424e−05)+ 5.838e−04(1.753e−05)+ 6.268e−04(2.302e−05)+
DTLZ3 1.905e−04(8.446e−07) 6.219e−04(3.132e−05)+ 6.387e−04(3.653e−05)+ 5.621e−04(1.221e−05)+ 6.043e−04(2.784e−05)+
DTLZ4 3.001e−04(4.868e−04) 6.443e−04(2.647e−05)+ 6.077e−04(2.253e−05)+ 6.013e−04(1.733e−05)+ 6.521e−04(2.309e−05)+
DTLZ5 2.458e−05(4.699e−08) 7.770e−05(3.120e−06)+ 5.404e−05(7.576e−07)+ 5.605e−05(7.191e−07)+ 5.362e−05(7.471e−07)+
DTLZ7 6.774e−04(1.209e−03) 4.408e−04(5.321e−05)− 3.835e−03(2.124e−03)+ 4.235e−04(3.043e−05)− 4.735e−04(3.467e−05)−
UF1 1.368e−05(7.649e−07) 1.263e−03(4.644e−04)+ 1.411e−03(5.554e−04)+ 1.057e−03(1.412e−04)+ 7.810e−04(6.678e−05)+
UF2 3.535e−05(8.159e−06) 3.267e−04(1.049e−04)+ 3.097e−04(1.372e−04)+ 2.448e−04(6.255e−05)+ 2.080e−04(2.380e−05)+
UF3 7.253e−05(1.144e−04) 6.936e−03(1.579e−03)+ 8.021e−03(2.420e−03)+ 2.379e−03(3.507e−04)+ 1.327e−03(4.489e−04)+
UF4 8.273e−04(1.532e−04) 5.013e−04(2.673e−05)− 7.217e−04(1.871e−04)− 2.459e−04(5.106e−06)− 6.228e−04(1.089e−04)−
UF5 2.901e−03(2.754e−03) 5.872e−03(2.980e−03)+ 6.038e−03(3.237e−03)+ 2.518e−03(1.312e−06)− 2.300e−02(8.958e−03)+
UF6 2.693e−03(2.626e−03) 4.572e−03(2.338e−03)+ 5.892e−03(1.573e−03)+ 3.816e−03(1.577e−03)+ 7.539e−03(1.277e−03)+
UF7 1.459e−05(3.093e−06) 2.184e−03(2.359e−03)+ 4.185e−03(2.508e−03)+ 6.351e−04(4.774e−05)+ 3.535e−04(6.032e−05)+
UF8 5.130e−04(2.050e−04) 3.745e−03(2.243e−03)+ 3.573e−03(1.754e−03)+ 6.496e−03(1.772e−04)+ 5.534e−03(1.392e−03)+
UF9 6.161e−04(6.008e−04) 2.518e−03(9.748e−04)+ 2.646e−03(8.526e−04)+ 1.867e−03(9.319e−04)+ 5.618e−03(1.125e−03)+
UF10 8.304e−03(1.614e−03) 7.768e−03(2.472e−03)− 7.990e−03(2.593e−03)= 6.020e−03(2.013e−03)− 4.321e−03(4.544e−04)−
w/t/ l ‘18/0/3’ ‘19/1/1’ ‘17/0/4’ ‘18/0/3’

performance for two problems, SMPSO exhibited the best
performance on UF10, NSGA-II performed the best on
UF5, and AbYSS offered the best solution for UF6. In addi-
tion, HABC achieved an overwhelming advantage over the
other competitors because HABC outperformed NSGA-II
18 problems, AbYSS 17 problems, MOsaDE 18 problems,
and SMPSO 19 problems according to pairwise comparison
results summarized on the last line of Table 1.

More detailed information can be obtained if the results
were displayed using boxplots, which depict the distribu-
tion of the numerical data. Figure 4 shows the HV value
distributions for each algorithm’s final solutions on the
tested problems, from which HABC exhibited a signifi-
cantly higher and narrower boxplot as compared to those of
other rivals for all the problems except for DTLZ7, UF4-
UF6, and UF10. Given that HV is the performance metric
that illustrates both the diversity and convergence of an
algorithm, it can be stated that the Pareto optimal solutions
obtained by HABC are close to and highly distributed along
the true Pareto front.

A careful inspection of Fig. 4 reveals a slightly similar
algorithm performance ranking order for certain types of
problems. For ZDT bi-objective problems, HABC ranked first
place among the contestant algorithms, NSGA-II was outper-
formed by all the other contestant algorithms and ranked last.
Other algorithms such as AbYSS, MOsaDE, and SMPSO

obtained similar results. However, SMPSO was considered
the worst algorithm instead of NSGA-II for DTLZ prob-
lems, except for DTLZ5 and DTLZ7. HABC still exhib-
ited the best performance on all DTLZ problems. AbYSS,
MOsaDE, and SMPSO obtained similar results. The algo-
rithms perform differently for different problems given that
CEC09 problems contained composite types of problems.

The IGD metric results of the compared algorithms in
Table 2 depict HABC yielding the best results for 17 of
the 21 problems, whereas SMPSO and MOsaDE achieved
only one and three best results, respectively, and NSGA-II
and AbYSS failed to obtain any. The Wilcoxon signed-rank
test result presented in the last row of Table 2 also illus-
trates a better HABC performance for the majority of the
21 problems by respectively obtaining 18, 19, 17, and 18
significantly better results as compared to its corresponding
competitors. Given that IGD is a performance metric used to
measure the convergence and diversity of the obtained solu-
tions using an algorithm, the aforementioned results indicate
that the obtained approximate Pareto fronts using HABC are
more diversified and closer to the optimal Pareto fronts than
those from the other algorithms.

The IGD value distributions obtained from the compared
algorithms in Fig. 5 depict a narrower HABC boxplot as
compared to those of its peers except for UF4, UF6, and
UF10, which also shows stability of HABC in converging



Multi-objective hybrid artificial bee colony algorithm... 733

0.66

0.665

ZDT1

0.328

0.33

0.332

ZDT2

0.5155

0.516

0.5165

ZDT3

0.66

0.665

ZDT4

0.4

0.405

ZDT6

0.75

0.8
DTLZ1

0.4

0.45
DTLZ2

0.36
0.38

0.4
0.42

0.44

DTLZ3

0.35

0.4

0.45

DTLZ4

0.092

0.093

0.094

DTLZ5

0.22
0.24
0.26
0.28
0.3

DTLZ7

0.45
0.5

0.55
0.6

0.65

UF1

0.62

0.64

0.66

UF2

0.4

0.6

UF3

0.34

0.36

UF4

0

0.1

0.2

0.3
UF5

0

0.1

0.2

0.3

UF6

0.2

0.4

UF7

0.2

0.4

0.6

UF8

0.4

0.6

0.8

UF9

0

0.2

0.4

UF10

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

Fig. 4 Boxplots for the HVs obtained using the compared algorithms



734 X. Yao, J. Zhou

2

4

6

x 10
-5

ZDT1

2

4

6
x 10

-5
ZDT2

2

3

4

x 10
-5

ZDT3

2

3

4

5

x 10
-5

ZDT4

2

4

6
x 10

-5
ZDT6

2

4

6
x 10

-4
DTLZ1

2

4

6

x 10
-4

DTLZ2

2

4

6

x 10
-4

DTLZ3

1

2

3
x 10

-3
DTLZ4

4

6

8

x 10
-5

DTLZ5

0

2

4

6

x 10
-3

DTLZ7

0

1

2

x 10
-3

UF1

0

2

4

6

x 10
-4

UF2

0

5

10

x 10
-3

UF3

2
4
6
8

10
12

x 10
-4

UF4

0

0.02

0.04

UF5

2
4
6
8

10
12

x 10
-3

UF6

0
2
4

6
8

x 10
-3

UF7

0

2

4

6

x 10
-3

UF8

0

2

4

6

x 10
-3

UF9

4
6
8

10
12
14

x 10
-3

UF10

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

H
A
B
C

N
S
G
A
-I
I

A
b
Y
S
S

M
O
s
a
D
E

S
M
P
S
O

Fig. 5 Boxplots of the IGD obtained from the compared algorithms



Multi-objective hybrid artificial bee colony algorithm... 735

towards the true Pareto front. However, it should be pointed
out that although HABC performed better than the other
algorithms for a majority of the problems, it did not work
well on several special problems such as DTLZ7, UF4, UF5,
and UF10, wherein HABC was outperformed by its com-
petitors in terms of both IGD and HV metrics. MOsaDE
performed well in solving DTLZ7 and UF4, while SMPSO
worked well for UF10.

These results can be explained by the No Free Lunch
Theorem (NFLT) [59]. According to the NFLT, an algorithm
cannot dominate another algorithm for all the problems and
all the aspects, as a general-purpose universal optimization
algorithm is theoretically impossible. Therefore, no singular
strategy can be expected to outperform another for all types
of problems.

The distributions of the final solutions with the median
IGD values obtained by the algorithms with respect to
UF1,UF3, and UF7 are presented in Figs. 6–8, respectively,
to provide a graphical overview of the behavior of these
algorithms. Figure 6 illustrates the ability of HABC in cov-
ering the entirety of the whole Pareto front. The Pareto
fronts obtained by NSGA-II and MOsaDE were slightly
similar and missed a portion of the central part of the true
Pareto front. However, the Pareto front from AbYSS missed
both the left and right sides of the true Pareto front. The
solutions obtained by SMPSO had a farther distance to the
true Pareto front despite having good diversity.

HABC still had the best convergence on UF3 based on
the results presented in Fig. 7. The solutions obtained by
NSGA-II and AbYSS were only partly close to the true
Pareto front, whereas MOsaDE found solutions farther from
the true Pareto front and SMPSO had solutions at the ends
of the Pareto front.

The superiority of HABC is also observed in Fig. 8. How-
ever, the solutions obtained by the SMPSO algorithm were
better than those of AbYSS and MOsaDE, though all of them
missed a part of the true Pareto front. Theworst results belonged
to NSGA-II, which only obtained a small discontinuous
part of solutions on the right side of the true Pareto front.

According to the above-presented comparison and sta-
tistical analysis, the proposed HABC performed the best
among the five algorithms in terms of the convergence
rate, stability, and solutions’ diversity. Fast HABC con-
vergence originated from the solution-updating mechanism
of the employed bee phase, where multiple dimensions
of the solutions were perturbed at each iteration. Follow-
ing the exploration of the employed bee phase, onlooker
bees tended to exploit the promising regions of the search
space provided by Lévy flight with adaptive step length. In
addition, occasional large-steps or long-distance jumps are
allowed in the Lévy distribution, which reemphasizes explo-
ration and improves the diversity of the solutions across the
Pareto front.

5.5 Effectiveness of improvement strategies

5.5.1 Impacts of parameter settings

PR and SF are two parameters used in HABC that control the
convergence speed and adjust the exploration and exploita-
tion. The perturbation rate, PR, was employed to adjust the
parameter variation frequency when a neighboring solution
is produced. Likewise, the scaling factor, SF, was used to
determine the step length of the Lévy flight in the onlooker
bee phase. To investigate the impacts of PR and SF on the
performance of HABC, we tested 36 combinations of 9 PR

0 0.5 1 1.5
0

0.5

1

1.5
UF1

HABC

referenceFronts

0 0.5 1 1.5
0

0.5

1

1.5
UF1

NSGA-II

referenceFronts

0 0.5 1 1.5
0

0.5

1

1.5
UF1

AbYSS

referenceFronts

0 0.5 1 1.5
0

0.5

1

1.5
UF1

MOsaDE

referenceFronts

0 0.5 1 1.5
0

0.5

1

1.5

2
UF1

SMPSO

referenceFronts

Fig. 6 Distribution for the solutions obtained using the algorithms on UF1



736 X. Yao, J. Zhou

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
UF3

NSGA-II

referenceFronts

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
UF3

AbYSS

referenceFronts

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
UF3

MOsaDE

referenceFronts

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
UF3

SMPSO

referenceFronts

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
UF3

HABC

referenceFronts

Fig. 7 Distribution for the solutions obtained using the algorithms on UF3

0 0.5 1 1.5
0

0.5

1

1.5
UF7

HABC

referenceFronts

0 0.5 1 1.5
0

0.5

1

1.5
UF7

NSGA-II

referenceFronts

0 0.5 1 1.5
0

0.5

1

1.5
UF7

AbYSS

referenceFronts

0 0.5 1 1.5
0

0.5

1

1.5
UF7

MOsaDE

referenceFronts

0 0.5 1 1.5
0

0.5

1

1.5
UF7

SMPSO

referenceFronts

Fig. 8 Distribution for the solutions obtained using the algorithms on UF7

0.2
0.5

0.8
1

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0

1

2

3

4

5

x 10
-5

SF

ZDT6

PR 0.2
0.5

0.8
1

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0

0.2

0.4

0.6

0.8

1

x 10
-3

SF

DTLZ7

PR 0.2
0.5

0.8
1

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0

1

2

3

4

x 10
-3

SF

UF1

PR

M
ea

n 
IG

D
-m

et
ric

 v
al

ue
s

M
ea

n 
IG

D
-m

et
ric

 v
al

ue
s

M
ea

n 
IG

D
-m

et
ric

 v
al

ue
s

Fig. 9 Mean IGD-metric values obtained by HABC with different parameter combinations of PR and SF on ZDT6, DTLZ7, and UF1 problems



Multi-objective hybrid artificial bee colony algorithm... 737

values (i.e., from 0.1 to 0.9 with a step size of 0.1) and 4 SF
values (0.2, 0.5, 0.8, 1) on ZDT6, DTLZ7, and UF1 prob-
lems, which were chosen to represent the ZDT, DTLZ, and
UF problems, respectively. The other parameters remained
the same as in Section 5.3. Thirty independent runs were
conducted for each combination of PR and SF on each of
the tested problems.

The mean IGD-metric values obtained by HABC with
all the combinations of PR and SF are presented in Fig. 9,
wherein the settings of PR and SF had the least effect on
ZDT6, a significant effect on DTLZ7, and the most effect
on UF1 given that the search space of UF1 is more difficult
than those of ZDT6 and DTLZ7. The performance of HABC
in solving a specific problem crucially depends on appro-
priate parameter settings, and employing a trial-and-error
scheme to search for the most suitable combination of PR
and SF is time-consuming. Therefore, the adaptive PR and
SF settings may be critical for improving the performance
of HABC for some problems.

5.5.2 Effectiveness of the adaptive perturbation rate

To verify the effect of the adaptive perturbation rate, HABC
(with an adaptive PR as described above) was compared
with its four variants at fixed perturbation rates, each of
which only adopted a fixed PR (0.1, 0.3, 0.5, or 0.7) for the
entire evolution process. The Friedman test [60] was used
to determine the accumulation of wins for each algorithm
by a non-parametric multiple comparisons test, the com-
putational results of which are presented in Fig. 10, where
the horizontal axis denotes the parameter setting of PR and
the vertical axis represents the accumulation of wins for
HABC and the variants (denoted as 0.1, 0.3, 0.5, and 0.7 for
simplicity) when solving ZDT, DTLZ, and UF problems,
respectively.

The best fixed value of PR in Fig. 10 differs for differ-
ent types of problems given that a value of 0.7 resulted in
the second best result for ZDT problems, while the same
value gave the worst result for DTLZ problems. Likewise,
the results were unsuccessful in determining a fixed PR
setting that always provided the best solution for all the

problems. In addition, the difference between the best and
worst algorithms was more evident with increasing prob-
lem complexity. Nevertheless, HABC with adaptive PR was
better than its variants at all times. Therefore, the adaptive
perturbation rate was concluded to enhance the effective-
ness and robustness of the proposed HABC when solving
different problems.

5.5.3 Effectiveness of the adaptive scaling factor

Similarly, the effect of the adaptive scaling factor was tested
by comparing the proposed HABC with its four variants
at fixed scaling factors (denoted as 0.2, 0.5, 0.8, and 1 for
simplicity) during the evolution processes. The comparison
results are presented in Fig. 11, where the accumulation of
the wins for each variant is presented in the vertical axis,
and the horizontal axis denotes a comparison between the
algorithms. None of the four variants with fixed scaling fac-
tors obtained the best result for all of the problems, which is
similar to previous observations presented in Section 5.5.2.
In general, the adaptive scaling factor can be concluded as
positive for the proposed HABC algorithm.

6 Case study on multi-objective SCOS problems
in CMfg

In this section, the proposed algorithm was applied to engi-
neering optimization problems, particularly SCOS problems
in CMfg. CMfg resources include both software appli-
cations and various types of manufacturing equipment.
One typical manufacturing project adapted from [7] was
extended as a case study. A total set of 30 tasks in the cloud
manufacturing environment was presented as a directed
acyclic graph (DAG) (Fig. 12), in which each node rep-
resents a task unit, the color of the node represents its
task type, each directed line between two nodes represents
the communication relationship among the tasks, all tasks
strictly observe the tasks’ priority rules, and a successor task
node can only be started following the completion of all
predecessor tasks.

HABC 0.1  0.3  0.5 0.7
0

10

20

30

40

UF problems

HABC 0.1  0.3  0.5 0.7
0

5

10

15

ZDT problems

HABC 0.1  0.3  0.5 0.7
0

5

10

15

20

25

DTLZ problems

A
cc

u
m

u
la

ti
o

n
 o

f 
w

in
s

A
cc

u
m

u
la

ti
o

n
 o

f 
w

in
s

A
cc

u
m

u
la

ti
o

n
 o

f 
w

in
s

Fig. 10 Accumulation wins for HABC and its variants at a fixed perturbation rate based on the Wilcoxon rank-sum test of the IGD metric



738 X. Yao, J. Zhou

HABC 0.2  0.5  0.8 1
0

5

10

15

20

25

DTLZ problems

HABC 0.2  0.5  0.8 1
0

5

10

15

ZDT problems

HABC 0.2  0.5  0.8 1
0

10

20

30

40

UF problems

A
cc

u
m

u
la

ti
o
n
 o

f 
w

in
s

A
cc

u
m

u
la

ti
o
n
 o

f 
w

in
s

A
cc

u
m

u
la

ti
o
n
 o

f 
w

in
s

Fig. 11 Accumulation wins for HABC and its variants at fixed scaling factors based on the Wilcoxon rank-sum test of the IGD metric

Fig. 12 DAG for the
manufacturing project T2

T3

T4

T1

T5

T6

T7

T8

T9

T10

T11 T13

T14 T19 T24

T18 T23 T28

T295

Hardware service

Software service

T12 T30

Table 3 Parameter ranges involved in QoS and energy consumption for the candidate services

QoS Parameter T Av Re Re

Range [1,10] [0,1] [0,1] [0,1]

En Parameter s v p c q g ζ η e f u

Range [1,10] [1,10] [1,5] 10 [1,10] [10,50] [1,10] [1,10] [10,100] 0 0

Table 4 Comparison results of HV for the five algorithms presented in the studied case

HV HABC NSGA-II AbYSS MOsaDE SMPSO

30 20 4.537e+01(9.078e-01) 4.323e+01(1.432e+00)+ 3.252e+01(1.460e+00)+ 3.659e+01(9.480e+00)+ 1.522e+01(6.481e+00)+
30 50 1.420e+02(2.239e+00) 1.340e+02(8.682e+00)+ 1.054e+02(6.903e+00)+ 6.362e+01(1.410e+01)+ 6.253e+01(6.921e+00)+
30 80 7.300e+01(6.350e-01) 6.877e+01(2.302e+00)+ 4.250e+01(4.620e+00)+ 1.455e+01(1.130e+01)+ 1.060e+01(7.882e+00)+
30 100 8.500e+01(1.700e+00) 7.886e+01(3.593e+00)+ 5.383e+01(4.847e+00)+ 1.881e+01(1.265e+01)+ 1.514e+01(5.031e+00)+
w/t/ l ‘4/0/0’ ‘4/0/0’ ‘4/0/0’ ‘4/0/0’

Table 5 Comparison results of IGD for the five algorithms presented in the studied case

IGD HABC NSGA-II AbYSS MOsaDE SMPSO

30 20 1.079e+00(2.444e-01) 2.415e+00(1.570e+00)+ 3.442e+00(1.009e+00)+ 1.133e+00(3.114e-01)= 8.509e+00(1.729e+00)+
30 50 2.627e+00(1.273e+00) 5.957e+00(2.906e+00)+ 5.550e+00(1.931e+00)+ 1.113e+01(1.845e+00)+ 9.861e+00(1.431e+00)+
30 80 9.741e-01(1.971e-01) 3.782e+00(7.189e-01)+ 3.908e+00(1.848e+00)+ 1.710e+01(4.234e+00)+ 1.541e+01(2.176e+00)+
30 100 1.290e+00(7.996e-01) 4.383e+00(1.737e+00)+ 4.808e+00(1.198e+00)+ 1.712e+01(5.226e+00)+ 1.345e+01(2.585e+00)+
w/t/ l ’4/0/0’ ’4/0/0’ ’3/1/0’ ’4/0/0’



Multi-objective hybrid artificial bee colony algorithm... 739

Fig. 13 Pareto solutions
obtained by the algorithms: (a)
20 candidate services per task;
(b) 80 candidate services per
task

0.1 0.15 0.2 0.25 0.3 0.35
50

100

150

200

250

300

350

HABC

NSGA-II

AbYSS
MOsaDE

SMPSO

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

100

200

300

400

500

600

HABC

NSGA-II

AbYSS
MOsaDE

SMPSO

Objective one: 1-QoS

(a) 20 services/task

Objective one: 1-QoS

(b) 80 services/task

O
b
je

ct
iv

e 
tw

o
: 

en
er

g
y
 c

o
n
su

m
e

O
b
je

ct
iv

e 
tw

o
: 

en
er

g
y
 c

o
n
su

m
e

To study the scalability of HABC in solving SCOS prob-
lems, we set the available number of cloud services for
each task at 20, 50, 80, and 100, respectively. The value
ranges of parameters involved in both QoS and energy con-
sumption for candidate manufacturing services (MSs) are
set as presented in Table 3. All parameter values involved in
the candidate services were randomly generated within the
specified ranges and stored in a .txt file for consistent initial
conditions.

NSGA-II, AbYSS, MOsaDE, and SMPSO were used
as competitors to address the multi-scaled SCOS prob-
lems when investigating the performance of HABC. The
experimental settings were identical to those mentioned in
Section 5.3, with 30 experimental runs conducted for each
tested problem. Note that the true Pareto front is unknown in
the SCOS problems. Therefore, in the IGD calculation, true
Pareto front was assumed as the combined non-dominated
Pareto front solutions that were obtained from all of the
considered algorithms for a large number of cycles. The
IGD values of the true Pareto front to the non-dominant
solutions from the respective algorithms were then cal-
culated. Tables 4 and 5 present the mean and standard
deviation of the HV-metric and IGD-metric values for the
solutions obtained by the compared algorithms on the 4
scales presented in the studied case.

In addition, the Wilcoxon rank-sum test set at a 5 %
significance level was performed to compare the signifi-
cance of the differences between the compared algorithms.
Based on the IGD comparison in Table 5, HABC exhib-
ited a better performance than NSGA-II, AbYSS, MOsaDE,
and SMPSO as it resulted in 4, 4, 3, and 4 wins out of 4,
respectively. The “+”, “= ”, and “–” signs in the table also
maintained its meaning. Likewise, ’w/t/ l’ on the last row
of the table denotes the number of HABC wins (w), ties (t),
and loses (l) as compared to its corresponding competitor.

The above comparisons clearly illustrate a significantly
better HABC performance for the studied case in terms of

both HV and IGD metrics, which validates the advantages
of the HABC in solving for SCOS problems.

Algorithm comparisons based on the studied SCOS at
two different scales for the candidate services are presented
in Fig. 13. The graph on the left side of the figure represents
the obtained non-dominant solutions from the case that pre-
sented 20 candidate services per subtask, while the graph on
the right side presents a case having 80 candidate services
per subtask. HABC is observed to be more significantly
advantageous in tackling problems with more services. This
is due to that the adaptive parameter adjustment strategy
is especially effective in enhancing the search capabil-
ity of the proposed algorithm when solving complicated
problems. From the above comparisons, the proposed
HABC algorithm appears to be a very promising approach
and can be used an alternative tool for solving multi-
objective SCOS problems in CMfg.

7 Conclusions

Although evolutionary algorithms have been widely inves-
tigated in handling various SCOS problems, they are most
focused on single-objective optimization and rarely con-
sider multi-objective SCOS problems in CMfg. This paper
proposed HABC, which is a novel multi-objective optimiza-
tion approach that can be utilized in addressing such multi-
objective SCOS problems. In the proposed approach, the
multi-dimension permutation mechanism was introduced to
the employed bee phase to determine the number of param-
eters for a given solution that is to be perturbed. Moreover,
the cuckoo search-inspired Lévy flight was employed in
the onlooker bee phase, which formed a random walk pro-
cess that obeyed a power-law step-length distribution with
a heavy tail. This mechanism allowed more efficient search
space explorations on the global scale as to avoid being
trapped in the local optima. Furthermore, the perturbation



740 X. Yao, J. Zhou

rate of the employed bee search and the step length of
the Lévy flight in the onlooker bee phase was adaptively
adjusted by learning its search history. To validate the effec-
tiveness of the proposed approach, a series of MOPs and a
practical case was chosen. Its comparison results revealed a
better HABC algorithm performance in terms of the solution
quality.

Given the superior performance of HABC, It would be
interesting to work with other multi-objective approaches
based on the swarm intelligence applied in the service
composition of CMfg. Since large-scale SCOS problems
may require significant CPU time to find a Pareto solu-
tion set, the combined application of parallel computing and
evolutionary algorithms appears to be promising. Moreover,
the proposed algorithm can be further analyzed to develop
more enhanced methods of solving other MOPs.

Acknowledgments The project was supported by the National Nat-
ural Science Foundation of China under grant Nos. 51675186 and
51175187, the Science & Technology Foundation of Guangdong
Province under grant No. 2016A020228005, and the Science & Tech-
nology Program of Zhanjiang City under grant No. 2015A01001. The
authors would like to thank the Editors and the anonymous referees for
their valuable comments and suggestions.

References

1. Li BH, Zhang L, Wang SL, Tao F, Cao JW, Jiang XD, Song
X, Chai XD (2010) Cloud manufacturing: a new service-oriented
networked manufacturing model. Comput Integr Manuf Syst
16(1):1–16

2. Tao F, Cheng Y, Xu LD, Zhang L, Li BH (2014) CCIOt-CMfg:
Cloud Computing and Internet of Things-Based Cloud Manufac-
turing Service System. IEEE Trans Ind Inf 10(2):1435–1442

3. Tianri W, Shunsheng G, Chi-Guhn L (2014) Manufacturing task
semantic modeling and description in cloud manufacturing sys-
tem. Int J Adv Manuf Technol 71(9-12):2017–2031

4. Luo Y, Zhang L, Tao F, Ren L, Liu Y, Zhang Z (2013) A modeling
and description method of multidimensional information for man-
ufacturing capability in cloud manufacturing system. Int J Adv
Manuf Technol 69(5-8):961–975

5. Liu N, Li X, Shen W (2014) Multi-granularity resource virtualiza-
tion and sharing strategies in cloud manufacturing. J Netw Comput
Appl 46:72–82

6. Tao F, Zuo Y, Xu LD, Zhang L (2014) Iot-based Intelligent Per-
ception and Access of Manufacturing Resource Toward Cloud
Manufacturing. IEEE Trans Ind Inf 10(2):1547–1557

7. Tao F, LaiLi Y, Xu L, Zhang L (2013) FC-PACO-RM: A par-
allel method for service composition Optimal-Selection in cloud
manufacturing system. IEEE Trans Ind Inf 9(4):2023–2033

8. Huang B, Li C, Tao F (2014) A chaos control optimal algorithm
for QoS-based service composition selection in cloud manufactur-
ing system. Enterp Inf Syst 8(4):445–463

9. Laili Y, Tao F, Zhang L, Cheng Y, Luo Y, Sarker BR (2013) A
Ranking Chaos Algorithm for dual scheduling of cloud service
and computing resource in private cloud. Comput Ind 64(4):448–
463

10. Seghir F, Khababa A (2016) A hybrid approach using
genetic and fruit fly optimization algorithms for QoS-
aware cloud service composition. J Intell Manuf.
doi:10.1007/s10845-10016-11215-10840

11. Wang D, Yang Y, Mi Z (2015) A genetic-based approach to
web service composition in geo-distributed cloud environment.
Comput Electr Eng 43:129–141

12. Wang Z, Liu Z, Zhou X, Lou Y (2011) An approach for composite
web service selection based on DGQos. Int J Adv Manuf Technol
56(9-12):1167–1179

13. Huo Y, Zhuang Y, Gu J, Ni S, Xue Y (2015) Discrete gbest-guided
artificial bee colony algorithm for cloud service composition.
Appl Intell 42(4):661–678

14. Zhang H, Zhu BC, Li YP, Yaman O, Roy U (2015) Develop-
ment and utilization of a Process-oriented Information Model for
sustainable manufacturing. J Manuf Syst 37:459–466

15. Dubey R, Gunasekaran A, Childe SJ, Wamba SF, Papadopou-
los T (2016) The impact of big data on world-class sustainable
manufacturing. Int J Adv Manuf Technol 84(1-4):631–645

16. Wang Z, Subramanian N, Gunasekaran A, Abdulrahman MD, Liu
C (2015) Composite sustainable manufacturing practice and per-
formance framework: Chinese auto-parts suppliers’ perspective.
Int J Prod Econ 170:219–233

17. Karaboga D, Basturk B (2007) A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm. J Glob Optim 39(3):459–471

18. Han YY, Liang JJ, Pan QK, Li JQ, Sang HY, Cao NN (2013)
Effective hybrid discrete artificial bee colony algorithms for the
total flowtime minimization in the blocking flowshop problem. Int
J Adv Manuf Technol 67(1-4):397–414

19. Chaves-Gonzalez JM, Vega-Rodriguez MA, Granado-Criado JM
(2013) A multiobjective swarm intelligence approach based on
artificial bee colony for reliable DNA sequence design. Eng Appl
Artif Intel 26(9):2045–2057

20. Metlicka M, Davendra D (2015) Chaos driven discrete artificial
bee algorithm for location and assignment optimisation problems.
Swarm Evol Comput 25:15–28

21. Karaboga D, Akay B (2009) A comparative study of Artificial Bee
Colony algorithm. Appl Math Comput 214(1):108–132

22. Karaboga D, Basturk B (2008) On the performance of artificial
bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

23. Yang X-S, Deb S (2010) Engineering optimisation by cuckoo
search. Int J Math Model Numerical Optimiz 1(4):330–343

24. Civicioglu P, Besdok E (2013) A conceptual comparison of
the Cuckoo-search, particle swarm optimization, differential evo-
lution and artificial bee colony algorithms. Artif Intell Rev
39(4):315–346

25. Zeng LZ, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J,
Chang H (2004) Qos-aware middleware for Web services compo-
sition. IEEE Trans Softw Eng 30(5):311–327

26. Alrifai M, Risse T, Nejdl W (2012) A Hybrid Approach for Effi-
cientWeb Service Composition with End-to-End QoS Constraints.
ACM T Web 6(2)

27. Zhang Y, Tao F, Laili Y, Hou B, Lv L, Zhang L (2013) Green
partner selection in virtual enterprise based on Pareto genetic
algorithms. Int J Adv Manuf Technol 67(9-12):2109–2125

28. Xinchao Z, Boqian S, Panyu H, Zichao W, Jialei W, Yi F (2012)
An improved discrete immune optimization algorithm based on
PSO for QoS-driven web service composition. Appl Soft Comput
12(8):2208–2216

29. Bhandari AK, Singh VK, Kumar A, Singh GK (2014)
Cuckoo search algorithm and wind driven optimization based
study of satellite image segmentation for multilevel thresh-
olding using Kapur’s entropy. Expert Syst Appl 41(7):3538–
3560

http://dx.doi.org/10.1007/s10845-10016-11215-10840


Multi-objective hybrid artificial bee colony algorithm... 741

30. Zhang L, Guo H, Tao F, Luo YL, Si N (2010) Flexible man-
agement of resource service composition in cloud manufacturing.
Paper presented at the 2010 IEEE International Conference on
Industrial Engineering & Engineering Management

31. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multi-
ple objectives with particle swarm optimization. IEEE Trans Evol
Comput 8(3):256–279

32. Ramacher R, Monch L (2014) Robust Multi-criteria Service Com-
position in Information Systems. Bus Inform Syst Eng 6(3):141–
151

33. Li L, Cheng P, Ou L, Zhang Z (2010) Applying Multi-Objective
Evolutionary Algorithms to QoS-Aware Web Service Compo-
sition Paper presented at the 6th International Conference on
Advanced Data Mining and Applications (ADMA), Chongqing,
PEOPLES R CHINA

34. Sun XY, Chen Y, Liu YP, Gong DW (2016) Indicator-based set
evolution particle swarm optimization for many-objective prob-
lems. Soft Comput 20(6):2219–2232

35. Cremene M, Suciu M, Pallez D, Dumitrescu D (2016) Com-
parative analysis of multi-objective evolutionary algorithms for
QoS-aware web service composition. Appl Soft Comput 39:124–
139

36. Mirjalili S, Saremi S, Mirjalili SM, Coelho LdS (2016) Multi-
objective grey wolf optimizer: a novel algorithm for multi-
criterion optimization. Expert Syst Appl 47:106–119

37. Jiang QY, Wang L, Hei XH, Yu GL, Lin YY, Lu XF (2016)
MOEA/D-ARA plus SBX: a new multi-objective evolution-
ary algorithm based on decomposition with artificial raindrop
algorithm and simulated binary crossover. Knowl-Based Syst
107:197–218

38. Hemmatian H, Fereidoon A, Assareh E (2014) Optimization of
hybrid laminated composites using the multi-objective gravita-
tional search algorithm (MOGSA). Eng Optimiz 46(9):1169–
1182

39. Pradhan PM, Panda G (2012) Solving multiobjective problems
using cat swarm optimization. Expert Syst Appl 39(3):2956–
2964

40. Patel VK, Savsani VJ (2016) A multi-objective improved
teaching-learning based optimization algorithm (MO-ITLBO). Inf
Sci 357:182–200

41. Akay B (2013) Synchronous and asynchronous Pareto-based
multi-objective Artificial Bee Colony algorithms. J Glob Optim
57(2):415–445

42. Maximiano MD, Vega-Rodriguez MA, Gomez-Pulido JA,
Sanchez-Perez JM (2013) A new Multiobjective Artificial Bee
Colony algorithm to solve a real-world frequency assignment
problem. Neural Comput Appl 22(7-8):1447–1459

43. Zhou J, Yao X (2016) A hybrid artificial bee colony algorithm
for optimal selection of QoS-based cloud manufacturing service
composition. Int J Adv Manuf Technol. doi:10.1007/s00170-016-
9034-1

44. Li C, Wang S, Kang L, Guo L, Cao Y (2014) Trust evaluation
model of cloud manufacturing service platform. Int J Adv Manuf
Technol 75(1-4):489–501

45. Zhou J, Yao X (2016) DE-caABC: differential evolution enhanced
context-aware artificial bee colony algorithm for service compo-
sition and optimal selection in cloud manufacturing. Int J Adv
Manuf Technol. doi:10.1007/s00170-016-9455-x

46. Xiang F, Hu YF, Yu YR, Wu HC (2014) Qos and energy con-
sumption aware service composition and optimal-selection based
on Pareto group leader algorithm in cloud manufacturing system.
Central Eur J Oper Res 22(4):663–685

47. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource
allocation heuristics for efficient management of data centers

for Cloud computing. Future Gener Comp Syst 28(5):755–
768

48. Yang XS, Deb S (2014) Cuckoo search: recent advances and
applications. Neural Comput Appl 24(1):169–174

49. Mantegna RN (1994) Fast, accurate algorithm for numerical simu-
lation of Levy stable stochastic processes. Phys Rev E 49(5):4677–
4683

50. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput 6(2):182–197

51. Wang YN, Wu LH, Yuan XF (2010) Multi-objective self-
adaptive differential evolution with elitist archive and crowd-
ing entropy-based diversity measure. Soft Comput 14(3):193–
209

52. Reynolds AM (2006) Cooperative random Levy flight searches
and the flight patterns of honeybees. Phys Lett A 354(5-6):384–
388

53. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjec-
tive evolutionary algorithms: Empirical results. Evol Comput
8(2):173–195

54. Deb K, Thiele L, Laumanns M (2002) Zitzler E Scalable multi-
objective optimization test problems. In: Proceedings of the 2002
congress on evolutionary computation, CEC, 2002, Honolulu, HI,
United states, pp 825–830

55. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008)
Multiobjective optimization test instances for the CEC 2009 spe-
cial session and competition. University of Essex, Colchester, UK
technical report

56. Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A
(2008) AbYSS: Adapting scatter search to multiobjective opti-
mization. IEEE Trans Evol Comput 12(4):439–457

57. Huang VL, Zhao SZ, Mallipeddi R (2009) Suganthan PN Multi-
objective optimization using self-adaptive differential evolution
algorithm, vol 2009. Trondheim, Norway

58. Nebro AJ, Durillo JJ, Nieto G, Coello CAC, Luna F, Alba E (2009)
SMPSO: A new pso-based metaheuristic for multi-objective opti-
mization. In: 2009 IEEE Symposium on computational intelli-
gence in multi-criteria decision-making, MCDM 2009, Nashville,
TN, United states, pp 66–73

59. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

60. Beasley TM, Zumbo BD (2003) Comparison of aligned Fried-
man rank and parametric methods for testing interactions
in split-plot designs. Comput Stat Data Anal 42(4):569–
593

Jiajun Zhouwas born in 1989.
He received the Bachelor’s
degree in mechanical enginer-
ing in 2012 and is a Ph.D.
candidate in the School of
Mechanical and Automotive
Engineering, South China Uni-
versity of Technology. His
main research area includes
cloud manufacturing, smart
manufacturing, nature-inspired
computing methods with appli-
cations in production andmanu-
facturing optimization.

http://dx.doi.org/10.1007/s00170-016-9034-1
http://dx.doi.org/10.1007/s00170-016-9034-1
http://dx.doi.org/10.1007/s00170-016-9455-x


742 X. Yao, J. Zhou

Xifan Yao was born in 1964.
He received the Ph.D. degrees
from South China University
of Technology, Guangzhou,
China in 1999. Now, he is a
full professor at the School
of Mechanical and Automo-
tive Engineering, South China
University of Technology. He
is the author of 3 books and
published over 200 research
papers at national and inter-
national journals, as well as
conference proceedings. His
teaching and research interests
are in the areas of produc-

tion and manufacturing systems, integrated manufacturing systems,
smart manufacturing, proactive manufacturing, intelligent control and
scheduling in complex manufacturing systems.


	Multi-objective hybrid artificial bee colony algorithm...
	Abstract
	Introduction
	Related works
	Problem statement
	QoS evaluation
	Energy consumption evaluation
	Energy consumption evaluation for SSs
	Energy consumption evaluation for HSs
	Objective function of energy consumption

	Objective functions of multi-objective SCOS

	Multi-objective hybrid ABC algorithm
	Pareto solutions for MOPs
	Basic ABC algorithm
	Cuckoo search with Lévy flight
	Proposed hybrid ABC algorithm to address multi-objective SCOS problems
	Solution encoding
	External Pareto archive set
	Initialization
	Employed bees with multi-dimension parameter perturbation
	Probability calculation
	The onlooker bee phase improved by cuckoo search with Lévy flight
	Self-adaptation of PR and SF
	Pareto greedy selection
	Update external Pareto archive set
	The procedure for the proposed hybrid approach


	Experimental studies on benchmark problems
	Test problems
	Performance metrics
	Parameter setting
	Experimental results
	Effectiveness of improvement strategies
	Impacts of parameter settings
	Effectiveness of the adaptive perturbation rate
	Effectiveness of the adaptive scaling factor


	Case study on multi-objective SCOS problems in CMfg
	Conclusions
	Acknowledgments
	References


