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Abstract Existing work on Automated Negotiations com-
monly assumes the negotiators’ utility functions have
explicit closed-form expressions, and can be calculated
quickly. In many real-world applications however, the calcu-
lation of utility can be a complex, time-consuming problem
and utility functions cannot always be expressed in terms
of simple formulas. The game of Diplomacy forms an ideal
test bed for research on Automated Negotiations in such
domains where utility is hard to calculate. Unfortunately,
developing a full Diplomacy player is a hard task, which
requires more than just the implementation of a negotiation
algorithm. The performance of such a player may highly
depend on the underlying strategy rather than just its nego-
tiation skills. Therefore, we introduce a new Diplomacy
playing agent, called D-Brane, which has won the first inter-
national Computer Diplomacy Challenge. It is built up in
a modular fashion, disconnecting its negotiation algorithm
from its game-playing strategy, to allow future researchers
to build their own negotiation algorithms on top of its strate-
gic module. This will allow them to easily compare the per-
formance of different negotiation algorithms. We show that
D-Brane strongly outplays a number of previously devel-
oped Diplomacy players, even when it does not apply nego-
tiations. Furthermore, we explain the negotiation algorithm
applied by D-Brane, and present a number of additional
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tools, bundled together in the new BANDANA framework,
that will make development of Diplomacy-playing agents
easier.
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1 Introduction

In any multiagent system (MAS) the outcome of the actions
taken by one agent may also depend on the actions taken
by other agents. These agents may have conflicting goals
and, since the other agents may be unknown and may not
be benevolent, an agent generally cannot assume that other
agents are willing to help without receiving any benefits
in return. If each agent simply chooses those actions that
are individually best, the outcome can be sub-optimal for
each of them, as illustrated by the well-known Prisoner’s
Dilemma [28]. Therefore, agents in a MAS need to nego-
tiate on what actions each will take, even if those agents
are entirely selfish and are not interested in reaching any
socially optimal solution. Generally, we can say that if a
Nash equilibrium [26] is not Pareto optimal then negotia-
tions allow the agents to reach a more efficient solution by
making a binding agreement in which each agent promises
not to deviate from the efficient solution.

Automated Negotiations have been studied extensively,
but most work focuses purely on the strategy to determine
which deals to propose given the utility values of the possi-
ble deals. A point that has received little attention however,
is the fact that in many real-world negotiation settings, for
any given proposal a negotiator would first need to spend
time determining its utility value before he or she could
decide whether to propose, accept, or reject it. In most
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existing work this process of evaluating the proposal is sim-
ply abstracted away and it is assumed that this does not
require any domain knowledge or reasoning. In such studies
the negotiators are usually assumed to know the utility value
of any deal instantaneously, or after solving a simple linear
equation (see for example [3]). The utility functions of the
agent’s opponents on the other hand, are often assumed to
be completely unknown.

We argue, however, that in real negotiations it is impor-
tant to have knowledge of the domain and one should be
able to reason about it. One cannot, for example, expect to
make profitable deals in the antique business if one does not
have extensive knowledge of antique, no matter how good
one is at bargaining. Moreover, a good negotiator should
also be able to reason about the desires of its opponents. A
good car salesman, for example, would try to find out what
type of car best suits his client’s needs, in order to increase
the chances of coming to a successful deal, and therefore
increase the salesman’s own expected utility.

Another point that is rarely taken into account, is that an
agent’s utility may not always solely depend on the agree-
ments it makes, but may also depend on decisions taken
outside the negotiation thread, either by the agent itself or
by its opponents. Imagine for example buying a small car
which is easy to park and consumes little fuel. This may ini-
tially be a great deal. However, if one year later you decide
to extend your family and have children, that small car sud-
denly is not so practical anymore. We see that the value
of the car deal has changed as a result of decisions made
long after the negotiations had finished. As another exam-
ple, imagine renting a property to open a restaurant in a
street with no other restaurants. This might be a good deal
until later several other restaurants also open in that same
street, presenting you with so much competition that you
can no longer afford the rent. Again, what was initially a
good deal, later became a bad deal, only this time as a result
of decisions taken by competitors.

For these reasons, we think the game of Diplomacy [9]
provides a much more realistic, and therefore more inter-
esting, test bed for Automated Negotiations. Diplomacy is
important for Automated Negotiations (and for AI in gen-
eral) because it includes many of the difficulties one would
also have to deal with in real-life negotiations. It involves
constraint satisfaction, coalition formation, game theory,
trust, and even psychology. Being a good Diplomacy player
does not only require strategic insight, but also requires
social skills, making it a particularly hard game for comput-
ers. It is not surprising therefore, that computer Diplomacy
is only in its infancy and automatic players are not nearly
as well developed as for example Chess or Go programs.
Now that modern Chess computers are already far supe-
rior to any human player, we expect that Diplomacy will
draw more and more attention in the future, as a more

interesting challenge for computer scientists. In line with
this expectation in July 2015 the first edition of the Com-
puter Diplomacy Challenge1 was held as part of the ICGA
Computer Olympiad.

In this paper we wish to highlight the fact that Diplomacy
satisfies the following three important properties:

1. For any potential deal the calculation of its utility value
(for any agent) is a hard, time-consuming problem.

2. An agent’s utility does not only depend on the agree-
ments it makes, but also on decisions it makes outside
the negotiation thread.

3. Moreover, an agent’s utility also depends on decisions
made by its opponents outside the negotiation thread.

Another important point is that the number of possible deals
in Diplomacy is extremely large, so it would be impossible
to exhaustively determine the utility values of all possible
deals.

The game of Diplomacy has been under attention of
the Automated Negotiations community for a long time.
Nevertheless, to date very few really successful negotiat-
ing Diplomacy players have been developed. The problem
with Diplomacy is that before one can test a negotiation
algorithm one first needs to have an agent that can play the
strategic part of the game and implementing such player
is already a daunting task. Therefore, existing work has
focused either on building only non-negotiating players, or
on building negotiation algorithms on top of existing (often
poorly playing) agents. In this paper however, we introduce
a new Diplomacy playing agent, called D-Brane, that is a
good strategic player, but that is also capable of negotiation.
Moreover, we have decoupled its strategic algorithm from
its negotiation algorithm so that they can be studied and
reused independently. This will allow new negotiation algo-
rithms in the future to be implemented on top of D-Brane’s
strategic component. We think that this will mean an impor-
tant step forward in the research of computer Diplomacy and
Automated Negotiations, as it will make it much easier for
Automated Negotiations researchers to test algorithms for
highly complex domains.

We have performed a number of experiments in which
we compare our player against several existing Diplomacy
playing agents. The interesting outcome of those experi-
ments is that even if our agent does not apply negotiations
it still outplays the existing players, which do apply negoti-
ations. From this we draw the important conclusion that the
success of a negotiating agent may sometimes depend more
on the accuracy and efficiency in which it calculates utility
values than on the bargaining strategy it applies.

In short, this paper makes the following contributions to
the field of Automated Negotiations:

1https://icga.leidenuniv.nl/?page id=987
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– We define a new, more realistic, formal model of nego-
tiations which we call a Negotiation Game.

– We present a strategic Diplomacy player that allows
researchers to build negotiation algorithms on top of it.

– We present the negotiation algorithm used by our
player.

– We show that in complex domains it can be more
important to have an efficient and accurate algorithm to
determine utility values of potential deals, than to have
a good bargaining strategy.

– We present a new framework, called BANDANA,
which consists of a number of tools to make develop-
ment of Diplomacy players easier.

The rest of this paper is organized as follows: in Section 2
we give an overview of existing work on Automated Nego-
tiations and Diplomacy. In Section 3 we give an informal
description of the game of Diplomacy. In Section 4 we
define the notion of a Negotiation Game, which puts nego-
tiations into a larger context so that the agents’ utility
values do not only depend on the agreements made, but also
on decisions made after the negotiations. In Section 5 we
present the Diplomacy playing agent that we have imple-
mented and in Section 6 we present the results of our
experiments with this agent and compare them with the
results of a number of other existing Diplomacy agents. In
Section 7 we draw our conclusions and discuss future work.
In Appendix A we present the BANDANA framework
which comprises a number of tools to facilitate the develop-
ment of Diplomacy playing agents. Finally, in Appendix B
we give a formal description of Diplomacy.

2 Related work

Much work has been done on Automated Negotiations,
which can roughly be divided into two categories: the Game
Theoretical Approach and the Heuristic Approach.

The Game Theoretical Approach focuses on the theo-
retical properties of negotiation, such as the existence of
equilibrium strategies. A seminal paper in this area is a
paper by Nash [25] in which he shows that under the
assumption of certain axioms the outcome of a bilateral
negotiation is the solution that maximizes the product of
the players’ utilities. This is known as the Nash Bargain-
ing Solution. Many papers have been written afterwards
that generalize or adapt some of these axioms. Multilateral
versions of the bargaining problem have been studied for
example in [2, 21], while a non-linear generalization has
been made in [12]. These studies give hard guarantees about
the success of their approach, but the downside is that they
need to make very strong assumptions about their respec-
tive domains, which makes them hard to apply in real-world

settings. An example of such an assumption is the exis-
tence of a discount factor that reduces the utility of any
deal by some known factor depending on the time it takes
to come to an agreement. Other examples are the assump-
tion that the negotiation has a fixed number of rounds and
the negotiators take turns, or even that the negotiators have
perfect knowledge about each others’ utility functions. A
general overview of such game theoretical studies is made in
[31].

In this paper, on the other hand, we apply the Heuristic
Approach. The Heuristic Approach focuses on the imple-
mentation of algorithms that can negotiate under circum-
stances where no equilibrium results are known, or where
the equilibria cannot be determined in a reasonable amount
of time. It is usually not possible to give hard guarantees
about the success of such algorithms, but they are more
suitable to real-world negotiation scenarios.

However, even in this branch of Automated Negotiations
one often still makes many simplifying assumptions. One
often assumes that negotiations are only bilateral, that there
is only a small set of possible agreements to make, and that
the utility functions are given as linear additive functions or
can be calculated without much computational cost. Also,
most of these studies assume an alternating offers proto-
col, which is fine for automated agents, but not desirable
for negotiations with humans, because with humans there is
no guarantee that they will indeed follow the protocol. All
these assumptions were made for example in the first four
editions of the annual Automated Negotiating Agent Com-
petition (ANAC 2010–2013) [3]. Important examples in this
area are [10, 11]. They propose a strategy that amounts to
determining for each time t which utility value should be
demanded from the opponent (the aspiration level). How-
ever, they do not take into account that one first needs to
find a deal that indeed yields that aspired utility level. They
simply assume that such a deal always exists, and that the
negotiator can find it without any effort.

Recently, more focus has been given to more realis-
tic negotiation settings. Negotiations with non-linear utility
functions, for example, have been studied in [22]. The nego-
tiations are, however, still bilateral, the agreement space is
continuous and it is assumed the agreements at least have a
known closed-form expression. Also in [17] the utility func-
tions are strictly spoken non-linear over the issues, but they
are still linearly additive over pairs of issues. Moreover, the
approach of [17] requires a trusted mediator, or a trusted
‘fair die’.

Domains in which the number of possible deals is very
large so that one needs to apply search algorithms to find
good deals have been studied for example in [16, 23, 24].
Although their utility functions are non-linear over the vec-
tor space that represents the space of possible deals, the
value of any given deal can still be calculated quickly by
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solving a linear equation. It is true, as the authors claim, that
in theory any non-linear function can be modeled in such
a way, but the problem is that in real-world settings util-
ity functions are not always given in this way (e.g. there
is no known closed-form expression for the utility func-
tion over the set of all possible configurations of a chess
game). In order to apply their method one would first need
to transform the given expression of a utility function into
the expression required by their model, which may easily
turn out to be an unfeasible task. Therefore, we have taken
the idea of non-linear utility functions a step further in [4],
where for any proposal the evaluation of its utility value
required solving a Traveling Salesman Problem. However,
we still assumed that utility values were assigned directly
to deals. The utility values did not depend on any decisions
made outside the negotiation thread.

Most research on Automated Negotiations is restricted
to bilateral negotiations. Work on multilateral negotiations
often focuses on developing protocols (e.g. [7, 15]) or on
non-selfish negotiations [18]. An example of a negotia-
tion algorithm for selfish, multilateral negotiations is given
in [27]. In this study however, a strict separation is made
between buyers and sellers, so a buyer can only come to
an agreement with a seller. In real-life negotiations one
cannot always make such a distinction. A retailer, for exam-
ple, sells its products to consumers, but buys them from a
wholesaler, so acts both as buyer and seller. Moreover, [27]
considers that only one buyer is present, therefore excluding
competition between buyers. Furthermore, although multi-
ple sellers are present, they still assume that all agreements
are strictly bilateral. Also [1] describes multilateral negotia-
tions in which one buyer negotiates with n sellers, in parallel
bilateral negotiation threads, but negotiations are only about
the price of a single item. In this paper on the other hand,
we do assume multilateral negotiations in which there is no
distinction between buyers and sellers, and in which a single
deal may involve more than two agents.

An alternative way to subdivide the field of Auto-
mated Negotiations is to distinguish between Argumenta-
tion Based Negotiations (ABN), and non-Argumentation
Based Negotiations. In ABN one assumes that agents are
capable of exchanging arguments with one another in order
to influence the opponents actions. One agent may for
example argue why a certain outcome is unacceptable, or
why the opponent should change its mind about a cer-
tain proposal. For example [33] describes a model of how
the beliefs and behavior of negotiators can be changed via
persuasive argumentation. In [32] the authors present “a
framework for negotiation in which agents exchange pro-
posals backed by arguments which summarize the reasons
why the proposals should be accepted”. A general overview
of ABN is provided in [6]. Since argumentation plays an
essential role in Diplomacy, we think that this game would

also be an excellent test case for ABN. However, in this
paper we will not apply ABN. Instead, we will leave this as
future work.

Pioneering work on negotiations in Diplomacy was pre-
sented in [19, 20]. These papers, however, focus mainly on
the modular structure of their agent rather than on the algo-
rithms it applies. It remains unclear how their agent searches
through the large space of possible deals and determines
what to propose. Moreover, they have only been able to
play a very small number of games, as they had to play
them with humans, which takes a long time. An informal
online community called DAIDE exists which is dedicated
to the development of Diplomacy playing agents.2 Many
agents have been developed by this community but only
very few are capable of negotiation. In [9] a new platform
called DipGame was introduced to make the development
of Diplomacy agents easier for scientific research. Several
negotiating agents have been developed on this platform
such as in [8, 13]. Later on in this paper we compare our
agent with the agents presented in these studies.

3 Diplomacy, an informal description

Diplomacy is a popular board game invented in the 1950’s
which is nowadays also widely played over the Internet.3 It
is a game for seven players, over multiple rounds, with com-
plete information and no chance moves. In order to play well
negotiation is an essential skill. Although for each player
the ultimate goal of the game is to defeat all other players,
players often form coalitions and agree to end the game in a
draw between the members of one coalition once all players
outside that coalition have been defeated.

The full set of rules of Diplomacy is rather complex, so
we only give a simplified description. The differences with
the full set of rules are not relevant to this paper anyway.4

Furthermore, in this Section we will keep the discussion
informal. For a formal definition of the rules we refer to
Appendix B.

Diplomacy is a game over multiple rounds. The seven
players (also referred to as the seven Great Powers) are
called England, Russia, Germany, France, Turkey, Austria
and Italy, which are usually abbreviated to ENG, RUS,
GER, FRA, TUR, AUS, and ITA. Each player begins with 3
or 4 units (also called armies or fleets) that are placed on a
map of Europe in the early 20th century. The map is divided
into 75 provinces, which can each hold 0 or 1 units. Some
of the provinces (34 in total) are marked as Supply Centers.

2http://www.daide.org.uk
3http://www.playdiplomacy.com/
4We refer to https://www.wizards.com/avalonhill/rules/diplomacy.pdf
for a complete description of the rules.
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http://www.playdiplomacy.com/
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A player becomes the owner of a Supply Center if he moves
one of his units into that Supply Center. If that player later
moves his unit out of that Supply Center he remains the
owner, until another player moves one of his units into it.

If the owner of a Supply Center changes the new owner
will receive an extra unit in the next round, and the previous
owner will lose one unit. A player is eliminated when he
loses all his units. The game ends either when one player
becomes the winner by owning 18 or more Supply Centers
(a Solo Victory), or when all players that have not yet been
eliminated agree to end the game in a draw.

In each round each player needs to decide what to do
with each of his units. In Diplomacy-terminology we say
that each player must submit an order for each of his units.
He can either submit a move-to order, meaning that he tries
to move the unit from its current location to an adjacent
province, a hold order, meaning that the unit intends to stay
in its current location, or a support order, meaning that the
unit will not move, but instead will give extra strength to a
moving or holding unit. A unit u can only support a unit u′
that moves to (or holds in) a province p if u is located in a
province adjacent to p.

The players all submit their orders simultaneously, which
means that each player must decide his orders without
knowing which orders the other players are submitting in
that round.5

If two units of two different players are both ordered to
move to the same province (or one of them holds in that
province), then only the unit that receives the most supports
will indeed move, while the other one will stay in its cur-
rent province (or will be expelled from it if it was trying to
hold). In case two units have an equal amount of support
then both units will stay in their current province. When a
player moves one of his units into a Supply Center he does
not own, he will become the new owner of that Supply Cen-
ter, and therefore we say the player conquers that Supply
Center. An interesting aspect of this game is the fact that
a unit u of one player may give support to a unit u′ that
belongs to another player. Therefore, players can help each
other to conquer Supply Centers.

The main difference between Diplomacy and purely
strategic games like Chess and Checkers is that in Diplo-
macy players are allowed to negotiate with each other and
form coalitions. Each round consists of two stages: a nego-
tiation stage followed by an action stage. During the action
stage the players submit their orders, while during the pre-
ceding negotiation stage the players negotiate about which
orders they will (or will not) submit during the action stage.
Typically, players agree not to attack each other, or they

5In a real-life game this is achieved by letting each player first secretly
write down his orders on a piece of paper and only once everyone has
done so, the orders are revealed.

agree that one player will use some of its units to support a
unit of the other player.

When a player αi tries to move into a Supply Center p,
or supports a coalition partner to move into p, we say he
is participating in a battle for p. In order to win the battle
(i.e. to successfully move into p and thus become its new
owner) αi must submit a move-to order for some unit u to
move into p (or hold order to stay in p) and αi or any of his
coalition partners may submit any number of support orders
to support the unit u. We refer to these orders as the battle
plan of αi for province p. Typically, more than one player
will try to conquer the same province at the same time, so
only the player with the strongest battle plan will succeed.
Furthermore, the units of a player are often spread around
the map of Europe, so during any round a player may be
involved in several battles at the same time.

Example Let us focus on the three players ENG, FRA
and GER and suppose that ENG and FRA together form a
coalition. These players submit the following orders:

1. ENG moves his unit in the North Sea to Holland.
2. FRA’s unit in Belgium supports ENG’s unit in the North

Sea.
3. GER moves his unit in Kiel to Holland.
4. FRA moves his unit in Burgundy to Munich.
5. GER holds with his unit in Munich.
6. GER’s unit in Silesia supports GER’s own unit inMunich.

We see here there are two battles going on: a battle for Hol-
land and a Battle for Munich. The first two orders together
form a battle plan of the coalition {ENG, FRA} to conquer
Holland and the third order is the battle plan of GER to con-
quer Holland. The fourth order is a battle plan of FRA to
conquer Munich, and the fifth and sixth orders form GER’s
battle plan to defend Munich.

Although ENG and GER both try to move to Holland,
only ENG will succeed, because ENG’s unit has support
from FRA. Furthermore, FRA is trying to expel GER ’s unit
from Munich, but fails, because FRA ’s unit does not have
any support, while GER’s unit in Munich does have sup-
port (in fact, even without support GER’s unit would not be
expelled from Munich, because FRA and GER would have
equal strength).

In the rest of this paper we will consider each round
of Diplomacy as a separate negotiation scenario that satis-
fies the three properties we highlighted in the introduction.
Indeed, determining the influence of an agreement on the
number of conquered Supply Centers is a complex com-
binatorial problem. Furthermore, the utility of a player αi

is not directly determined by the agreements it makes, but
rather by the orders submitted by αi , as well as the orders
submitted by its opponents. In the following sections we
will formalize these properties, by defining the notion of
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a Constraint Optimization Game, which captures the first
property, and the notion of a Negotiation Game, which
captures the second and third properties.

4 Negotiation Games

As explained, in this paper we assume that the agents’ util-
ity values depend not only on the agreements they make,
but also on the decisions they take outside the negotiation
thread. In order to model this formally we define the concept
of a Negotiation Game.

The idea of a negotiation game is that the players are
playing some game G, but before doing so they have the
opportunity to negotiate binding agreements about which
actions each player will take. The players’ utilities are
purely determined by their actions in the game G, but
since their choice of actions is partially restricted by the
agreements they make, the agreements between the players
indirectly influence the players’ utility values. The negotia-
tion thread followed by the actual playing of the game G are
together referred to as the Negotiation Game over G and is
denoted as N(G).

Definition 1 A one-shot game G consists of a set of play-
ers, P lG = {α1, α2, ...αn}, for each player αi ∈ P lG a
set of actions MG

i and for each player αi ∈ P lG a util-
ity function f G

i which is a function from MG = MG
1 ×

MG
2 × ...MG

n to R. An element μ of the set MG is called
an action profile and its utility vector f G(μ) is the vector
f G(μ) = (f G

1 (μ), f G
2 (μ), ...f G

n (μ)) ∈ R
n.

We now want to allow the players to negotiate over the
actions they take. For this reason, we need to define the
concept of a deal.

Definition 2 A deal x over a one-shot game G is a Carte-
sian product of nonempty subsets Si ⊆ MG

i , one for each
player: x = S1 × S2 × . . . Sn. The set of all possible deals
over a game G is called the agreement space AgrG of G.

A deal should be interpreted as an agreement between the
players that each of them will only choose its action from
the subset Si .

Example Let G be the Prisoner’s Dilemma. There are two
players: P lG = {α1, α2} and their actions are: MG

1 =
MG

2 = {confess, deny}. The agreement space AgrG con-
sists of all products S1 × S2 where S1 and S2 can be either
{confess}, {deny} or {confess, deny}. So AgrG contains 9
possible deals. The deal {confess} × {confess, deny} for
example would represent the agreement that α1 will play
‘confess’, while α2 can play either ‘confess’ or ‘deny’.

Regarding to this example, we should note that in the
Prisoner’s Dilemma the players are of course not allowed
to negotiate. However, this does not mean that we cannot
define its Agreement Space. After all, according to Defini-
tion 2 a deal is a well-defined concept for any one-shot game
G even if players are not allowed to negotiate. This is impor-
tant because we first need to define the Agreement Space of
a non-negotiation game G before we can define the negotia-
tion version N(G) of that game. Therefore, AgrG should be
interpreted as the space of deals that the players could make
if they were allowed to negotiate.

In the following we will use the notation MG
i [x] instead

of Si to explicitly indicate that it is part of a deal x. Note
that if MG

i [x] = MG
i player αi is not affected by the deal;

the set of actions he can choose from is not restricted by the
deal. We therefore say that an agent is participating in a deal
x if MG

i [x] is a strict subset of MG
i .

Definition 3 The set of participating agents pa(x) of a
deal x is defined as:

pa(x) = {αi ∈ P lG | MG
i [x] �= MG

i }

Definition 4 Given a one-shot game G and a deal x of
AgrG, the restricted game G[x] is the same game as G

except that each player αi is only allowed to choose its
action from the subset MG

i [x] rather than its full set of
actions MG

i . Similarly, for a set of deals X the game G[X]
is the game G with the restriction that each player αi can
only choose its action from the intersection

⋂
x∈X MG

i [x].

Definition 5 A set of deals X is called consistent iff its
intersection is nonempty:

⋂
x∈X x �= ∅.

Note that if X is not consistent, it means that there is
no action profile that satisfies all agreements in X, so it is
impossible to obey them all.

Given a one-shot game G and a positive integer d the
negotiation game over G, denoted as Nd(G), is a game over
d + 1 rounds which are labeled as: t0, t1, t3...td . The first d

rounds are referred to as the negotiation stage, and the last
round is called the action stage. The idea is that only in the
last round the players take an action from the game G, while
during the first d rounds the players negotiate which actions
they will take in the last round.

We will now define the negotiation protocol that is
applied during the negotiation stage. In each round of the
negotiation stage each player takes an action which is either:
‘accept(x)’, or ‘none’, where x can be any deal from the
agreement space AgrG associated with the game G. The
players take their actions simultaneously, and the accepted
deal x can be different for each of the players.
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Definition 6 We say a deal x is confirmed in round tj
if j is the smallest number for which both the following
predicates are true:

– For each αi ∈ pa(x) there is some round tki
with ki ≤ j

in which αi has taken the action ‘accept(x)’.
– The set Xj ∪ {x}, where Xj is the set of all deals that

have been confirmed in any round tk with k < j , is
consistent.

We say a deal x is confirmed if it was confirmed in any
round tj with j < d .

This means that a deal x is considered confirmed if
at some point all its participating agents have played
‘accept(x)’, and x is consistent with the deals that have
already been confirmed earlier.

This negotiation protocol is called the Unstructured
Negotiation Protocol, and was introduced in [4]. It allows
each player to make any proposal whenever he or she wants,
unlike the more common Alternating Offers Protocol [29]
in which players take turns. The definition of a negotia-
tion game could be easily changed to reflect the Alternating
Offers Protocol instead, but we think that this protocol is
too restrictive to model real negotiations. In fact, the rules
of Diplomacy do not specify any protocol at all. Players are
allowed to negotiate however they want.

In most literature on negotiation protocols one agent pro-
poses a deal, and then another agent may or may not accept
the deal. To keep our formalization simple however we
do not make this distinction, so both the proposal and the
acceptance are represented by the ‘accept’ action. Further-
more, we should note that under this protocol the negotiators
are not obliged to respond to a proposal. Instead of reject-
ing it or making a counter proposal they may simply remain
silent, by playing the ‘none’ action. Furthermore, we do not
explicitly model the option of withdrawing from the nego-
tiations. However, a negotiator can still withdraw simply by
remaining silent for the rest of the negotiation stage.

If Xd denotes the set of all deals that were confirmed
during the negotiation stage, then during the action stage of
Nd(G) the players play the game G[Xd ]. This means they
can only pick actions that are consistent with the agreements
they made during the negotiation stage.

Definition 7 Let G be a one-shot game and d a positive
integer. The Negotiation Game over G, denoted as Nd(G),
is a game over d + 1 rounds, with the same players as G.
In the first d rounds (the negotiation stage) in each round
each player can play either the action ‘none’ or an action
accept(x) for any x ∈ AgrG, and in the last round (the
action stage) the players play the game G[Xd ], where Xd is
the set of deals confirmed during the negotiation stage. Each
player αi receives the utility f G

i (μ) where μ ∈ ⋂
x∈Xd

x

is the action profile chosen by the players during the action
stage.

For simplicity we have here defined the negotiations to
take place over a sequence of d discrete rounds. However,
one can easily use this model to approximate negotiations
that take place in continuous time, simply by taking d to be a
very large number and setting the duration of each round in
the negotiation stage to a very small number. This may mean
that players do not have enough time to decide which action
to take in each round, but that is not a problem if we assume
that not taking an action is interpreted as taking the action
‘none’. In the following, we will often write N(G) instead
of Nd(G) since the actual value of d is mostly irrelevant for
our purposes.

Finally, we would like to stress that a player’s set of
allowed actions MG

i [Xd ] in the action stage can only be
smaller than its full set of actionsMG

i if that player αi him-
self has agreed with those restrictions by accepting the deals
in Xd . Of course, restricting your set of actions is never ben-
eficial by itself, but when the other players return the favor
by also restricting their sets of actions, this can be highly
beneficial.

Example Again, let G be the Prisoner’s Dilemma, then
N1(G) is the negotiation game over the Prisoner’s Dilemma
with d = 1. In round t0 both players have the opportunity
to suggest a deal; for example, they could play the action
accept({deny} × {deny}). If they both suggest this deal then
this deal is confirmed, meaning that in round t1 each player
αi can only play the action ‘deny’.

Proposition 1 If G is the Prisoner’s Dilemma then the
negotiation game N1(G) has a Subgame Perfect Equilib-
rium that consists of both players playing accept({deny} ×
{deny}) in t0 and both playing ‘deny’ in t1.

Note that the Nash Equilibrium of N1(G) dominates
the Nash Equilibrium of the pure Prisoner’s Dilemma G

without negotiations, in which both players play ‘confess’.
Therefore, this demonstrates how the introduction of nego-
tiations improves the individual outcomes of the players.

In the introduction we mentioned that we want utility
functions to satisfy three properties. We see that for any
Negotiation Game the second and third property are indeed
satisfied: the utility values obtained by the players are deter-
mined by the actions they take in the action stage, rather
than the agreements made in the negotiation stage. The
agreements only influence the players’ utilities indirectly,
because they restrict the actions that can be taken during the
action stage. We think this model reflects how negotiations
work in real life. After all, signing a contract is not an action
that is valuable by itself. Instead, it merely binds all signing
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parties to undertake certain actions (or refrain from under-
taking certain actions), and it is these actions that determine
the utilities obtained by those parties.

5 D-Brane

We have implemented a Diplomacy-playing agent called
D-Brane (Diplomacy BRAnch & bound NEgotiator). As a
heuristic, in each round it tries to maximize the number of
Supply Centers conquered during that round. In this way we
can regard the action stage of a single round of Diplomacy
as a game in itself, which we denote asDipε . The parameter
ε represents the configuration of the units on the map, which
is of course different in each round. Our agent’s utility func-
tion f for the game Dipε is then the number of Supply
Centers conquered, and a full round of Diplomacy can then
be seen as an instance of the negotiation game N(Dipε). A
formal definition of Dipε can be found in Appendix B.

Of course, the fact that our player only tries to maxi-
mize its number of Supply Centers for the current round is
a very greedy heuristic. We know from personal experience
that real players often think ahead more than one round.
Nevertheless, as we will see in the experimental section,
we did manage to implement a successful player using this
heuristic.

D-Brane consists of two independent components: the
strategic component (see Section 5.1) and the negotiat-
ing component (Section 5.3). The negotiating component
searches for deals during the negotiation stage to propose
to the coalition partners and determines whether or not to
accept proposals received from the coalition partners. The
strategic component determines, given any deal x, which are
the best actions to take if x is confirmed. The strategic com-
ponent is used in two ways: during the negotiation stage the
negotiating component applies the strategic component to
determine whether any deal is valuable enough to be pro-
posed or accepted, and during the the action stage it is used
to determine which orders to submit, under the restriction
of the agreements that were made during the negotiation
stage. This modular decomposition of D-Brane is important
because it will allow future researchers to replace D-Brane’s
negotiation algorithm with their own algorithms, allowing
them to compare these negotiation algorithms independent
of the underlying strategy.

It is important to understand that D-Brane is a selfish
negotiator: it does help its allies in the game, but only
because it expects help from them in return in later rounds.
Another important aspect of D-Brane is that it always obeys
all agreements it makes and always assumes that the other
agents will do the same. This is a simplification, because in
a real Diplomacy game players may not always obey their
agreements, and therefore the notion of trust is an important

factor. However, the subject of trust is beyond the scope
of our work so we only focus on strategy and negotiations.
Furthermore, D-Brane does not try to form the best pos-
sible coalition. Instead, it assumes that a certain coalition
structure is given from the start. Again, this is because the
problem of coalition formation is beyond the scope of our
work.

D-Brane was implemented in Java, using the DipGame
framework [9]. However, we did not use the negotiation
language and negotiation server provided by DipGame,
because it turned out easier to implement our experiments
with a custom made negotiation server and language, which
we have bundled into the new BANDANA framework (see
Appendix A).

In the following, we will always assume that the algo-
rithms we describe are running on the agent with name α1.
The other agents, α2 . . . αn, may also be copies of D-Brane,
but they may just as well be any other Diplomacy playing
agent, or they may even be human players.

5.1 The strategic component

Given a game state ε (i.e. a configuration of units on the
Diplomacy map), a deal x and any player αi the strate-
gic component returns a set of orders for αi for the game
Dipε[x] plus the number of Supply Centers that αi is guar-
anteed to conquer if it submits those orders. Note that,
although this component is part of agent α1, it can also be
used to predict the orders and the the number of conquered
Supply Centers of any other player αi . This is important,
because it allows α1 to assess how valuable the deal x is to
the other participants in the deal. After all, it does not make
sense to propose deals that are unprofitable for the other
participants.

In theory one could try to determine the set of all pos-
sible actions for each player and then calculate the Nash
Equilibrium, but this is computationally too expensive as the
number of possible action profiles can easily be of the order
1010. Our algorithm, however, manages to quickly make
very good approximations by decomposing the game into a
number of smaller games which each correspond to the bat-
tle for a single Supply Center. Then, after determining the
best battle plans for each battle, it tries to find the strongest
combination of such battle plans.

We say that a battle plan for a player αi to conquer
a province p is invincible if no opponent can choose any
battle plan that would prevent αi from conquering p (see
Appendix B for a formal definition). Once we have deter-
mined all battle plans for a given province p, for all
players, it is easy to determine which of those battle plans
are invincible. Similarly, we can determine the invincible
pairs of battle plans. An invincible pair is a pair of battle
plans (βp, βq) for two different Supply Centers p and q
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respectively, such that if α1 plays both of these battle plans,
then at least one of them is guaranteed to succeed (again,
see Appendix B for a formal definition). The idea behind
the definition of an invincible pair is the following. Suppose
that our battle plan βp can be defeated by an opponent’s bat-
tle plan β ′

p and that our battle plan βq can be defeated by
an opponent’s battle plan β ′

q . One might be inclined to jump
to the conclusion that playing βp and βq cannot guarantee
us to conquer any Supply Center. However, it might be the
case that β ′

p and β ′
q are the only plans that can defeat βp and

βq , and that β ′
p and β ′

q are incompatible with each other, so
the opponent cannot play them both. In that case, if we play
both βp and βq we are still guaranteed that at least one of
the two will succeed.

5.1.1 The basic algorithm

If ε denotes some state of the game the set of all battle plans
for player αi to conquer or defend a Supply Center p is
denoted Bε

i,p. The set of all Supply Centers is denoted SC.
Given a game state ε, an agreement x, and a player αi ,

the strategic component works as follows:

1. For each p ∈ SC determine all invincible plans from
the set Bε

i,p.
2. For all pairs of Supply Centers (p, q) ∈ SC ×SC (with

p �= q) determine all invincible pairs from the setBε
i,p×

Bε
i,q .

3. Remove all invincible plans and invincible pairs that are
not consistent with x.

4. Find the largest consistent combination of invincible
plans and pairs, using And/Or tree search with Branch
& Bound (Section 5.1.2).

5. For each province for which we have not been able to
select an invincible plan or pair, select the strongest
non-invincible battle plan that is consistent with x and
the plans and pairs chosen in the previous step.

6. Return the full set of battle plans we have selected.

The number of invincible plans and pairs returned equals
the number of Supply Centers αi is guaranteed to conquer.
The plans chosen in step 5 merely form a best effort to try to
conquer some more Supply Centers even though the oppo-
nents might be able to defeat those attempts. Of course, the
opponents may not be perfect so it is at least worth trying.

The battle plans in Bε
i,p may contain support orders for

units of coalition partners of αi . However, αi cannot be sure
that these coalition partners will indeed submit those orders,
unless the deal x ensures that. Therefore, any plan that con-
tains orders for units that do not belong to αi and that are
not ensured by the agreement x are discarded.

In theory, the algorithm would be even stronger if it did
not only determine invincible plans and pairs, but also invin-
cible triples, invincible quadruples, etcetera. However, the

number of such n-tuples grows exponentially with n, so
checking which ones are invincible would slow down the
algorithm considerably.

5.1.2 And/Or tree search

And/Or tree search [5] is a variant of regular tree search
that can be used to solve Constraint Optimization Problems.
The power of this technique lies in the fact that the depth
of the search tree is drastically decreased with respect to a
naive tree search, by exploiting the knowledge that certain
variables are independent.

Note that step 4 of the algorithm above is indeed a Con-
straint Optimization Problem: for each Supply Center we
want to pick an invincible plan or an invincible pair, but
not all combinations of such plans and pairs are consistent.
Since every invincible plan or invincible pair guarantees a
conquered Supply Center, we aim to pick as many of such
plans as possible. However, because of the constraints we
may not be able to pick an invincible plan or pair for every
Supply Center; we sometimes need to pick the ‘empty plan’
(i.e. none of our units will try to conquer the Supply Center).

The variables of this constraint optimization problem
are the Supply Centers p ∈ SC. For each such variable,
its domain consists of the set of invincible plans, the set
of invincible pairs,6 and the empty plan. The constraints
between the variables are given by the fact that a battle plan
for Supply Center p and a battle plan for Supply Center q

may be incompatible if they contain two different orders for
the same unit. The value to optimize is the number of Supply
Centers for which we have not chosen the empty plan.

In this setting it is very easy to see which variables
depend on each other, and which are independent. Two Sup-
ply Centers p and q are independent if there is no unit that
is involved in the battle plan for p as well as in a battle plan
for q. This means that it is an ideal case for And/Or Tree
Search.

5.2 Constraint optimization games

Above we have shown how our player solves the complex
game Dipε by decomposing it into smaller games (the bat-
tles), determining the best moves in every such battle, and
then using Constraint Optimization techniques to find the
best combination of these best moves.

However, the way we presented this was completely ad-
hoc for the game of Diplomacy. In this section we will
therefore generalize these ideas, by only looking at the
abstract properties of the game that allowed us to follow

6An invincible pair for provinces (p, q) is considered a value for
the variable corresponding to p, where p is lower than q in some
predefined ordering of the Supply Centers.
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this ‘divide-and-conquer’ approach. We will define a new
class of games that we call Constraint Optimization Games
(COG). A COG is a game that can be decomposed as a num-
ber of smaller games that are played simultaneously but that
are not independent. We then show how the above described
algorithm for Diplomacy can be generalized to any other
Constraint Optimization Game.

Let MG be a set of m one-shot games: MG =
{G1, G2, ...Gm}, each with the same n players. We call
these games the micro-games. The set of actions for player
αi in micro-game Gj is denoted as MGj

i .

Definition 8 (A Constraint Optimization Game) GMG is
a game with n players, such that the set of actions MGMG

i

for player αi in GMG is a subset of the Cartesian product of
the actions of each micro-game:MGMG

i ⊆ MG1
i ×MG2

i ×
...MGm

i . The utility function for a player αi is defined as the
sum of its utility functions in each of the micro-games:

f
GMG
i (μ) =

m∑

j=1

f
Gj

i (μj ) (1)

Note that an action profile μ of GMG can then be viewed as
a matrix in which each row μj represents an action profile
from the micro-game Gj and each entry μj,i represents the
action taken by player αi in micro-game Gj .

We see that the game GMG consists of a number of
smaller one-shot games that cannot be played independently
from each other, because the set of actions MGMG

i of αi

is a subset of the product of the sets MGj

i . Each player αi

can pick for any micro-game Gj any action fromMGj

i , but
not all combinations of such actions are allowed. In other
words: there are constraints between the actions of the sev-
eral micro-games that need to be satisfied. Therefore, the
best strategy for the game GMG is not simply the combi-
nation of the best strategies of each individual micro-game.
For example, player α1 may have the optimal action a ∈
MG1

i in micro-game G1 and an optimal action b ∈ MG2
i in

micro-game G2, but the combination of a and b may be ille-
gal, so α1 is forced to choose a suboptimal action in at least
one of these two micro-games.

Example In the game Dipε the battle for a single Supply
Center pj can be seen as a micro-game Gj . The utility for
a player αi in micro-game Gj is 1 if αi succeeds in con-
quering pj , and 0 otherwise. Its utility for the entire COG
is then the total number of Supply Centers it conquers. For
each Supply Center p a player αi must choose which orders
to submit for its units located around p. However, some of
those units may also be adjacent to another Supply Center
q. Therefore, if αi decides to order a unit u to move to p,

it can no longer use that unit to move to q. So we see that
indeed there are constraints between the micro-games.

The concept of a COG combines aspects from Constraint
Optimization Problems (COP) with aspects from Game
Theory. Just like in a COP an agent αi needs to pick m val-
ues for m different variables, such that the combination is
consistent and maximizes its utility [30]. However, unlike
normal COPs, the utility of an agent does not only depend
on the values it chooses, but also on those chosen by its
opponents, which have different utility functions to maxi-
mize, just as in Game Theory. Another way to look at it, is to
see it as a variation of a Distributed Constraint Optimization
Problem in which there is not one single utility function to
maximize, but rather each agent aims to maximize its own
individual utility function.

Let us now present a rough sketch of how one can gener-
alize the algorithm described in Section 5.1 to other COGs.
The essence of our algorithm can be described in three steps:

1. Assign a value to every action of αi in every micro-
game.

2. Do the same for every pair of actions of αi for every
pair of micro-games.

3. Use And/Or search to find the combination of actions
that maximizes the sum of its action-values, under
the restriction that the chosen set of actions must be
consistent.

The idea is that assigning a single value to each action in
each micro-game in fact reduces the COG to a standard
COP, which can be solved with an And/Or search. One
straightforward way to assign a value to an action μj,i is
to find the set of opponent actions μj,−i that minimize the
utility function fi(μj,i , μj,−i ). In other words: the value
obtained in the worst-case scenario that the opponents pick
those actions that minimize αi’s utility. If we apply this prin-
ciple to Dipε , then this means that every invincible plan or
pair receives a value of 1 and all other plans receive a value
of 0, which essentially means that all non-invincible plans
are discarded, which is indeed what we did.

Finally, we would like to remark that finding the best
actions to take in a COG is a hard combinatorial problem,
so if G is a COG, then N(G) satisfies all three properties
that we mentioned in the introduction.

5.3 The negotiating component

During the negotiation stage of N(Dipε), given a coali-
tion C ⊂ P l that includes α1, the negotiating component
explores the agreement space by means of a best-first
Branch & Bound tree search in order to find good deals
to propose to the coalition partners. At regular time inter-
vals it determines whether it should make a new proposal
to its coalition partners and, if yes, which one. Furthermore,
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whenever the agent receives a proposal from any of the
coalition partners it determines whether to accept that pro-
posal or not.

The negotiating tree search algorithm is a previously
developed algorithm for general negotiation settings, called
NB3, applied to Diplomacy. We only give a brief description
here. For more information we refer to [4].

5.3.1 Tree search

We will now use the notation p1, p2, . . . p34 to denote the
34 Supply Centers of Diplomacy. Let C denote the set of
coalition partners of α1 (including α1 itself), let Bε

C,p denote
the set of battle plans with target p ∈ SC involving only
players in C, and let Bε

C denote the set of battle plans for all
coalitions partners, for any Supply Center:

Bε
C =

⋃

p∈SC

Bε
C,p Bε

C,p =
⋃

αi∈C

Bε
i,p

The NB3 algorithm expands a search tree in which each
node ν (except the root node) is labeled with a battle plan
βν ∈ Bε

C,p for some Supply Center p. The search starts
with a single tree node (the root). Then, if Bε

C,p1
has size k1,

the algorithm will add k1 child nodes to the root, with each
child labeled with a different battle plan β ∈ Bε

C,p1
. Next,

it uses a heuristic function to determine which of these new
nodes is the “best” and continues expanding that node ν. If
Bε

C,p2
has size k2 then the algorithm creates k2 children for

node ν, each labeled with a different battle plan β ∈ Bε
C,p2

.
Again, the heuristic function chooses the next node to split,
and this is repeated until either the deadline for negotiations
has finished, or until the tree has been explored exhaustively.
Any node for which the battle plan is incompatible with the
battle plans of its ancestors is pruned immediately.

Each node in this tree represents a deal that may be
proposed to the coalition partners. Specifically, if path(ν)

denotes the set of nodes that make up the path from the root
node to ν, and plan(ν) the set of battle plans corresponding
to the labels of the nodes in path(ν):

plan(ν) = {β ∈ Bε
C | ∃ν′ ∈ path(ν) : β = βν′ }

then with each such plan plan(ν) we can associate a deal
xν ∈ AgrDipε in which each participating player is com-
mitted to submit his or her orders7 that appear in plan(ν),
which means that any action profile μ is allowed, as long
as it contains all orders that the players have committed
themselves to.

Note that xν as defined here is indeed a deal in the sense
of Definition 2. The battle plans in plan(ν) consist of a

7Remember that plan(ν) is a set of battle plans, and each battle plan
is a set of orders. So with “the orders in plan(ν)” we actually mean
the orders in the battle plans in plan(ν).

number of orders, and if for some player αi there are a num-
ber of orders in plan(ν) then its restricted set of actions
Mε

i [xν] consists of those actions inMε
i that contain all αi’s

orders in plan(ν).
Note that the set of deals that are considered in this way

is much smaller than the full agreement space AgrDipε ,
because we are only looking at deals in which players com-
mit themselves to battle plans, rather than any random set
of orders. In this way we have filtered out for example
actions containing invalid supports, and action profiles in
which coalition partners take contradictory actions (e.g. two
coalition partners both trying to attack the same province).

In order to determine which of the deals represented in
the tree are good enough to propose to the coalition partners
our algorithm calculates for each node ν and each coalition
partner αi ∈ C a utility value ui(xν). This utility value is not
the same as the utility function f as defined for Dipε , but
rather it is a value that indicates how profitable the deal xν

is to player αi . In Section 5.3.2 we will explain how ui(xν)

is defined.
Furthermore, for each node ν and for each coalition part-

ner αi ∈ C the algorithm stores an upper bound ubi(ν) and
a lower bound lbi(ν), which are used for pruning and to cal-
culate the search heuristic. The upper bound ubi(ν) is the
highest utility ui(xν′) agent αi could possibly receive from
any plan xν′ where node ν′ is any descendent of ν. This
means that if ubi(ν) is lower than αi’s reservation value,
any plan that could appear in the subtree under ν would be
unprofitable for αi so the node ν can be pruned. Similarly,
the lbi(ν) is the lowest possible value of ui(x

′
ν) then one

could find for any node ν′ that is a descendant of ν.
If for a certain node ν the utility value ui(xν) is higher

than the reservation value rvi for every participating agent
αi ∈ pa(xν), it means the deal is in principle profitable for
every participating agent, and therefore D-Brane may con-
sider to propose it to the others. In that case, the deal will be
stored in a list of potential proposals, which will be used by
the negotiation strategy as we will explain in Section 5.3.3.

5.3.2 Credits

The algorithm tries to find deals that are profitable for each
player participating in the deal. For example, α1 may sup-
port α2 to attack some Supply Center p while in return α2

will support α1 to attack some other Supply Center q. This
is mutually beneficial if neither of these players is able to
conquer its targeted Supply Center without support from the
other player. Unfortunately, it turns out that such situations
in which two or more players have the opportunity to help
each other do not occur very often.

To increase the number of opportunities to make benefi-
cial deals D-Brane applies a ‘credit’ system, which means
that when one player αi gives support to another player αj ,
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the supported player αj is considered indebted to αi . This
means that αi can expect αj to return the favor and give sup-
port to αi at some later phase of the game. Thanks to this
system a player may be willing to support another player
even if the favor cannot be returned immediately, which
strongly increases the number of potential deals.

In order to assess the value of a deal, a player should
therefore not only take the number Supply Centers that are
conquered thanks to the deal into account, but also assign
some extra value to the deal to represent future supports that
may be received as a consequence of the current deal.

Specifically, D-Brane stores a number di,j which is the
credit balance between players αi and αj : the number of
supports αi has so far given to αj , minus the number of
supports αj has given to αi . If di,j < 0 it means that αj still
owes a number of supports to αi .

D-Brane then calculates the value ui(x) of a deal x for
player αi as:

ui(x) = E(f
Dipε [x]
i ) − E(f

Dipε

i ) +
n∑

j=1

Cr(di,j ) (2)

where E(f
Dipε [x]
i ) is the expected number of conquered

Supply Centers in the current turn given the deal x, where
E(f

Dipε

i ) is the expected number of conquered Supply Cen-
ters in the current turn if no deal is made, and Cr(di,j ) is
given by:

Cr(di,j ) =
{
0.4 · di,j if di,j ≥ 0
0.6 · di,j if di,j ≤ 0

(3)

One should understand that while f
Dipε [x]
i is the short-term

utility (the number of Supply Centers conquered directly in
the current round), the utility ui(x) is a sort of long-term
expected utility value, which takes into account the number
of supports αi still owes to other players and the number of
supports other players still owe to αi .

We will now show that the values 0.4 and 0.6 that appear
in (3) are chosen such that D-Brane exhibits behavior that
one would indeed expect from a selfish negotiator.

Proposition 2 A rational player αi that evaluates deals
according to (2) would only be willing to give support to
another player αj if that does not cause αi to lose a Supply
Center.

Proof Losing a Supply Center causes E(f
Dipε [x]
i ) to

decrease by 1, while giving support only increases Cr(di,j )

by either 0.4 or 0.6, so in total u would decrease.

Proposition 3 A rational player αi that evaluates deals
according to (2)would only ask support from another player

αj if αi expects that this will yield an extra Supply Center
for αi .

Proof If no extra Supply Center is gained the received
support decreases u by either 0.4 or 0.6.

Proposition 4 If a rational player αi that evaluates deals
according to (2) has a positive credit balance w.r.t αj , then
αi would prefer to receive support from αj and gain a
Supply Center, rather than give more support to αj .

Proof If αi has a positive credit balance, then the combi-
nation of a gained Supply Center and a received support
increases ui by 1 − 0.4 = 0.6, while giving more support
would increase ui by only 0.4.

Proposition 5 If a rational player αi that evaluates deals
according to (2) has a negative credit balance w.r.t αj , then
αi would prefer to give support to αj rather than to ask for
more support from αj and gain a Supply Center.

Proof With a negative balance, the extra support would
yield 1− 0.6 = 0.4, while giving support would increase ui

by 0.6.

Without Proposition 2 D-Brane would not be selfish
because it would be inclined to constantly give support to
others, while losing its own Supply Centers. Proposition 3
guarantees that D-Brane does not request any unnecessary
supports. Proposition 4 makes sure that D-Brane only gives
support because it expects that others will return the favor.
And without Proposition 5 D-Brane would never be will-
ing to return any favors, and hence nobody would like to
negotiate with D-Brane.

5.3.3 Negotiation strategy

Every time a new node ν is generated the algorithm deter-
mines whether the corresponding deal xν is rational to all
participating agents pa(xν). That is, it checks whether for
each participating agent the utility ui(xν) is larger than its
reservation value rvi . If this is the case, then it is stored in a
repository of potential deals.

Then, at set intervals during the negotiation stage, the
NB3 negotiation algorithm determines whether any of the
deals in this repository can be proposed. It does this by
applying a time-based strategy: the closer to the deadline,
the more it is willing to propose or accept deals with less
utility for α1. Furthermore, the closer to the deadline, the
more it will be inclined to propose deals that yield high
utility for the other participating agents.
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5.3.4 Implicit vs. explicit agreements

When two or more players in Diplomacy are in a coalition,
this usually implies two things: it means they will not attack
each other and it means that they may support each other
when attacking an opponent. We call the first kind of agree-
ment an implicit agreement because it is implied by the
fact that the players are allies, so no negotiation is needed
to establish such agreements. The second kind we call an
explicit agreement and can only be made by negotiating.
The deals investigated and proposed by the Negotiating
Component are therefore exclusively of the explicit type.
The ability of D-Brane to negotiate (i.e. to make explicit
agreements) and its ability to obey implicit agreements can
both be switched on and off, so it can play in 4 differ-
ent modes: with negotiations on or off and with implicit
agreements on or off.

It is important to make this distinction for the experimen-
tal evaluation of D-Brane. On the one hand it is unrealistic
to play without implicit agreements, because any rational
and trustworthy player would always apply them. On the
other hand however, we want to investigate the importance
of negotiations. Therefore, if D-Brane defeats its opponents,
we want to know whether this is caused by its negotiation
algorithm, or by the fact that it has a strong strategic module,
or simply because it plays in a coalition and the mere fact
that the coalition partners do not attack one another gives
them an advantage over the opponents. Testing the agent in
all 4 different modes allows us to identify to what extent
each of these three elements is responsible for playing well.

Let Xd denote the set of explicit agreements that were
confirmed during the negotiation stage of N(Dipε), and let
XC denote the set of implicit agreements implied by the
coalition C that α1 is in. Then during the action stage of
N(Dipε) the strategic component tries to determine the best
possible action of the game:

– Dipε[Xd∪XC], if both implicit and explicit agreements
are obeyed.

– Dipε[Xd ], if only explicit agreements are obeyed.
– Dipε[XC], if only implicit agreements are obeyed.
– Dipε , if no agreements are obeyed.

In order to correctly interpret the experimental results we
feel it is important to stress that if both implicit and explicit
agreements are switched off this essentially means that D-
Brane plays entirely individually, and does not consider
itself part of any coalition.

6 Experiments

In this section we compare D-Brane with two other
Diplomacy playing agents (also known as ‘bots’) recently

presented in [8, 13]. In both papers a negotiating agent was
tested by letting it play against a standard non-negotiating
bot called the DumbBot. We have done similar experiments
with our D-Brane agent and compared the results with
theirs. Moreover, we have submitted D-Brane to participate
in the Computer Diplomacy Challenge. Our agent turned
out to be the winner of this competition, which confirms the
results of our experiments.

We did experiments with the number of D-Branes vary-
ing from 2 to 5, while all other players always being
DumbBots. Every such experiment was repeated 4 times;
one time for each different mode of D-Brane. In each of
the experiments we performed with negotiations off (i.e.
not making any explicit agreements) we played 500 games,
which took up to four-and-a-half hours. For experiments
with negotiations we set the deadline for negotiations to 5 s
per round. Since such experiments took much more time we
only played 200 games in each such experiment, which still
took up to 17 h. In order to prevent games from continuing
forever because they get stuck in a stalemate, we have pro-
grammed the agents to automatically declare a draw after
40 rounds.8 For our experiments we used the Parlance game
server.9 In each new game this server randomly determines
which player will play which Great Power.

In all experiments with implicit agreements turned on,
the D-Branes were instructed to form a coalition against the
DumbBots. D-Brane never breaks any promises and never
leaves the coalition, and assumes its coalition partners will
not do so either. As explained, this is because trust and
coalition formation are beyond the scope of our work. All
experiments were performed on a single HP Z1 G2 desk-
top computer with Intel Xeon E3 4x3.3GHz CPU and 8 GB
RAM.

6.1 D-Brane vs. DumbBot

As explained above, we did a number of experiments,
with the number of D-Branes in each experiment vary-
ing between 2 and 5, and for each of these numbers, we
performed an experiment with each of the 4 modes of D-
Branes, resulting in a total of 16 experiments. For each of
these experiments wemeasured the performance of D-Brane
by counting the number of Supply Centers conquered. In
total there are 34 Supply Centers, and 7 players, so if all
players are equally strong we can expect each player to con-
quer 34

7 Supply Centers, so if there are n D-Branes then we
can conclude that D-Brane is better than DumbBot if the D-
Branes obtain more than n · 34

7 Supply Centers. We see in

8For readers more familiar with Diplomacy: we mean that the players
declare a draw whenever a game reaches the Winter 1920 phase.
9https://pypi.python.org/pypi/Parlance/1.4.1

https://pypi.python.org/pypi/Parlance/1.4.1
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Table 1 that this was clearly the case in every experiment.
We can therefore conclude that D-Brane plays significantly
better than DumbBot. For example, in the case of 4 D-
Branes and 3 DumbBots, without negotiations and without
implicit agreements, on average the D-Branes together con-
quer almost 30 Supply Centers, leaving only 4 Supply
Centers for the DumbBots.

As expected, we see that playing with implicit agree-
ments improves the outcome for the D-Branes. However,
we also see that playing with negotiations only improves
the result if it is in combination with implicit agreements.
Surprisingly, if seems that if the implicit agreements are
turned off, the negotiation algorithm even has a detrimen-
tal effect, although this is effect too small compared the
standard errors to call it significant.

It is at this point unknown to us why exactly negotia-
tions seem to be ineffective without implicit agreements.
One hypothesis is that this effect might be caused by the fact
that without implicit agreements but with negotiations the
D-Branes will mainly spend their efforts on closing deals
to protect themselves from one another, and can therefore
spend less effort on eliminating DumbBots. Without explicit
agreements and without negotiations, it would be easier
for one D-Brane to quickly eat up another D-Brane, which
would lead to one very strong D-Brane, which could then
focus on eliminating the DumbBots. Of course, this is bad
for the eliminated D-Branes, but for the group of D-Branes
as a whole this could lead to a higher total number of con-
quered Supply Centers. With implicit agreements and with
negotiations, the D-Branes do not attack each other anyway,
so all their efforts can be focused entirely on eliminating the
DumbBots. More research is required to determine whether
this hypothesis holds or not.

Table 1 Number of Supply Centers (± standard error) conquered by
the D-Branes in various settings

nego off nego on

2xD-Brane vs. 5xDumbBot

impl. agr. off 15.5 ± 0.3 15.1 ± 0.5

impl. agr. on 17.2 ± 0.3 17.9 ± 0.5

3xD-Brane vs. 4xDumbBot

impl. agr. off 24.9 ± 0.3 24.4 ± 0.5

impl. agr. on 28.4 ± 0.2 29.6 ± 0.4

4xD-Brane vs. 3xDumbBot

impl. agr. off 29.8 ± 0.2 29.5 ± 0.3

impl. agr. on 31.5 ± 0.1 32.1 ± 0.2

5xD-Brane vs. 2xDumbBot

impl. agr. off 32.0 ± 0.1 31.5 ± 0.2

impl. agr. on 32.3 ± 0.1 33.2 ± 0.1

There are 34 Supply Centers in total

Table 2 The average rank obtained by the D-Branes (± standard
error)

2xD-Brane vs 5xDumbBot

nego off nego on

impl. agr. off 2.59 ± 0.05 2.75 ± 0.08

impl. agr. on 2.42 ± 0.05 2.35 ± 0.08

The theoretically optimal value is 1.5, and the theoretically worst
is 6.5. A value of 4.0 would mean D-Brane is equal to DumbBot.
DipBlue achieves 3.57

6.2 D-Brane compared with DipBlue

In [13] a negotiating Diplomacy agent called DipBlue was
introduced. In their experiments they let 2 instances of Dip-
Blue play against 5 DumbBots. As a measure of success
they used the average rank of their two agents over 75
games. That is: after each game the best player gets rank 1,
the second best player gets rank 2, etcetera, and the worst
player gets rank 7. A player is considered better than another
player if it finishes with more Supply Centers, or if it is
eliminated later. If all players in a game are equally strong
then you may expect all players to receive an average rank
of 4.0. With 2 instances of the player to test, the best possi-
ble average rank is 1.5 and the worst is 6.5. The best average
rank that DipBlue achieves in their experiments10 is 3.57.

To compare the performance of D-Brane with DipBlue
we have also measured the average rank of D-Brane in the
experiments with 2 instances of D-Brane against 5 instances
of DumbBot. The results are displayed in Table 2. It dis-
plays the average rank of the D-Branes in the four different
modes, with their respective standard errors. We note that in
all cases the average rank is around 2.5, even when negotia-
tions were switched off. This means that not only our agent
is better than the DumbBot, but also that even without nego-
tiating D-Brane plays significantly better than DipBlue with
negotiations.

We should remark here, that comparing the negotiation
skills of D-Brane with the negotiation skills of DipBlue
is not entirely fair, because D-Brane always obeys all
confirmed agreements, and assumes its coalition partners
obey all confirmed agreements, whereas DipBlue takes into
account that the other players may not obey their com-
mitments. Thus, when negotiating, D-Brane has an unfair
advantage with respect to DipBlue. However, this advantage
is not present when both implicit and explicit agreements are

10To be precise: this result was obtained in case one DipBlue was
negotiating with one instance of slightly more simplistic agent called
‘Naive’ against five DumbBots. In case two instances of DipBlue were
playing, their result was worse than 3.57.
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turned off, since in that case D-Brane essentially plays with
no coalition partners at all. So at least for that case it is fair
to say that D-Brane outplays DipBlue. The same also holds
for our statement that D-Brane outplays the DumbBot.

6.3 D-Brane compared with Fabregues’ agent

In [8] a nameless agent was presented by Fabregues, which
was also compared with the DumbBot. Fabregues did 8
experiments, in which the number of instances of her bot
varied between 0 and 7, and the remaining players were
DumbBots. In each experiment she played 100 games. As
a measure of success she counted the number of victories
of her agent. To compare our results with hers, we have
also counted the number of victories of D-Brane in our
experiments and displayed them in Table 3.

It is important to note here, that Fabregues’ experiments
were performed on a super computer, with deadlines of 5
minutes per round, while we did our experiments on a desk-
top computer, and with deadlines of only 5 s per round.
Furthermore, the results displayed in the table are for the
cases that the D-Branes did not negotiate at all, and played
without implicit agreements.

Here, we count a ‘victory’ if a D-Brane ends with the
highest number of supply centers. If 2 agents both end with
the highest supply centers we count ‘half a victory’ for each
of them. We should note that we have rounded off the per-
centages displayed for Fabregues’ agent to multiples of 5.
This is because in her thesis Fabregues does not provide the
exact percentages, but only displays a graph from which it
is hard to read off the exact values.

We see that in all cases D-Brane scored significantly bet-
ter than Fabregues’ negotiating agent, even if D-Brane was
not negotiating, and even though our experiment ran on a
single desktop computer rather than on a super computer,
and even though our deadlines were much shorter.

6.4 Varying negotiation deadlines

In order to see how the length of the deadlines affects the
performance of our negotiation algorithm we have done
some more experiments, with varying deadlines. In these
cases the we had 3 D-Branes playing against 4 DumbBots,

Table 3 First row shows the victory percentages of n instances of
Fabregues’ agent versus 7 − n DumbBots

n 2 3 4 5

Fabregues’ agent 45 % 70 % 85 % 95 %

D-Brane 61% 84 % 95 % 98 %

Second row shows the same, for n D-Branes versus 7 − n DumbBots

Table 4 Number of Supply Centers conquered by the D-Branes, with
varying negotiation deadlines

3xD-Brane vs. 4xDumbBot

Deadline per round 5 s 10 s 15 s 20 s

SC’s conquered 29.6 ± 0.4 29.9 ± 0.8 29.9 ± 0.7 29.5 ± 0.8

with negotiations and with implicit agreements. The results
are displayed in Table 4. Each of the results is an average
over 50 games, except in the case of 5 s, which was averaged
over 200 games. We conclude from this experiment that
increasing the negotiation time does not improve the results
any further. If D-Brane is capable of finding a potential deal,
it will find it within the first 5 s.

6.5 Computer Diplomacy Challenge

Finally, we have also submitted D-Brane to the first Com-
puter Diplomacy Challenge which was part of the 2015
ICGA Computer Olympiad. For this competition we only
submitted the non-negotiating version (no implicit agree-
ments and no explicit agreements) of D-Brane, because our
negotiation language is not compatible with the DipGame
negotiation framework, which was used for the competition.

The competition had three participants: D-Brane, Dip-
Blue, and another non-negotiating player called SuperBot.
The agents played a number of games in two different com-
petition set-ups. The first set-up consisted of one instance
of each of these participating bots and four instances of
a RandomBot (a player that only takes entirely random
actions). The second set-up consisted of two instances of
each participating bot and one RandomBot.

The results were measured according to two criteria: the
number of victories and the number of Supply Centers con-
quered. The results are displayed in Table 5. We see that
D-Brane won the competition by a large difference, both
measured in terms of victories and in terms of conquered
Supply Centers. This again confirms the previous results
that even without negotiations D-Brane is able to outplay
negotiating players.

Table 5 Results of the Computer Diplomacy Challenge

Victories Conquered

Supply Centers

D-Brane 39 933

DipBlue 11 295

SuperBot 2 376

RandomBot 0 143
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7 Conclusions and future work

Our experiments make clear that D-Brane plays better than
DumbBot, DipBlue and Fabregues’ agent. We also see how-
ever that our negotiation algorithm only has a relatively
small positive effect, and only when applied in combination
with implicit agreements. Of course, one could argue that
the NB3 negotiation algorithm itself is not good enough, but
we know from experiments presented in [4] that in at least
one other domain NB3 does produce good results.

Apparently, only negotiating joint battle plans for the cur-
rent round is not enough to really benefit strongly from
negotiations. Indeed, we know from personal experience
playing Diplomacy that a good player not only negotiates
battle plans for the current round, but also looks farther
ahead and negotiates future actions. This again confirms our
claim that the field of Automated Negotiations should give
more attention to the modeling of complex domains, rather
than only the development of bargaining strategies.

In [8, 13] negotiations had a stronger positive impact on
the respective agents. We think this is because both their
agents were implemented by extending the DumbBot with
negotiation capabilities, while the DumbBot is not a very
strong player. It is likely that negotiations have a much big-
ger impact on bad players, because good players have less
room for improvement.

Furthermore, it is currently still unknown to us why our
negotiation algorithm only works well in combination with
implicit agreements. We will need to investigate this further
in the future.

The most striking result of our experiments, however, is
that even when D-Brane does not negotiate it still achieves
much better results then DipBlue and Fabregues’ agent,
which do negotiate. From this we draw the very important
conclusion that in some cases successful negotiation may
depend more on the way the underlying domain is tackled,
rather than on the applied bargaining strategy. We there-
fore argue that future research in the field of Automated
Negotiations should put more emphasis on domains where
calculating the utility values of potential deals is a com-
plex task. In realistic negotiation settings one simply cannot
assume that an explicit representation of the utility functions
is given and easy to calculate. Instead, negotiation algo-
rithms should apply more sophisticated forms of reasoning
to determine which deals are profitable.

We think that D-Brane will be very important for future
negotiations research, because it allows researchers to com-
pare their algorithms not only with the DumbBot but also
with our much stronger agent. We have included the strate-
gic component of D-Brane in the BANDANA framework,
so that other researchers can implement their own negotia-
tion algorithms on top of the strategic component. This will

have two main advantages. Firstly, it will make it easier for
new researchers to develop negotiating Diplomacy players
as they will not have to waste time on the development of a
strategic player. Secondly, if they do have access to another
strategic component, it will allow them to compare to what
extent their negotiation algorithms depend on the underlying
strategic component.

We also think that D-Brane can be very useful for
researchers who would like to use Diplomacy to study the
topics of Trust, Coalition Formation, and Argumentation
Based Negotiation. They could use the strategic module of
D-Brane as the basis for their algorithms so that they do not
have to build an entirely new agent from scratch.

So far, we have not compared D-Brane in any way with
human players. It would be very interesting to see to what
extent D-Brane makes moves that are similar to those of
expert players and how well it plays against humans. For
this however, we need to set up an environment that allows
humans to play against software agents and negotiate with
them. Also, we would need some tools that allow experts to
analyze the moves made by D-Brane afterwards. Part of this
infrastructure already exists, but it is currently not ready to
perform such experiments. Therefore, we have to defer such
experiments to the future.

Furthermore, we are planning to further develop D-
Brane’s negotiation algorithm so that it may make more
sophisticated deals rather than just battle plans for the cur-
rent round. We will make D-Brane think more steps ahead
instead, which will not only improve the strategic play, but
will also allow for more interesting deals, because deals may
then involve orders made in several rounds, rather then just
the current round. Also, we plan to endow the DumbBot
with our negotiation algorithm, to see if negotiations in that
case have a greater impact.

Finally, we would like to see if our approach for solv-
ing COGs indeed can be generalized. We may for example
define games in Game Description Language (GDL) [14] so
that the strategic component can decompose the game into
micro-games at runtime.

Appendix A

Our experiments are largely implemented using the
DipGame framework. However, we have implemented a
couple of new tools on top of DipGame to make experi-
mentation easier. We have combined these tools into a new
extension of DipGame, that we call BANDANA (BAsic
eNvironment for Diplomacy playing Automated Negotiat-
ing Agents). It includes the following components:

– A new negotiation server.
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– A new negotiation language, which we find simpler to
use than DipGame’s default language.

– A Notary agent, for the implementation of the Unstruc-
tured Negotiation Protocol, as explained in Section 4.

– Several example agents, includingD-Brane andDumbBot.
– The strategic component of D-Brane.
– Example code that shows howone can implement a nego-

tiating agent on top of D-Brane’s strategic component.
– An Adjudicator which, given a set of orders for all units,

determines which of those orders are successful.
– A Game Builder, which allows users to set up a cus-

tomized board configuration. This can be useful for
testing.

The BANDANA framework can be downloaded from:
http://www.iiia.csic.es/∼davedejonge/bandana.

More details about BANDANA’s negotiation language
and its other tools can be found in the manual which can
also be downloaded from the same address.

Appendix B

We here give a more thorough definition of the one-shot
game Dipε . We claim that Dipε can be modeled as a COG,
and that a single round of Diplomacy can be seen as an
instance of the negotiation game N(Dipε).

Definition 9 Let ε denote a configuration of units on the
Diplomacy map. Then Dipε is defined by the tuple:

(Gr, SC, P lDip, (Units1, . . . Units7), loc, (f
Dipε

1 . . . f
Dipε

7 )).

Here, Gr is a symmetric graph, of which the vertices are
called provinces. The set of provinces is denoted Prov and
we use the notation adj (p, q) to state that provinces p and
q are adjacent in the graph. The set of Supply Centers SC

is a subset of Prov. The set P lDip represents the 7 players:
P lDip = {α1, . . . α7}. For each player αi there is a finite set
Unitsi , which we call the set of units owned by αi . These
sets are all disjoint: i �= j ⇒ Unitsi ∩ Unitsj = ∅. The
set of all units is denoted: Units = ⋃7

i=1Unitsi. The state
ε of the game implicitly defines an injective function loc :
Units → Prov that assigns a province (the location of u)
to any unit u. In order to define the utility functions f

Dipε

i

we first need to define several other concepts.
Given the state ε we can define the set of possible orders

Ordε :

Ordε = Mtoε
⋃

Supε

Mtoε = {(u, p) ∈ Units × Prov | p = loc(u) ∨ adj (p, loc(u))}
Supε = {(u, u′) ∈ Units × Units | u �= u′}

The orders in Mtoε are called move-to orders11 and the
orders in Supε are called support orders. We use the nota-
tion Ordε

u to denote the subset of Ordε consisting of all
possible orders for a given unit u.

Ordε
u = Mtoε

u

⋃
Supε

u

Mtoε
u = {(u′, p) ∈ Mtoε | u′ = u}

Supε
u = {(u′, u′′) ∈ Supε | u′ = u}

Furthermore, we will use Ordε
i to denote the set possible

orders for any unit of player αi :

Ordε
i =

⋃

u∈Unitsi

Ordε
u

Ordε−i = Ordε \ Ordε
i

and for a set of players C ⊂ P l we define:

Ordε
C =

⋃

αi∈C

Ordε
i

Ordε−C = Ordε \ Ordε
C

We use similar notation conventions for other sets, such as
Units, Mtoε and Supε .

An action μi for a player αi in Dipε is then defined as a
set of orders, containing exactly one order for each of αi’s
units:

MDipε

i = {μi ⊂ Ordε
i | ∀u ∈ Unitsi : |Ordε

u ∩ μi | = 1}
(4)

Definition 10 If αi plays an action μi that contains order
o then we say that αi submits the order o. If μ =
(μ1, μ2, ...μ7) is an action profile then μ̂ denotes the set of
all orders submitted by all players:

μ̂ =
7⋃

i=1

μi

Definition 11 A support order (u, u′) ∈ Supε is considered
valid, for an action profile μ, if μ̂ contains a move-to order
(u′, p) ∈ Mtoε where p is adjacent to the location of u.
This is denoted by the predicate val(μ, u, u′).

val(μ, u, u′) ⇔ ∃p ∈ Prov : (u′, p) ∈ μ̂ ∧ adj (p, loc(u))

The rules of Diplomacy specify that players may only
submit support orders that are valid.

11In this model we consider hold orders as a special kind of move-
to order, for which the destination is the current location of the unit:
p = loc(u).

http://www.iiia.csic.es/~davedejonge/bandana
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Definition 12 Given an action profile μ, a support (u, u′) ∈
Supε

u in μ̂ is said to be cut if μ̂ also contains a move-to
order that moves to the location of u:

cut (μ, u) ⇔ ∃(u, u′) ∈ μ̂ ∧ ∃(u′′, p) ∈ μ̂ ∧ p = loc(u)

Definition 13 The set of successful supports of u in an
action profile μ is defined as those orders that support u,
and that are valid and not cut:

SucSupμ,u = {(u′, u) ∈ μ̂ | val(μ, u′, u) ∧ ¬cut (μ, u′)}

Definition 14 The force s(μ, u, p) exerted by unit u on
province p is defined as:

s(μ, u, p) =
{
1.5 + |SucSupμ,u| if (u, p) ∈ μ̂ ∧ p = loc(u)
1 + |SucSupμ,u| if (u, p) ∈ μ̂ ∧ p �= loc(u)
0 otherwise

Definition 15 We say a player αi conquers a province p if
αi has a unit that exerts more force on p than any other unit:

conq(μ, i, p) ⇔ ∃u∈ Unitsi ∀u′ ∈Units\{u} :s(μ, u, p)

> s(μ, u′, p)

Finally, we can define the utility function f
Dipε

i for
a player αi as the number of Supply Centers he or she
conquers:

f
Dipε

i (μ) = |{p ∈ SC | conq(μ, i, p)}| (5)

A natural way to play Diplomacy is to determine for each
Supply Center separately whether, and how, it can be con-
quered. However, the decision how to attack one Supply
Center may restrict the possibilities to attack another Sup-
ply Center if the same units are involved. This is the essence
of a COG. Therefore, we will now show how Dipε can be
modeled as a COG.

We define the set of units of player αi involved in
province p as those units that may move to p, hold in p,
support a unit holding in or moving to p, or that may cut
any opponent unit that could give support to another oppo-
nent unit holding in p or moving to p. This set is denoted
by Unitsp,i . More precisely, it consists of all units next to
or inside p, and all units located next to an opponent’s unit
that is located next to p:

Definition 16 The set of units of player αi involved in
province p, denoted Unitsp,i is defined as:

Unitsp,i = MayAttackOrSupportp,i ∪ MayCutp,i

MayAttackOrSupportp,i = {u ∈ Unitsi | loc(u) = p ∨ adj (p, loc(u))

MayCutp,i = {u ∈ Unitsi | ∃u′ ∈ Units−i : adj (loc(u), loc(u′)) ∧
(loc(u′) = p ∨ adj (p, loc(u′)))}

We model Dipε as a COG by defining a micro-game
Dipε,p for each Supply Center p ∈ SC. An action in such a

micro-game consists of a set of orders containing maximally 1
order for each unit of player αi involved in Supply Center p:

MDipε,p

i =
⎧
⎨

⎩
μp,i ⊂

⋃

u∈Unitsp,i

Ordε
u | ∀u ∈ Unitsp,i : |μp,i ∩ Ordε

u| ≤ 1

⎫
⎬

⎭

Note that in this definition a player is not required to submit
an order to each unit involved in p. This is because that unit
may instead be used to attack or defend another province p′.

This definition implies that there are binary constraints
between the micro-games, because a unit may be involved
in more than one province. Two actions μp,i and μq,i are
incompatible if for any unit involved in both provinces, two
different orders are submitted. That is, μp,i and μq,i are
compatible iff the following restriction holds:

∀u ∈ Unitsi : |(μp,i ∪ μq,i) ∩ Ordε
u| ≤ 1 (6)

We define the utility function of the micro-game Dipε,p to
be:

f
Dipε,p

i (μp) =
{
1 if conq(μp, i, p)

0 otherwise
(7)

Here, μp is an action profile in the micro-game Dipε,p. The
question whether conq(μ, i, p) holds only depends on the
orders submitted for the units involved in p. Therefore, if μ̂p

is a subset of μ̂ then conq(μp, i, p) holds iff conq(μ, i, p)

holds, which means that (5) and (7) are consistent with (1).
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In the following, we use the notation UnitsC , for a set of
players C (a ‘coalition’) to denote the union of the units of
those players:

UnitsC =
⋃

αi∈C

Unitsi

Units−C = Units \ UnitsC

Definition 17 Let C denote a coalition containing player
αi , then a battle plan β for αi and Supply Center p is a set
of orders β ⊂ Ordε of the form:

β = {(u, p)} ∪ Supports ∪ Cuts

with u ∈ Unitsi , and Supports ⊆ Supε
C is a (possi-

bly empty) set of support orders (u′, u) that support u and
Cuts ⊆ Mtoε

C a (possibly empty) set of orders that aim
to cut any opponent unit that may support a hostile move
into p:

(u′′, p′)∈Cuts ⇒ ∃u′ ∈Units−C : loc(u′)=p′ ∧ adj (p′, p)

Furthermore we have the restriction that β can contain at
most one order for each unit:

∀u ∈ Units : |β ∩ Ordu| ≤ 1

The set of all battle plans for player αi on Supply Center p

is denoted Bε
i,p.

Definition 18 Given a set of deals X, an invincible plan is
a battle plan β ∈ Bε

i,p for some province p and some player
αi that for every action profile that satisfies X and in which
all orders of β are submitted αi will conquer p. That is, β is
invincible iff the following holds:

∀μ ∈ MDipε [X] : β ⊂ μ̂ ⇒ conq(μ, i, p)

Furthermore, we can determine all invincible pairs:

Definition 19 Given a set of dealsX, an invincible pair is a
pair of battle plans (β1, β2) ∈ Bε

i,p × Bε
i,q for two provinces

p, q and some player αi that guarantees player αi to either
conquer p or conquer q:

∀μ ∈ MDipε [X] : β1∪β2 ⊂ μ̂ ⇒ conq(μ, i, p)∨conq(μ, i, q)
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