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Abstract The optimization performance of the Differential
Evolution algorithm (DE) is easily affected by its control
parameters and mutation modes, and their settings depend
on the specific optimization problems. Therefore, a Self-
adaptive Differential Evolution algorithm with Improved
Mutation Mode (IMMSADE) is proposed by improving
the mutation mode of DE and introducing a new control
parameters adaptation strategy. In IMMSADE, each indi-
vidual in the population has its own control parameters, and
they would be dynamically adjusted according to the pop-
ulation diversity and individual difference. IMMSADE is
compared with the basic DE and the other state-of-the-art
DE algorithms by using a set of 22 benchmark functions.
The experimental results show that the overall performance
of the proposed IMMSADE is better than the basic DE and
the other compared DE algorithms.
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1 Introduction

Differential evolution, proposed by Storn and Price [1],
is a competitive global optimization algorithm to solve
real-world optimization problems. DE requires few control
parameters and is easy to implement. So far, DE has been
widely applied in many fields, such as image processing [2],
industrial control [3, 4] and function optimization [1, 5, 6].

However, the optimization performance of DE is very
sensitive to control parameters (i.e., population size NP ,
amplification factor F and crossover probability CR) and
mutation modes. Generally, their settings should be first
determined when using DE to solve optimization prob-
lems. However, choosing appropriate settings is often time-
consuming. Although many researchers have given different
choice rules [5–7], these rules are not general and unsuitable
for practical applications.

In order to deal with the above problems, researchers
have proposed many improved DE algorithms. Some work
mainly focused on the control parameters adaptation strat-
egy. Liu and Lampien [8] introduced a Fuzzy Adaptive
Differential Evolution algorithm (FADE), which uses fuzzy
logic controllers to adapt the control parameters for muta-
tion and crossover. Brest et al. [9] proposed an adap-
tive Differential Evolution algorithm (jDE), which assigns
control parameters values to each individual and dynami-
cally adjusts them according to two specified thresholds.
Guo et al. [10] proposed a Chaos Differential Evolution
algorithm (chDE), where chaos theory is used to dynami-
cally adjust control parameters values. Nasimul et al. [11]
developed a new Adaptive Differential Evolution algorithm
(aDE), wherein the control parameters values are adaptively
adjusted by comparing individual fitness of the offspring
with average fitness of the parent population. Brest and
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Maucec [12] proposed a novel adaptive DE algorithm that
uses a self-adaptation scheme for the control parameters F

and CR, and a dynamic population size reduction scheme.
Zhu et al. [13] proposed an adaptive population tuning
scheme for DE, which uses the solution-searching status and
population distribution to dynamically adjust the population
size.

Many researchers have also focused on the mutation
mode of DE. Qin et al. [14] proposed a Self-adaptive Differ-
ential Evolution algorithm (SaDE), in which the adaptation
of multiple mutation modes is implemented and the control
parameters values are generated according to two normal
distributions. Zhang and Sanderson [15] proposed an Adap-
tive Differential Evolution algorithm with Optional Archive
(JADE), which uses a new mutation mode (DE/current-
to-pbest/1) and employs an adaptive strategy for control
parameters. Wang et al. [16] introduced a Composite Differ-
ential Evolution algorithm (CoDE), which randomly com-
bines three mutation modes with three fixed parameters
settings to generate three trail vectors. Thus, the best among
them will enter the next generation if it is better than its tar-
get vector. Mallipeddi et al. [17] proposed an ensemble of
mutation strategies and control parameters of DE algorithm,
wherein different mutation strategies are incorporated into
a pool and different control parameters settings are incor-
porated into the other pool. Islam et al. [18] presented an
adaptive DE algorithm that uses a novel mutation mode and
a modified crossover operation. Elsayed et al. [19] proposed
two novel self-adaptive DE algorithms, which incorporate
a heuristic mixing of operators and utilize the strengths of
multiple mutation and crossover operations. Elsayed et al.
[20] proposed a DE with self-adaptive multi-combination
strategies, in which the strengths of four mutation strate-
gies, two crossover strategies and two constraint handling
techniques are combined. Yi et al. [21] utilized a hybrid
mutation operation and self-adaptive control parameters to
propose a new DE algorithm, which categorizes the pop-
ulation into two parts. Fan and Yan [22] introduced a
Self-adaptive Differential Evolution algorithm with Dis-
crete Mutation Control Parameters (DMPSADE), in which
each individual has its own mutation mode and crossover
probability, and each variable of the individual has its own
amplification factor.

Furthermore, many attempts have also been made to
improve the performance of DE by using other methods.
Poikolainen et al. [23] proposed a cluster-based popula-
tion initialization mechanism for DE that consists of three
stages, including multiple local search, K-means cluster-
ing and composition of the population. Tang et al. [24]
introduced an individual-dependent scheme for DE, includ-
ing individual-dependent control parameters setting and
individual-dependent mutation mode. Guo et al. [25] pro-
posed a successful-parent-selecting framework for DE,

which can adapt to the selection of parents by storing suc-
cessful solutions into an archive and select parents from the
archive when the stagnation occurs. Wu et al. [26] intro-
duced a multi-population ensemble DE algorithm, in which
a multi-population based approach is used to realize an
ensemble of three mutation modes.

To further improve DE’s performance and make the
selections of control parameters values independent of spe-
cific optimization problems, based on encoding for con-
trol parameters in jDE, a Self-adaptive Differential Evo-
lution algorithm with Improved Mutation Mode (IMM-
SADE) is proposed by improving “DE/rand/1” mutation
mode of the basic DE. In IMMSADE, each individual has
its own control parameters, and they will be dynamically
adjusted according to the population diversity and individual
difference.
The proposed IMMSADE is different from the rest of

the improved DE algorithms in two aspects. First and fore-
most, most work in previous literature mainly focused on
the effect of differential vector of “DE/rand/1” mode on
DE’s performance and neglected the effect of the mutated
individual. By contrast, both are simultaneously considered
in this paper. Second, most of the previous studies did not
quantitatively analyze the population diversity or generate
parameter settings in a randommanner, while in IMMSADE
the population diversity and individual difference are com-
puted quantitatively and utilized to guide the generation of
control parameters values throughout the evolution process,
and thus it is beneficial to maintain the population diversity
and improve the global exploration capability. Therefore,
we believe the proposed IMMSADE will be an effective
approach to global optimization.

In this paper, a total of 22 benchmark functions from the
literatures [27, 28] are used to investigate the performance
of the proposed IMMSADE. The experimental results show
that the overall performance of IMMSADE on the tested
problems is better than the basic DE and the other improved

Fig. 1 Improved mutation mode in IMMSADE
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Fig. 2 Encoding for control parameters in IMMSADE

DE algorithms (i.e., jDE, chDE, aDE, SaDE, JADE, CoDE
and DMPSADE) on the same problems.

The rest of thepaper is organizedas follows.Section 2 briefly
introduces the basic DE. Section 3 presents the proposed
IMMSADE. Section 4 reports the experiments and results
analysis. Finally, Section 5 summarizes the conclusions.

2 Differential evolution algorithm

Suppose that the objective function of the optimization
problem is min f (x) and the search space is S ⊂ RD . The
population of the t th generation is denoted by using Xt =
{Xt

1, Xt
2, · · · ,Xt

NP }, which contains NP D-dimensional
vectors called individuals Xt

i = {xt
i1, xt

i2, · · · , xt
iD} ∈ S

(i = 1, 2, · · · , NP ), where D is the dimension of the
problem and NP is the population size. The mutation,
crossover and selection operations of the basic DE are shown
as follows.

(1) Mutation. For each target individual Xt
i in the parent

population, a mutant vector Vt+1
i =

[
vt+1
i1 , vt+1

i2 ,

· · · , vt+1
iD

]
is generated according to the following

equation, which is called “DE/rand/1” mutation mode.

Vt+1
i = Xt

r1 + F · (Xt
r2 − Xt

r3) (1)

where the indexes r1, r2 and r3 are distinct integers
randomly chosen from the set {1, 2, · · · , NP }\{i}.
The amplification factor F ∈ [0, 2] is a real number

Table 1 The rules for adjusting control parameters in the IMMSADE

αt βt
i

negative non-negative

smaller retain adjust

larger retain retain

that controls the amplification of the difference vector
Xt

r2 − Xt
r3.

(2) Crossover. A trial vector Ut+1
i =

[
ut+1

i1 , ut+1
i2 , · · · ,

ut+1
iD

]
is generated using the following equation.

ut+1
ij =

{
vt+1
ij randij ≤ CR or j = jrand

xt
ij randij > CR and j �= jrand

(2)

where CR is the crossover probability within the
range [0, 1]. randij ∈ [0, 1] (j = 1, 2, · · · , D) is a
uniform random number. jrand is a randomly chosen
integer within [1, D], which ensures that Ut+1

i gets at
least one element from Vt+1

i , and avoids evolutionary
stagnation.

During the evolution process, some components of
the trial vector Ut+1

i may violate the search space
S. Thus, the invalid components of Ut+1

i should be
processed as follows.

ut+1
ij =

{
Sl + randij · (Su − Sl) ut+1

ij /∈ [Sl, Su]
ut+1

ij otherwise

(3)

where randij is uniform random number within the
range [0, 1]. Sl and Su are the lower and upper bounds
for the search space S, respectively.

(3) Selection. A greedy strategy is used to perform the
selection operation of DE.

Xt+1
i =

{
Ut+1

i f (Ut+1
i ) < f (Xt

i )

Xt
i otherwise

(4)

If and only if, the trial vector Ut+1
i yields a smaller

function value than the target vector Xt
i , X

t+1
i is set

to Ut+1
i , otherwise Xt

i is retained to enter the next
generation.
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Table 2 Benchmark functions

Function D S fmin

f1(x) =
D∑

i=1
x2
i 30 [−100, 100] 0

f2(x) =
D∑

i=1

(
i∑

j=1
xj

)2

30 [−100, 100] 0

f3(x) =
D∑

i=1
(106)

i−1
D−1 x2

i 30 [−100, 100] 0

f4(x) =
D∑

i=1
|xi | +

D∏
i=1

|xi | 30 [−10, 10] 0

f5(x) = max { |xi | , 1 ≤ i ≤ D } 30 [−100, 100] 0

f6(x) = x2
1 + 106

D∑
i=2

x2
i 30 [−100, 100] 0

f7(x) = 106x2
1 +

D∑
i=2

x2
i 30 [−100, 100] 0

f8(x) =
D∑

i=1
(�xi + 0.5�)2 30 [−100, 100] 0

f9(x) =
D∑

i=1
ix4

i +random[0, 1) 30 [−1.28, 1.28] 0

f10(x) =
D−1∑
i=1

(
100(xi+1 − x2

i )2 + (1 − xi)
2
)

30 [−100, 100] 0

f11(x) =
D∑

i=1

x2i
4000 −

D∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

f12(x) = −20 exp

(
−0.2

√
1
D

D∑
i=1

x2
i

)
− exp

(
1
D

D∑
i=1

cos 2πxi

)
+ 20 + e 30 [−32, 32] 0

f13(x) = 10D +
D∑

i=1

(
x2
i − 10 cos(2πxi)

)
30 [−5.12, 5.12] 0

f14(x) =
D∑

i=1
(
kmax∑
k=0

[ak cos(2πbk(xi + 0.5))]) − D
kmax∑
k=0

[ak cos(2πbk · 0.5)]
a = 0.5, b = 3, kmax = 20

30 [−0.5, 0.5] 0

f15(x) =
D∑

i=1

(
0.5 + sin2(

√
x2i +x2

i+1)−0.5

(1+0.001(x2i +x2
i+1))

2

)
xD+1 = x1 30 [−0.5, 0.5] 0

f16(x) = 1 − cos

(
2π

√
D∑

i=1
x2
i

)
+ 0.1

√
D∑

i=1
x2
i 30 [−100, 100] 0

f17(x) = π
D

{
10 sin2(πy1) +

D−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yD − 1)2
}

+
D∑

i=1
u(xi , 10, 100, 4) yi = 1 + 1

4 (xi + 1)

u(xi , a, k, m) =

⎧⎪⎨
⎪⎩

k(xi − a)m xi > a

0 − a ≤ xi ≤ a

k(−xi − a)m xi < −a

30 [−50, 50] 0

f18(x) = 0.1

{
10 sin2(3πx1) +

D−1∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)]+

(xD − 1)2[1 + sin2(2πxD)] } +
D∑

i=1
u(xi , 5, 100, 4)

30 [−50, 50] 0

f19(x) = 418.9829 × D −
D∑

i=1
g(zi) zi = xi + 4.209687462275036e + 02

g(zi) =

⎧⎪⎨
⎪⎩

zi sin(|zi |1/2) |zi | ≤ 500

(500 − mod(zi , 500)) sin(
√|500 − mod(zi , 500)|) − (zi − 500)2/10000D zi > 500

(mod(|zi | , 500) − 500) sin(
√|mod(|zi | , 500) − 500|) − (zi + 500)2/10000D zi < −500

30 [−100, 100] 0

f20(x) = 10
D

D∏
i=1

(1 + i
32∑

j=1

∣∣2j xi−round(2j xi )
∣∣

2j )
10

D1.2 − 10
D2 30 [−100, 100] 0



648 S. Wang et al.

Table 2 (continued)

Function D S fmin

f21(x) =
∣∣∣∣

D∑
i=1

x2
i − D

∣∣∣∣
1/4

+
(
0.5

D∑
i=1

x2
i +

D∑
i=1

xi

)
/D + 0.5 30 [−100, 100] 0

f22(x) =
∣∣∣∣∣
(

D∑
i=1

x2
i

)2

−
(

D∑
i=1

xi

)2
∣∣∣∣∣
1/2

+
(
0.5

D∑
i=1

x2
i +

D∑
i=1

xi

)
/D + 0.5 30 [−100, 100] 0

3 IMMSADE

During the evolution process, each individual Xt
i represents

a solution to the optimization problem, and the final goal
of DE is to make Xt

i infinitely close to the global optimum.
The updating of Xt

i is derived from the mutant vector Vt+1
i ,

which is composed of two components. One is the indi-
vidual Xt

r1 to be mutated, and the other is the difference
vector F · (Xt

r2 −Xt
r3), called the perturbation. So far, most

of the improved DE algorithms were based on the latter,
while few algorithms studied the effect of the former on DE’s
performance.

As illustrated in Fig. 1 (two-dimensional example), a
large value of Xt

r1 may lead to individual divergence and
thus is not beneficial to converge. To address this issue, an

improved “DE/rand/1” mode described in (5) is proposed to
serve as the basis of IMMSADE.

Vt+1
i = λ · Xt

r1 + F · (Xt
r2 − Xt

r3) (5)

where λ is a benchmark factor within the range (0, 1]. It is
clear that (1) is a special case of (5) by setting λ to 1.

To make the selections of control parameters values
independent of specific optimization problems, this paper
proposes an improved control parameters adaptation strat-
egy. As illustrated in Fig. 2, the control parameters values
of DE are applied at the population level while the control
parameters values of IMMSADE are applied at the indi-
vidual level. In IMMSADE, each individual has its own
benchmark factor λt

i , amplification factor F t
i and crossover

Table 3 The mean and standard deviation of the solutions obtained by DE, chDE, jDE, aDE and IMMSADE

Function DE
Mean(STD)

chDE
Mean(STD)

jDE
Mean(STD)

aDE
Mean(STD)

IMMSADE
Mean(STD)

f1 6.45E−37(9.42E−37) 1.02E−56(2.80E−56) 3.24E−39(3.48E−39) 2.63E−56(2.23E−56) 5.68E−165(0.00E+00)

f2 1.27E−05(1.41E−05) 1.65E−04(1.90E−04) 2.58E+00(1.28E+00) 1.23E−01(7.11E−02) 1.71E−137(9.20E−137)

f3 1.08E−33(1.55E−33) 7.16E−53(2.08E−52) 2.11E−36(2.58E−36) 2.93E−53(2.68E−53) 5.44E−161(2.93E−160)

f4 4.16E−18(3.83E−18) 3.06E−34(4.40E−34) 3.40E−23(2.49E−23) 6.75E−33(4.42E−33) 4.64E−48(2.50E−47)

f5 1.99E−01(3.39E−01) 1.02E+01(5.06E+00) 1.91E−05(1.12E−05) 2.77E−04(1.10E−03) 3.14E−88(1.69E−87)

f6 8.13E−31(8.51E−31) 9.73E−51(1.97E−50) 1.57E−33(1.69E−33) 1.71E−50(1.74E−50) 3.99E−165(0.00E+00)

f7 1.49E−36(1.93E−36) 7.19E−56(3.33E−55) 5.34E−39(4.91E−39) 5.15E−56(5.00E−56) 9.09E−125(4.89E−124)

f8 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+ 00(0.00E+00) 0.00E+ 00(0.00E+00)

f9 4.32E−03(1.30E−03) 3.87E−03(1.02E−03) 4.88E−03(1.42E−03) 4.85E−03(1.41E−03) 1.33E−04(7.24E−05)

f10 5.67E−02(1.64E−01) 4.34E+01(2.89E+01) 1.87E+01(2.12E+01) 1.82E+01(1.99E+01) 0.00E+00(0.00E+00)

f11 0.00E+00(0.00E+00) 2.46E−04(1.33E−03) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f12 5.06E−15(1.63E−15) 6.13E−15(1.74E−15) 5.89E−15(1.77E−15) 4.59E−15(1.32E−15) 3.99E−15(0.00E+00)

f13 1.44E+02(2.20E+01) 2.52E+00(2.13E+00) 4.59E+00(3.58E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f14 1.18E−09(1.22E−09) 1.14E−11(1.15E−11) 9.53E−11(5.87E−11) 1.46E−10(9.32E−11) 3.95E−11(2.16E−11)

f15 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f16 1.74E−01(4.23E−02) 2.30E−01(5.26E−02) 2.00E−01(4.12E−10) 1.90E−01(3.00E−02) 9.98E−02(5.65E−07)

f17 1.35E−19(2.40E−35) 1.35E−19(3.13E−29) 1.35E−19(2.41E−35) 1.35E−19(2.41E−35) 1.35E−19(2.95E−32)

f18 1.29E−19(4.81E−35) 1.29E−19(2.49E−28) 1.29E−19(4.81E−35) 1.29E−19(4.81E−35) 1.29E−19(5.40E−33)

f19 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f20 1.47E+00(3.40E−01) 1.18E−02(2.69E−03) 1.34E−01(6.24E−03) 1.43E−02(1.93E−03) 2.84E−01(1.53E−02)

f21 3.41E−01(4.50E−02) 1.60E−01(4.55E−02) 3.09E−01(4.01E−02) 3.18E−01(4.11E−02) 6.10E−02(1.72E−02)

f22 2.72E−01(3.10E−02) 3.33E−01(1.39E−01) 3.03E−01(9.61E−02) 2.97E−01(9.14E−02) 9.03E−02(3.04E−02)

Best results are presented in bold
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Table 4 SR and MNEG
obtained by DE, chDE, jDE,
aDE and IMMSADE

Function DE chDE jDE aDE IMMSADE

MNEG SR MNEG SR MNEG SR MNEG SR MNEG SR

f1 912 100% 622 100% 870 100% 628 100% 111 100%
f2 N/A 0% N/A 0% N/A 0% N/A 0% 188 100%
f3 1137 100% 778 100% 1078 100% 785 100% 141 100%
f4 1550 100% 843 100% 1217 100% 873 100% 193 100%
f5 N/A 0% N/A 0% N/A 0% N/A 0% 151 100%
f6 1354 100% 907 100% 1271 100% 916 100% 154 100%
f7 932 100% 630 100% 888 100% 643 100% 126 100%
f8 344 100% 225 100% 309 100% 227 100% 47 100%
f9 N/A 0% N/A 0% N/A 0% N/A 0% 502 100%
f10 N/A 0% N/A 0% N/A 0% N/A 0% 169 100%
f11 956 100% N/A 97% 937 100% 674 100% 114 100%
f12 1434 100% 946 100% 1340 100% 976 100% 167 100%
f13 N/A 0% N/A 20% N/A 0% 1388 100% 443 100%
f14 1679 100% 739 100% 1175 100% 818 100% 174 100%
f15 607 100% 402 100% 571 100% 412 100% 79 100%
f16 N/A 7% N/A 3% N/A 0% N/A 10% 833 100%
f17 850 100% 548 100% 793 100% 571 100% 123 100%
f18 916 100% 602 100% 858 100% 613 100% 122 100%
f19 849 100% 565 100% 806 100% 580 100% 105 100%
f20 N/A 17% 120 100% 158 100% 78 100% 239 100%
f21 N/A 0% N/A 3% N/A 0% N/A 0% 900 100%
f22 N/A 0% N/A 0% N/A 0% N/A 0% N/A 67%

Best results are presented in bold

probability CRt
i , and they will be dynamically adjusted dur-

ing the evolution process. Compared to the fixed parameters
values used in the DE, self-adaptively adjusting parameters
values is more beneficial to population evolution.

In view of the above analysis, a new differential evolu-
tion algorithm, IMMSADE, is proposed in this paper. The
mutation and crossover operations of IMMSADE are shown
in (6) and (7), respectively.

Vt+1
i = λt

i · Xt
r1 + F t

i · (Xt
r2 − Xt

r3) (6)

ut+1
ij =

{
vt+1
ij randj ≤ CRt

i or j = jrand

xt
ij randj > CRt

i and j �= jrand
(7)

The contradiction between global exploration and local
exploitation affects the performance of DE. Chakrabory et al.
[29] considered that the local exploitation capability of DE is
strong, while the global exploration capability is poor. Thus,
it is more likely to get stuck at a local optimum and thereby
lead to premature convergence due to the reduced popula-
tion diversity. Therefore, properly controlling the population
diversity can effectively improve global exploration capa-
bility.

During the evolution process, the population fitness
diversity can be described using the following equation.

αt = f t
max − f t

avg

f t
max

(8)

where f t
max and f t

avg denote the maximum fitness and the
average fitness of the t th generation, respectively. αt is a real
number between 0 and 1. A larger value of αt indicates that
the individual similarity is lower and the population is more
diverse. On the contrary, a smaller value of αt indicates that
the individuals are more similar and the population is less
varied.

Additionally, the individual difference in the population
can be described using the (9).

βt
i = f t

i − f t
avg (9)

If βt
i < 0, it indicates that the new offspring Xt

i of the tar-
get individual Xt−1

i is better. On the contrary, if βt
i ≥ 0, it

indicates that the new offspring is worse.
Based on the above analysis, the rules for adjusting

control parameters values are obtained, as shown in Table 1.
Important results can be observed from Table 1. First,

when the current population presents good diversity what-
ever the individual’s fitness, retaining the current con-
trol parameters values is beneficial to improve the global
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exploration capability. Second, if the population diversity
decreases and the individual fitness is less than the average
fitness of the current population, the current control param-
eters values should be protected so that the individual can
continue to evolve in the right direction. Third, when the
population diversity decreases and the individual fitness is
greater than or equal to the average fitness of the current
population, the control parameters values should be adjusted
so that the new offspring is generated. These new offspring
will be beneficial to improve the current population diver-
sity and help the individual escape from a local optimum,
and thus avoid premature convergence. Therefore, the rules
for adjusting control parameters values not only maintain
the population diversity, but also ensure the convergence
performance of the algorithm.

If the individual fitness is much greater than the average
fitness of the current population, a smaller λt+1

i and F t+1
i ,

and a larger CRt+1
i are beneficial to promote the generation

of new individual and accelerate the convergence speed. If

the individual fitness is close to the average fitness of the
current population, a larger λt+1

i and F t+1
i , and a smaller

CRt+1
i are beneficial to maintain the population diversity

and enhance the global exploration capability. Thus, λt+1
i ,

F t+1
i and CRt+1

i are calculated as follows.

λt+1
i =

⎧⎨
⎩

λmax − f t+1
i −f t+1

avg

f t+1
max−f t+1

avg

· (λmax − λmin) αt+1< τ and βt+1
i ≥ 0

λt
i otherwise

(10)

F t+1
i =

⎧
⎨
⎩

Fmax − f t+1
i −f t+1

avg

f t+1
max−f t+1

avg

· (Fmax − Fmin) αt+1< τ and βt+1
i ≥ 0

F t
i otherwise

(11)

CRt+1
i =

⎧
⎨
⎩

CRmin+ f t+1
i −f t+1

avg

f t+1
max−f t+1

avg

· (CRmax − CRmin) αt+1< τ and βt+1
i ≥ 0

CRt
i otherwise

(12)

Fig. 3 Evolution curves of DE, chDE, jDE, aDE and IMMSADE for test functions
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Table 5 The mean and standard deviation of the optimal solutions obtained by SaDE, JADE, CoDE, DMPSADE and IMMSADE on
30-dimensional problems

Function SaDE
Mean(STD)

JADE
Mean(STD)

CoDE
Mean(STD)

DMPSADE
Mean(STD)

IMMSADE
Mean(STD)

f1 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 4.99E−32(2.49E−29) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f2 1.09E−05(2.53E−05) 7.26E−29(8.61E−29) 1.07E−15(1.96E−15) 1.51E−11(2.84E−10) 0.00E+00(0.00E+00)

f3 5.42E+05(2.41E+05) 7.89E+03(5.69E+03) 1.22E+05(7.91E+04) 1.96E+05(9.99E+04) 0.00E+00(0.00E+00)

f10 4.67E+01(3.23E+01) 2.94E+00(8.17E+00) 1.42E−01(6.10E−01) 7.48E−06(2.24E−05) 0.00E+00(0.00E+00)

f11 2.22E−02(2.13E−02) 8.96E−03(7.99E−03) 8.99E−03(8.76E−03) 7.01E−03(7.92E−03) 0.00E+00(0.00E+00)

f12 2.09E+01(4.26E−03) 2.09E+01(1.67E−01) 2.02E+01(1.60E−01) 2.09E+01(5.35E−02) 3.99E−15(0.00E+00)

f13 8.56E−02(2.15E−01) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f14 1.65E+01(2.63E+00) 2.54E+01(1.77E+00) 1.28E+01(3.52E+00) 2.49E+01(4.42E+00) 1.20E−10(8.15E−11)

f15 1.26E+01(2.75E−01) 1.23E+01(3.04E−01) 1.24E+01(3.83E−01) 1.24E+01(2.95E−01) 7.69E+00(4.34E−01)

Best results are presented in bold

where λmin and λmax are the minimum and maximum val-
ues of λ, respectively. Fmin and Fmax are the minimum and
maximum values of F , respectively. CRmin and CRmax are
the minimum and maximum values of CR, respectively.
τ ∈ [0, 1] denotes the probability for adjusting popula-
tion diversity. In this paper, λmin = 0.7, λmax = 1.0,
Fmin = 0.1, Fmax = 0.8, CRmin = 0.3, CRmax = 1.0 and
τ = 0.7 are set. Note that the updating of f t+1

avg , f
t+1
max , α

t+1

and βt+1
i is real-time, and they will be recalculated when a

new offspring is generated.
We have made a decision about the values of λmin, λmax ,

Fmin, Fmax , CRmin and CRmax , which are based on the
suggested values in the literature [9] and the experimental
results. Additionally, the value of τ can refer to Section 4.4.

λt+1
i , F t+1

i and CRt+1
i are updated before the muta-

tion operation is performed, and thus these new control
parameters values will affect the mutation, crossover and
selection operations of the next generation. Moreover,
compared with the basic DE, although the space complexity

of IMMSADE increases from O(NP ∗D) to O(NP ∗ (D+
3)), the time complexity is still O(T ∗ NP ∗ D).

IMMSADE tracks the current population diversity and
individual difference in real time and uses them to guide
the generation of control parameters values, it is helpful
to diversify the difference vector, and thus it effectively
avoids premature convergence and is beneficial to search a
relatively large space so that more promising regions can
be found. Therefore, IMMSADE is able to obtain higher
convergence precision within a limited number of evolu-
tion generations, and utilize the lesser number of evolution
generations to reach the specified convergence precision.
Furthermore, the proposed IMMSADE is more reliable.

4 Experiments and results analysis

In this section, IMMSADE is applied to minimize a total
of 22 benchmark functions from the literatures [27, 28], as

Table 6 The mean and standard deviation of the optimal solutions obtained by SaDE, JADE, CoDE, DMPSADE and IMMSADE on
50-dimensional problems

Function SaDE
Mean(STD)

JADE
Mean(STD)

CoDE
Mean(STD)

DMPSADE
Mean(STD)

IMMSADE
Mean(STD)

f1 2.96E-30(1.05E-29) 0.00E+00(0.00E+00) 3.12E-31(1.83E-30) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f2 9.33E-02(8.72E-02) 4.15E-27(3.12E-27) 4.25E-09(6.44E-09) 2.34E-05(2.33E-05) 0.00E+00(0.00E+00)

f3 8.48E+05(1.94E+05) 2.01E+04(1.03E+04) 1.87E+05(6.04E+04) 3.50E+05(1.34E+05) 0.00E+00(0.00E+00)

f10 8.24E+01(3.60E+01) 6.70E-01(1.59E+00) 9.86E-01(1.94E+00) 6.23E-01(1.60E+00) 0.00E+00(0.00E+00)

f11 5.23E-03(1.02E-02) 4.10E-03(7.14E-03) 5.11E-03(8.32E-03) 4.61E-04(1.73E-03) 0.00E+00(0.00E+00)

f12 2.11E+01(3.22E-02) 2.10E+01(4.18E-01) 2.01E+01(8.55E-02) 2.11E+01(4.29E-02) 3.99E-15(0.00E+00)

f13 1.34E+00(1.13E+00) 0.00E+00(0.00E+00) 8.36E-01(9.37E-01) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f14 3.65E+01(5.17E+00) 5.31E+01(2.88E+00) 3.08E+01(4.91E+00) 3.99E+01(7.50E+00) 6.41E-11(1.53E-11)

f15 2.22E+01(2.65E-01) 2.18E+01(6.78E-01) 2.20E+01(6.13E-01) 2.19E+01(4.21E-01) 1.68E+01(6.37E-01)

Best results are presented in bold
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Table 7 The ranks obtained by
Friedman test and
Kruskal-Wallis test for SaDE,
JADE, CoDE, DMPSADE and
IMMSADE

Algorithm D = 30 D = 50

Friedman(Rank) Kruskal-Wallis(Rank) Friedman(Rank) Kruskal-Wallis(Rank)

SaDE 4.39 29.39 4.67 30.33

JADE 3.11 25.00 2.89 23.78

CoDE 3.00 24.89 3.22 26.78

DMPSADE 3.17 24.50 3.00 24.11

IMMSADE 1.33 11.22 1.22 10.00

Best results are presented in bold

shown in Table 2. IMMSADE is compared with the basic
DE and 7 other state-of-the-art DE algorithms, i.e., jDE,
chDE, aDE, SaDE, JADE, CoDE and DMPSADE.

Different characteristics for benchmark functions are
summarized as follows. f1 ∼ f7 are unimodal functions.
f8 has one minimum and is discontinuous. f9 is a noisy
quadratic function. f10 ∼ f22 are multimodal functions.

4.1 Comparison with the basic DE and 7 improved DE

In this experiment, IMMSADE is compared with the basic
DE, jDE [9], chDE [10] and aDE [11]. The parameters of
DE are set to F = 0.5 and CR = 0.9, as recommended
in [9]. The parameters settings for jDE, chDE and aDE are
the same as in their original papers. The initial parameters
λ0i , F 0

i and CR0
i of IMMSADE are randomly chosen from

[0.7, 1.0], [0.1, 0.8] and [0.3, 1.0], respectively. In all exper-
iments, we set the dimension D = 30 and the population
size NP = 100. For each algorithm and each function, 30
independent runs with 3000 maximum number of evolution
generations are conducted.

The Mean and the Standard Deviation (STD) of the opti-
mal solutions obtained by each algorithm for each function
are summarized in Table 3. The Success Rate (SR) of each
algorithm and the Mean Number of Evolution Generations
(MNEG) required to reach the specified convergence preci-
sion for each function are reported in Table 4, where “N/A”
denotes Not Applicable. The convergence precisions are set
as follows: 1.0 for f20, 10−1 for f16, f21 and f22, 10−3 for
f9, and 10−8 for all others. MNEG and SR are mainly used
to compare the convergence speed and the reliability of each
algorithm, respectively. For convenience of illustration, the
evolution curves for some functions are plotted in Fig. 3.

Some important observations can be obtained from Fig. 3,
Tables 3 and 4:

Table 8 Multiple Sign test results

IMMSADE DE chDE jDE aDE

Wins(+) 20 20 20 19

Loses(−) 2 2 2 3

(1) In terms of convergence precision and convergence
speed, IMMSADE is the best among the five DE algo-
rithms. This can be because IMMSADE can dynami-
cally adjust the population diversity and improve the
convergence performance by improving “DE/rand/1”
mode and introducing control parameters adaptation
strategy. DE performs worst because it converges very
slowly and results in the optimal solutions found with
lower precisions. jDE, chDE and aDE outperform DE
on most functions due to the use of parameters adap-
tation strategies. It is interesting to note that chDE is
slightly better than IMMSADE on f14 and f20, and
DE is slightly better than IMMSADE on f17 and f18.

(2) In terms of the reliability, it is clear that DE, jDE,
chDE and aDE perform worse than IMMSADE. For
DE, the use of fixed parameters setting is not suit-
able for various test functions. For example, better
results are obtained on unimodal functions f1 and
f3, while DE fails on multimodal functions f10, f13
and f16. For chDE and jDE, although the parameters
adaptation strategy is used to improve DE’s perfor-
mance, the updating of control parameters values
is a random manner and lacks the guidance of the
evolution process. For aDE, the differences of the
individuals are not considered when generating new
control parameters values, thus easily leading to pre-
mature convergence. In contrast, the control param-
eters values in IMMSADE will be automatically
adjusted according to the population diversity, and the
differences of the individuals are used to guide the

Table 9 The ranks obtained by Friedman test and Kruskal-Wallis test
for DE, chDE, jDE, aDE and IMMSADE

Algorithms Friedman(Rank) Kruskal-Wallis(Rank)

DE 3.66 60.52

chDE 3.14 61.16

jDE 3.55 60.68

aDE 2.93 53.73

IMMSADE 1.73 41.41

Best results are presented in bold
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Table 10 Optimization results of DE and IMMSADE

Function DE IMMSADE without adaptation IMMSADE

Mean(STD) MNEG SR Mean(STD) MNEG SR Mean(STD) MNEG SR

f1 6.45E−37(9.42E−37) 912 100 % 3.48E−165(0.00E+00) 222 100 % 5.68E−165(0.00E+00) 111 100 %

f2 1.27E−05(1.41E−05) N/A 0 % 2.09E−40(4.33E−40) 838 100 % 1.71E−137(9.20E−137) 188 100 %

f3 1.08E−33(1.55E−33) 1137 100 % 5.56E−161(1.96E−160) 283 100 % 5.44E−161(2.93E−160) 141 100 %

f4 4.16E−18(3.83E−18) 1550 100 % 8.89E−81(1.03E−80) 369 100 % 4.64E−48(2.50E−47) 193 100 %

f5 1.99E−01(3.39E−01) N/A 0 % 1.91E−49(1.62E−49) 583 100 % 3.14E−88(1.69E−87) 151 100 %

f6 8.13E−31(8.51E−31) 1354 100 % 5.00E−159(1.51E−158) 326 100 % 3.99E−165(0.00E+00) 154 100 %

f7 1.49E−36(1.93E−36) 932 100 % 1.70E−164(0.00E+00) 231 100 % 9.09E−125(4.89E−124) 126 100 %

f8 0.00E+00(0.00E+00) 344 100 % 0.00E+00(0.00E+00) 80 100 % 0.00E+00(0.00E+00) 47 100 %

f9 4.32E−03(1.30E−03) N/A 0 % 6.43E−04(1.80E−04) N/A 97 % 1.33E−04(7.24E−05) 502 100 %

f10 5.67E−02(1.64E−01) N/A 0 % 0.00E+00(0.00E+00) 376 100 % 0.00E+00(0.00E+00) 169 100 %

f11 0.00E+00(0.00E+00) 956 100 % 0.00E+00(0.00E+00) 229 100 % 0.00E+00(0.00E+00) 114 100 %

f12 5.06E−15(1.63E−15) 1434 100 % 3.99E−15(0.00E+00) 346 100 % 3.99E−15(0.00E+00) 167 100 %

f13 1.44E+02(2.20E+01) N/A 0 % 1.24E+02(3.50E+01) N/A 0.7 % 0.00E+00(0.00E+00) 443 100 %

f14 1.18E−09(1.22E−09) 1679 100 % 1.02E−10(2.15E−11) 460 100 % 3.95E−11(2.16E−11) 174 100 %

f15 0.00E+00(0.00E+00) 607 100 % 0.00E+00(0.00E+00) 145 100 % 0.00E+00(0.00E+00) 79 100 %

f16 1.74E−01(4.23E−02) N/A 7 % 9.98E−02(7.09E−11) 672 100 % 9.98E−02(5.65E−07) 833 100 %

f17 1.35E−19(2.40E−35) 850 100 % 8.52E−19(5.82E−19) 194 100 % 1.35E−19(2.95E−32) 123 100 %

f18 1.29E−19(4.81E−35) 916 100 % 5.63E−19(3.88E−19) 210 100 % 1.29E−19(5.40E−33) 122 100 %

f19 0.00E+00(0.00E+00) 849 100 % 0.00E+00(0.00E+00) 206 100 % 0.00E+00(0.00E+00) 105 100 %

f20 1.47E+00(3.40E−01) N/A 17 % 1.82E+00(7.67E−02) N/A 0 % 2.84E−01(1.53E−02) 239 100 %

f21 3.41E−01(4.50E−02) N/A 0 % 1.36E−01(1.90E−02) N/A 7 % 6.10E−02(1.72E−02) 900 100 %

f22 2.72E−01(3.10E−02) N/A 0 % 8.62E−02(1.81E−02) N/A 77 % 9.03E−02(3.04E−02) N/A 67 %

Best results are presented in bold

generation of new parameters, thus it is beneficial to
improve the ability to escape a local minimum and
promote the individuals to search towards the right
direction. Therefore, IMMSADE performs best.

Additionally, IMMSADE is further compared with SaDE
[14], JADE [15], CoDE [16] and DMPSADE [22]. 50
independent runs with 300000 function evaluations are per-
formed and [−100, 100] for f15 is used in this simulation.
Mean and STD for D = 30 and D = 50 are summarized
in Tables 5 and 6, respectively. The results of SaDE, JADE,
CoDE and DMPSADE are taken from [22]. Moreover, two
nonparametric statistical tests with a significance level of
5 %, namely, Friedman test and Kruskal-Wallis test [30], are
used to carry out multiple comparisons. Table 7 depicts the
ranks computed through these two tests. It can be seen from
Tables 5, 6 and 7 that IMMSADE significantly performs
better than the other competitive DE algorithms.

4.2 Multiple comparisons using nonparametric
statistical tests

Recently, nonparametric statistical tests have been widely
used to compare the performance of a new proposed
algorithmwith the existing algorithms, and Derrac et al. [30]

also gave a set of nonparametric procedures for multiple
comparisons. In this section, to further compare IMMSADE
with DE, jDE, chDE and aDE, we label IMMSADE as the
control algorithm and reuse the results shown in Tables 3 and 4
to apply theMultiple Sign test with a significance level of 5 %.
Table 8 summarizes the statistical analysis results.

Reference to [30] (Table A.21) form = 4 (number of algo-
rithms excluding IMMSADE) and n = 22 (number of test
functions) reveals the critical value is 5. Since the number
of minus signs in the pairwise comparison between IMM-
SADE and DE, chDE, jDE and aDE is less than the critical
value, it may be concluded that IMMSADE has a signifi-
cantly better performance than the comparison algorithms.

Table 11 The ranks obtained by Friedman test and Kruskal-Wallis test
for DE and IMMSADE

Algorithms Friedman(Rank) Kruskal-Wallis(Rank)

DE 2.64 39.73

IMMSADE without
adaptation

1.89 32.14

IMMSADE 1.48 28.64

Best results are presented in bold
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Moreover, Friedman test and Kruskal-Wallis test in [30]
are also used to detect significant differences for multiple
algorithms. The ranks obtained are depicted in Table 9. As
can be seen in the table, IMMSADE is the best among these
five algorithms.

4.3 Effectiveness study of the improved mutation mode
in IMMSADE

As shown in Section 4.1, IMMSADE improves DE’s
performance by improving “DE/rand/1” mutation mode and

introducing control parameters adaptation strategy. How-
ever, the effectiveness of the improved mutation mode
shown in Eq. (5) is not evaluated. To address this issue,
IMMSADE without parameters adaptation is compared
with the basic DE and IMMSADE. For DE, F = 0.5
and CR = 0.9 are set. For IMMSADE without parame-
ters adaptation, λ = 0.8, F = 0.5 and CR = 0.9 are
set. The parameters settings of IMMSADE are the same
as in Section 4.1. The optimization results are shown in
Table 10, where the results of the best and second best

Fig. 4 The probability distribution for DE/rand/1 and the improved mutation mode
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Table 12 Experimental results of IMMSADE with different τ

Function τ = 0.1 Mean(STD) τ = 0.2 Mean(STD) τ = 0.3 Mean(STD) τ = 0.4 Mean(STD) τ = 0.5 Mean(STD)

f1 3.29E−53(1.77E−52) 4.38E−51(1.73E−50) 1.50E−53(5.12E−53) 5.77E−80(2.29E−79) 9.42E−93(4.99E−92)
f2 1.21E−07(4.37E−07) 2.46E−05(8.74E−05) 5.39E−06(1.79E−05) 1.17E−07(3.18E−07) 6.69E−10(1.99E−09)
f3 3.75E−48(2.01E−47) 1.16E−47(5.74E−47) 6.72E−51(3.45E−50) 2.95E−50(1.27E−49) 8.67E−62(2.96E−61)
f4 1.36E−30(5.07E−30) 5.27E−29(1.70E−28) 1.70E−33(6.39E−33) 1.81E−54(9.12E−54) 1.97E−50(5.30E−49)
f5 2.03E−24(8.10E−24) 7.72E−37(3.18E−36) 3.87E−41(2.07E−40) 5.64E−47(1.86E−46) 9.38E−50(5.05E−49)
f6 3.28E−52(1.71E−51) 1.63E−50(6.09E−50) 1.75E−47(7.32E−47) 4.11E−76(2.14E−75) 3.65E−93(1.51E−92)
f7 2.26E−53(1.02E−52) 9.69E−54(3.87E−53) 4.75E−52(2.49E−51) 1.79E−47(9.45E−47) 1.94E−59(9.53E−59)
f8 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)
f9 8.30E−04(3.34E−04) 7.74E−04(2.80E−04) 7.77E−04(2.89E−04) 7.55E−04(2.46E−04) 6.05E−04(2.33E−04)

f10 6.51E−21(2.84E−20) 2.36E−21(6.65E−21) 2.18E−19(1.07E−18) 8.95E−19(4.82E−18) 1.32E−26(7.10E−26)

f11 0.00E+00(0.00E+00) 0.00E+0 (0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f12 3.99E−15(0.00E+00) 3.99E−15(0.00E+00) 3.99E−15(0.00E+00) 3.99E−15(0.00E+00) 3.99E−15(0.00E+00)

f13 5.57E+00(1.47E+01) 6.21E+00(1.90E+01) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)

f14 1.85E−10(1.58E−10) 5.72E−11(4.74E−11) 9.52E−11(7.42E−11) 6.52E−11(2.80E−11) 6.36E−11(4.14E−11)

f15 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f16 9.98E−02(1.69E−05) 1.03E−01(1.79E−02) 9.98E−02(6.60E−11) 9.99E−02(1.01E−04) 9.99E−02(1.93E−04)

f17 1.35E−19(7.95E−30) 1.35E−19(1.94E−30) 1.35E−19(8.87E−30) 1.35E−19(7.47E−30) 1.35E−19(1.76E−30)

f18 1.29E−19(2.67E−31) 1.29E−19(1.26E−30) 1.29E−19(1.01E−30) 1.29E−19(1.80E−30) 1.29E−19(9.58E−31)

f19 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f20 4.31E−01(7.94E−02) 4.72E−01(2.11E−02) 4.27E−01(1.89E−02) 3.18E−01(7.30E−03) 3.62E−01(3.19E−02)

f21 1.54E−01(3.11E−02) 1.65E−01(2.97E−02) 1.46E−01(3.82E−02) 6.46E−02(1.76E−02) 5.78E−02(1.68E−02)

f22 1.13E−01(2.33E−02) 1.16E−01(2.23E−02) 1.23E−01(2.45E−02) 7.44E−02(2.41E−02) 5.86E−02(2.35E−02)

Function τ = 0.6 Mean(STD) τ = 0.7 Mean(STD) τ = 0.8 Mean(STD) τ = 0.9 Mean(STD) τ = 1.0 Mean(STD)

f1 4.18E−122(1.57E−121) 5.68E−165(0.00E+ 00) 4.69E−136(2.52E−135) 8.22E−137(4.43E−136) 2.46E−142(1.33E−141)

f2 2.04E−116(1.10E−115) 1.71E−137(9.20E−137) 5.16E−208(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f3 5.11E−87(2.75E−86) 5.44E−161(2.93E−160) 2.82E−152(1.52E−151) 2.45E−167(0.00E+00) 1.98E−164(0.00E+00)

f4 2.74E−48(1.47E−47) 4.64E−48(2.50E−47) 5.60E−51(1.80E−50) 2.70E−51(1.03E−50) 6.94E−52(3.08E−51)

f5 1.49E−77(8.01E−77) 3.14E−88(1.69E−87) 6.24E−61(3.36E−60) 5.72E−93(2.78E−92) 5.67E−97(3.01E−96)

f6 7.29E−123(3.93E−122) 3.99E−165(0.00E+00) 3.98E−169(0.00E+00) 2.96E−155(1.59E−154) 7.60E−148(4.09E−147)

f7 2.11E−120(1.13E−119) 9.09E−125(4.89E−124) 9.05E−150(4.86E−149) 3.01E−153(1.62E−152) 2.30E−159(1.24E−158)

f8 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f9 2.56E−04(1.25E−04) 1.33E−04(7.24E−05) 1.21E−04(5.25E−05) 1.28E−04(7.32E−05) 1.21E−04(6.18E−05)

f10 0.00E+00(0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f11 0.00E+00(0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f12 3.99E−15(0.00E+00) 3.99E−15(0.00E+00) 3.99E−15(0.00E+00) 3.99E−15(0.00E+00) 3.99E−15(0.00E+00)

f13 0.00E+00(0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f14 1.30E−10(5.87E−11) 3.95E−11(2.16E−11) 1.25E−10(9.74E−11) 1.01E−10(6.55E−11) 1.07E−10(1.59E−11)

f15 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f16 9.98E−02(3.93E−05) 9.98E−02(5.65E−07) 9.99E−02(2.94E−04) 9.99E−02(1.86E−04) 9.99E−02(8.49E−05)

f17 1.35E−19(1.08E−31) 1.35E−19(2.95E−32) 1.35E−19(1.23E−32) 1.35E−19(1.20E−32) 1.35E−19(2.20E−30)

f18 1.29E−19(4.20E−32) 1.29E−19(5.40E−33) 1.29E−19(6.81E−33) 1.29E−19(7.28E−33) 1.29E−19(4.81E−33)

f19 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

f20 2.97E−01(2.26E−02) 2.84E−01(1.53E−02) 2.96E−01(1.70E−02) 2.82E−01(2.85E−02) 3.04E−01(1.24E−02)

f21 5.87E−02(1.18E−02) 6.10E−02(1.72E−02) 5.10E−02(1.21E−02) 5.57E−02(1.36E−02) 6.11E−02(1.14E−02)

f22 7.43E−02(2.64E−02) 9.03E−02(3.04E−02) 9.41E−02(3.52E−02) 8.81E−02(2.59E−02) 9.06E−02(2.42E−02)

Best results are presented in bold
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Table 13 The ranks obtained by Friedman test and Kruskal-Wallis test for IMMSADE with different τ

Method τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9 τ = 1.0

Friedman(Rank) 7.59 7.73 7.09 5.98 5.23 5.00 4.20 4.36 3.77 4.05

Kruskal-Wallis(Rank) 128.09 128.50 120.30 116.50 112.86 103.14 100.05 99.80 97.68 98.09

Best results are presented in bold

algorithms are marked in bold and italic, respectively. More-
over, Table 11 gives the ranks computed by using Friedman
test and Kruskal-Wallis test.

From Table 10, it can be concluded that compared to
DE, IMMSADE without parameters adaptation performs
remarkably better because the improved mutation mode
improves the convergence performance by speeding the
optimization search in the promising direction. In addition,
as can be seen from Table 11, IMMSADE is the best,
IMMSADE without parameters adaptation ranks second,
whereas DE is the worst. It indicates that the improved
mutation mode is effective.

Compared to IMMSADE without parameters adapta-
tion, IMMSADE performs better in terms of convergence
precision and convergence speed. It indicates a benefi-
cial cooperation between the improved mutation mode and
the parameters adaptation. The parameters adaptation strat-
egy is able to adapt parameters to appropriate values and
thus improves the convergence performance. Interestingly,
IMMSADE without parameters adaptation is better than
IMMSADE on functions f4, f7, f16 and f22. This might
be due to the fact that IMMSADE implements the control
parameters adaptation strategy, which may need to fre-
quently adjust the parameters values owing to the reduced
population diversity in the later stage of the evolution. How-
ever, these parameters values may not be beneficial to the
algorithm convergence within a limited number of evolu-
tion generations and thereby lead to the final solution with
a lower precision. In addition, the parameters adaptation
also further improves the success rates on functions f9,
f13, f20 and f21. This can be because the parameters adap-
tation could help the algorithm search better solutions as
well as maintain higher convergence speed when solving the
functions with a number of local minima.

To further confirm the superiority of the improved muta-
tion mode shown in (5), DE/rand/1 shown in (1) and the
improved mutation mode are used to generate two trail vec-
tors for each target vector at each generation. Then, we
choose the better one to compare with its target vector. It
needs to record nt at generation t , which is the number of
the trail vectors generated by the improved mutation mode
which are better than DE/rand/1. Thus, the probability pt of
the better trail vectors generated by the improved mutation
mode is calculated according to the following equation, and
the probability of DE/rand/1 is 1 − pt .

pt = nt

NP
(13)

Figure 4 gives the probability distribution for DE/rand/1
and the improved mutation mode in the evolution process.
In Fig. 4, X-axis represents the generation count, while Y-
axis represents the probabilities of the improved mutation
mode and DE/rand/1, which are the average values of 30
independent runs. It can be seen from this figure that the
probability of the improved mutation mode is always larger
than DE/rand/1. Accordingly, the improved mutation mode
can generate better trail vectors and is more beneficial to
search the optimal solutions.

4.4 Parameter study of IMMSADE

IMMSADE introduces the parameter τ which determines
the updating rates of control parameters (λt

i , F t
i and CRt

i ).
Therefore, it is interesting to determine the range of τ which
is appropriate for different optimization problems. Table 12
reports the experimental results obtained by setting τ to 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, respectively.
Moreover, the ranks obtained by Friedman test and Kruskal-

Fig. 5 Curves of MNEG obtained by IMMSADE for benchmark functions
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Wallis test are summarized in Table 13 and the curves of
MNEG for some functions are plotted in Fig. 5.

As shown in Table 12 and 13, and Fig. 5, IMMSADE
performs worse when τ is set to τ ≤ 0.6. A smaller
value of τ decreases the updating rates of control parame-
ters and thus is not beneficial to generate new individuals
and maintain the population diversity. The reduced popula-
tion diversity leads to premature convergence and thereby
decreases convergence precision and convergence speed. In
contrast, IMMSADE performs better by setting τ to τ ≥
0.7. A larger value of τ is beneficial to adjust the population
diversity and thus improves the global exploration capabil-
ity. Therefore, IMMSADE can work best with parameter
τ ∈ [0.7, 1.0].

Based on the above empirical analysis, it can be concluded
that the proposed IMMSADE has faster convergence speed,
higher convergence precision and stronger robustness, thus
meeting the requirements for the real time, accuracy and
stability of process optimization. Moreover, IMMSADE has
been successfully applied to solve arrival flights schedul-
ing, including single runway optimization and dual-runways
optimization. The optimization results indicate that IMM-
SADE can effectively decrease the total delay time of arrival
flights sequence, improve the throughput of runways, and
relieve the scheduling pressure of controllers.

5 Conclusions

The performance of DE is very sensitive to its control
parameters and mutation modes, and choosing appropri-
ate settings for different problems is very time-consuming.
Therefore, the paper proposed an IMMSADE to improve
DE’s performance. A set of test functions from the litera-
tures are used to validate the performance of IMMSADE.
Furthermore, IMMSADE is compared with the basic DE
and the other improved DE algorithms (i.e., jDE, chDE,
aDE, SaDE, JADE, CoDE and DMPSADE). The experi-
mental results show that IMMSADE performs better than
the basic DE and the other improved DE algorithms on most
test functions.

There are 10 low-dimensional functions in [28], and
most algorithms can locate the global optimum within
the lesser number of evolution generations. Therefore, we
mainly focus on the optimization of high-dimensional func-
tions, and the results of low-dimensional functions are not
reported in this paper. Moreover, for some hybrid and
composition functions shown in [27], the results of IMM-
SADE are not satisfactory at this point, but the improved
experiments incorporating the advantages of the other evo-
lutionary algorithms are being carried out.

For our future work, the proposed IMMSADE will be
used to solve additional optimization problems from vari-
ous fields, such as PID controller [31], image segmentation

[32], pattern recognition [33], financial time series pre-
diction [34], waveform inversion [35] and power system
planning [36]. In addition, since the objective function
is more than one in many real-world applications, we
intend to extend the current research to multi-objective
optimization (MOO), especially the conditions optimiza-
tion of multi-runways arrival flights scheduling. Finally, it
is also worthwhile to incorporate the advantage of the other
evolutionary algorithms (i.e., particle swarm optimization,
simulated annealing and bacterial foraging algorithm) to
further improve the performance of the proposed algorithm.
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