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Abstract Population-based metaheuristic algorithms have
become popular in recent years with them getting used
in different fields such as business, medicine, and agri-
culture. The present paper proposes a simple but efficient
population-based metaheuristic algorithm called Human
Mental Search (HMS). HMS algorithm mimics the explo-
ration strategies of the bid space in online auctions. The
three leading steps of HMS algorithm are: (1) the mental
search that explores the region around each solution based
on Levy flight, (2) grouping that determines a promising
region, and (3) moving the solutions toward the best strat-
egy. To evaluate the efficiency of HMS algorithm, some
test functions with different characteristics are studied. The
results are compared with nine state-of-the-art metaheuristic
algorithms. Moreover, some nonparametric statistical meth-
ods, including Wilcoxon signed rank test and Friedman test,
are provided. The experimental results demonstrate that the
HMS algorithm can present competitive results compared to
other algorithms.
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1 Introduction

Optimization is the process of searching the optimal val-
ues for a particular problem. Optimization problems can be
consulted in a variety of scientific fields such as economy,
engineering, and medicine. Therefore, the development of
optimization algorithms is necessary and many researchers
all over the world are working in this field.

One of the main weaknesses of classic optimization
algorithms is local optima stagnation, whereby they lack
sufficient ability to find global optima. Some of them need
derivation of search space as well. Therefore, these kinds
of algorithms are not highly efficient in solving real-world
problems.

In comparison to classic optimization algorithms,
metaheuristic algorithms are problem-independent with
stochastic operators for solving optimization problems.
Randomness is one of the main characteristics of these algo-
rithms. Metaheuristic algorithms are becoming increasingly
popular because 1) they are more robust in avoiding local
optima than classical optimization algorithms, and 2) they
do not require the gradient of the cost function.

Metaheuristic algorithms are divided into two classes:
single-based and population-based. Single-based meta-
heuristic algorithms start with a single solution and try
to improve it over some iteration processes. Tabu Search
[1], Simulated Annealing [2, 3], Variable Neighbourhood
Search [4], Hill Climbing [5], and Iterated Local Search [6]
are some of the most famous algorithms in this class. Unlike
single-based metaheuristics, population-based metaheuris-
tics start with a set of solutions (population). They then
iteratively create a new population of solutions. In this way,
information can be exchanged among the set of solutions.
The main advantage of population-based metaheuristics is
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Fig. 1 Lowest unique bid auction

that they avoid getting stuck in the local optima. This type
of metaheuristic algorithms is one of the most well-known
optimization algorithms that has been widely applied in var-
ious applications such as medical systems [7, 8], car engine
design [9], fault diagnosis [10], and food quality [11].

From another perspective, metaheuristics are divided into
three categories: evolutionary, swarm-based, and physics-
based algorithms. Evolutionary algorithms are inspired by
evolutionary behaviours in nature. Genetic algorithm, (GA)
which was proposed by Holland [12], is the most well-
known evolutionary algorithm. The general idea of this
algorithm is based on Darwin’s theory of evolution. GA
starts with random candidate solutions. Then, the recom-
bination and mutation operators are applied to generate
new solutions. Finally, a selection approach is used to
select solutions for the next generation. Some of the other
evolutionary-based metaheuristics are Evolution Strategy
(ES) [13], Genetic Programming (GP) [14], Differential
Evolution (DE) [15], Probability-based Incremental Learn-
ing (PBIL) [16], Evolutionary Programming (EP) [17] and
Biogeographybased Optimization (BBO) [18]

The next category of metaheuristic algorithms, i.e.
swarm-based algorithms (SA) is inspired by the social
behaviour of animals in nature. Some of the popular SAs
are Particle Swarm Optimization (PSO) [19, 20] inspired
by the social and individual behaviour of birds, Artificial
Bee Colony (ABC) [21] inspired by the food searching
behaviour of bee swarm, Cuckoo Search (CS) [22] that
mimics the unusual behaviour in the laying of eggs, Firefly
Algorithm (FA) [23] inspired by the flashing characteris-
tics of fireflies, Shuffled Frog Leaping Algorithm (SFLA)

[24] that gets the idea from the social behaviour of frogs,
Grey Wolf Optimizer (GWO) [25] that simulates the hunt-
ing behaviour of grey wolves, and Whale Optimization
Algorithm(WOA) [26] inspired by the social behaviour of
humpback whales.

The third category of metaheuristic algorithms is
physics-based algorithms which mimic physical rules in
nature. Some of the most popular algorithms in this class
are Simulated Annealing (SA) [2, 27], Gravitational Search
Algorithm (GSA) [28], Water Cycle Algorithm (WCA)
[29], and Mine Blast Algorithm (MBA) [30].

Human-based metaheuristic (HM)algorithms are intro-
duced as a new category in some papers [26, 31]. These
algorithms imitate human behaviours and characteristics.
Harmony Search (HS) [32] and Imperialist Competitive
Algorithm (ICA) [33] are two examples of human-based
metaheuristics.

The two common characteristics among population-
based metaheuristic algorithms are intensification (exploita-
tion) and diversification (exploration). Intensification tries
to find better solutions by searching around the best solu-
tions. In contrast, diversification refers to the algorithm’s
ability to explore the promising area of search space. These
two criteria are usually in conflict with each other, and
finding a proper trade-off between intensification and diver-
sification is one of the most important challenges in the
development of metaheuristic algorithms.

According to No Free Lunch (NFL) theorem [34], there
is no metaheuristic algorithm to solve all optimization prob-
lems optimally. In other words, a metaheuristic algorithm
can be highly efficient for some problems, while it may be

Fig. 2 A typical example of
consecutive bid values by a
person
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Fig. 3 An example of Levy flight against Brownian motion

poorly efficient for some others. Hence, the development of
this research area is an open problem, and many researchers
try to propose new metaheuristic algorithms or improve one
of them.

The present study proposes a novel population-based
metaheuristic algorithm called Human Mental Search
(HMS). The HMS algorithm is inspired by the exploration
strategies of the bid space in online auctions. The HMS
algorithm has three leading operators: mental search, group-
ing, and moving. The mental search creates some new
solutions around a solution based on Levy flight that leads
to enhanced diversification and intensification properties,
simultaneously. Another operator is grouping, whereby the
solutions are grouped into some regions using a clustering
algorithm. Finally, the moving operator tries other solutions
to get close to the promising region. Preliminary studies
indicate that HMS could outperform existing algorithms
such as PSO, HS, SFLA, ABC, ICA, BBO, FA, GWO,
and WOA. The remainder of this paper is organized as
follows:

In Section 2, the proposed Human Mental Search (HMS)
algorithm is explained. The statistical results for standard
benchmarks are discussed in Section 3. Finally, Section
4 presents the conclusions of the present study and some
recommendations for future researches.

Search space

f

A B C

Fig. 4 Mental search

2 Human Mental Search (HMS)

The current study proposes a new population-based meta-
heuristic algorithm based on the exploration strategies of the
bid space in online auctions called Human Mental Search
(HMS). This section first explains the source of inspiration
and, then presents HMS algorithm

2.1 The source of inspiration

Recently, Radicchi et al [35, 36] demonstrated that humans
apply the Levy flight strategy to explore the bids space in
online auctions. The exploration of bid space is a search pro-
cess, but of the mental kind because it works in an abstract
space. To this end, they are considered participants in a
new generation of online auction called Lowest Unique Bid
(LUB). The auction winner might be able to buy an expen-
sive product at the lowest price; cars, electronic devices,
and even houses can be purchased with just a few hundred
dollars.

The period of an auction is announced in advance. A bid
could be of any value from a minimum value L to a maxi-
mum value H . Each time a participant makes a bid, he/she
has to pay a fee. Every participant has permission to go for

Search space 
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Fig. 5 Grouping operator for a problem with one dimension
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Search Space

Fig. 6 Position updating in the HMS algorithm

multiple bids. The winner of the auction is a person who has
placed the lowest unique number and can buy the product
for the value of the winning bid. For example, in Fig. 1, the
winner is the participant who made a bid of $3 because this
bid shows the lowest unique bid. Other bids are not unique
except for $5, which is not the lowest one.

The Highest Unique Bid (HUB) auction has the same
mechanism except that the winner is the participant who has
the highest unique bid. In Fig. 1, the participant with $5 is
the winner in the HUB auction. Participants in LUB and
HUB auctions attempt to find a single target whose position
is determined by the bids.

Radicchi et al. [35, 36] showed that the bid space explo-
ration performed by the participants has an explosive man-
ner, which means that the consecutive bid values are close
together but sometimes, the participants do longer jumps.
Figure 2 shows a typical example of consecutive bid values
by a person. In other words, the exploration of the bid space
is consistent with Levy flight. At the end of each auction, the
losing participants tend to pick the winner strategy, and so
they get close to the winner’s strategy for the next auction.

2.2 HMS algorithm

This subsection explains HMS algorithm. The following
concepts are used to develop this algorithm:

1. Each participant has a strategy α,
2. Each person can provide a bid,
3. The next bid of every person is consistent with the Levy

flight distribution,
4. Multiple bids are allowed,
5. The losing participants try to pick the winner’s strategy

for the subsequent auctions.

The HMS algorithm is explained in detail below.

2.2.1 Generating initial bids

The HMS algorithm is a population-based metaheuristic
algorithm. Like other population-based metaheuristic algo-
rithms, the searching process starts with the generation of a
random population of candidate solutions. In this algorithm,
each single solution is called a bid. In an NV ar−dimensional
optimization problem, a bid is represented as follows:

bid = [x1, x2, . . . , xNV ar
] (1)

Cost value of a bid is obtained by evaluating the cost
function, as:

Cost V alue of a bid = f (bid) = f (x1, x2, . . . , xNV ar
)

(2)

First, a bids matrix of size Npop × NV ar is generated as
follows:

X =

⎡
⎢⎢⎣

X1

X2

:
XN

pop

⎤
⎥⎥⎦ =

⎡
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x1
1 x1

2 . . . x1
NV ar

x2
1 x2

2 . . . x2
NV ar: : : :

x
Npopo

1 x
Npopo

2 . . . x
Npop

VV ar

⎤
⎥⎥⎥⎦ (3)

where Npop is the number of bids, NV ar is the number of
variables, and X is the bids matrix.

2.2.2 Mental search

The mental search represents the number of consecutive val-
ues produced for each bid. In this stage, some new bids
are created around a bid based on Levy flight. The number
of other new bids for each bid is a random integer num-
ber between the upper and lower limits. Levy flight is a
particular type of random walk determining step size with
a Levy distribution. Random walk is a Markov chain in
which the next position depends only on the current posi-
tion. Figure 3 shows an example of Levy flight against a
Brownian motion. As shown in the figure, there are a lot
of small steps and sometimes long jumps in Levy flight. In
other words, Levy flight increases the quality of diversifica-
tion and intensification simultaneously. It is a valuable point
that Levy flight is more efficient than Brownian motion to
explore the unknown spaces.

The following equation shows the Levy distribution:

L(x) = 1

π

∫ ∞

0
exp(−αqβ) cos(qx)dx (4)

where β is called distribution index which is limited to 0 <

β ≤ 2 and α is the distribution scale factor.
To generate each new position in the mental search, Levy

flight is applied based on (5):

NS = Xi + S (5)
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1. //Settings 
2.   L (lower bound), U (upper bound), ML (minimum mental process), Mh (maximum mental process), Npop (the number of bids), NVar (the 

number of variables), K (the number of clusters), iter (current iteration), MaxIter (maximum iteration) 

3. //Initialization  
4. begin 
5.     X=Initialize a population of Npop bids   

6.     Calculate the cost of bids 

7.     x*=Find the best bid in the initial population 

8.      for i from 1 to Npop do
9.                 iβ  =generate an integer random number between a lower and upper bound 

10.    end-for
12.      for iter from 1 to MaxIter do 
13.         //Mental Search
14.         for i from 1 to Npop do
15.                 qi=generate an integer random number between ML and Mh

16.         end-for
17.       for i from 1 to Npop do
19.              for j from 1 to qi do

20.                     
1/

(2 * (2 / )) * 0.01* * (x *)
i

iu
s Iter MaxIter x

v β
−−=

21.                      NSj=Xi+s; 

22.              end-for
23.             t=find NS with the lowest cost 

24.             if cost(t)<cost(Xi) 

25.                 Xi =t
26.             end-if
27.      end-for
28.      //Clustering
29.       cluster Npop bids into K clusters  

30.       calculate the mean cost value of each cluster  

31.       select cluster with the lowest mean cost value as the winner cluster  

32.       winner=select the best bid in the winner cluster 

33.      //Moving Bids toward the best strategy
34.      for i from 1 to Npop do
35.          for n from 1 to NVar do
36.                * ( * )iii

nnnnX X C r winner X= + −

37.           end-for
38.       end-for
39.       for i from 1 to Npop do
40.                 iβ  =generate a random number between a lower and upper bound 

41.        end-for
42.       x+ =Find the best bid in the current bids 

43.       if cost(x+) <cost (x*)  do 
44.            x* =x+

45.       end-if
46.    end-for
47. end-begin

Fig. 7 The pseudo code for the HMS algorithm

And S is calculated as below:

S = (2 − iter∗(2 max iter))∗α ⊕ Levy (6)

where max iter is the maximum iteration, iter is the cur-
rent iteration, and α is a random number. The product
⊕ means entry-wise multiplications. Component of (2 −
iter∗(2/ max iter)) is a reduction factor, and it is actually
reduced from 2 to 0. This factor lays emphasis on the diver-
sification and intensification. The bigger reduction factor
shows the long jumps and it increases the process of diversi-
fication at the beginning of the algorithm, while the smaller
reduction factor indicates the smaller jumps and it enhances
the process of intensification in the later stages.

The generation of step size S in not trivial while using
Levy flight. A simple method discussed in detail by Yang
[37, 38] can be summarized as follows:

S = (2 − iter∗(2/ max iter))∗α ⊕ Levy

= (2 − iter∗(2/ max iter))∗0.01∗ u

v1/β
∗(xi − x∗) (7)

where x∗ is the best position obtained so far, and u and v are
the random numbers from the normal distribution as below:

u : N(0, σ 2
u ), v : N(σ 2

v ) (8)
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Fig. 8 The best solution may not be a good representative for the
promising region

with

σu =
{

�(1+β) sin(
πβ
2 )

�[( 1+β
2 )]β2(β−1)/2

}1/β

, σv = 1 (9)

where � is the standard Gamma function.
One of the main parameters in Levy flight is β. This

parameter is different for each bid because each person
has a different strategy. For each bid, a random number is
assigned to the parameter β between 0 and 2. The lower β

shows the bigger jumps, and increases the ability to explore

unknown area (or diversification). The higher β indicates
the smaller jumps, and increases the intensification process.

Figure 4 illustrates mental search process for three spec-
ified bids A, B, and C in a one dimensional problem. The
number of other new bids for bids A, B, and C are 4, 3, and
5 respectively. As can be observed, each bid produces other
new bids (red and blue points in Fig. 4) with random posi-
tions around a bid that increases the intensification property.
Moreover, sometimes there are long jumps that help the
diversification property. Finally, each bid will be replaced
with the best bid generated by using the mental search oper-
ator (red points in Fig. 4). This process must be conducted
for all the bids.

2.2.3 Grouping the bids

Every person may make multiple bids. To simulate the mul-
tiple bids, a grouping procedure is proposed. Each group
shows the bids belonging to a person. The process of
grouping is performed by a clustering algorithm. Cluster-
ing is a pattern recognition technique for grouping a set of
instances, whereby the instances in the same group are more
similar to each other than to those in the other groups. In
this paper, well-known clustering algorithm K-means algo-
rithm [39] is chosen for this purpose. After grouping, the

Table 1 Default parameter
settings Algorithms Parameters Value

PSO Cognitive constant(C1) [19] 2

Social constant(C2) [19] 2

Inertia constant (w) [19] 1 to 0

HS Harmony memory considering rate [32] 0.9

pitch adjusting rate [32] 0.1

SFLA Number of memeplexes [24] 100

Number of frogs [24] 30

ABC limit [43] ne × dimension of problem

ICA Number of empires [33] 5

Coefficient associated with average power [33] 0.1

Revolution rate [33] 0.2

Deviation assimilation parameter [33] π/4

Direction assimilation parameter [33] 0.5

BBO Habitat modification probability [18] 1

Maximum immigration rate [18] 1

Maximum emigration rate [18] 1

FA light absorption coefficient(γ ) [23] 1

Attractiveness at r = 0 (β0) [23] 1

Scaling factor(α) [23] 0.2

GWO No parameter −
WOA A constant for defining the shape 1

of the logarithmic spiral(b) [26]
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Table 2 Unimodal test
functions Function D Range fmin

F1 = ∑n
i=1 x2

i 30 [−100,100] 0

F2 = ∑n
i=1 |xi | +∏n

i=1 |xi | 30 [−10,10] 0

F3 = ∑n
i=1 (

∑i
j−1 xj )

2 30 [−100,100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100,100] 0

F5(x) = ∑n−1
i=1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [−30,30] 0

F6 = ∑n
i=1 ([xi + 0.5])2 30 [−100,−100] 0

F7 = ∑n
i=1 ix4

i + random[0, 1] 30 [−1.28,−1.28] 0

mean cost value of each group is calculated. It can be said
that as the number of local optima goes up, a greater number
of clusters is required. However, the number of local optima
is unknown in advance.

In other words, the search space is divided into some
regions with the promising region chosen by the mean
cost value. Figure 5 illustrates the grouping operator for a
problem with one dimension (Nvar = 1 ). In this figure,

F1 F2 F3

F4 F5 F6

F7

Fig. 9 Search space of unimodal test functions
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Table 3 The statistical results of unimodal test functions

F Statistics HMS PSO HS SFLA ABC

F1 AVE 0(1) 321.8775(9) 291.9645(8) 6.7096E-19(4) 2.7422E04(10)

STD 0 96.3709 82.9488 1.9050E-18 3.6898E03

Min 0 97.7029 169.0476 3.2883E-21 2.2247E04

Max 0 588.548 552.6958 9.5526E-18 3.3785E04

F2 AVE 0(1) 7.8858(9) 3.0447(8) 2.3890E-11(4) 84.2773(10)

STD 0 3.2087 0.6654 2.1578E-11 6.7554

Min 0 3.7057 1.9862 2.1201E-12 68.9766

Max 0 18.9805 4.6476 7.8206E-11 101.9020

F3 AVE 0(1) 2901.9230(7) 21.3541(5) 1.2336(3) 2.7631E04(9)

STD 0 1080.425 2.3304 1.4039 5.2132E03

Min 0 1487.715 17.7543 0.1641 1.4971E04

Max 0 5017.521 26.6807 6.8424 3.9297E04

F4 AVE 0(1) 14.0870(7) 21.7955(8) 0.0291(3) 60.5905(10)

STD 0 3.2558 2.3199 0.0214 3.3712

Min 0 9.2186 17.8125 0.0048 53.6154

Max 0 19.5784 27.4162 0.0986 67.3042

F5 AVE 28.2242(5) 1.9504E04(8) 2.4305E04(9) 25.8845(2) 3.3098E07(10)

STD 0.2476 2.4883E04 1.2178E04 18.5675 9.0472E06

Min 27.5407 1.8487E03 7.1332E03 0.2431 1.5918E07

Max 28.9079 1.3664E05 5.7314E04 84.0835 3.4229E07

F6 AVE 1.4690(4) 368.2913(9) 253.8506(8) 7.6109E-19(1) 2.6756E04(10)

STD 1.1588 140.6384 87.7723 1.4446E-18 4.8617E03

Min 0.0531 170.2104 99.9663 2.0549E-21 1.5266E04

Max 4.1604 790.5266 568.3756 6.5459E-18 3.6423E04

F7 AVE 1.6218E-05(1) 0.1284(7) 0.2177(8) 0.0097(4) 19.3983(10)

STD 1.7430E-05 0.0577 0.0567 0.0054 4.4983

Min 1.0301E-07 0.0490 0.1346 0.0036 9.9985

Max 7.2422E-05 0.3056 0.3666 0.0321 28.2581

Average rank 2 8 7.71 3 9.86

Overall rank 1 9 8 3 10

F Statistics ICA BBO FA GWO WOA

F1 AVE 1.9004E-06(5) 2.4929(7) 0.0055(6) 8.6478E-28(3) 1.3396E-73(2)

STD 2.2412E-06 0.5285 0.0030 1.0918E-27 4.6770E-73

Min 1.4215E-07 1.4883 0.0010 1.1649E-29 1.0164E-86

Max 1.0793E-05 3.4210 0.0122 4.8614E-27 2.2296E-72

F2 AVE 1.1933E-04(5) 0.4938(6) 0.5284(7) 1.2648E-16(3) 4.3201E-50(2)

STD 8.1609E-05 0.0672 0.2599 1.6947E-16 2.2718E-49

Min 2.4031E-05 0.3665 0.1598 1.1922E-17 3.7886E-56

Max 3.5749E-04 0.6424 1.3720 9.4598E-16 1.2459E-48

F3 AVE 7.7461(4) 486.7795(6) 8195.2356(8) 1.4881E-04(2) 4.3242E04(10)

STD 2.4242 194.8450 5180.6050 7.4397E-04 1.2312E04

Min 2.9868 239.9987 1100.9944 2.0834E-08 2.0771E04

Max 12.9662 1.1041E03 21517.5125 0.0041 6.9017E04

F4 AVE 8.4321(6) 1.5562(4) 7.1223(5) 7.6278E-07(2) 43.9332(9)

STD 3.2616 0.1586 2.5367 5.0380E-08 29.5684

Min 2.9868 1.1853 1.3606 9.2926E-08 0.0945

Max 15.9389 1.9220 14.3639 1.8519E-06 92.0258

F5 AVE 5.8725(1) 245.1556(7) 84.0091(6) 27.1047(3) 27.9634(4)

STD 2.4985 252.8022 32.6139 0.7762 0.4133
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Table 3 (continued)

Min 1.9919 62.9754 28.7240 26.0949 26.9892

Max 12.9347 1.2422E03 149.5544 28.7588 28.7592

F6 AVE 7.8532(6) 2.4665(5) 8.0577(7) 0.7865(3) 0.4143(2)

STD 2.6143 0.5996 0.1428 0.3173 0.1744

Min 1.3092 1.6068 7.8064 1.7492E-04 0.0719

Max 12.9394 3.9749 8.3306 1.2616 0.7362

F7 AVE 1.1611(9) 0.0141(5) 0.1232(6) 0.0020(2) 0.0033(3)

STD 1.1418 0.0045 0.0461 9.7713E-04 0.0034

Min 2.9789E-07 0.0093 0.0411 4.9244E-04 1.0718E-04

Max 3.9798 0.0269 0.2365 0.0051 0.0144

Average rank 5.14 5.71 6.43 2.57 4.57

Overall rank 5 6 7 2 4

there are 12 candidate solutions, which are divided into
three groups.

2.2.4 Moving bids toward the best strategy

As mentioned earlier, the losers try to get close to the win-
ner’s strategy. After the bid groups are created, the bid group
with the best mean cost value is selected as the winner group
for other bids that determine a promising region. Then, the
best bid in the winner cluster is selected in order to move
the rest of the bids toward it. It is worth mentioning that the
best cost value among all the bids might not belong to the
winner group.

The following formula is proposed in this regard:

t+1xi
x =t xi

x + C∗(r ×t winnern −t xt
n) (10)

where t+1xi
n indicates the nth element of Xi at iteration

of t + 1,twinnern is the nth element of the best bid in
the winner cluster t is the current iteration, C is a constant
number (In this paper, C = 2), and r is a random num-
ber drawn from the uniform distribution between 0 and 1.
Figure 6 shows how a bid updates its position using the
moving operator.

2.2.5 General structure of HMS algorithm

In this section, the HMS algorithm for solving optimiza-
tion problems is explained. The pseudo code for the HMS
algorithm is presented in Fig. 7. Similar to other population-
based metaheuristic algorithms, the HMS algorithm starts
with a set of random bids(X). Then, the cost of each bid is
calculated. For each bid, an integer number (q) is generated
that shows the number of mental searches for each bid. In
this step, the mental search operator is applied, which gen-
erates some new bids (NS) around each bid Xi using Levy

flight. Then, the best solution generated in the previous step
is replaced by Xi if its cost value is better than Xi . Later, the
search space is divided into some groups by using a clus-
tering operator. The winner group is the group with the best
mean cost value that determines a promising region. In the
next step, the other bids move toward the best bid in the win-
ner cluster.At each stage, the best bid is saved. This process
will continue until a stop condition is satisfied.

To see how the HMS algorithm can be effective in solv-
ing optimization problems, some points are noted below:

• Mental search allows obtaining neighbouring solutions
around a solution. Therefore, it enhances the quality of
intensification simultaneously. In addition, this operator
increases their diversification property because some-
times there are the long jumps.

• Reduction factor allows the HMS algorithm to move
smoothly from diversification to intensification.

• The grouping operator quickly finds the promising
regions of the search space. It clearly differs from other
population-based metaheuristic algorithms which, try to
find the promising region by using the best solution.
The best solution may not be a good representative for
the promising region.

• The best solution in the winner cluster guides other
solutions toward the promising regions of the search
space.

• There is a high probability of solving local optima
stagnation because of Levy flight.

• HMS algorithm is a population-based metaheuristic
algorithm. Therefore, it intrinsically takes the advan-
tages of high diversification and the local optima avoid-
ance as compared to the single-based metaheuristic
algorithms.

• The best solution of each iteration is saved (elite).
• HMS algorithm has very few parameters to be adjusted.
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Fig. 10 Convergence curves on unimodal test functions
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Table 4 Multimodal test functions

Function D Range fmin

F8(x) =
n∑

i=1
−xi sin(

√|xi |) 30 [−500,500] −481.9829 × Dim

F9(x) =
n∑

i=1
[x2

i − 10 cos(2πxi) + 10] 30 [−5.12,5.12] 0

F10(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x2

i ) − exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e 30 [−32,32] 0

F11(x) = 1
4000

∑n
i=1 x2

i −∏n
i=1 cos( xi√

i
) + 1 30 [−600,600] 0

F12(x) = π
n
{10 sin(πy1) +∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}
+∑n

i=1 u(xi , 10, 100, 4)

u(xi , a, k, m) =

⎧⎪⎨
⎪⎩

k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

30 [−50,50] 0

F13(x) = 0.1{sin2(3πx1) +∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)] 30 [−50,50] 0

+ (xn − 1)2
[
1 + sin2(2πxn) } +∑n

i=1 u(xi , 5, 100, 4)

• HMS algorithm is a gradient-free algorithm and considers
problems as a black-box. Hence, various problems
in different fields can be solved by using the HMS
algorithm.

2.2.6 Differences between HMS and other
population-based metaheuristic algorithms

This section points out some distinctions of the HMS algo-
rithm vis-à-vis other population-based metaheuristic algo-
rithms. Some of the most important distinctions are listed
below.

• One of the major differences, is that the HMS algorithm
uses a clustering algorithm to determine the promising
region. Most of metaheuristic algorithms such as PSO,
ICA, and DE find the promising regions by using the
best solutions. However, the best solution may not be a
good representative for the promising region. Figure 8
shows that the best solution (red circle) sometimes
does not show the best region. In the HMS algorithm,
we used a clustering procedure to find the promis-
ing region. As a result, finding the promising region
is based on several similar (close) solutions, thereby
increasing the probability of finding a promising region.

F8 F9 F10

F11 F12 F13

Fig. 11 Search space in multimodal test functions
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Table 5 The statistical results of multimodal test functions

F Statistics HMS PSO HS SFLA ABC

F8 AVE −9308.3218(2) −5839.7546(10) −12405.1614(1) −7119.1248(8) −9113.9842(3)

STD 600.9386 802.4674 64.5581 1475.2159 459.6007

Min −9911.0143 −8892.3159 −12504.3145 −8818.6241 −1055.5181

Max −6563.8127 −4542.8145 −12185.4515 −4107.6214 −8403.6147

F9 AVE 0(1.5) 87.9261(9) 19.3135(5) 68.7188(7) 151.9296(10)

STD 0 16.7137 3.1289 19.7114 13.0229

Min 0 49.7366 13.1085 29.8488 124.3694

Max 0 112.3647 26.1129 111.4349 172.1271

F10 AVE 8.8816E-16(1) 6.6234(9) 4.9583(7) 0.3039(5) 18.4379(10)

STD 0 0.9991 0.5705 0.6440 0.2734

Min 8.8816E-16 4.0641 3.9277 2.5218E-11 17.8017

Max 8.8816E-16 8.6646 6.4929 2.3168 18.9170

F11 AVE 0(1) 4.1369(8) 3.5463(7) 0.0102(4) 240.8548(10)

STD 0 1.2931 0.8018 0.0140 39.8329

Min 0 2.1139 2.2758 0 142.4818

Max 0 6.6833 5.2237 0.0613 304.8039

F12 AVE 0.0178(2) 9.1955(9) 6.4039(7) 0.3153(5) 184237.4110(10)

STD 0.0281 4.3929 1.6343 0.3836 104481.1280

Min 3.5323E-04 2.3361 3.5329 1.9521E-20 55290.2189

Max 0.1278 21.5076 10.1699 1.3601 420019.5411

F13 AVE 0.2194(4) 143.5001(8) 220.7775(9) 0.0095(2) 920691.2156(10)

STD 0.2599 341.9978 250.9874 0.0201 31057.1275

Min 0.0114 25.5510 29.224 7.7792E-21 30391.9127

Max 1.2401 1891.8135 999.1900 0.0974 154619.415

Average rank 2.25 8.83 6.00 5.17 8.83

Overall rank 1 9.5 7 6 9.5

F Statistics ICA BBO FA GWO WOA

F8 AVE −8512.5212(6) −8099.3154(7) −8969.5712(5) −6266.9171(9) −9045.2153(4)

STD 632.2129 576.9913 678.2812 608.7592 1581.2441

Min −8932.5193 −9026.4128 −10615.5481 −7471.6148 −12428.7667

Max −7025.3152 −6994.4621 −7397.4209 −5061.2412 −5806.4789

F9 AVE 3.2897(3) 50.2997(6) 75.5336(8) 4.2873(4) 0(1.5)

STD 1.8242 14.7106 13.2396 7.8023 0

Min 0.9950 28.9240 50.3038 5.6843E-14 0

Max 7.9597 101.2374 108.7309 36.0367 0

F10 AVE 6.0145(8) 0.6089(6) 0.2699(4) 1.0415E-13(3) 3.8488E-15(2)

STD 2.6799 0.0909 0.3801 1.4897E-14 2.8119E-15

Min 1.9906 0.3919 0.0214 6.4837E-14 8.8818E-16

Max 13.9302 0.7566 1.5101 1.2879E-13 7.9936E-15

F11 AVE 11.5789(9) 1.0024(6) 0.0084(3) 0.0028(2) 0.0114(5)

STD 3.8413 0.0267 0.0047 0.0074 0.0436

Min 4.0174 0.9207 0.0022 0 0

Max 19.9567 1.0374 0.0216 0.0234 0.1909

F12 AVE 6.7856(8) 0.0080(1) 3.2959(6) 0.0480(4) 0.0219(3)

STD 2.8135 0.0037 0.7816 0.0197 0.0135

Min 1.0241 0.0025 1.9497 0.0135 0.0044

Max 13.5279 0.0209 4.9055 0.1041 0.0611
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Table 5 (continued)

F13 AVE 6.4195(7) 0.1236(3) 0.0019(1) 0.6069(6) 0.5574(5)

STD 2.3270 0.0315 7.5304E-04 0.2392 0.1735

Min 2.9857 0.0605 4.2089E-04 0.1144 0.1957

Max 10.9447 0.1935 0.0045 1.2920 0.9305

Average rank 6.83 4.83 4.50 4.67 3.42

Overall rank 8 5 3 4 2

F8 F9

F10

F12 F13

F11

Fig. 12 Convergence curves on multimodal test functions
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Table 6 Fixed-dimension multimodal test functions

Function D Range fmin

F14(x) =
(

1
500 +∑25

j=1
1

j+∑2
i=1(xi−aij )6

)−1

2 [−65,65] 0.998004

F15(x) = ∑11
i=1

[
ai − x1

(
b2
i +bix2

b2
i +bix3+x4

]2

4 [−5,5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316285

F17(x) = (x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6)2 + 10(1 − 1
8π

) cos x1 + 10 2 [−5,5] 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )]
× [

30 + (2x1 − 3x2)
2 + (18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2 )
] 2 [−2,2] 3

F19(x) = −∑4
i=1ci exp(−∑3

j=1aij (xj − pij )
2) 3 [1,3] −3.86

F20(x) = −∑4
i=1ci exp(−∑6

j=1aij (xj − pij )
2) 6 [0,1] −3.32

F21(x) = −∑5
i=1[(X − ai)(X − ai)

T + ci ]−1 4 [0,10] −10.1532

F22(x) = −∑7
i=1[(X − ai)(X − ai)

T + ci ]−1 4 [0,10] −10.4028

F23(x) = −∑10
i=1[(X − ai)(X − ai)

T + ci ]−1 4 [0,10] −10.5363

• Since the HMS algorithm is mostly similar to strate-
gies such as PSO and DE, a comparison between HMS
algorithm and these algorithms is given below:

1) HMS, PSO, and DE algorithms use the solution
movement, but the movement strategy is different.
In the PSO algorithm, the movement direction of
each agent is calculated by using only the two best
positions, pbesti , and gbest. In the DE algorithm,
each agent moves on the basis of the differences
among other solutions. But in the HMS algorithm,
the agent direction is calculated on the basis of the
best solution in the winner cluster. As has been
achieved so far, it is likely that the best solution in
the winner cluster is not necessarily the best one.

2) Unlike PSO and DE, HMS searches around a solu-
tion using Levy flight.

3) PSO uses a type of memory for updating the veloc-
ity (because of pbesti , and gbest). However, HMS
is memory-less and only the current position of
solutions affects the updating procedure.

• In mental search, we use an operator based on Levy
flight. Although Levy flight can also be seen in the
Cuckoo search (CS) algorithm. CS algorithm has used
Levy flight for generating a new solution by using the
following equation:

xt+1
i = xt

i + α.levy (11)

where α is a constant (step size).
In the following, the main differences between the HMS

and the CS algorithms are explained:

1) The proposed algorithm has used a different strategy to
generate a new solution. In (7), a reduction factor, (2 −
iter ∗ (2/ max iter)), is used to increase the efficiency

of the algorithm. It is reduced from 2 to 0. This factor
increases the ability of the diversification and the inten-
sification. At the beginning of the algorithm, the reduc-
tion factor has a big value which enhances the process
of diversification. In the later stages, it meets a reduc-
tion, which increases the intensification property

2) The point that parameter β in (7) is different for each
solution, leads to an increase in efficiency. Lower β

emphasizes on the diversification and higher β shows
the intensification.

3) The HMS algorithm uses moving solutions toward
the best strategy, which is not observed in the CS
algorithm.

4) As previously mentioned, the HMS algorithm uses a
clustering algorithm to find the promising region.

5) Eventually, it’s noticed that the search ideas of these algo-
rithms are different. CS mimics the behaviour of cuck-
oos, while HMS simulates the human mental search.

3 Experimental results

In this section, experimental results are presented from
different aspects to study the proposed algorithm’s effi-
ciency. The test functions can be divided into seven groups:
unimodal, multimodal, fix-dimension, high dimensional,
composite functions, shifted, and rotated test functions, and
classic engineering problems [17, 40–42]. The proposed
algorithm is compared with nine state-of-the-art population-
based metaheuristic algorithms, which are briefly described
below.

• Particle Swarm Optimization (PSO) [19, 20]: It is one
of the most well-known population-based metaheuris-
tic algorithms inspired by the social behaviour of birds.
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Each search agent updates its position using its veloc-
ity, its own best position, and the best position of the
overall search agents.

• Harmony Search (HS) [32]: HS is one of the most
popular population-based metaheuristic algorithms. It is

inspired by the improvisation of music players. The HS
algorithm has three main operators: harmony memory
consideration, pitch adjustment, and randomization.

• Shuffled Frog-leaping Algorithm (SFLA) [24]: The
SFLA algorithm mimics some interesting behaviour of

F14 F15 F16

F17 F18 F19

F20 F21 F22

F23

Fig. 13 Search space in the fixed-dimension multimodal test functions
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Table 7 The statistical results of fixed-dimension multimodal test functions

F Statistics HMS PSO HS SFLA ABC

F14 AVE 0.9980038(2) 5.1763(8) 0.9980038(2) 1.4598(5) 1.0756(4)

STD 1.8638E-12 4.2373 1.7178E-11 1.1526 0.2565

Min 0.9980038 0.9980038 0.9980038 0.9980038 0.9980038

Max 0.9980038 17.3744 0.9980038 5.9288 1.9920

F15 AVE 5.0453E-04(1) 0.0018(6) 0.0081(10) 0.0011(4) 5.4034E-04(2)

STD 1.3783E-04 0.0051 0.0095 0.0037 1.7401E-04

Min 3.2256E-04 3.0749E-04 6.1599E-04 3.0749E-04 3.0751E-04

Max 9.8307E-04 0.0204 0.0204 0.0204 8.4922E-04

F16 AVE −1.0316284(4) −1.0316284(4) −1.0316283(8) −1.0316284(4) −1.0316284(4)

STD 1.1685E-16 6.3877E-16 1.5457E-07 6.7752E-16 6.7752E-16

Min −1.0316284 −1.0316284 −1.03162845 −1.0316284 −1.0316284

Max −1.0316283 −1.0316284 −1.03162776 −1.0316284 −1.0316284

F17 AVE 0.397912(1) 0.399142(5) 0.399614(9) 0.399226(7) 0.399793(10)

STD 1.0994E-08 1.6484E-06 5.6512E-8 4.6514E-08 3.4187E-6

Min 0.397887 0.388843 0.399513 0.399012 0.399131

Max 0.398778 0.399617 0.399851 0.399215 0.399981

F18 AVE 3.000000(3) 3.000000(3) 3.900004(7) 3.000000(3) 3.000000(3)

STD 2.1614E-11 2.0764E-10 4.9295 1.4307E-10 1.1033E-10

Min 3.000000 3.000000 3.000000 3.000000 3.000000

Max 3.000000 3.000000 30.000073 3.000000 3.000000

F19 AVE −3.862782(3) −3.837014(10) −3.862782(3) −3.862782(3) −3.862782(3)

STD 2.0844E-15 0.1411 4.2074E-08 2.7201E-12 2.6962E-15

Min −3.862782 −3.862782 −3.862782 −3.862782 −3.862782

Max −3.862782 −3.089764 −3.862781 −3.862782 −3.862782

F20 AVE −3.316846(2) −3.284144(6) −3.282364(7) −3.274437(8) −3.321995(1)

STD 0.0218 0.0599 0.0570 0.0592 1.3550E-15

Min −3.321995 −3.321995 −3.3219951 −3.321995 −3.321995

Max −3.203102 −3.137641 −3.2031019 −3.203102 −3.321995

F21 AVE −10.1530(2) −7.6542(6) −5.4098(10) −7.0665(9) −10.1531(1)

STD 9.2202E-04 3.4088 3.6710 3.4523 6.6219E-15

Min −10.1532 −10.1532 −10.1532 −10.1532 −10.1531

Max −10.1481 −2.6305 −2.6305 −2.6305 −10.1531

F22 AVE −10.3975(1) −6.7078(9) −7.2199(8) −7.8400(7) −10.0513(4)

STD 0.0156 3.8161 3.7141 3.2246 1.3381

Min −10.4029 −10.4029 −10.4029 −10.4029 −10.4029

Max −10.3383 −1.8376 −2.7519 −2.7659 −5.1288

F23 AVE −10.5346(1) −7.7236(7) −6.1815(10) −7.4011(8) −10.1767(4)

STD 1.0940E-15 3.7855 3.6684 3.6788 1.3609

Min −10.5364 −10.5362 −10.5364 −10.5346 −10.5346

Max −10.5364 −2.4217 −2.4217 −2.4273 −5.1285

Average rank 2 6.4 7.4 5.8 3.6

Overall rank 1 8 10 5 2

Statistics ICA BBO FA GWO WOA

F14 AVE 0.9980038(2) 6.3540(9) 12.6705(10) 4.5228(7) 2.5079(6)

STD 0.0100E-10 3.9150 7.0660E-10 4.2310 2.5393

Min 0.9980038 0.9980038 12.6705 0.9980038 0.9980038

Max 0.9980038 13.6189 12.6705 12.6705 10.7632
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Table 7 (continued)

F15 AVE 0.0020(7) 0.0036(8) 0.0012(5) 0.0085(9) 7.0593E-04(3)

STD 0.0050 0.0067 3.0550E-04 0.0099 5.3449E-04

Min 4.6118e-04 3.1627E-04 6.5889E-04 3.0771E-04 3.1176E-04

Max 0.0204 0.0204 6.5889E-04 0.0209 0.0023

F16 AVE −1.0316284(4) −1.0044229(9) −1.0000000(10) −1.0316284(4) −1.0316284(4)

STD 5.6835E-16 0.1490 3.6302E-11 3.1859E-08 3.5426E-09

Min −1.0316284 −1.0316284 −1.0000000 −1.0316284 −1.0316284

Max −1.0316284 −0.2154638 −1.0000000 −1.0316284 −1.0316284

F17 AVE 0.399156(6) 0.397937(3) 0.399261(8) 0.397931(2) 0.397942(4)

STD 1.6153E-06 2.6158E-08 2.6512E-06 2.4912E-04 2.1035E-05

Min 0.399153 0.397937 0.399153 0.39788 0.397896

Max 0.399159 0.397937 0.399291 0.399254 0.397945

F18 AVE 3.000000(3) 4.800000(8) 84.000000(10) 5.700025(9) 3.000053(6)

STD 2.2357E-10 6.850112 3.6866E-08 14.7885 1.0922E-04

Min 3.000000 3.000000 84.000000 3.000000 3.000000

Max 3.000000 30.00000 84.000000 84.000002 3.000054

F19 AVE −3.862712(7) −3.862782(3) −3.862727(6) −3.860972(8) −3.854679(9)

STD 6.3254E-10 2.1202E-15 1.4630E-09 0.0027 0.0114

Min −3.862712 −3.862782 −3.862727 −3.862781 −3.811439

Max −3.862712 −3.862782 −3.862727 −3.854905 −3.862781

F20 AVE −3.289134(4) −3.294253(3) −3.286279(5) −3.269263(9) −3.178864(10)

STD 0.0195 0.0511 0.0605 0.0690 0.2184

Min −3.296257 −3.321995 −3.172536 −3.321991 −3.321406

Max −3.201554 −3.203102 −3.321995 −3.083268 −2.431429

F21 AVE −7.9538(5) −7.1451(7) −8.1559(4) −9.9817(3) −7.1426(8)

STD 3.6591 3.3762 3.3688 0.9305 3.1426

Min −10.02651 −10.1532 −10.1532 −10.1529 −10.1494

Max −2.3698 −2.6305 −2.6305 −5.0552 −0.8810

F22 AVE −8.3581(5) −5.7709(10) −10.3729(3) −10.3813(2) −7.7928(6)

STD 2.3652 3.6280 1.4292E-06 7.7919E-04 3.0641

Min −8.9362 −10.4029 −10.3729 −10.3826 −10.4022

Max −3.6523 −1.8376 −10.3729 −10.3793 −2.7634

F23 AVE −8.6214(6) −9.6529(5) −10.5321(2) −10.2641(3) −6.8682(9)

STD 2.6219 5.3651E-05 9.6785E-07 1.4812 3.3754

Min −10.2756 −9.6542 −10.5321 −10.5362 −10.5355

Max −6.1028 −9.6513 −10.5321 −2.4216 −1.6763

Average rank 4.9 6.5 6.3 5.6 6.5

Overall rank 3 8 6 4 8

frogs. Actually, this algorithm is a memetic algorithm
that combines local and global searches, simultaneously.

• Artificial Bee Colony (ABC) [43]: The ABC algorithm
imitates the foraging behaviour of honey bees. There
are two groups of bees in the ABC algorithm: scouts
who search the area surrounding the nest for new food
sources, and onlookers who find a food source through
the information shared by the employed artificial bees

• Imperialist Competitive Algorithm (ICA) [33]: This
algorithm is inspired by the imperialistic competition

among countries. The solutions are divided into two
groups based on their power: imperialists and colonies.
The two leading operators in this algorithm are assim-
ilation and revolution. Assimilation makes the colonies
get closer to the imperialist and revolution is a random
sudden change in the position of some solutions.

• Biogeography-based Optimization (BBO) [18]: BBO
is based on the mathematical model of biogeography.
There are two main operators in the BBO algorithm:
migration and mutation. Information is shared among
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solutions that depend on the emigration rate and the
immigration rate of each solution. In addition, mutation
is used to enhance the diversity of the population.

• Firefly Algorithm (FA) [23]: FA mimics the flashing
behaviour of fireflies. In this algorithm, for any two fire-
flies, the less cost value will be attracted by the more
cost value.

• Grey Wolf Optimizer (GWO) [25]: The GWO algo-
rithm is one of the studies conducted recently in this
field. This algorithm simulates the hunting method of
grey wolves. GWO has four primary operators: hunting,
searching for prey, encircling, and attacking it. This

algorithm has provided competitive performance in
comparison to other algorithms.

• Whale Optimization Algorithm (WOA) [26]: This algo-
rithm is one of latest population-based metaheuristic
algorithms that mimics the hunting behaviour of hump-
back whales. WOA includes three operators: search-
ing for prey, encircling prey, and bubble-net foraging
behaviour of humpback whales. This algorithm has
presented competitive results compared to other state-
of-the-art population-based metaheuristic algorithms.

In all the experiments, the population size and the num-
ber of iterations are set as 30 and 500, respectively, for all

F14 F15

F16

F18 F19

F17

Fig. 14 The convergence curves on fixed-dimension multimodal test functions
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F20 F21

F22 F23

Fig. 14 (continued)

the algorithms. For the HMS algorithm, the number of clus-
ters in the experiments is supposed to be 5. In addition, the
default parameter values for C, ML, and MH are set as 2, 2,
and 10, respectively. The default parameter settings for the
other algorithms compared are listed in Table 1. It is worth
mentioning that parameter tuning is a trial and error pro-
cess. Therefore, finding a proper value for the parameters is
time-consuming, and so we have not made an effort to find
the best parameters. Hence, the analysis of parameters needs
more research in the future.

Metaheuristic algorithms are stochastic algorithms.
Therefore, the results are not the same in each run of the
algorithm. Consequently, each algorithm is run 50 times and
the statistical results including average, standard deviation,
minimum, and maximum are reported.

3.1 Results of the algorithm on unimodal test functions

The unimodal functions have single global optimum and no
local optima, and thus they can be used to evaluate the inten-
sification of algorithms. These test functions are listed in
Table 2 in which D is the dimension of the problem, Range
is the boundary of the search space, and fmin is the optimum
value. Figure 9 shows the typical 2D plot of test functions.

The results of unimodal functions are reported in Table 3.
According to this table, the HMS algorithm provides very
competitive results in most of the test cases. The HMS algo-
rithm finds the best solution for F1, F2, F3, F4, and F7,
but fails to find the best solution for F5 and F6. Neverthe-
less, its performance is acceptable. These results can also be
observed from the convergence curves in Fig. 10. Accord-
ing to Fig. 10, the convergence rate of HMS is high in
most cases. This is due to the grouping operator introduced
previously

The rank of each algorithm is shown from the smallest
average to the highest average in Table 3. To this end, the
average rank of each algorithm, and subsequently the overall
ranks are reported. The results show that the HMS algorithm
achieved the highest rank, which indicates its competence
regarding intensification.

3.2 Results of the algorithm on multimodal test
functions

Multimodal test functions have many local optima. These
functions are useful for examining the diversification of
the algorithm and escaping from the local optima. Table 4
presents the details of multimodal test functions. A 2D plot
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Table 8 The statistical results of high dimensional test functions

F Statistics HMS PSO HS SFLA ABC

F30 AVE 0(1) 1.5726E04(6) 1.3116E05(8) 4.4589E05(9) 5.0335E05(10)

STD 0 1.8113E03 6.5347E03 1.1290E04 9.8706E03

Min 0 1.2377E04 1.1418E05 4.2526E05 4.8096E05

Max 0 2.0122E04 1.4068E05 4.6985E05 5.2321E05

F31 AVE 0(1) 156.8753(5) 296.3713(8) 5.5107E84(10) 6.2941E25(9)

STD 0 12.3644 9.6628 1.6213E85 3.01999E26

Min 0 130.3256 275.0813 7.1127E76 888.9498

Max 0 179.7425 313.8893 7.3778E85 1.6449E27

F32 AVE 0(1) 1.9921E05(3) 1.7694E06(8) 1.6958E06(6) 1.7433E06(7)

STD 0 4.9198E04 2.3577E05 1.3892E05 2.9197E05

Min 0 9.4213E04 1.3185E06 1.4393E06 1.0205E06

Max 0 3.1652E05 2.2144E06 1.9649E06 2.3252E06

F33 AVE 0(1) 33.1202(3) 82.0031(8) 67.7457(5) 98.8834(10)

STD 0 2.7025 0.9841 1.0111 0.8226

Min 0 26.8675 79.1329 65.5161 91.6721

Max 0 38.7144 83.3742 70.2679 95.1664

F34 AVE 197.0797(1) 4.1310E06(5) 3.2875E08(8) 1.5132E09(9) 1.9762E09(10)

STD 0.2143 1.1278E06 2.6852E07 6.2308E07 9.5497E07

Min 197.0241 2.1386E06 2.6988E08 1.3853E09 1.8397E09

Max 198.8557 7.0199E06 3.8620E08 1.6677E09 2.1839E09

F35 AVE 45.7007(3) 1.5875E04(6) 1.3089E05(8) 4.4758E05(9) 5.0564E05(10)

STD 0.4879 2.1562E03 8.8120E03 8.4940E03 9.4677E03

Min 44.8109 1.2304E04 1.1371E05 4.3059E05 4.8402E05

Max 46.5381 2.1225E04 1.4420E05 4.6198E05 5.2333e05

F36 AVE 1.3296E-05(1) 12.8865(5) 931.9836(8) 4.7249E03(9) 6.0920E03(10)

STD 1.3816E-05 2.6560 82.1684 196.0919 409.1337

Min 1.6212E-07 8.4394 795.2210 4.3441E03 4.8272E03

Max 7.3710E-05 19.6937 1.1026E03 5.1583E03 6.7166E03

F37 AVE −2.952E04(5) −2.2858E04(7) −5.3458E04(3) −1.1670E04(10) −1.8499E04(8)

STD 2.883E03 2.4079E03 1.2999E03 918.5048 795.8096

Min −3.531E04 −2.7682E04 −5.6805E04 −1.4452E04 −1.9644E04

Max −2.261E04 −1.6963E04 −5.1334E04 −1.0443E04 −1.6678E04

F38 AVE 0(1) 1.4365E03(8) 1.2649E03(7) 3.0613E03(9) 2.6686E03(10)

STD 0 70.7638 47.0148 36.9157 70.9750

Min 0 1.2537E03 1.1711E03 2.9731E03 2.4661E03

Max 0 1.5617E03 1.3548E03 3.1225E03 2.7708E03

F39 AVE 8.8818E-16(1) 11.3312(5) 17.7619(7) 20.7198(10) 20.1281(9)

STD 0 0.5800 0.1685 0.0362 0.0464

Min 8.8818E-16 10.3797 17.3136 20.5972 20.0270

Max 8.8818E-16 12.7463 18.0206 20.7782 20.1940

F40 AVE 0(1.5) 148.8701(6) 1.1755E03(8) 4.0241E03(9) 4.5481E03(10)

STD 0 20.2986 49.5853 73.8511 112.0118

Min 0 104.0716 10.0551E03 3.8665E03 4.2888E03

Max 0 187.4714 1.2707E03 4.1381E03 4.7179E03

F41 AVE 1.0309(3) 4.5756E04(5) 5.0453E08(8) 2.8806E09(9) 4.4458E09(10)

STD 0.0285 5.1036E04 5.8615E07 1.3324E08 2.6288E08

Min 0.9667 202.8065 3.8000E08 2.5990E09 3.5062E09
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Table 8 (continued)

F42 AVE 19.4815(3) 2.3014E06(5) 1.1824E09(8) 6.1629E09(9) 8.5301E09(10)

STD 0.1009 1.0705E06 1.1889E08 2.8682E08 4.9642E08

Min 19.2381 5.4419E05 9.0772E08 5.3535E09 7.1216E09

Max 19.6715 4.5768E06 1.4271E09 6.5751E09 9.4849E09

Average rank 1.80 5.31 7.46 8.69 9.46

Overall rank 1 5 8 9 10

F Statistics ICA BBO FA GWO WOA

F30 AVE 9.8617E03(5) 1.1125E03(4) 2.3430E04(7) 9.2015E-08(3) 5.3182E-71(2)

STD 3.2471E03 84.7199 4.2076E03 6.1483E-08 2.5841E-10

Min 6.2667E03 909.2366 1.6608E04 3.2913E-08 5.1914E-81

Max 1.7129E04 1.2776E03 3.4369E04 3.1237E-07 1.4152E-69

F31 AVE 228.3489(7) 39.231(4) 227.3975(6) 3.3703E-05(3) 7.8590E-49(2)

STD 55.1634 2.9843 14.3488 9.0712E-06 2.8757E-48

Min 148.3171 33.8524 205.2130 2.1939E-05 3.6497E-57

Max 371.2864 48.5847 258.0721 6.2358E-05 1.2321E-47

F32 AVE 5.9663E05(5) 2.3123E05(4) 2.8345E08(10) 1.8616E04(2) 4.6119E06(9)

STD 7.8567E04 3.6379E04 3.7962E07 8.4802E03 1.2566E06

Min 4.4086E05 1.6926E05 2.1154E08 3.9210E03 2.4852E06

Max 7.8470E05 3.2057E05 3.6650E08 3.3157E04 7.3812E06

F33 AVE 94.2710(9) 36.5689(4) 72.0320(6) 24.2905(2) 81.7410(7)

STD 1.3616 2.0162 5.3872 6.8181 20.9828

Min 90.3825 31.9035 61.9658 12.3904 21.4004

Max 96.3929 40.8605 81.7761 39.6724 98.5179

F34 AVE 8.5196E06(7) 4.4911E04(4) 8.0270E06(6) 198.0339(3) 197.7540(2)

STD 6.3057E06 6.4151E03 2.7874E06 0.4679 0.1895

Min 3.4437E06 3.4992E04 4.2563E06 195.8648 197.3493

Max 2.9701E07 6.3840E04 1.4759E07 198.3127 198.0046

F35 AVE 9.4243E03(5) 1.1154E03(4) 2.4963E04(7) 29.2361(2) 11.4810(1)

STD 3.6849E03 78.9891 4.3514E03 1.5876 4.0354

Min 4.8990E03 979.7128 1.5942E04 26.5710 4.4941

Max 2.1202 1.2831E03 3.4712E04 33.1143 20.8568

F36 AVE 46.7428(6) 0.6002(4) 139.1196(7) 0.0184(3) 0.0031(2)

STD 39.9407 0.0962 25.6236 0.0073 0.0029

Min 14.4487 0.4024 89.8936 0.0084 2.2245E-04

Max 188.4045 0.7417 199.7680 0.0433 0.0129

F37 AVE −1.25E04(9) −4.1833E04(4) −5.3993E04(2) −2.9357E04(6) −7.0312E04(1)

STD 2.2361E03 1.8554E03 1.7927E03 2.4428E03 1.1908E04

Min −2.3516E04 −4.4668E04 −5.7363E04 −3.4189E04 −8.3797E04

Max −1.0015E04 −3.8311E04 −5.0220E04 −2.4358E04 −4.9327E04

F38 AVE 629.8474(4) 871.7112(5) 1.2319E03(6) 22.6712(3) 7.5791E-15(2)

STD 48.5355 51.0479 82.1383 14.6199 4.1513E-14

Min 552.0894 733.9129 1.0634E03 1.1713E-05 0

Max 709.7808 968.1199 1.4319E03 61.8622 2.2737E-13

F39 AVE 17.8343(8) 4.5262(4) 14.5738(6) 2.2673E-05(3) 4.3225E-15(2)

STD 0.9127 0.1128 0.6897 6.2867E-06 2.3756E-15

Min 14.9149 4.2370 13.2917 1.3240E-05 8.8818E-16

Max 18.9794 4.7747 15.8347 3.8594E05 7.9936E-15

Max 1.0976 2.3392E05 6.2997E08 3.0460E09 4.8667E09
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Table 8 (continued)

F40 AVE 94.7528(5) 11.1871(4) 206.8672(7) 0.0028(3) 0(1.5)

STD 32.2501 0.8330 30.1673 0.0110 0

Min 63.7153 9.3736 133.2408 7.0073E-09 0

Max 222.6046 12.4996 299.5214 0.0515 0

F41 AVE 1.6951E07(7) 19.8444(4) 1.4453E05(6) 0.5522(2) 0.0628(1)

STD 3.7016E07 3.7585 1.8727E05 0.0494 0.0317

Min 1.5168E05 12.1975 6.4645E03 0.4588 0.0160

Max 1.8536E08 30.1200 8.7124E05 0.7060 0.1458

F42 AVE 2.6582E07(7) 335.7491(4) 7.7316E06(6) 16.9810(2) 6.8141(1)

STD 2.8040E07 110.9103 4.3347E06 0.6140 2.4383

Min 3.3414E06 191.0075 3.3504E06 15.8937 2.5568

Max 9.9531E07 658.2434 2.1896E07 18.2067 11.7262

Average rank 6.46 4.08 6.31 2.85 2.58

Overall rank 7 4 6 3 2

Table 9 The complex test functions

Function D Range fmin

C24(CF1)

f1, f2, ..., f10 = Sphere Function

[σ1, σ2, ..., σ10] = [1, 1, ..., 1]

[λ1, λ2, ..., λ10] = [5/100, 5/100, ..., 5/100]

10 [−5, 5] 0

C25(CF2)

f1, f2, ..., f10 = Griewank′s Function

[σ1, σ2, ..., σ10] = [1, 1, ..., 1]

[λ1, λ2, ..., λ10] = [5/100, 5/100, ..., 5/100]

10 [−5, 5] 0

C26(CF3)

f1, f2, ..., f10 = Griewank′s Function

[σ1, σ2, ..., σ10] = [1, 1, ..., 1]

[λ1, λ2, ..., λ10] = [1, 1, ..., 1]

10 [−5, 5] 0

C27(CF4)

f1, f2 = Ackley′sFunction, f3, f4 = Rastrigin’s Function, f5, f6 = Weierstrass Function

f7, f8 = Griewank’s Function,f9f10 = Sphere Function

[σ1, σ2, ..., σ10] = [1, 1, ..., 1]

[λ1, λ2, ..., λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/100, 5/100, 5/100, 5/100]

10 [−5, 5] 0

C28(CF5)

f1, f2 = Rastrigin′s Function, f3, f4 = Weierstrass’s Function, f5, f6 = Weierstrass Function

f7, f8 = Ackley’s Function,f9f10 = Sphere Function

[σ1, σ2, ..., σ10] = [1, 1, ..., 1]

[λ1, λ2, ..., λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

10 [−5, 5] 0

C29(CF6)

f1, f2 = Rastrigin′s Function, f3, f4 = Weierstrass’s Function, f5, f6 = Griewank′s Function

f7, f8 = Ackley’s Function, f9f10 = Sphere Function

[σ1, σ2, ..., σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[λ1, λ2, ..., λ10] = [0.1 × 1/5, 0.2 × 1/5, 0.3 × 5/0.5, 0.4 × 5/0.5, 0.5 × 5/100,

0.6 × 5/100, 0.7 × 5/32, 0.8 × 5/32, 0.9 × 5/100, 1 × 5/100]

10 [−5, 5] 0
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Fig. 15 Search space in the complex test functions

of the search space in these functions is shown in Fig. 11.
Table 5 presents the results of the HMS algorithm on mul-
timodal test functions. The HMS algorithm gives the best
performance for functions F9, F10, and F11 and the second
best performance in most of the remaining test functions.
The rank of algorithms is computed on the basis of the aver-
age value of each test function, and the average and overall
ranks are calculated for each test function. In the context of
this table, the HMS algorithm earns the best rank compared
to the others. As per the characteristics of multimodal func-
tions, it can be said that the HMS algorithm has an excellent
capability for diversification. The convergence curves of the
test functions are shown in Fig. 12, which indicates that the
HMS algorithm converges faster than the other algorithms
in most of the cases. Although HMS and WOA can find
the best optimum in F9 function, according to Fig. 12, the
HMS algorithm can find the best optimum in less than 30
iterations.

3.3 Results of the algorithm on fixed-dimension
multimodal functions

These functions are similar to the multimodal functions;
however, their dimensions are low and fixed. Table 6
presents the details of the test functions. A 2D plot of the
functions is shown in Fig. 13. The results of the HMS algo-
rithm on fixed-dimension multimodal functions are given in

Table 7 and Fig. 14. Table 7 shows that the HMS algorithm
has the best performance on the majority of the test func-
tions. The rank of each algorithm is computed in Table 7. It
can be observed from the last row of this table, that the HMS
algorithm is ranked first for the fixed-dimension functions.

3.4 Results of the algorithm on high dimensional test
functions

To demonstrate the competence of the HMS algorithm,
the results for solving the 200 dimensional problems on
unimodal and multimodal test functions in the previous sub-
sections are reported in Table 8. As seen in Table 8, the
HMS algorithm has the best optimization algorithm in nine
out of 13 test functions. WOA can also find the best solution
for five out of 13 test functions. This table also shows that
the HMS algorithm was ranked first, while the second rank
went to the WOA algorithm. The weak performance of most
of the algorithms shows that high-dimensional test functions
are very challenging, which certifies the HMS algorithm’s
high efficiency to solve high-dimensional problems.

3.5 Results of the algorithm on complex test functions

This category of test functions comprises composite func-
tions, which are very challenging because they have enor-
mous number of local optima and various shapes for different
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Table 10 The statistical results of the complex test functions

F Statistics HMS PSO HS SFLA ABC

F24 AVE 43.3333(1) 151.2346(9) 50.0130(4) 46.6667(3) 45.5340(2)
STD 50.4007 98.9541 77.6785 68.1445 42.6686
Min 2.8939E-22 0.3016 0.0051 0 1.6959
Max 100.0000 500.0832 300.0063 200 122.2131

F25 AVE 30.5536(1) 216.6786(9) 129.1837(4) 126.7211(3) 92.07469(2)
STD 39.6146 127.8241 86.5841 87.9543 59.5877
Min 1.9756 24.4316 1.7992 1.4742 21.0993
Max 209.7773 461.9401 309.2404 308.6885 211.6246

F26 AVE 160.7135(1) 368.2971(8) 174.0393(2) 269.8949(6) 530.8543(9)
STD 42.4334 140.8033 41.0074 82.7444 52.9639
Min 98.4181 172.5069 107.6542 124.3234 423.2817
Max 250.1514 812.3136 248.6738 462.6605 688.6266

F27 AVE 321.0389(1) 522.7619(7) 345.8215(2) 399.8532(4) 547.5697(8)
STD 23.8997 171.2765 90.0195 88.1694 57.0612
Min 285.2585 304.4968 290.8705 286.6253 405.5549
Max 371.0226 900.6063 601.8049 606.4522 645.6092

F28 AVE 14.7996(1) 189.6117(9) 109.0081(4) 18.0720(2) 130.2136(6)
STD 30.1686 168.9923 112.4644 90.9136 39.2891
Min 1.6755 22.3700 2.1381 4.1406 7.7485
Max 108.0322 547.7524 502.6115 405.7694 185.1681

F29 AVE 615.2485(2) 830.7096(8) 851.8544(9) 751.8907(4) 552.7838(1)
STD 192.7996 147.7384 125.8700 195.1207 72.9954
Min 400.6273 506.2891 501.0607 500.3244 425.8555
Max 903.4616 903.1997 908.1489 902.7782 716.5288

Average rank 1.17 8.33 4.17 3.67 4.67
Overall rank 1 9 3 2 4
F Statistics ICA BBO FA GWO WOA

F24 AVE 76.6667(6) 70.0000(5) 294.8472(10) 92.8042(8) 87.5969(7)
STD 81.7200 98.7857 0.1026 111.3791 127.3527
Min 1.8985E-19 2.2188E-05 294.7147 1.1314 0.8964
Max 200.00 300.0001 295.1253 418.7817 503.0055

F25 AVE 134.1509(5) 153.1039(6) 258.4430(10) 155.2829(7) 200.1003(8)
STD 95.7920 100.5286 8.4312 98.1962 102.1304
Min 16.8001 3.3119 247.1308 10.1578 31.9708
Max 360.5961 318.1269 274.2228 374.5334 355.7350

F26 AVE 177.8931(3) 295.4858(7) 589.0137(10) 220.6713(4) 247.6690(5)
STD 106.0588 127.1419 30.5648 71.8672 116.4241
Min 25.6857 108.3607 527.9047 124.1943 129.6501
Max 415.4764 637.2571 682.1685 456.0947 483.1406

F27 AVE 511.3155(6) 509.5334(5) 900.0000(10) 360.2287(3) 588.1781(9)
STD 129.3741 88.4501 2.9630E-06 96.0163 161.6945
Min 329.0808 331.8615 900.0000 251.9535 294.6066
Max 754.4257 717.1701 900.0000 727.3915 900.0000

F28 AVE 117.7276(5) 105.8573(3) 264.2366(10) 150.2026(7) 176.8292(8)
STD 130.5783 125.7549 2.5525 129.2170 126.7631
Min 7.5025 1.3674 260.6912 7.2744 25.5658

Max 553.0262 536.9510 270.1089 525.0230 548.0652

F29 AVE 805.7795(6) 685.0116(3) 912.5634(10) 795.5623(5) 811.6532(7)

2-9 STD 153.3447 201.1673 44.8205 174.6982 171.0266

Min 500.4118 500.0081 822.9428 501.0221 507.5448

Max 907.1116 903.3026 938.8868 906.5216 922.5448

Average rank 5.17 4.83 10 5.67 7.33

Overall rank 6 5 10 7 8
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Fig. 16 The convergence curves on the complex test functions

regions of the search space. The details of the composite
functions are presented in Table 9. The search space of the
complex test functions is shown in Fig. 15. These functions
can check the balance between intensification and diversi-
fication, which is a cardinal characteristic of population-
based metaheuristics. Table 10 presents the statistical
results of 50 independent runs. According to this table,
the HMS algorithm is very competitive in comparison to

others; it especially presents the most efficient results for all
the composite functions except for F29, for which it gives the
second best result. It can also be observed that HMS has the
overall first rank to solve composite test functions. It is evi-
dent that the HMS algorithm can balance intensification and
diversification more than the other algorithms compared.
Figure 16 shows that the HMS algorithm converges toward
the optimum solution faster than the others.
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Table 11 Shifted and rotated test functions

F D Range fmin

Unimodal Functions

F43 Shifted Sphere Function 30 [−100,100] +450

F44 Shifted Schwefel’s problem 1.2 30 [−100,100] +450

F45 Shifted Rotated High Conditioned Elliptic Function 30 [−100,100] +450

F46 Shifted Schwefel’s Problem 1.2 with Noise in Fitness 30 [−100,100] +450

F47 Schwefel’s problem 2.6 with Global Optimum on Bounds 30 [−100,100] −310

Basic Functions

F48 Shifted Rosenbrock’s Function 30 [−100,100] +390

F49 Shifted Rotated Griewanl’s Function without Bounds 30 [0,600] −180

F50 Shifted Rotated Ackley’s with Global Optimum on Bounds 30 [−32,32] +260

F51 Shifted Rastrigin’s Function 30 [−5,5] −330

F52 Shifted Rotated Rastrigin’s Function 30 [−5,5] −330

F53 Shifted Rotated Weierstrass’s Function 30 [−0.5,0.5] +90

F54 Schwefel’s Problem 2.13 30 [−100,100] −460

Expanded Functions

F55 Expanded Extended Griewank’s+Rosenbrock’s(F8F2) 30 [−3,1] −130

F56 Expanded Rotated Extended Scaffe’s F6 30 [−100,100] −300

Hybrid Composition Function

F57 Hybrid Composition Function 1 30 [−5,5] +120

3.6 Results of the algorithm on shifted and rotated test
functions

To further verify the effectiveness of the HMS algorithm, a
set of 15 CEC 2005 optima shifted and rotated test functions
were evaluated in this subsection. In these functions, the
optimum is shifted or rotated to other locations to provide
the more challenging test functions. A summary of these
functions is shown in Table 11, and their further details can
be found in [44]. The 2D plot of these functions can be seen
in Fig. 17. Table 12 presents the experimental results of the
algorithms. From the results, the HMS algorithm performs
the best on seven test algorithms and the second best in
five test functions. The BBO algorithm was the best in two
test functions. The rank of each algorithm is computed in
Table 12. It can be seen that the HMS algorithm ranks first
for the shifted and rotated test functions.

3.7 Nonparametric statistical analysis results

In this section, nonparametric statistical methods are applied
to compare the HMS algorithm with the other algorithms.
Such statistical results are necessary due to the stochastic
nature of metaheuristics [45]. Nonparametric statistical tests
are divided into two classes: pairwise comparisons and mul-
tiple comparisons. The pairwise comparison is a comparison
between two algorithms, while the multiple comparisons
compare more than two algorithms. In this paper, two

well-known nonparametric tests, the Wilcoxon signed rank
test (pairwise comparison) and the Friedman test (multi-
ple comparisons), are conducted for this purpose. Further
details about nonparametric statistical tests for metaheuris-
tics can be found in [45].

The null hypothesis H0 states that there is no difference
between two algorithms, whereas the alternative hypothesis
H1 indicates a difference. A level of statistical significance
(α) is used to determine the probability of the rejecting null
hypothesis while it is true. If the p-value is less than α then
H0 is rejected.

Table 13 shows the results of the Wilcoxon signed ranked
test. However, this P-value is not suitable because the same
data is evaluated several times [45, 46] and an accumulated
error is obtained because of the combination of pairwise
comparisons. Thus, a post hoc test is necessary to control
Family-Wise Error Rate (FWER), which is the probability
that at least one comparison test would reject a correct null
hypothesis. For this purpose, the well-known Holm method
[47] is applied for post hoc analysis (see [45] for more infor-
mation about this method). Table 12 presents the unadjusted
and adjusted P-values. It is evident that the HMS algo-
rithm gives a significant improvement over all the compared
algorithms with a significance level of 0.05.

Another statistical test conducted to demonstrate the
effectiveness of HMS algorithm is Friedman test. As men-
tioned earlier, it is a multiple comparison test. The details
of this statistical approach can be found in [45]. Table 14
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shows the average ranks computed with the Friedman sta-
tistical test. As per this table, the HMS algorithm provides
the best rank. In Table 14, the P-value substantially depicts
existence of significant differences among the examined
algorithms.

3.8 Sensitivity analysis

The following will discuss the sensitivity analysis on the
input parameters of the HMS algorithm. Sensitivity analy-
sis is the study of how different values of input parameters
impact the output. This analysis represents the robustness
of the HMS algorithm to changes in the input parameters.
It is clear that fewer values are preferable because it shows
easier tuning procedure.

For this purpose, F10 and F13 are studied to evaluate
sensitivity analysis (this approach is inspired by the method

applied in [46, 48] for sensitivity analysis). The reason for
choosing the F10 function is that the HMS algorithm pro-
vides the best results. Therefore, this discussion aims to
show that this superiority is kept after changing the value
of the input parameters. The reason for choosing F13 func-
tion is that the HMS algorithm does not provide the best
result, and so the following discussion shows that the HMS
algorithm can provide better results by changing the input
parameters.

As shown in Figs. 18 and 19, the results are highly
dependent on the number of clusters. Hence, finding the
appropriate number of clusters is necessary to achieve a bet-
ter solution. F7 is a unimodal function. Therefore, it has
one local optimum; so, a large number of clusters do not
need to find a suitable region. As seen in Fig. 18, the per-
formance decreases by increasing the number of clusters.
F13 has many local optima. Therefore, more clusters are

F43 F44 F45

F46 F47 F48

F49 F50 F51

Fig. 17 Search space in shifted and rotated test functions
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F52 F53 F54

F55 F56 F57

Fig. 17 (continued)

needed. It is also seen in Fig. 19, as expected, that increas-
ing the number of clusters enhances the performance of the
algorithm.

Another parameter in the HMS algorithm is the max-
imum and minimum mental processes. To analyse the
sensitivity of these parameters, the algorithm was tested
with different values. According to the experimental results,
the maximum and minimum mental processes significantly
affect the performance. According to Figs. 18 and 19,
increasing the number of minimum and maximum mental
processes enhances performance because of more searches
being carried out around a specific point.

3.9 Classical engineering problems

In this section, the performance of HMS algorithm is evalu-
ated with three engineering design problems: pressure ves-
sel design, welded beam design, and three-bar truss design.
These problems are constrained. Constraint optimization is
the process of finding the optimal value of an objective func-
tion with respect to some constraints on decision variables.
There are two types of constraints on decision variables:
inequality and equality constraints. To solve these prob-
lems, a constrained handling approach should be added to
the optimization algorithm. There are different approaches
for constrained handling such as penalty functions, repair
algorithms, and special operators. Finding a proper con-
straint handling approach is out of the scope of this work,

and therefore one of the simplest methods, death penalty,
is chosen to optimize a constraint problem. To this end,
death penalty will assign a big objective function value if a
solution breaks any of constraints.

3.9.1 Pressure vessel design

Pressure vessel design is a popular engineering problem
in the literature (Fig. 20). The aim of this problem is to
minimize the fabrication cost of a vessel. This problem
has four variables and four equality constraints. The four
variables are thickness of the head (Th), thickness of the
shell (Ts), inner radius(R), and length of the cylindrical
section without considering the head (L). These param-
eters are shown in Fig. 20. This problem is formulated
as follows:

Consider �x = [x1, x2, x3, x4] = [Ts , Th, R, L],
Minimize f (�x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3,

Subject to g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x3 + 0.0095x3 ≤ 0,

g3(x) = −πx2
3x4 − 4

3 πx3
3 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0,

Variable range: 0 ≤ x1 ≤ 99,

0 ≤ x2 ≤ 99,

0 ≤ x3 ≤ 200,

0 ≤ x4 ≤ 200,

(12)
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Table 12 The statistical results of shifted and rotated test functions

F Statistics HMS PSO HS SFLA ABC

F43 AVE −450.0000(1.5) 903.4478(6) −235.6340(5) −447.6251(4) 5.2336E04(10)

STD 2.1354E-12 1.2332E03 54.7480 3.9495E-14 7.8579E03

Min −450.0000 −342.2565 −335.8402 −447.6251 3.4501E04

Max −450.0000 4.8145E03 −91.1460 −447.6251 6.9546E04

F44 AVE 4.1116E03(3) 4.1802E03(4) 2.1442E04(6) −434.6152(1) 4.9181E04(8)

STD 2.2208E03 3.1802E03 6.1949E03 2.6125E-11 8.5048E03

Min 1.7264E03 2.1202E03 1.2443E04 −434.6152 3.2241E04

Max 9.7375E03 1.8275E04 3.8348E04 −434.6152 6.2820E04

F45 AVE 2.3768E07(1) 2.5736E07(3) 1.0655E08(6) 2.6154E07(4) 3.4381E08(9)

STD 1.3493E07 1.1615E07 4.0750E07 1.2541E07 1.5891E08

Min 4.3849E06 1.1940E07 4.7368E07 4.9652E07 6.1469E07

Max 5.0466E07 5.9494E07 2.0924E08 5.6149E06 7.5380E08

F46 AVE 1.2486E04(2) 1.1601E04(1) 2.8580E04(4) 2.3145E05(8) 8.0669E04(6)

STD 5.0319E03 6.0649E03 7.9527E03 6.3256E04 1.0211E04

Min 4.9709E03 6.1974E03 1.5183E04 3.9654E04 4.8929E04

Max 2.3580E04 3.5965E04 4.9162E04 5.3659E05 9.6495E04

F47 AVE 5.2124E03(1) 7.9969E03(4) 5.6031E03(3) 4.1965E04(10) 2.7923E04(9)

STD 2.3239E03 2.0394E03 950.3237 2.3146E04 2.1070E03

Min 480.5589 3.4181E03 3.5666E03 780.6195 2.3921E04

Max 9.6619E03 1.2942E04 7.4150E03 8.9812E04 3.1913E04

F48 AVE 3.5238E06(3) 5.1803E07(5) 1.5974E06(2) 6.6519E06(4) 1.6459E10(9)

STD 1.0954E07 8.4480E07 5.8541E05 2.3654E07 5.3045E09

Min 765.7768 2.1011E05 6.0825E05 956.3215 7.5652E09

Max 4.4678E07 3.9960E08 2.4887E06 6.6214E07 3.0001E10

F49 AVE 2.5334E03(2.5) 2.7967E03(7) 2.5444E03(5) 2.9562E03(8) 3.5756E03(6)

STD 0.0186 180.6535 5.6160 6.6521 75.7184

Min 2.5334E03 2.5334E03 2.5358E03 2.9532E03 3.4401E03

Max 2.5334E03 3.2519E03 2.5632E03 2.9862E03 3.6789E03

F50 AVE −119.1862(2) −118.9290(7) −118.9007(8) −118.2153(10) −119.1328(3)

STD 0.1737 0.0754 0.0467 0.0952 0.0697

Min −119.5394 −119.2061 −118.9937 −118.9325 −119.7904

Max −118.9447 −118.8113 −118.8338 −118.1172 −119.5000

F51 AVE −256.9424(2) −165.1436(5) −294.6861(1) −112.6214(6) −108.3558(7)

STD 18.6105 29.8408 6.8411 25.5241 36.2118

Min −288.6811 −216.7463 −305.3924 −140.6176 −174.7872

Max −215.2024 −112.5330 −272.9448 −87.3621 −27.5370

F52 AVE −183.7616(2) −53.7168(5) −94.4106(4) 7.7495E04(10) 177.9152(7)

STD 31.1374 43.6019 17.4468 271.9707 66.4876

Min −265.3385 −170.3420 −136.4036 7.6848E04 1.3167

Max −117.3145 14.1257 −63.8771 7.8065E04 271.9397

F53 AVE 114.0726(1) 118.6942(4) 132.6930(8) 8.8141E04(10) 124.2766(6)

STD 4.0225 3.9264 1.2428 33.4959 1.9378

Min 108.7577 109.5464 129.3807 8.8073E04 120.1839

Max 127.8069 124.3175 135.1521 8.8218E04 127.2957

F54 AVE 3.3920E04(4) 9.5614E05(9) 4.0175E05(6) 7.4508E05(7) 1.4557E04(1)

STD 1.0668E04 2.3017E05 8.5910E04 5.6959E05 6.1302E03

Min 1.7378E04 5.1171E05 2.4836E05 2.5106E03 4.3329E03

Max 5.3321E04 1.3951E06 6.1135E05 1.4746E06 2.7820E04
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Table 12 (continued)

F Statistics HMS PSO HS SFLA ABC

F55 AVE −124.6913(1) −111.3386(6) −119.1150(5) −123.3829(3) −41.1588(9)

STD 1.6775 3.3220 2.0039 1.3633 36.3903

Min −127.3296 −121.6412 −122.1549 −127.7733 −109.9746

Max −121.0190 −106.4985 −115.4047 −121.5490 25.7872

F56 AVE −286.9038(1) −286.7639(3) −286.1862(9) −286.5418(4) −286.4730(6)

STD 0.3453 0.3497 0.1630 0.3045 0.2351

Min −287.8873 −287.6708 −286.5805 −287.3669 −287.1164

Max −286.3678 −286.2418 −285.8933 −286.1534 −286.1384

F57 AVE 423.4599(1) 788.0670(7) 516.8825(3) 531.6254(4) 930.9383(10)

STD 80.6935 101.0248 34.1908 73.26 137.3253

Min 309.8642 644.8685 401.2835 450.3652 589.7312

Max 622.1217 1.0560E03 595.5613 600.6214 1.1241E03

Average rank 1.87 5.1 5 6.2 7.1

Overall rank 1 4 3 6 8

F Statistics ICA BBO FA GWO WOA

F43 AVE −450.0000(1.5) −447.2722(3) 4.4705E04(9) 1.3410E04(8) 3.1509E03(7)

STD 9.4105E-06 0.6148 148.5581 3.5560E03 1.066E03

Min −450.0000 −448.3444 4.4369E04 7.5799E03 1.5981E03

Max −450.0000 −445.5684 4.4957E04 2.1599E04 5.5716E03

F44 AVE 6.6837E03(5) 463.1837(2) 1.3242E06(10) 2.3535E04(7) 1.0420E05(9)

STD 2.9684E03 335.6409 7.8393E04 6.5639E03 2.2595E04

Min 3.0555E03 −142.3967 1.2153E06 1.3116E04 4.7013E04

Max 1.5192E04 1.1306E03 1.5145E06 5.0439E04 1.3992E05

F45 AVE 2.6214E08(8) 8.8601E06(2) 4.1796E08(10) 5.4708E07(5) 1.5142E08(7)

STD 9.5621E-06 3.3548E06 2.8676E07 3.6531E07 5.7674E07

Min 2.6214E08 3.1327E06 3.6122E08 1.0227E07 5.8670E07

Max 2.6214E08 1.7904E07 4.7231E08 1.4808E08 2.9525E08

F46 AVE 6.6214E05(9) 1.9975E04(3) 3.4759E06(10) 3.1940E04(5) 2.0044E05(7)

STD 1.6254E-06 9.5093E03 5.9106E05 1.0160E04 6.7777E04

Min 6.6214E05 5.2718E03 2.5791E06 1.4198E04 9.1839E04

Max 6.6214E05 4.5265E04 4.8898E06 6.8342E04 3.7125E05

F47 AVE 1.2651E04(6) 5.5950E03(2) 2.2592E04(7) 1.1515E04(5) 2.3648E04(8)

STD 2.6541E-07 1.3572E03 530.9176 3.2941E03 4.1496E03

Min 1.2651E04 3.6354E03 2.1607E04 5.6785E03 1.4263E04

Max 1.2651E04 9.6217E03 2.3584E04 1.8497E04 3.2199E04

F48 AVE 5.3242E07(6) 2.2963E03(1) 2.2766E10(10) 6.4994E08(8) 2.3799E08(7)

STD 4.3265E-06 1.8645E03 1.8100E08 9.4421E08 2.0841E08

Min 5.3242E07 865.8989 2.2463E10 2.5051E07 4.0199E07

Max 5.3242E07 7.4972E03 2.3137E10 3.7042E09 1.0744E09

F49 AVE 6.6521E04(10) 2.5334E03(2.5) 4.6183E03(9) 392.4048(1) 2.5398E03(4)

STD 2.3254E-06 0.1533 12.9747 209.6337 12.4783

Min 6.6521E04 2.5334E03 4.5999E03 65.0165 2.5334E03

Max 6.6521E04 2.5342E03 4.6514E03 808.2970 2.5770E03

F50 AVE −118.6232(9) −119.0103(5) −119.3484(1) −118.9376(6) −119.0289(4)

STD 0.0712 0.0667 0.1018 0.0675 0.0862

Min −119.002 −119.1169 −119.6322 −119.1075 −119.2696

Max −118.4678 −118.8466 −119.1574 −118.8336 −118.8969
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Table 12 (continued)

F Statistics HMS PSO HS SFLA ABC

F51 AVE 2.5760E04(10) −256.1489(3) −92.4980(8) −198.3721(4) −46.5267(9)

STD 2.6164E-12 22.1705 15.4849 27.3246 56.0462

Min 2.5760E04 −284.6623 −113.7938 −240.6488 −181.3916

Max 2.5760E04 −190.4792 −57.1800 −132.9924 57.8575

F52 AVE 4.6281E04(9) −202.6800(1) 102.0053(6) −113.5040(3) 188.4374(8)

STD 3.2658E-10 28.6949 18.8055 59.8083 72.5813

Min 4.6281E04 −257.2305 67.6118 −219.9535 61.4092

Max 4.6281E04 −120.2844 160.1057 3.3148 363.9211

F53 AVE 8.7940E04(9) 118.7584(5) 115.6625(2) 116.2943(3) 129.8792(7)

STD 2.9601E-11 2.6734 2.3523 6.9588 2.2229

Min 8.7940E04 114.4213 111.2818 103.6269 121.8271

Max 8.7940E04 127.2091 119.8181 134.1975 133.6288

F54 AVE 3.6401E04(3) 3.4787E04(5) 2.9238E04(2) 1.0303E06(10) 7.4994E05(8)

STD 1.8570E04 1.8215E04 1.9832E04 4.0719E05 2.2676E05

Min 1.1686E04 6.6879E03 6.8073E03 2.4828E05 3.4020E05

Max 7.4605E04 9.7064E04 9.5814E04 1.5548E06 1.1264E06

F55 AVE −123.9024(2) −122.8261(4) −13.2207(10) −95.7207(8) −99.9633(6)

STD 0.6872 1.7160 8.8421 7.5058 6.2787

Min −127.9000 −125.1976 −28.4172 −105.1569 −110.0725

Max −124.4251 −118.0617 7.9105 −79.0267 −83.2286

F56 AVE −286.3202(8) −285.5187(10) −286.5392(5) −286.8498(2) −286.3400(7)

STD 0.3085 0.0653 0.3948 0.4003 0.3474

Min −286.9987 −285.6874 −287.5455 −287.7181 −287.1975

Max −285.9708 −285.4062 −285.8028 −286.0779 −285.8948

F57 AVE 447.9970(2) 552.0418(5) 843.3938(8) 654.4284(6) 909.9902(9)

STD 134.6112 73.0665 166.0494 77.3970 196.0838
Min 137.3106 405.8580 654.0254 523.3246 613.6923
Max 634.7209 645.6321 1.1477E03 834.4494 1.2191E03

Average rank 6.5 3.57 7.13 5.4 7.13
Overall rank 7 2 9.5 5 9.5

Table 13 Wilcoxon signed ranked test

Comparison Unadjusted P-value Adjusted P-value

HMS versus PSO 9.0844E-10 8.1759E-09

HMS versus HS 3.8263E-07 1.5305E-06

HMS versus SFLA 1.2925e-08 7.7550E-08

HMS versus ABC 3.7766e-09 2.6436E-08

HMS versus ICA 9.2590e-10 8.1759E-09

HMS versus BBO 1.2699e-05 1.2699E-05

HMS versus FA 5.3733e-08 2.6866E-07

HMS versus GWO 7.3693e-07 2.2107E-06

HMS versus WOA 1.2231e-06 2.4462E-06

Table 14 The Friedman ranks

Algorithms Friedman

HMS 1.82

PSO 6.46

HS 6.30

SFLA 5.93

ABC 7.11

ICA 5.94

BBO 4.73

FA 6.74

GWO 4.46

WOA 5.30

P-value 2.4648E-25
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Fig. 18 Plot of input parameters corresponding to F7 test function solved by HMS

This problem is popular among researchers. The litera-
ture review shows that metaheuristic and mathematical
approaches have been applied to optimize the variable of
this problem. Some metaheuristic methods applied on this
problem are GA [49–51] PSO [52] DE [53] ES [54], ACO
[55] GWO [25], and WOA [26]. The mathematical methods
are augmented Lagrangian multiplier [56] and branch-and-
bound [57]. The results of the HMS algorithm compared to
the other algorithms in literature are presented in Table 15.
As can be observed, the HMS algorithm outperforms all the
other compared algorithms.

3.9.2 Welded beam design

The aim of this problem is to design a welded beam with the
lowest fabrication cost. The overall structure of this problem
is shown in Fig. 21. There are four variables to be optimized,
including the weld thickness (h), the length of the bar’s
attached part (l), the bar’s height (t), and the bar’s thickness
(b). These variables should satisfy seven constraints.

This problem can be written as follows:

Consider �x = [x1, x2, x3, x4] = [h, l, t, b], (13)

Minimize f (�x) = 1.10471x2
l x2 + 0.04811x3x4(14.0 + x2),

Subject to g1(�x) = τ(�x) − τmax ≤ 0,

g2(�x) = α(�x) − αmax ≤ 0,

g3(�x) = δ(�x) − δmax ≤ 0,

g4(�x) = x1 − x4 ≤ 0,

g5(�x) = P − Pc(�x) ≤ 0,

g6(�x) = 0.125 − x1 ≤ 0,

g7(�x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0

τ(�x) =
√

(τ̇ ) + 2τ̇ τ̇
x2

2R
+ (τ̇ )2,

τ̇ = P√
2x1x2

,

τ̇ = MR

J
,

M = P(L + x2

2
),
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Fig. 19 Plot of input parameters corresponding to F13 test function solved by HMS

Table 15 Comparison results for the pressure vessel design problem

Algorithm Optimum variables Optimum cost

Ts Th R L

HMS 0.8313 0.4113 43.0432 165.4836 5992.2729

WOA [26] 0.8125 0.4375 42.0982 176.6389 6059.7410

GWO [25] 0.8125 0.4345 42.0891 176.7587 6051.5639

GA [50] 0.8125 0.4345 40.3239 200.0000 6288.7445

GA [49] 0.8125 0.4375 42.0973 176.6540 6059.9463

GA [51] 0.9375 0.5000 48.3290 112.6790 6410.3811

ES [54] 0.8125 0.4375 42.0980 176.6405 6059.7456

DE [53] 0.8125 0.4375 42.0984 176.6376 6059.7456

PSO [52] 0.8125 0.4375 42.0912 176.7465 6061.0777

ACO [55] 0.8125 0.4375 41.1036 176.5726 6059.0888

Lagrangian multiplier [56] 1.1250 0.6250 58.2910 43.6900 7198.0428

Branch and bound [57] 1.1250 0.6250 47.7000 117.7010 8129.1036
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Fig. 20 Pressure vessel design
problem

R =
√

x2
2

4
+
(

x1 + x3

2

)2

where: J = 2

{√
2x1x2

[
x2

2

4
+
(

x1 + x3

2

)2
]}

,

α(�x) = 6PL

x4x
2
3

,

δ(�x) = 6PL3

Ex2
3x4

,

Pc(�x) = 4.013E

√
x2

3 x6
4

36

L2

(
1 − x3

2L

√
E

4G

)
,

P = 6000lb, L = 14in., δmax = 0.25in,

E = 13600psi, E = 12 × 106psi,

τmax = 13600psi, σmax = 30000psi

Variable range: = 0.1 ≤ x1 ≤ 2,

= 0.1 ≤ x2 ≤ 10,

= 0.1 ≤ x3 ≤ 10,

= 0.1 ≤ x4 ≤ 2

Keeping in mind the popularity of this problem, numer-
ous lines can be found on it in the literature. Some are

Fig. 21 Welded beam design problem

GA [58, 59], HS [60], CPSO [61], GWO [25], WOA
[26], Richardson’s random method [62], Simplex method
[62], Davidon-Fletcher-Powell [62], and Griffith and Stew-
art’s successive linear approximation [62]. The comparison
results are presented in Table 16. As seen from the table, the
HMS algorithm can find a design with the minimum cost.

3.9.3 Three-bar truss design problem

The objective of the three-bar truss design problem is to
design a truss with the minimum weights. The overall struc-
ture of this problem is shown in Fig. 22. It is popular in the
literature [63–66] due to its difficult constraint search space
[64, 67]. In fact, constraints are the most important issues in
designing a truss. It can be formulated as below:

Consider �x = [x1, x2] = [A1, A2],
Minimize f (�x) = (2

√
2x1 + x2)

∗l,

Subject to g1(�x) =
√

2x1 + x2√
2x2

1 + 2x1x2
P − σ ≤ 0,

g2(x) = x2√
2x2

1 + 2x1x2
P − σ ≤ 0,

g3(x) = 1√
2x2 + x1

P − σ ≤ 0,

Variable range: 0 ≤ x1, x2 ≤ 1,

where l = 100cm p = 2kN/cm2 σ = 2kN/cm2 (14)

Table 17 compares the results of the HMS algorithm with
the other algorithms. The results of the algorithms demon-
strate that the HMS algorithm outperforms four algorithms.
In addition, HMS shows very close results to MFO, DEDS,
and PSO-DE algorithms. It shows that the HMS algorithm
can solve the three-bar truss design problem effectively. It
should be noted that the TSA algorithm does not satisfy one
of the constraints [67].
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Table 16 Comparison results
for the welded beam design
problem

Algorithm Optimum variables Optimum cost

h l t b

HMS 0.2054 3.4777 9.0386 0.2057 1.7255

WOA [26] 0.2054 3.4843 9.0374 0.2063 1.7305

GWO [25] 0.2056 3.4784 9.0368 0.2058 1.7262

GA [58] 0.1829 4.0483 9.3666 0.2059 1.8240

GA [59] 0.2489 6.1730 8.1789 0.2533 2.4331

HS [60] 0.2442 6.2231 8.2915 0.2443 2.3807

CPSO [52] 0.2024 3.5442 9.0482 0.2057 1.7315

Richardson’s random [62] 0.4575 4.7313 5.0853 0.6600 4.1185

Simplex [62] 0.2792 5.6256 7.7512 0.2796 2.5307

Davidon-fletcher-powell [62] 0.2434 6.2552 8.2915 0.2444 2.3841

linear approximation [62] 0.2444 6.2189 8.2915 0.2444 2.3815

Fig. 22 Three-bar truss design problem [64]

Table 17 Comparison results for three-bar truss design problem

Algorithms Optimum variables Optimum cost

x1 x2

HMS 0.7883 0.4094 263.8960

MFO [64] 0.7882 0.4095 263.8960

DEDS [63] 0.7887 0.4083 263.8958

PSO-DE [65] 0.7887 0.4082 263.8958

CS [67] 0.7887 0.4090 263.9716

Ray and Sain [66] 0.795 0.395 264.3

Tsa [68] 0.788 0.408 263.68(infeasible)

4 Conclusion

In this study, we proposed a simple but powerful population-
based metaheuristic called human mental search (HMS).
HMS is inspired by the exploration strategy of the bid
space in online auctions. The HMS algorithm employs three
important behaviours namely mental search, grouping, and
moving. First, each solution produces other new solutions
based on Levy flight. Levy flight simultaneously enhances
the quality of the diversification and the intensification.
The solutions are then placed in the different groups. We
used K-means algorithm, a well-known clustering algo-
rithm for grouping the solutions. In moving strategy, each
solution moves toward the best group. To verify the effi-
ciency of the HMS algorithm, several test functions that
are commonly applied in the literature were conducted,
including unimodal, multimodal, fix-dimension, complex,
high dimensional, shifted, and rotated functions. The per-
formance of the HMS algorithm was compared with nine
state-of-the-art population-based metaheuristics. The results
revealed that the HMS algorithm provides superior perfor-
mance in most cases. Moreover, three classic engineering
problems were evaluated to show the HMS algorithm’s
efficiency in unknown and challenging search spaces.

Also, some nonparametric statistical methods, including
Wilcoxon signed rank test and Friedman test, were pro-
vided. The results of the Wilcoxon signed rank test followed
by the post hoc analysis indicated an improvement of HMS
over all the compared algorithms with the level of signifi-
cance being α = 0.05. The Friedman rank test showed that
HMS was ranked first. Moreover, the P-value confirmed
the existence of significant differences among the compared
algorithms.
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Another test conducted was the sensitivity analysis on the
input parameters of HMS. The sensitivity analysis showed
that HMS kept its superiority even with changing the param-
eters values. The sensitivity analysis on another test function
revealed that HMS can improve performance by changing
the settings.

The reasons for the HMS algorithm’s high performance
could be: (1) mental search operator as it searched around
a solution that enhances intensification property, (2) group-
ing operator because it quickly finds the promising regions
of search space, (3) reduction factor as it allows the HMS
algorithm to move smoothly from diversification to intensi-
fication, (4) moving operator because other solutions move
toward the promising region using this operator, and (5)
the type of the HMS algorithm because it’s a population-
based algorithm that intrinsically takes advantages of high
diversification and local optima avoidance compared to the
single-based metaheuristic algorithms.

Not withstanding the significant performance of the
HMS algorithm, the following points should be considered
for future investigations:

• Some test functions are used for evaluating the perfor-
mance of the HMS algorithm. In the future, the perfor-
mance of HMS on some more problems can be exam-
ined, especially real world applications such as scheduling,
knapsack problem, controller design, microwave design
problem, and water resource management.

• In the current work, the k-means clustering algorithm is
used for grouping the solutions. Other clustering algo-
rithms such as hierarchical clustering and distribution-
based clustering algorithms can be applied as well.

• One of the most important parameters of the HMS
algorithm is the number of clusters. Some clustering
algorithms can find the optimum number of clusters
automatically. For future research, it is recommended to
use such algorithms for clustering.

• In the current work, the performance of the HMS algo-
rithm is experimentally conducted only on standard
test functions. The convergence of the HMS algorithm
should be analysed theoretically by dynamic systems in
the future.
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