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Abstract Biometric based verification and recognition has
become the center of attention for many significant appli-
cations for security conscious societies, as it is believed
that biometrics can provide accurate and reliable identifica-
tion. The face biometrics are one that possesses the merits
of both high accuracy and low intrusiveness. An efficient
machine recognition of human faces in big dataset is both
important and challenging tasks. This paper addresses an
intelligent face recognition system that is pose invariant
and can recognize multi-expression, occluded and blurred
faces through efficient but compact deep learning. Supe-
rior functionality of neural network in a complex domain
has been observed in recent researches. My work presents
a new approach, which is the fusion of higher-order novel
neuron models with multivariate statistical techniques in a
complex domain with a sole goal of improving performance
of biometric systems. This also aims at reducing the compu-
tational cost and providing a faster recognition system. This
paper presents the formal algorithms for feature extraction
with multivariate statistical techniques in complex domain
and compare them their real domain counterpart. This paper
also presents a classifier structure (OCON : One-Class-in-
One-Neuron) which contains an ensemble of novel higher
order neurons, which drastically reduces the complexity
of proposed learning machine because only single neuron
is sufficient to recognize a subject in the database. This
novel fusion in the proposed deep learning machine has
thoroughly presented its superiority over a wide spectrum
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of experiments. Advanced deep learning capabilities, and
complex domain implementation in particular, are signifi-
cantly advancing state-of-art in computer vision and pattern
recognition.
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1 Introduction

ANN is an attempt to mimic the biological brain, which
has evolved to its present form over thousands of years
to achieve optimized results. It gives computers the abil-
ity to learn things similar to the way we do using soft-
ware instructions. In fact, this direction has prompted an
active development in cognitive science, intelligent sys-
tem, bioinformatics, computer vision and biometric applica-
tions. Biometric based intelligent system identifies a person
by biological characteristics, which are difficult to forge
[1, 18, 40, 44]. It also increases the user-friendliness in
human-computer interaction. The facial features have sev-
eral advantages over other biometric attributes considered
by Hietmeyer [18]. It is natural, passive, and non intrusive.
The human face recognition is one of the distinguished and
inherent capabilities of the human visual system. Though,
humans do it effortlessly in spite of variations in features
but it is not easy in computer vision terms. However, the
use of deep learning makes this task easy. Deep learn-
ing envisaged as a learning system composed of multiple
level of non linear operations. Deep machine learning is
based on a set of algorithms, which attempt to model
higher level abstractions in data by using multiple process-
ing layers with complex structures. This paper presents the
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model of layer features with an unsupervised mode followed
by a supervised mode. Hence, a good trade off between
unsupervised and supervised learning is an interesting but
challenging task, because it utilizes techniques for fea-
ture extraction and classification respectively. The success
of machine face recognition techniques depends heavily
on the particular choice of feature extractor and classifier
[22, 39]. Complex-valued neural networks (CVNN) have
presented the second generation of development in neural
network [19, 26, 43]. The performance of complex-valued
neural networks has scored over real-valued neural net-
works, even on real-valued problems [4, 15, 31, 42]. There-
fore, the strong need for reliable recognition for a large
dataset has demanded an important role of a novel synergism
of feature extractor and classifier in the complex domain for
deep learning.

Over the years, the researchers have contributed a number
of methods for feature extraction and classification in the
real domain. Few researchers have tried multivariate statis-
tical techniques in complex domain, like complex principal
component analysis (CPCA) for 2-D vector field analysis
[36] and complex independent component analysis (CICA)
for performing source separation of functional magnetic res-
onance imaging data [12, 29]. Few attempts have been made
to use these techniques for analyzing complex variables or
complexified real data. In this paper, I developed formal
algorithms for feature extraction using these unsupervised
statistical techniques in complex domain and figure out
their technical benefits over conventional ones. An efficient
solution for many real-valued problems has been achieved
with compact network topology of complex-valued neu-
ral networks (CVNN) in comparison to real-valued neural
networks (RVNN) [19, 26]. The 2D structure of the error
propagation method of CVNN reduces the problem of satu-
ration in learning and offers faster convergence [43]. They
are more efficient, fault-tolerant, and less sensitive to noise.
The new insights available from neuroscience have pre-
sented non-linear neuronal activities in a neuron cell body
[28]. It motivated us to design higher-order non-linear neu-
rons, which will serve as a basis for the construction of
powerful classifiers. Efficient learning and better preci-
sion in classification have been yielded by complex-valued
higher order neurons. In this paper, I also propose a com-
pact but efficient classifier using higher-order neurons in
the complex domain. The success of machine face recog-
nition is limited by variations in facial features imposed
by real life situations [35]. These may be due to camera
distortion, acquisition in an outdoor environment, different
noises, complex background, occlusion, facial expression,
illumination and presence of beard, mustache, spectacles,
etc. A deep learning system presented in this paper by
the combined efforts of considered feature extractors and
higher order neurons in the complex domain yields better

class distinctiveness, low complexity and high recognition
performance even in a natural environment.

Face recognition is one of the most effective applica-
tions of image processing and biometric systems. Over the
years, researchers have contributed a number of methods
for feature extraction and classification. A general review
of different literature studies and systems are recently pre-
sented in [22, 30] with their strengths and limitations. Most
of the work is related to real domain. Apart from them,
researchers have tried multivariate statistical techniques in
complex domain, like complex-PCA for 2-D vector field
analysis [36] and complex-ICA for performing source sep-
aration of functional magnetic resonance imaging data [12,
29]. Few attempts have been made to use these techniques
for analyzing complex variables or complexified real data.
In this paper, I present formal procedures for facial feature
extraction using these unsupervised statistical methods in
the complex domain and figure out their technical benefits
over conventional methods.

Section 2 presents the formal development of a novel
intelligent system in the complex domain. This Section
is dedicated to formally present the algorithms for com-
plex PCA and complex ICA based feature extraction for
large image data set. This section further presents a new
recognizer (classifier) based on higher order neuron. The
considered single TION1 or TION2 neuron in a complex
domain allows the designing of a host (classifier) for each
subject. It also presents the classifier structure and its learn-
ing rules. Section 3 addresses the performance evaluation
through simulation results over three different face data sets.
In order to ensure the effective recognition capabilities of
considered techniques in a real-world environment, their
performance is assessed with variety of blurred and partial
occluded images. Finally, this investigation concludes with
inferences and discussions in the Section 4.

2 Deep machine learning in complex domain

In this paper, I present a deep learning based intelligent sys-
tem in the complex domain. The novel fusion of proposed
feature extractor and classifier yields a compact recogni-
tion system with efficient machine learning. A fundamental
problem in digital image processing is to find a suitable
representation for image, audio-video or other kind of data.
Unsupervised approaches like principal component analy-
sis (PCA) independent component analysis (ICA) find a
set of basis images and yields a new representation as a
linear combination of these basis images. They reduce the
amount of data in the new representation while maintain-
ing sufficient information for meaningful training. PCA
aims at the decomposition of a linear mixture of indepen-
dent source signals into uncorrelated components using only
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second order statistics [13], however, higher order relation-
ships still appear in the joint distribution of basis images. In
typical pattern classification problems, the significant infor-
mation may be contained in the higher order relationships
among pixels. So, it will be desirable to use methods which
are sensitive to these higher order statistics to get better
basis images. The assumption of Gaussian sources are also
implicit in the PCA, which makes it inadequate, because in
the real world, the data often does not follow a Gaussian
distribution. ICA is a method for transforming multidimen-
sional random vectors into its components that are both
statistically independent and non-Gaussian [20, 25]. This
transformation brings out the essential features of image
data and makes them more visible or accessible. Therefore,
it is expected that these data of reduced dimension will be
rich in features.

The real-valued neural network (RVNN) based
approaches have been widely applied in [8, 14, 38] for
face recognition due to its intrinsic generalization ability
and robustness toward ill defined pattern classes. However,
one drawback in this supervised approaches is that a huge
network architecture has to be extensively tuned (number
of layers, number of nodes, weight initialization, learning
rates etc.) to get exceptional performance. Thus a reduction
in network complexity of neural network is highly demand-
ing. Second generation neural networks like CVNN have
thoroughly proved their superiority over conventional ones
for classification. As a result, we can not only decrease the
computational complexity of an intelligent system, but can
also increase the recognition rate using second generation
neurocomputing approaches.

For pattern classification, the structure of neural net-
works can broadly be categorized into two ways viz All-
Classes-in-One-Neural Network (ACONN) and One-Class-
in-One-Neural Network (OCONN) [8]. In ACONN, one
single network (classifier) having as many outputs as the
number of classes is designed to classify all the classes (sub-
ject) in the databases. In OCONN, an ensemble of ANN
is used, where each network is dedicated to recognizing
one particular class in the database. It has been observed
in literature [3, 16] that OCONN classifier achieves higher
performance and is more realistic for large datasets.

The complex domain neural networks are becoming very
attractive because of problem of same complexity, they need
smaller network topology and lesser training time to yield
better accuracy in comparison to equivalent neural networks
in a real domain [4, 41–43]. A higher order neuron in com-
plex domain further boost up the capability of the classifier.
The face recognizer (classifier) presented in this paper is
designed with an ensemble of novel higher-order neurons
in a complex domain, where each neuron is dedicated to
recognizing one particular class in the database. Thus,
proposed classifier is a One-Class-in-One-Neuron (OCON).

2.1 Feature extraction

In most of the applications an image, x, is available in the
form of single or multiple views of 2D (p by q) intensity
data (ie. pixel values). Thus, inputs to the face recognition
system are visual only.

x = {ak : k ∈ S} , (1)

where S is a square lattice. Sometimes, it is more convenient
to express a face image matrix as a one dimensional vector
of concatenated rows of pixels, then an image vector

x = {a1, a2, ...aN } , (2)

where N = p × q is the total number of pixels in an image.
Such a high dimensional image space is usually inefficient
and lacks of discriminative power. Therefore, we need to
transform ‘x’ into a feature vector or new representation
which greatly reduces the facial feature dimensions, yet
maintains reasonable discriminative power by maximizing
the spread of different faces within the image subspace. Let
X = {x1, x2, ...xM}T be the M by N matrix of image data,
M is the number of face images in the training set. Let vec-
tor avg = 1

M

∑M
k=1 xk be the mean of training images. The

goal in considering feature extraction techniques is to find a
useful representation of a face by minimizing the statistical
dependence among the basis vectors.

2.1.1 Feature extraction with complex principal component
analysis

Principal component analysis is widely applied for dimen-
sionality reduction and feature extraction on the basis of
extracting the preferred number of principal components of
multivariate data [2, 27, 45]. If image elements are consid-
ered to be random variables and images are seen as a sample
of a stochastic process, the PCA basis vectors (eigenfaces)
are defined as the eigenvectors of the covariance matrix.
They describe a set of axis within the image space and most
of the variance of face images are along these axis. The
associated eigenvalues define the degree of spread (vari-
ance) of the image population along these axis. Eigenvectors
corresponding to the higher eigenvalues carry significant
information for representation, which best accounts for the
distribution of images within the entire image space. The
new representation of an image is generated by projecting
that image onto eigenfaces.

The established technique of real PCA (RPCA) for
extracting features of the image data has been extended to
proposed complex principal component analysis (CPCA).
The transformed data in complex domain are obtained from
the original data and their Hilbert transform. The ampli-
tude of each spectral component is unchanged, but each
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component′s phase is advanced by π/2 [17] in Hilbert trans-
formation. Complex principal components are determined
from the complex cross-correlation matrix of image data
matrix Z. The CPCA algorithm for feature extraction from
the image data set can be stated as follows:

1. Collect the images in the data matrix X (M by N). Find
the mean subtracted data matrix, A = X − avg.

2. Determine a complex image data matrix Z, using
Hilbert transform.

3. Determine the cross-correlation matrix C = Zℵ Z,
where Zℵ is the complex conjugate transposition of Z.

4. Compute eigenvectors of C. Even for the moderate size
of an image (N = p × q), the dimension of C will be
pq × pq. Hence, calculations will be intractable and
computationally extensive.

5. This issue can be circumnavigated by considering the
eigenvectors vi of Z Zℵ, such that Z Zℵ vi = ei vi .
Vector vi is of size M and there are M eigenvectors.
Thus computations are significantly condensed from
the order of number of pixels (N) in the image to the
order of number of images (M) in the training set,
M << N .

6. Eigenvectors (basis images) from the cross-correlation
matrix C will be Zℵ vi (N by M), such that Zℵ Z Zℵ vi

= ei Zℵ vi .
7. Since, C is a Hermitian matrix, all its eigenvalues will be

real. Thus, greater reduction can be obtained by letting
those eigenvectors with large eigenvalues. This sub-
space capture most of the variation of the training set
with a fewer number (M ′ < M) of eigenfaces.

8. Project each input vector onto basis vectors to find a set
of M ′ coefficients that describe the contribution of each
vector in the subspace.

9. Therefore, the input vector of size N is condensed to a
new representation (feature vector) of size M ′, that will
be used for classification.

2.1.2 Feature extraction with complex independent
component analysis

Let face images in X to be a linear mixture of statistically
independent basis images S, combined with an unknown
mixing matrix A, such that X = A S. ICA tries to find out
the separating matrix W such that U = W X. ICA, as an
unsupervised learning algorithm learns weight matrix W,
which is used to estimate a set of independent basis images
in the rows of U. W is roughly the inverse matrix of A. The
two preprocessing steps viz Compression and Whitening
simplify the estimation of W.

It will be quite useful to reduce the dimension of the data
at the same time whitening is done. First, apply PCA on the
image matrix X, to reduce the number of data to a tractable
number. Pre-applying PCA does not throw away the higher-

order relationships, they still exist but not separated. Well, it
enhances ICA performance by discarding the eigenvectors
corresponding to trailing eigenvalues, which tend to capture
noise. This has often the effect of reducing the noise. Let
matrix ET (M′ by N) contains first M′ eigenvectors of M
face images in its row, then U = WET . Another impor-
tant preprocessing step in ICA is to whiten the observed
variables. This step transforms the observed vector linearly
so that the obtained new vector is white, i.e. Whitening
process transforms the observed vector into a new vec-
tor, whose components are uncorrelated and their variances
equal unity. The whitening matrix is obtained as Ww =
2 × (COV (X))−(1/2). Instead of performing ICA on the
original images, it should be carried out in a compressed and
whitened space, which reduces the number of parameters
to be estimated but most of the representative information
is preserved. Therefore, a full transformation matrix will be
the product of whiten matrix and matrix learned by ICA.
The whitening is a simple and standard strategy, much sim-
pler than any ICA algorithms, thus it is better to reduce the
complexity of the problem before applying ICA.

The independent component analysis in the complex
domain (CICA) has been used for source separation of
complex-valued data, such as fMRI [12], EEG [5] and
communication data, yet this concept is not well devel-
oped hence demanding more applications. There are various
prominent techniques for capturing independent compo-
nents [7, 23, 25, 33], they have their own strength and
weakness [32]. One of the technique, inspired by informa-
tion theory, for ICA estimation is minimization of mutual
information between random variables. I have formulated
a complex feature extraction algorithm, CICA, using Bell
and Sejnowski infomax method in real domain [6]. Mutual
information is a natural measure of independence between
random variables (sources). Infomax algorithm uses it as
a criterion for finding the ICA transformation by itera-
tively optimizing a smooth function (Entropy), whose global
optima occurs when the output vectors (u ∈ U ) are indepen-
dent. Finding independent signals by maximum entropy is
known as infomax [7]. The CVNN has proved its superiority
over RVNN [41, 42].

In this paper, the basic concepts of RICA algorithm
has been utilized to build the CICA algorithm for image
processing and vision applications.The CVNN has proved
its superiority over RVNN [41, 42].The CICA has been
derived from the principle of optimal information transfer
through complex-valued neurons based on non-analytic but
bounded activation function [26, 31, 42], defined as:

fC(V ) = f (�(V )) + j × f (�(V )) (3)

The stimulus of taking this function in CICA algorithm
is that it can lead the fairly accurate joint cdf of the source
distribution [10, 11]. The apparent problem in function (3)



386 B. K. Tripathi

comes from the fact that it is real-valued and therefore is
not complex differentiable unless it is a constant. The dif-
ferentiation of fC can be conveniently done [9, 37] without
separating real and imaginary parts with following complex
(partial) differential operator:

f ′
C = ∂fC

∂z
= 1

2

(
∂fC

∂z�
− j

∂fC

∂z�

)

(4)

In CICA based feature extraction, we assume that the
image data X is a linear mixture of M statistically indepen-
dent complex-valued sources S, then Y = fC (U = W X),
where U, W ∈ C. The basic steps in the CICA algorithm
for feature extraction in image database can be summarized
as follows

1. Let image data matrix X possesses M images in rows
and N pixels in a column.

2. Apply RPCA. The PCA basis vectors in ET are ana-
lyzed for independent components, where E (N by M′)
be the matrix of M′ eigenvectors.

3. The final transformation matrix will be the product of
whitening matrix and optimal unmixing matrix.

4. The sources are reproduced as complex random vectors.
Let take sigmoidal complex function fC, defined in (3),
as joint cdf of source signals.

5. Develop a contrast function h from the point of view of
CVNN. Perform maximization of joint entropy h(Y ).
This can be achieved using an extension of the natural
gradient in a complex domain.

6. Apply complex infomax on PCA basis X. Thus, the
optimal matrix W such that : MAX [h {fC (WX)}], this
can be done as:

– Define a surface h {fC (WX)}
– Obtain gradient ∇h with respect to W and ascent it,

�W ∝ ∇h, then -

�W =η

(
[
WT

]−1+ 1

M

M∑

i=1

f ′′
C(u)

f ′
C(u)

XT
)

, u ∈ U

– When h is maximum or gradient magnitude con-
verges to zero, W is WOPT . Done !

7. The process of maximizing the joint entropy of out-
puts also minimizes the mutual information between
the basis images in U, ie individual outputs. This also
presents that how much the extracted signals in U are
close to being independent. Thus,CICA algorithm pro-
duces transformation matrix Wt = WOPT × Ww, such
that U = Wt ET .

8. Let the PC representation of images in X be R = X E ,
also X = R ET . The assumption that Wt is invertible,

we get ET = W−1
t U . Hence X = R W−1

t U . Estima-
tion of IC representation of images is thus based on the
independent basis images in U.

9. The IC representation of a face image is a row in matrix
B = R W−1

t . Thus, statistically independent feature
vectors of images have been obtained in B.

2.2 OCON: the classifier

The second layer of deep learning machine involves the
supervised training of proposed classifiers for estimation of
learning parameters (weights), which are stored for future
testing. Hence, it is most desirable to search a structure
for classifier which requires minimum weights and yields
the best accuracy. The beauty of the proposed classifier
structure for image classification system is that it uses
an ensemble of proposed single neurons in the complex
domain, instead of ensemble of multi layer network. The
proposed ‘OCON : One-Class-in-One-Neuron’ recognizer
is designed using two higher order neuron TION1 and
TION2 in the complex domain. Every single neuron in rec-
ognizer is dedicated to recognizing images (a subject) of
its ‘own class’ assigned to it (OCON). The outputs in the
ensemble of neurons are forming an aggregate output of the
classifier.

The conventional neuron models in real and complex
domain are based on summation and radial basis aggre-
gation functions. The conventional MLP offers a global
approximation to input-output mapping, but it may be
plagued by slow convergence and has a tendency to get
trapped at bad local minima. On the contrast, RBF net-
work offers local approximation to input-output mapping
and often provides a faster convergence. However, it will
be inefficient in approximating constant-valued functions,
as addressed in [24]. The novelty in aggregation function of
novel neurons is to take the advantage of the merits of per-
ceptron and radial basis processing [39]. The net potential
of novel neuron is a weighted integration of summation and
radial basis sub-functions. Thus, input aggregation for this
neuron is a functional, which formulates its compensatory
structure. The information processed through sub-functions
are integrated in desired proportion (λ : γ ), linearly (

⊕
)

or non-linearly (
⊗

) in the considered models. The compen-
satory parameters λ and γ specify the contribution of sum-
mation and radial basis sub-functions to take into account
the vagueness involved. With a view to achieve a robust
aggregation function, the parameters λ and γ are itself made
adaptable in course of training.

Let Z = [z1, z2....zL] be the vector of input signals
and Y be the output of considered neuron. Let fC be the
complex-valued activation function defined in (3).ZT is the
transpose of vector Z and z is the complex conjugate of z.
WS = [wS1, wS2....wSL] is a vector of weights from input
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layer (l = 1...L) to summation part of novel neuron and
WRB = [wRB1, wRB2....wRBL] is a vector of weights from
input layer to radial basis part of novel neuron. All weights,
bias and input-output signals are complex numbers.

2.2.1 Learning rules for C-TION1 based classifier

The product is inserted in the formulas for modeling the
non-linear operations. Here, it is expressed as a

⊗
b =

1 + a + b + ab. The C-TION1 neuron is defined as:

Y = fC

(
λ × WS ZT ⊗

γ × e−‖Z−WRB‖2) (5)

where ‖Z − WRB‖2 = (Z − WRB) × (Z − WRB)ℵ .
Here superscript ℵ represents the matrix complex conjugate
transposition. Let η ∈ [0, 1] be the learning rate and f

′
be

the derivative of the function f . w0 is a bias and z0 = 1+ j

is the bias input, where j is an imaginary unity. Let error
e = (D − Y ) be the difference between desired and actual
output. The proposed classifier contains only one layer of
C-TION1 neurons. The update rules for learning parame-
ters of considered classifier are derived using split-complex
error back-propagation algorithm, by minimizing following
real-valued cost function:

E = 1

2
|e|2 (6)

Let Vπ be the net potential ofC-TION1 neuron then from
(5) and definition of operation

⊗

Vπ = w0 z0 + λ WS ZT + γ e−‖Z−WRB‖2

+λ WS ZT γ e−‖Z−WRB‖2 (7)

This net internal potential of TION1 neuron may also be
expressed term wise as follows:

Vπ = w0 z0 + Vπ1 + Vπ2 + Vπ1 Vπ2 (8)

The update equations for different learning parameters
are as follows:

�wRB = 2 η e−‖Z−WRB‖2 (z − wRB)
{�(	π)

{�(γ ) (1 + �(Vπ1)) − �(γ )�(Vπ1)
}

+�(	π)
{�(γ ) (1 + �(Vπ1)) + �(γ )�(Vπ1)

}}
(9)

�wS = η z λ (1 + Vπ2) 	π (10)

�λ = η (WS ZT ) (1 + Vπ2) 	π (11)

�γ = η e−‖Z−WRB‖2 (1 + Vπ1) 	π (12)

�w0 = η z0 	π (13)

where

	π = (�(e) f ′(�(Vπ)) + j �(e) f ′(�(Vπ))) (14)

2.2.2 Learning rules for C-TION2 based classifier

The algebraic sum is inserted in the formulas for modeling
the linear operations. Here, it is expressed as a ⊕ b = 1 +
a + b. The C-TION2 neuron is defined as:

Y = fC

(
λ × WS ZT ⊕

γ × e−‖Z−WRB‖2) (15)

Let Vσ be net potential of C-TION2 neuron in the
classifier then from (15)

Vσ = w0z0 + λ WS ZT + γ e−‖Z−WRB‖2 (16)

The update equations for different learning parameters
are as follows:

�wRB = 2 η e−‖Z−WRB‖2 (z − wRB)

{�(	σ ) �(γ ) + �(	σ ) �(γ )}} (17)

�wS = η z λ 	σ (18)

�λ = η (WS ZT ) 	σ (19)

�γ = η e−‖Z−WRB‖2 	σ (20)

�w0 = η z0 	σ (21)

where

	σ = (�(e) f ′(�(Vσ )) + j �(e) f ′(�(Vσ ))) (22)

3 Performance evaluation

In order to evaluate the performance of the proposed deep
learning machine the standard biometric measures, error
rate (in another way percentage accuracy), FAR (False
acceptance rate) and FRR (False recognition rate), are con-
sidered in this section. FAR and FRR are inversely propor-
tional measurements, therefore, variable threshold setting is
provided for users to keep balance. It is generally desirable
that the recognition system must be much stricter to unau-
thorized persons and slightly stricter for authorized persons.
In all experiments, our selection of threshold is inclined in a
direction where we can obtain significantly lower FAR and
slightly higher FRR. The number of neurons in ensemble
is set to the number of image classes (subject). Each neu-
ron is trained to give output ‘1 + j ’ for its own class and 0
for another class. The number of nodes in the input layer is
equal to the number of elements in the feature vector. The
data values in the feature vectors are normalized to lie within
the first quadrant of a unit circle. An input face image pre-
sented to a neuron associated to its own class is considered
as a positive example, while images of other classes to this
neuron are considered as a negative example. The classifiers
are trained with learning rules presented in Section 2.2. For
testing the identity claim of a face image, anM ′ dimensional
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feature vector is extracted from the face image and this vec-
tor is given to every neuron or network dedicated to a subject
(person). The discriminant function applied in the proposed
system calculates the square deviation of the actual output
to the ideal output. An unknown feature vector is classified
as belonging to a class, when deviation is less than a thresh-
old. In general, the threshold can be determined from the
experimental studies.

The three sets of experiments are conducted for relative
performance evaluations of proposed deep learning machine
in terms of different neuron architectures and feature extrac-
tion algorithms presented in this paper. In all experiments,
four images of each subject are taken for training and the
rest are used for testing. The results presented in this paper
are an average outcome of five trainings with different
weight settings. For analysis purposes, the number of learn-
ing parameters in each complex-valued weight counts as
two, as in [31].

3.1 Performance with ORL face database

This database is designed by AT & T laboratories for
research purpose and available in [34] which contains facial
images of 40 different persons (subjects) and 10 differ-
ent samples of each subject image per person. There are
variations in facial expression (open or close eye, smiling
or frowning face), facial details (with or without glasses,
hairs), scale (up to 10 %), orientation (upto 20◦). Each
image was digitized and presented by 92 × 112 pixel array
whose gray level ranged between 0 to 255. As an example,
few sample images are shown in Fig. 1. A total 160 images
(four of each subject) have been used for training and rest
240 for testing.

Eigenvectors associated with higher eigenvalues provide
more information on the face variation than those with
smaller eigenvalues. Eigenvalues in RPCA and CPCA can
be used to plot a graph of variance (Fig. 2) captured by each
principal component. It is a cumulative distribution for M ′
components defined in (23). This graph permits us to select
the necessary eigenvectors for feature extraction in different
techniques. It is found that 48 eigenvectors or 30 % of the
maximum possible number of eigenvalues (training set has
160 images) of the CPCA is enough to account for more
than 93 % of the variations among the training set. While,
approximately 86 % of the total varience is kept in the same

Fig. 2 Variance captured by each principal component in RPCA and
CPCA for the ORL face database

number of eigenvectors of RPCA. Thus, with 48 subspace
dimensions CPCA yields better accuracy in recognition as
well as better class distinctiveness in comparison toRPCA.

∑M ′
i=1 ei

∑M
i=1 ei

where M ′ < M << N. (23)

The results demonstrate the recognition performance in
terms of different parameters (training epochs, weights,
FRR, FAR, recognition rate) are presented in Table 1.
The performance of different ANN architectures is bro-
ken down according to the feature extraction methods. The
remarkable feature of Table 1 is that classifier based on
TION1 and TION2 neurons in the complex domain requires
least training epochs and learning parameters with superior
recognition rate. TheCICA based feature extraction always
provides the best results. Though, the difference among dif-
ferent feature extraction methods in the context of accuracy
is not large, but it is significant because the class distinc-
tion is far better in CICA as compared to any other method.
Thus, in case of CICA, the deviation of square error from
threshold is quite high for class and non-class faces. For
roughly comparable FRR, the value of FAR is seen quiet
low in case of CICA based system; which makes it vigor-
ous to perform more effectively in real life situations. From
widespread simulations on the ORL face database, it is vital
to make following deductions:

Fig. 1 Example images from the ORL database
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Table 1 Assessment of training and testing performance for ORL face data set with different feature extractor and different neuron based classifier

S Neuron Network Parameters Feature Average FRR FAR Recognition

No Type Extraction Epochs Rate

1 R-MLP 48-8-1 40 × 401 RPCA 44000 0.092 0.032 96.6 %

RICA 6000 0.067 0.014 98.25 %

RPCA 28000 0.083 0.020 97.8 %

2 C-MLP 48-3-1 40 × 302 CPCA 28000 0.092 0.018 98.0 %

RICA 6000 0.087 0.016 98.2 %

CICA 6000 0.067 0.0095 98.9 %

RPCA 6000 0.092 0.020 97.7 %

3 C-TION2 48-1 40 × 198 CPCA 6000 0.080 0.014 98.3 %

RICA 4000 0.083 0.017 98.1 %

CICA 4000 0.075 0.009 99.0 %

RPCA 6000 0.086 0.020 97.85 %

4 C-TION1 48-1 40 × 198 CPCA 6000 0.075 0.009 98.8 %

RICA 4000 0.083 0.013 98.4 %

CICA 4000 0.070 0.006 99.25 %

– Class distinctiveness is very poor in case of RPCA and
CPCA.

– Class distinctiveness with RICA is slightly better than
PCA but it is best with CICA.

– The CICA based system is much stricter to unautho-
rized person.

In order to assess the sensitivity of different feature
extraction methods on the number of subspace dimension
variations, the comparative performance is given in Fig. 3.
The results of experiments are typical in part, because the
recognition rate does not increase monotonically with the
number of subspace dimensions. Figure 3 shows that the

Fig. 3 Recognition rate vs subspace dimension for different feature
extraction techniques in the ORL Face Database

feature extraction criterion performs reasonably well, when
48 features of subspace are chosen. The increase in sub-
space dimension does not improve the overall performance.
Though, the recognition rate in RPCA increases slowly
beyond 48 features, but still it is less than the CICA.

3.1.1 Performance with occluded and blurred images

The occlusion and blurring is introduced (electronically
modified) [47] in few images of ORL face data base to
examine the performance of the proposed techniques over
variations in distortion occurred. Recognition with different
feature extraction techniques depends on the degree of
occlusion and blurring introduced. In this experiment, we
consider the best performing classifier of C-TION1 neu-
rons.

Both PCA based face recognizers have fairly recognized
the occluded faces given in Fig. 4. Degree of occlusion in
these face is quite less. On increasing the degree of occlu-
sion (Fig. 5), it is observed that both RPCA and CPCA

based recognizerwerenot able to identify the set of faces inFig. 5.
But, they are well recognized by ICA based recognizer.

Fig. 4 Occluded images, recognized by both PCA based learning
machine
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Fig. 5 Occluded images, not recognized by any PCA based learning
machine but recognized by ICA based learning machine

Fig. 6 Occluded images which are only recognized by CICA based
learning machine, but can not be recognized by RICA and any PCA

based learning machine

Fig. 7 The occluded images, not recognized by any feature extractor
based learning machine

Fig. 8 The blurred images, recognized by ICA based system, but not
recognized by any PCA based learning machine

Fig. 9 The blurred images, only recognized by CICA based learning
machine, but can not be recognized by RICA and any PCA based
learning machine

Fig. 10 Blurred images, not recognized by any feature extractor based
learning machine

The reason was the poor class distinctiveness offered by
these methods. In another set of images, shown in Fig. 6,
it was observed that only CICA based recognition system
can correctly classify these faces, while other techniques
failed to do so. It turns out from these observations that
CICA provides more discriminating power than any other
technique. Figure 7 presents faces with very high occlu-
sion. Our experiments found that these images can not be
recognized by any considered method.

Similarly, Fig. 8 presents a set of blurred images which
were also not correctly identified by both PCA based meth-
ods; but recognized by ICA based methods. Another set
in Fig. 9 has comparatively high distortions. Only CICA

based methods are able to correctly classify them, while
rest methods failed to do so. It is due to robust class dis-
tinctiveness yielded by the CICA based system. Figure 10
presents blurred faces with very high degree of distortion,
which were not identified by even CICA. This limitation is
obvious.

3.2 Performance with yale face database

The Yale face database [46] contains 165 grayscale images
(11 images per person) of 15 individuals (subjects) from
different ethnicity and gender. The images are taken under
varying lighting conditions and different facial expressions
: center-light, left-light, right-light, with or without glasses,
normal, happy, sad, sleepy, surprised and wink. The spatial
and gray-level resolution of the images are 320 × 243 and
256, respectively. As an example, few sample images are
shown in Fig. 11.

Figure 12 presents the variation captured by the principal
components of the training set in CPCA and RPCA. This
information prompted us to select 15 eigenvectors from the
set of 60 training images of 15 subjects for further feature
extraction. A set of 105 images of 15 subjects is consid-
ered for testing. The test results of Yale face data set with
different feature extraction techniques and neuron architec-
tures are presented in Table 2. Different measures clearly
demonstrate that the recognition system developed in a com-
plex domain outperforms in all respects. Classifiers based
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Fig. 11 The example images from Yale Database

on C-TION1 and C-TION2 neurons give effectively bet-
ter accuracy with smaller network topology and much less
number of training epochs. It is also observed that class dis-
crimination in CPCA is better than RPCA, because 15
eigenvectors from CPCA accounts for more than 93 % of
the variations among the training set while, 84 % of the total
variance is by RPCA. Among different combinations, the
superiority CICA and C-TION1 is again demonstrated in
this experiment. CICA based system is also much stricter to
unauthorized people.

The recognition accuracy with respect to dimensionality
of subspace among different feature extraction procedure
are given in Fig. 13. For every technique, the maximum
recognition rate occurs at a different number of subspace
dimensions, suggesting that it may not be possible to choose
a subspace dimension for all techniques. Figure 13 shows
that CICA achieve a higher recognition accuracy with a
smaller size of the subspace. It is also observed that CPCA

performs better at lower dimension, while the performance
of RICA and RPCA increases smoothly with an increase
in subspace dimension. This argument has had correspon-
dence with curve shown in Fig. 12, where CPCA has more
variance at lower dimension.

Fig. 12 Graph of variance captured by each principal component of
Yale Face Database

3.3 Performance with Indian face database

I consider 500 color images corresponding to 50 subjects
of Indian face database [21]. All images (640 × 480 pix-
els) have a bright homogeneous background and different
poses (looking front, looking left, looking right, looking
up, looking up toward the left, looking up toward the
right, looking down) and emotions (neutral, smile, laughter,
sad/disgust). As an example, few sample images are shown
in Fig. 14. The number of images considered for training
and testing is 200 and 300 respectively. I obviously want
to capture as much variations as possible of the training set
with fewest number of subspace dimensions. The graph in
Fig. 15 allows me to see more clearly how much variation is
captured by eigenvectors. This information prompted us to
select 60 eigenvectors from the set of 200 training images
of 50 subjects for further feature extraction. They corre-
spond for keeping more than 92 % of total variance in the
eigenvalues of this data set.

The simulation results of considered database with dif-
ferent feature extractor and neural classifiers are presented
in Table 3 in terms of different measures. It again reveals
the superiority of the C-TION1 based classifier. The fea-
ture vectors yielded by ICA based methods provide faster
learning in all neural classifiers. It is worthwhile to men-
tion that this face data set have much variations in poses,
which decrease its recognition accuracy. But, the perfor-
mance of CICA in feature extraction is significant in terms
of precision in the classification and accuracy. With CICA,
classification error is quite low for class faces while it is
quite high for non-class faces. From extensive simulations
on this face data set, it is imperative to make following
inferences:

– Class distinctiveness is very poor in case of RPCA and
CPCA.

– Class distinctiveness with RICA is slightly better than
PCA but it is best with CICA.

It allowsCICA to perform very well in noisy and blurred
images, which are generally captured in real environmental
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Table 2 Assessment of training and testing performance for Yale face data set with different feature extractor and different neuron based classifier

S Neuron Network Parameters Feature Average FRR FAR Recognition

No Type Extraction Epochs Rate

1 R-MLP 15-8-1 15 × 137 RPCA 22500 0.13 0.08 91.75 %

RICA 10500 0.10 0.05 94.6 %

RPCA 15000 0.11 0.041 95.5 %

2 C-MLP 15-3-1 15 × 104 CPCA 15000 0.10 0.035 96.0 %

RICA 9000 0.10 0.040 95.60 %

CICA 9000 0.10 0.026 96.60 %

RPCA 7500 0.13 0.041 95.10 %

3 C-TION2 15-1 15 × 66 CPCA 7500 0.11 0.041 95.35 %

RICA 5250 0.12 0.036 95.85 %

CICA 5250 0.10 0.024 97.0 %

RPCA 7500 0.09 0.040 95.3 %

4 C-TION1 15-1 15 × 66 CPCA 7500 0.12 0.034 96.0 %

RICA 5250 0.10 0.036 96.0 %

CICA 5250 0.11 0.020 97.4 %

situations. The analysis of different feature extraction meth-
ods as a function of the dimension of condensed subspace
is presented in Fig. 16. It is obtained from the best perform-
ing C-TION1 classifier. CICA outperforms over all other
methods, it is statistically more significant when we con-
sider a lesser number of subspace dimensions. The relative
ordering of the subspace projection techniques depends on
the number of subspace dimensions. The performance of
the CPCA is better in lower dimensions while RPCA is
better in higher dimensions. It is again observed that the

Fig. 13 Recognition rate vs subspace dimension for different feature
extraction techniques in Yale Face Database

recognition rate with CICA is always better along with
other parameters.

3.3.1 Performance with occluded and blurred images

The class distinctiveness must also be taken into account
in comparing different feature extraction techniques in any
classification studies specially where noise is involved. In
order to assess the robustness of different feature extrac-
tion techniques to noise, distortions and other environmental
effects, I carried out a comparative assessment over electro-
nically modified images [47]. Figure 17 presents a set of
images in which low distortion is introduced. These images are
passed to previously trainedC-TION1 classifiers with diffe-
rent feature extraction techniques. CICA and RICA based
classifiers are able to correctly classify them while any PCA
based classifiers are not able to recognize them. Another
set of images in Fig. 18 has comparatively more distortions
and effects. These images can not be recognized by any
PCA and RICA, while CICA based recognition system is
able to correctly identify them. It is due to the better class
distinctiveness yielded by CICA. Though, there are a few
limitations of this technique as there are always in every
method. Figure 19 presents some images where CICA also
failed to perform proper recognition. Therefore, the basis
vectors obtained by CICA are superior to RICA and PCA
in the sense that it provides feature vectors, which are more
robust to the effect of noise. It is therefore demonstrated
in this experiment that CICA outperforms other techniques
for recognition especially in real life situations.
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Fig. 14 The example images from Indian face database

Fig. 15 Graph of variance captured by each principal component of
the Indian face database

Fig. 16 Recognition rate vs subspace dimension for different feature
extraction techniques in Indian face database

Table 3 Assessment of training and testing performance for Indian face data set with different feature extractor and different neuron based
classifier

S Neuron Network Parameters Feature Average FRR FAR Recognition

No Type Extraction Epochs Rate

1 R-MLP 60-8-1 50 × 497 RPCA 45000 0.19 0.055 93.8 %

RICA 25000 0.17 0.045 95.3 %

RPCA 30000 0.20 0.044 95.0 %

2 C-MLP 60-3-1 50 × 374 CPCA 30000 0.21 0.046 94.8 %

RICA 10000 0.17 0.040 95.5 %

CICA 10000 0.17 0.035 96.6 %

RPCA 20000 0.17 0.042 95.3 %

3 C-TION2 60-1 50 × 246 CPCA 20000 0.18 0.046 95.0 %

RICA 10000 0.20 0.041 95.5 %

CICA 10000 0.16 0.029 96.8 %

RPCA 20000 0.15 0.041 95.4 %

4 C-TION1 60-1 50 × 246 CPCA 20000 0.16 0.043 95.2 %

RICA 10000 0.20 0.037 95.9 %

CICA 10000 0.17 0.025 97.2 %
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Fig. 17 Occluded images, not
recognized by any PCA based
system recognition system; but
recognized by RICA and
CICA based learning machine

Fig. 18 Occluded images,
recognized with only CICA

based learning machine

Fig. 19 Occluded images,not
recognized with any feature
extraction based learning
machine
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4 Inferences & discussion

This paper presents a state-of-art deep learning machine
with different feature extractors and classifiers in the com-
plex domain. A detailed comparative analysis is carried
out with real domain feature extractor. I explored the dis-
criminating power in conjunction with thresholding based
rejection. Different architectures of ANN ensemble, their
suitability for classification and robustness for rejection
of unauthorized cases have been throughly examined. The
structure for proposed recognizer is a One-Class-in-One-
Neuron (OCON) which contains the ensemble of single
C-TION2 or C-TION1 neurons instead of an ensemble of
neural networks. The remarkable achievement in proposed
recognizer (classifier) is its compact structure, improved
learning speed, lesser weights storage and better accuracy in
recognition. Performance evaluation presented in this paper
by different architecture of recognizer is very strict to unau-
thorized persons (low FAR) but also strict for authorized
person.

Instead, I compared different feature extractors on three
face data sets across different recognizers. It is signifi-
cantly observed that the relative ranking of feature extrac-
tion algorithm never changes. When we move from real
to complex domain, though it increases the computations
in terms of mathematical operations with complex data,
but it is not significant in comparison to the improvements
we achieve in performance with proposed recognizer. The
CICA coefficients have consistently shown a greater class
discrimination ability than RICA and RPCA coefficients.
The CICA based system has also yielded quiet low FAR
value for approximately similar FRR value, which is always
desirable.

Our extensive experiments have found that CICA is
robust enough to recognize images with different distortions
and variations. Such distortions generally arise in real life
situations. CICA has given significant performance under
blurring, partial occlusion and other electronically modified
images. Thus, its reduced sensitivity to noise and robust dis-
tinctiveness between classes make it work more effectively
in real environment. More importantly, I have developed a
simple, but efficient recognition system, which also need
minimum weight storage for future testing. I conclude that
CICA combined with C-TION1 outperforms over other
techniques in all respects.
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