
Appl Intell (2017) 47:505–525
DOI 10.1007/s10489-017-0898-z

The mean-variance cardinality constrained portfolio
optimization problem using a local search-based
multi-objective evolutionary algorithm

Bili Chen1 ·Yangbin Lin1 ·Wenhua Zeng2 ·Hang Xu2 ·Defu Zhang3

Published online: 10 April 2017
© Springer Science+Business Media New York 2017

Abstract Portfolio optimization problem is an important
research topic in finance. The standard model of this prob-
lem, called Markowitz mean-variance model, has two con-
flicting criteria: expected returns and risks. In this paper,
we consider a more realistic portfolio optimization prob-
lem, including both cardinality and quantity constraints,
which is called Markowitz mean-variance cardinality con-
strained portfolio optimization problem (MVCCPO prob-
lem). We extend an algorithm which is based on a multi-
objective evolutionary framework incorporating a local
search schema and non-dominated sorting. To quantitatively
analyze the effectiveness of the proposed algorithm, we
compared our algorithm with the other five algorithms on
public available data sets involving up to 225 assets. Several
modifications based on the fundamental operators and pro-
cedures of the algorithm, namely, the boundary constraint
handling strategy, the local search schema, the replacement
strategy and the farthest-candidate approach, are proposed
one-by-one. Success of this exercise is displayed via sim-
ulation results. The experimental results with different car-
dinality constraints illustrate that the proposed algorithm
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outperforms the other algorithms in terms of proximity and
diversity. In addition, the diversity maintenance strategy
used in the algorithm is also studied in terms of a spread
metric to evaluate the distribution of the obtained non-
dominated solutions. The sensitivity of our algorithm has
also been experimentally investigated in this paper.

Keywords Portfolio optimization · Multi-objective
evolutionary framework · Local search · Non-dominated
sorting

1 Introduction

The problem of portfolio optimization is an important
research topic in finance, which has attracted much attention
in recent years. Markowitz [1, 2] proposed a famous model
called mean-variance (MV) model to solve this problem.
This model has two conflicting criteria: expected returns
and risks. The target of the problem is to assign a given cap-
ital to different available assets for the purpose of minimiz-
ing the risk and maximizing the expected return. Because
of the two conflicting objectives, there is a set of optimal
solutions which is named efficient portfolios rather than the
single optimal portfolio in the MV model. In addition to
these two objectives, constraints are always imposed on the
model for more realistic management decisions, such as car-
dinality constraint, i.e., the size of holding assets is limited,
and quantity constraint, i.e., a lower and an upper proportion
of a particular asset is constrained [3]. MV model with car-
dinality and quantity constraints for portfolio optimization
is usually called MVCCPO problem (Mean-Variance Cardi-
nality Constrained Portfolio Optimization problem), which
has aroused the interest of many researchers to design var-
ious algorithms. These algorithms are usually divided into
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two categories: exact algorithms and heuristic algorithms.
Next, we will give a brief introduction about them.

1.1 Exact algorithms

Bienstock [4] proposed a branch-and-cut algorithm to find
the exact solutions of the cardinality constrained portfolio
optimization. Jobst et al. [5] studied the effects of the port-
folio selection problem with buy-in thresholds, cardinality
constraints and transaction round lot restrictions. Then, they
adopted a branch-and-bound algorithm to solve them. Li
et al. [6] presented a convergent Lagrangian and contour-
domain cut method to get an optimal solution for the
MVCCPO problem. Shaw et al. [7] proposed a Lagrangian
relaxation procedure which is able to take advantage of the
special structure of the objective function to solve the the
MVCCPO problem. Vielma et al. [8] developed a linear pro-
gramming based branch-and-bound algorithm for the exact
solution of a portfolio optimization problem. Bertsimas and
Shioda [9] proposed branch-and-bound based algorithms
which use the special structure for the exact solution of
a cardinality-constrained quadratic optimization problems.
The computational results have indicated that these algo-
rithms have practical advantages for some special problems.
Gulpinar et al. [10] introduced a local deterministic opti-
mization method which is based on the difference of convex
function programming and developed a difference of convex
algorithm to find the exact solution of the MVCCPO prob-
lem. Computational results have indicated that the algorithm
is superior to the standard approach on historical data. The
disadvantage of the exact algorithm is that it always has a
high computation time and can only find an optimal solution
within a specified time.

1.2 Heuristic algorithms

The heuristic algorithms try to find the optimal solutions
in a reasonable time, but are not guaranteed to get the
optimal solutions. There are many heuristic algorithms
including: Evolutionary Algorithm (EA), tabu search, Dif-
ferential Evolution (DE), Simulated Annealing (SA), and
Particle Swarm Optimization (PSO), etc. Many researchers
devoted themselves to improve these algorithms. For exam-
ple, Padhye and Deb improve the DE through a unified
approach in [11] and the PSO by an algorithmic link
with genetic algorithms in [12]. Some heuristic algorithms
called Multi-objective evolutionary algorithms (MOEAs)
are designed for solving Multi-objective Optimization Prob-
lems (MOPs), namely, Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [13], Strength Pareto evolution-
ary algorithm 2 (SPEA2) [14], Non-dominated sorting and
Local search based multi-objective evolutionary algorithm
(NSLS) [15], Decomposition based MOEA (MOEA/D)

[16], Decomposition based MOEA with DE (MOEA/D-
DE) [17], MOEA/D with a two-phase strategy and a
niche-guided schema (MOEA-TPN) [18], and ND/DPP (a
dual-population based algorithm which combines NSGA-
II and MOEA/D-DE) [19]. Furthermore, researchers have
proposed several novel general methods such as efficient
non-dominated sort (ENS) [20], adaptive hybrid crossover
operator (AHX) [21], and adaptive memetic computing [22]
to improve these MOEAs. Chang et al. [3] employed EA,
tabu search and SA to solve the MVCCPO problem. And
a number of publications follows the work of Chang et al.
[3]. Schaerf [23] adopted local search, tabu search and
SA for the MVCCPO problem. Crama and Schyns [24]
proposed an SA method for the mixed integer quadratic pro-
gramming problem which is a MV model with additional
realistic constraints. Derigs and Nickel [25] presented an
SA based decision support system generator and a tracking
error model with data stemming for measuring the per-
formance of the portfolio. They continue the work, which
can be found in Derigs and Nickel [26]. Ehrgott et al.
[27] proposed a method based on multi-criteria decision
making and utilized a customized local search, SA, tabu
search and genetic algorithm heuristics to solve four test
problems. Streichert and Tanaka-Yamawaki [28] adopted
a hybrid multi-objective evolutionary algorithm combined
with a local search schema on the constrained and uncon-
strained portfolio selection problem. Fernandez and Gomez
[29] utilized an artificial neural networks based heuristic
algorithm to find the efficient frontier of the portfolio selec-
tion problem and compare it with the previous heuristic
algorithms. Chiam et al. [30] proposed a multi-objective
based approach to find the efficient frontier of the classi-
cal MV model. Branke et al. [31] combined an active set
algorithm with a MOEA which is called envelope-based
multi-objective evolutionary algorithm and the computa-
tional results illustrate that the algorithm is superior to the
existing MOEAs. Cura [32] presented a heuristic algorithm
based on PSO to solve MVCCPO problem and compared
it with the genetic algorithms, SA and tabu search. Exper-
imental results have shown that the PSO based approach
outperforms the other methods. Pai and Michel [33] adopted
k-means clustering to eliminate the cardinality constraints
and utilized a variant version of (µ+λ) evolution strat-
egy to make the reproduction process converge rapidly.
Soleimani et al. [34] used a corresponding genetic algo-
rithm to solve the mixed-integer nonlinear programming on
some test problems involving up to 2000 assets. Chang et
al. [35] presented a heuristic method based on genetic algo-
rithm for the portfolio optimization problems with three
different risk measures and they have demonstrated the
results on three test problems, involving up to 99 assets.
Anagnostopoulos and Mamanis [36] considered the portfo-
lio selection as a tri-objective optimization problem to find a
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tradeoff between risk, return and the number of assets. They
also considered the quantity and class constraints and used
three wellknown MOEAs: NSGA-II [13], Pareto Envelope-
based Selection Algorithm (PESA) [37] and SPEA2 [14] to
solve the problem. Furthermore, they have compared five
state-of-the-art MOEAs on the MVCCPO problem in [38].
They are Niched Pareto genetic algorithm 2 (NPGA2) [39],
NSGA-II, PESA, SPEA2 [14], and e-multi-objective evo-
lutionary algorithm (e-MOEA) [40], which are performed
on the public benchmark data sets. Computational results
have illustrated a superiority of SPEA2 and NSGA-II in
the five MOEAs. Ruiz-Torrubiano and Suarez [41] pre-
sented a hybridization of evolutionary algorithms, quadratic
programming and devised pruning heuristics for the MVC-
CPO problem. Woodside-Oriakhi et al. [42] studied the
application of genetic algorithm, tabu search and SA based
meta-heuristic algorithms to find the cardinality constrained
efficient frontier (CCEF) of the MV model. They reported
the computational results in terms of the quality of solu-
tion and the computation time on the publicly available data
sets involving up to 1318 assets. Lwin and Qu [43] pre-
sented a hybrid algorithm which uses an elitist strategy and
a partially guided mutation to improve the solution. Murray
and Shek [44] suggested a local relaxation approach which
is also suitable for large scale MVCCPO problem. Deng
et al. [45] considered the MVCCPO problem as a single-
objective problem and proposed an improved PSO to solve
it. Liagkouras and Metaxiotis [46] proposed a new Probe
Guided Mutation (PGM) operator, which is used in conjunc-
tion with MOEAs to solve the MVCCPO problem. Tuba
and Bacanin [47] incorporated the Firefly Algorithm (FA)
into the Artificial Bee Colony (ABC) algorithm to solve the
MVCCPO problem. The search method from FA improves
exploitation and convergence speed of the original ABC
algorithm. The algorithm was compared with genetic algo-
rithms, SA, tabu search and PSO. Experimental results show
that the algorithm is better than the other algorithms. Cui
et al. [48] hybridized PSO and a mathematical program-
ming method to solve the MVCCPO problem. Experimental
results show that the algorithm is useful. Baykasoğlu et al.
[49] developed a greedy randomized adaptive search pro-
cedure (GRASP) in the assert selection level to choose
exactly number of asserts and used the quadratic program-
ming model to deal with the other problem constraints. The
computational results demonstrate that the proposed algo-
rithm is competitive with the state of the art algorithms.
Ruiz-Torrubiano and Suárez [50] consider the MVCCPO
problem with transaction costs, which is an extension of
the MV model. Because of transaction costs, the authors
used a “rolling window” procedure to evaluate the out-of-
sample performance of the portfolios. The authors presented
a memetic algorithm combined with a genetic algorithm
and quadratic programming. The method is tested on the

publicly available data with a various range of investment
strategies and the results show that their algorithm can
improve the performance of the portfolio model with trans-
action costs. For reason of space, the reader is referred to
Metaxiotis and Liagkouras [51] for more information about
the literature survey on the portfolio selection problem.

Recently, Chen et al. [15] proposed a new Non-dominated
sorting and Local search based multi-objective evolution-
ary framework (NSLS) to solve MOPs. However, NSLS is
only used to deal with some benchmark test problems with
the MOPs without constraints. In this paper, we propose a
method called e-NSLS which is an extension of NSLS for
the purpose of effectively solving the MVCCPO problem
with both cardinality and quantity constraints. Moreover, we
tested e-NSLS on five public available benchmarks involv-
ing up to 225 assets in comparison with the state-of-the- art
algorithms.

The rest of this paper is organized as follows: Section 2
details the MVCCPO problem. Section 3 briefly introduces
three contrast algorithms. Details of the proposed algorithm
for solving the MVCCPO problem are presented in Section
4. Section 5 provides the numerical comparison results. And
Section 6 concludes.

2 Portfolio optimization

The MVCCPO problem can be formalized by:

min ρ (x) =
∑n

i=1

∑n

j=1
xixj rij (1)

=
∑n

i=1

∑n

j=1
xixj cij σiσj

max μ (x) =
∑n

i=1
xiμi (2)

s.t.
∑n

i=1
xi = 1 (3)

∑n

i=1
θi ≤ K (4)

liθi ≤ xi ≤ uiθi i = 1, 2, . . . , n (5)

θi ∈ {0, 1} , i = 1, 2, . . . , n (6)

where n is the number of assets available in the portfolio
optimization; xi is the investment proportion of the ith asset;
rij is the covariance between asset i and j ; cij is the corre-
lation between the returns of assets i and j ; σi and σj are
the standard deviation of the return of assets i and j , respec-
tively; μi is the expected return of the ith asset. ρ (x) is the
variance of portfolio x; μ (x) is the expected return of port-
folio x; θi is a binary variable which specifies whether asset
i is held in the portfolio or not. If asset i is held, then θi = 1,
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otherwise, θi = 0; K is the maximum number of assets
allowed in the portfolio; li and ui are the lower and upper
proportion of the total investment of asset i, respectively.

Equation (1) minimizes the risk (variance) associated
with the covariance matrix and the selected portfolio.
Equation (2) maximizes the expected return. Equations (3),
(4), (5), and (6) are the constraints. Equation (3) ensures
that the sum of investment proportions of each asset is equal
to one. Equation (4) is the cardinality constraint ensuring
that there are no more than K assets are held. Equation (5)
ensures that the investment proportion of each asset is
bounded in the lower and upper proportion. Equation (6)
determines whether asset i is held or not.

The model is obviously a MOP with two objectives: risk
(variance) and the expected return (mean). The target of
the model is to find all non-dominated portfolios which
can be called efficient portfolios. Denote a portfolio x as
x = (x1, x2, . . . xi, xn), where xi is the investment propor-
tion of the ith asset. Supposed two portfolios x1 and x2, x1

is said to dominate x2 (denoted as x1 � x2), when μ1 ≥ μ2,
ρ1 ≤ ρ2 and at least one is inequality. An efficient portfolio
is defined when the portfolio is not dominated by any other
portfolios.

3 The contrasting algorithms

Evolutionary algorithms (EAs) [52] are stochastic search
heuristic that simulates the process of natural evolution. The
EAs mainly contain three operators: selection, crossover
and mutation. The general framework of EAs is illustrated
as follows:

Where t and T are the iteration counter and the maximum
number of iterations, respectively; Pt and Qt are the popula-
tion in iteration t and the external population, respectively;
and g denotes the operator updating the next population
in different EAs. After initialization, when the number of
iterations t does not reach T, at each iteration, the current
population is first evaluated using a fitness function that
is usually directly related to the objective function. Next,

individuals with the best fitness value are selected to a mat-
ing pool and some new individuals are created by crossover
and mutation operator. Finally, an updating mechanism
replaces these older individuals with better individuals to
participate in the next generation. The role of crossover
operator is actually a recombination of two parents in the
mating pool making, so that the child can share the char-
acteristics of its parents. And the mutation operator is used
to partially modify the newborn child. By constantly chang-
ing the population, these individuals become stronger than
former through the evolutions.

EA has a popular application for solving MOP, which
is called MOEA. In 2011, Anagnostopoulos and Mama-
nis [38] compared the effectiveness of five state-of-the-art
MOEAs for the MVCCPO problem on the public bench-
mark data sets. Experimental results indicate that SPEA2
and NSGA-II are superior to the other three algorithms:
NPGA2, PESA and e-MOEA. Therefore, the best two algo-
rithms: NSGA-II and SPEA2 in [38] are used here for com-
parison. Furthermore, Zhang et al. [16] proposed MOEA/D,
which is based on decomposition. Their research group fur-
ther improved MOEA/D and proposed a better algorithm
called MOEA/D-DE (a new version of MOEA/D) in [17].
Therefore, in this paper, e-NSLS is compared with the
above three algorithms: SPEA2, NSGA-II and MOEA/D-
DE. In this section, we briefly introduce the main ideas
of these three algorithms. Furthermore, we also compare
our algorithm with ABC-FC and GRASP-QUAD, which
are the recent heuristic algorithms to solve the MVCCPO
problem. ABC-FC [47] is an artificial bee colony (ABC)
algorithm improved with the firefly algorithm (FA) applied
to the MVCCPO problem. GRASP-QUAD [49] contains
two procedures, namely, stock selection and proportion
determination to solve the cardinality portfolio optimization
problem, which has only one objective.

4 A local search-based heuristic algorithm
for portfolio optimization e-NSLS

NSLS is based on the non-dominated sorting suggested
in NSGA-II and presents a new local search schema for
convergence. Furthermore, a farthest-candidate mechanism
which is used in the sampling theory is combined for diver-
sity preservation. NSLS is an efficient algorithm for solving
MOPs. At each iteration, given a population S, NSLS
adopt a local search schema to obtain a better population
S′, and then non-dominated sorting is performed on S ∪ S′
to get a new population for the next iteration. In addition,
the farthest candidate approach is adopted to help the non-
dominated sorting procedure to select the new population.
NSLS maintains two populations: the current population S

which is called the internal population and the population
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S′ produced by the local search schema which is called
the external population in this paper. The former one is
analogous to the population in EAs and the latter one is anal-
ogous to the archive. In this paper, the size of S is equal to
the size of S. Therefore, here, we denote the size of S as
N and S′ as Narc for convenience. In this paper, we pro-
pose an extension of NSLS (e-NSLS) to solve the MVCCPO
problem which has several constraints. In addition, a repair
strategy is adopted in e-NSLS for the purpose of making the
solution satisfy the constraints.

4.1 Portfolio representation and encoding

For the sake of using NSLS to solve the portfolio problem,
we adopt the similar portfolio representation and encoding
as [38]. The following two vectors are used to specify a
portfolio:

θ = {θ1, θ2, . . . , θn}, θiε{0, 1}, i = 1, 2, . . . , n. (7)

x = {x1, x2, . . . , xn}, 0 ≤ xi ≤ 1, i = 1, 2, . . . , n. (8)

where n is the available number of assets; θi determines
whether asset i is included in the portfolio. xi is a real value
storing the proportion of the investment in asset i.

4.2 Initialization

In the initialization phase of e-NSLS, a population with size
of N is randomly generated. The variables of each solu-
tion in the first population are randomly valued between the
bounds.

4.3 Local Search Schema

Local search is a heuristic method which is usually used for
dealing with optimization problems. In this paper, the local
search schema proposed in NSLS is utilized for producing
some neighborhoods as candidates. Supposed that there is a
portfolio x(x1, x2, . . . , xn), the new neighborhoods of x is
calculated as follows:

x′
i = xi ± τ × (bi − ci) i ∈ [1..n] (9)

where, b and c are two portfolios randomly selected
from population S; τ , which follows a normal distribu-
tion N (μ, σ), plays the role as a perturbed factor to avoid
the local search schema converging fast to the efficient
front. The local search schema has the ability to exploit
information about the search space in producing new neigh-
borhoods. The distance between the neighbor portfolio and
the current portfolio should neither be too wide nor too nar-
row. If the generated neighbor portfolios are far away from

the current portfolio, it will slow down the convergence
to the optimal. On the contrary, if the neighbor portfolios
are distributed too narrow from the current portfolio, the
diversity may decrease and the convergence speed will be
too fast. Therefore, the strategy of producing local search
neighborhoods should be appropriate to satisfy a balance
of exploration and exploitation. The local search schema
proposed in NSLS can meet the above demands.

Assuming a population S, our algorithm repeatedly tries
to enhance the portfolio in S by replacing it with the neigh-
boring portfolios produced by the local search schema.
Assuming a current portfolio x, portfolios x1 and x2 are
determined by x according to (7). The principle of replace-
ment strategy is as follows:

(1) If portfolio x1 dominates x and portfolio x2 dominates
x, replace x by x1 or x2 randomly.

(2) If portfolio x1 dominates x only, replace x by x1;
(3) If portfolio x2 dominates x only, replace x by x2;
(4) If portfolio x1 does not dominate x and portfolio x

does not dominate x1, replace x by x1;
(5) If portfolio x2 does not dominate x and portfolio x

does not dominate x2, replace x by x2;

Note that in NSLS, the substitution operation occurs in
each variable. This means that when the number of port-
folio variables increases, the computational complex will
increase too. Therefore, e-NSLS does not allow substitu-
tion in each variable. Only some randomly chosen variables
require the substitution operation. Let e denote the num-
ber of variables that needs the operation. e is defined as
follows:

e = 2ω ∗ √
n (10)

where n is the number of variables and ω is a control fac-
tor related to the number of variables. When the number of
variables is high, ω is used to increase the number of substi-
tution operations to achieve a better convergence. e-NSLS
then randomly choose e variables to perform the substitution
operation.

4.4 The fast nondominated sorting
and the farthest-candidate approach

The fast non-dominated sorting is a key technology pro-
posed in NSGA-II, which is used for selecting a new
population. The fast non-dominated sorting ranks all indi-
viduals into some fronts with different rank value. At each
iteration, the algorithm needs to combine the old and new
population produced by the local search schema, and selects
a new population of size N from the combined population
for entering the next iteration. The algorithm chooses the N

best solutions from the combined population according to
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the ranking fronts. We denote the last front selected by the
algorithm as Fe. Usually, the number of solutions in Fe will
exceed N . Therefore, a technology needs to be developed
for selecting the best required solutions in Fe. In NSGA-
II, crowding-comparison mechanism was proposed to solve
the problem. In NSLS, a farthest-candidate approach which
has a good effect for maintaining the diversity is adopted. In
the farthest-candidate approach, the solution which is unse-
lected and farthest from the selected solutions is defined as
the best solution. The best solution in Fe is chosen from the
unselected solutions one by one until the number of selected
solutions is equal to N . For the detailed information about
these two technologies, the reader is referred to [13, 15],
respectively.

4.5 The framework of e-NSLS

The proposed method is an iteration-based algorithm. Given
a maximum generation denoted here as T and a current pop-
ulation of portfolios St , the algorithm constantly improves
St by iteration for T times. At each iteration, a new popu-
lation S′

t is constructed by performing local search schema
on the current population St and the fast non-dominated
sorting approach is adopted on St ∪S′

t , and then the farthest-
candidate approach for diversity preservation is adopted to
select the next population St+1. The overall algorithm is
shown in the Pseudo Code of e-NSLS.

The computational complexity of one iteration of e-
NSLS is as follows: the local search is O

(
MN

√
e
)
; the

fast non-dominated sorting is O
(
M (2N)2) and the farthest

candidate approach is O(MN2). Where n is the number
of variables, N is the size of the internal population and
M is the number of the objectives. Usually, n is usually
smaller than N , so the total computational complexity of
e-NSLS is dominated by non-dominated sorting which has
a computational complexity O

(
MN2

)
.

4.6 Constraints handling method

Constraints are another difficulty in the portfolio problem,
and all solutions used during the algorithm must satisfy
these constraints. Therefore, a solution repair algorithm is
essential after the objective values are computed. In this
paper, we randomly select k (k <= K) maximum assets
if the number of assets in the portfolio is greater than the
maximum allowed number K .

Another problem is to deal with the budget amount, i.e.,
the lower and upper proportion constraint. The following
equation can sum to one and satisfies the lower proportion
limit.

x′
i = li∗θi+ xi ∗ θi∑n

k=1xk ∗ θk

∗(1−
∑n

k=1
lk ∗ θk) i = 1, 2, . . . , n.

(11)

An iterative procedure presented in Chang et al. [3] is
adopted here to satisfy the upper proportion limit. In [3], the
proportions which are larger than the upper proportion ui

are set as the value of ui . There exists several methods to
bring the violated solution into the required range. Padhye
et al. [53] summarized the constraint-handling strategies
for real parameter evolutionary optimization and proposed
two new inverse parabolic constraint-handling methods. In
this paper, four simple and popular methods from [53]
are chosen to handle with the upper proportion constraints
in the MVCCPO problem. These four methods are Ran-
dom method, Periodic mehtod, Setonboundary method, and
Exponential Spread (EXP-S) method, respectively. In fact,
the violated solution handling strategy of the iterative pro-
cedure used in [3] is exactly the Setonboundary method.
In e-NSLS, a candidate solution is produced by three par-
ents. The inverse parabolic constraint-handling methods and
shrink approach in [53], which bring the violated solution
into the allowed range through one parent solution are not
suitable for the proposed algorithm here.

(1) Random method is one of the common and useful
approach for dealing with the lower and upper propor-
tion constraints. The solution out of the range of the
lower and upper proportion is replaced by a random
chosen value in the range [li , ui] as follows:

xnew
i = random [li , ui], xi > ui or xi < li (12)

(2) The periodic method assumes that there exists a peri-
odic repetition of the objective function with a periodic
p = ui − li . A violated solution is mapped in the range
[liui] by the following equation:

xnew
i =

{
li + (xi − ui) %p, xi > ui

ui − (li − xi) %p, xi < li
(13)
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(3) The setonboundary method is carried out by resetting
the violated solution on the bound of the range which
it violates as follows:

xnew
i =

{
ui, xi > ui

li , xi < li
(14)

(4) The EXP-S method uses an exponential probabil-
ity distribution to set the violated solution inside the
feasible range. The applied exponential probability
distribution is spread over the entire feasible range.
The probability increases from the lower bound to
the upper bound in the direction toward the violated
boundary. For any random number r within [0,1], a
violated solution is mapped in the range [li , ui] by the
following equation:

xnew
i =

{
li + ln(1 + r(exp (ui − li ) − 1), xi > ui

ui − ln(1 + r(exp (ui − li ) − 1), xi < li

(15)

Finally, to make all these proportions sum to one, an iter-
ative procedure is used to adjust them. More information
about the procedure, the reader may refer to Chang et al
[3]. In the experimental section, we test the effectiveness
of these four boundary constraint handling strategies in
Section 5.3.1, hereafter choose one of them as the boundary
constraint handling strategy in the proposed algorithm.

5 Computational results

The behavior of e-NSLS is compared to NSGA-II,
SPEA2, MOEA/D-DE, ABC-FC and GRASP-QUAD
on the benchmark data which is publicly available at:
http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/portinfo.html.
These data refer to weekly stock price between March 1992
and September 1997. The complete information of the
assets is included in the data package and is summarized in
Table 1. Each portfolio problem file is composed of n assets.
For each asset i, the file provides the mean return μi , the
standard deviation of return σi . In addition, the correlation
ci,j for each pair of asset i and j is also included in the file.
The risk between asset i and j can be computed as follows:

ri,j = ci,j ∗ σi ∗ σj (16)

All algorithms have been implemented in C++ and exe-
cuted on Microsoft Window 7 Intel core 2 Duo CPU E8400
3.00GHz, with 2GB RAM.

Table 1 Information about test problem instances

Test problem instances Abbreviation Number of assets

Hong Kong Hang Seng P1 31

German Dax 100 P2 85

British FTSE 100 P3 89

US S&P 100 P4 98

Japanese Nikkei 225 P5 225

5.1 Performance indicators

5.1.1 The Inverted Generational Distance (IGD)

In this paper, the inverted generational distance (IGD)
[54] is adopted to compare the quality of the proposed
method with other algorithms. Let F ∗ be a set of the
true unconstrained efficient frontier (TUEF) that contains
2000 efficient points or the true cardinality constrained
efficient frontier (TCCEF) [55] that contains 500 effi-
cient points. The former file can be downloaded from
http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/portinfo.html
and the latter can be downloaded from the web page
of Professor F. Tardella: http://w3.uniroma1.it/Tardella/
homepage.html in the objective space. F is an approxima-
tion obtained by the algorithm. In this paper, the inverted
generational distance (IGD) metric is described as follows:

IGD
(
F ∗, F

) =
∑

x∈F ∗ min dis(x,F )

|F ∗| (17)

where min dis(x, F ) is the minimum Euclidean distance
between solution x and the solutions in F . The IGD-metric
value measures both the diversity and convergence to some
extent. The smaller the value of IGD-metric, the better both
the diversity and convergence toward the efficient frontier.

5.1.2 The Spread (	)

In order to quantitatively analysis the distribution effective-
ness of e-NSLS with the other algorithms on MVCCPO
problems, a spread metric presented by Wang et al. [56]
is adopted in this paper. The spread is denoted as 	 and
calculated as follows:

d (x, 
) = ‖f (x) − f (y)‖ (18)

d̄ = 1

|
|
∑

xε

d(x, 
) (19)

	 =
∑

xε
|d (x, 
) − d̄| + ∑m
i=1d (Ei, 
)

(|
| − m) d̄ + ∑m
i=1d(Ei, 
)

(20)

where (E1, E2, . . . , Em) are the extreme solutions in the
true Pareto front (PF), and 
 is a set of the obtained non-
dominated solutions. The extreme solution Ei(i ∈ m) is the
point which has the best value in the ith objective. f (x) =

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://w3.uniroma1.it/Tardella/homepage.html
http://w3.uniroma1.it/Tardella/homepage.html
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Table 2 Parameter settings in
different experiments Population size T runs li ui K

Experiment 1 100 250 30 0.00 0.8 Assert number

Experiment 2 100 250 30 0.01 1.0 8

Experiment 3 100 250 30 0.01 0.8 2, 5, 10

Table 3 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems where li = 0.01, ui = 0.8 and
K = 10

Instance mean (std) P1 P2 P3 P4 P5

e−NSLSran(e-NSLS with random method)

2.68693e-04 4.31577e-04 2.16408e-04 2.74982e-04 1.53901e-04

(3.90572e-05) (6.63579e-05) (4.25815e-05) (5.71395e-05) (6.68723e-05)

e−NSLSper(e-NSLS with periodic method)

2.72354 e-04 4.44892e-04 2.10118e-04 2.71717e-04 1.30763e-04

(4.26817e-05) (8.69088e-05) (4.52755e-05) (5.74615e-05) (6.55065e-05)

e−NSLSsob(e-NSLS with setonboundary method)

2.66178 e-04 4.46525e-04 2.12372e-04 2.02461e-04 1.76195e-04

(4.45832e-05) (9.89781e-05) (3.80192e-05) (4.06889e-05) (4.85833e-05)

e−NSLSexp−s(e-NSLS with Exp-S method)

2.64134e-04 4.41455e-04 2.07387e-04 2.87793e-04 1.83235e-04

(4.10591e-05) (7.00725e-05) (4.22315e-05) (4.05102e-05) (3.96746e-05)

Table 4 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems where li = 0.01, ui = 0.8 and
K = 10

Instance Mean (std) P1 P2 P3 P4 P5

e−NSLS withES Strategy

3.70215e-04 5.65952e-04 5.13074e-04 4.65930e-04 3.59974e-04

(8.36921e-05) (7.81291e-05) (7.52905e-05) (5.19328e-05) (7.57163e-05)

e−NSLS with DE Strategy

2.66178e-04 4.46525e-04 2.12372e-04 2.02461e-04 1.76195e-04

(4.45832e-05) (9.89781e-05) (3.80192e-05) (4.06889e-05) (4.85833e-05)

Table 5 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems where li = 0.01, ui = 0.8 and
K = 2

Instance mean (std) P1 P2 P3 P4 P5

e−NSLS with One Candidate Strategy

1.51734e-04 1.1794e-04 1.32576e-04 9.47719e-05 2.47162e-04

(3.81881e-05) (3.55100e-05) (134825e-04) (3.80414e-05) (6.54705e-05)

e−NSLS with Two Candidates Strategy

1.16568e-04 1.05562e-04 1.04006e-04 9.10271e-05 2.23156e-04

(2.07732e-05) (3.38895e-05) (5.26723e-06) (3.70775e-05) (4.77321e-05)
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Table 6 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems where li = 0.01, ui = 0.8 and
K = 2

Instance mean (std) P1 P2 P3 P4 P5

e−NSLS removing the replacement strategy

1.22273e-04 1.13084e-04 1.12996e-04 9.2836e-05 2.18170e-04

(2.96922e-05) (3.52611e-05) (5.41515e-05) (4.42844e-05) (9.99449e-05)

e−NSLS

1.16568e-04 1.05562e-04 1.04006e-04 9.10271e-05 2.17225e-04

(2.07732e-05) (3.38895e-05) (5.26723e-06) (3.70775e-05) (4.98846e-05)

(ρ (x) ·μ (x)), which is a vector containing ρ (x) and μ (x).
A smaller value of 	 reveals a better distribution of these
non-dominated solutions. Therefore, a smaller value of 	 is
desirable.

5.1.3 Wilcoxon’s signed ranks test

We also adopt a non-parametric statistical hypothesis test
known as Wilcoxon’s signed ranks test [57] to statisti-
cally analyze e-NSLS and the other algorithms. Wilcoxon’s
signed ranks test is a common tool for detecting the differ-
ence between two algorithms. In our experiment, p-value
[57] is calculated by the SPSS software packages. The sig-
nificance level α is set to 0.05 as suggested in [57]. α < 0.05
indicates that there is a significant difference between the
two algorithms.

5.2 Parameter settings

The performance of e-NSLS is compared with other five
algorithms including: NSGA-II, SPEA2, MOEA/D-DE,
ABC-FC and GRASP-QUAD. Experiments with different
parameter settings are conducted. The common parameters
include the population size and the maximum number of
generations. They are set to 100 and 250 for each algorithm,
respectively.

Apart from the above parameters, NSGA-II, SPEA2,
MOEA/D-DE and e-NSLS require some additional param-
eters. For NSGA-II, SPEA2 and MOEA/D-DE, the param-
eter settings are the same as in their original researches [13,
14]. For e-NSLS, only three additional parameters are set.

In the normal distribution N (μ, σ), μ and σ are set to 0.5
and 0.1, respectively. ω is set to 1 for P1-P4 and 3 for P5.
In addition, each algorithm runs 30 times independently for
each test problem. These parameter settings are summarized
in Table 2. The parameter settings about the comparison
with ABC-FC and GRASP-QUAD, the reader can refer to
Section 5.3.8.

5.3 Experimental results

5.3.1 Experiment 1 : Anatomy of e-NSLS with simulation
results

(1) Simulation results of different boundary constraint
handling strategies In this section, in order to verify the
effectiveness of the boundary constraint handling strate-
gies in the proposed algorithm, four versions of the pro-
posed algorithm with different boundary constraint handling
strategies in Section 4.6 are executed using different param-
eter settings. These four algorithm are named as e-NSLSran,
e-NSLSper, e-NSLSsob, and e-NSLSexp−s, respectively. In
this particular test we set population Size N = 100, T =
250, runs = 30, li = 0.01, ui = 0.8 and K = 10 for all
test instances. Table 3 gives the IGD-metric values of the
non-dominated solutions found by each algorithm on all five
test data in 30 independent runs. It is obvious from Table
3 that the proposed algorithm is not very sensitive to the
boundary constraint handling strategy because that all four
algorithms achieve almost the same effect. The probable
reason is that the local search schema of the proposed algo-
rithm plays a more important role in the searching process.

Table 7 The Spread-metric values of the non-dominated solutions found by each algorithm on all five test problems where li = 0.01, ui = 0.8,
and K = 5

Instance mean (std) P1 P2 P3 P4 P5

NSLS 4.37926e-01 4.60142e-01 6.31231e-01 5.66789e-01 6.25287e-01

(4.40526e-02) (7.58853e-02) (4.65906e-02) (5.50770e-02) (4.65694e-02)

e−NSLS 2.56228e-01 2.97449e-01 4.08663e-01 3.41233e-01 5.02889e-01

(6.91804e-02) (7.0191e-02) (2.85545e-02) (6.97148e-02) (8.79155e-02)
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Table 8 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems where li = 0.00, ui = 0.8

Instance mean (std) P1 P2 P3 P4 P5

(K = 31) (K = 85) (K = 89) (K = 98) (K = 225)

NSGA-II 1.34875e-04 4.51960e-04 4.11015e-04 4.06491e-04 3.67625e-04

(1.74884e-05) (1.11108e-04) (8.13094e-05) (8.97948e-05) (6.05015e-05)

SPEA2 2.19255e-04 5.28810e-04 4.31634e-04 4.38279e-04 3.45099e-04

(8.24058e-05) (9.98237e-05) (8.47299e-05) (7.08541e-05) (4.31618e-05)

MOEA/D-DE 1.82442e-04 2.51261e-04 1.90736e-04 1.84176e-04 1.29301e-04

(2.04428e-05) (3.79443e-05) (3.10247e-05) (2.17102e-05) (2.98856e-05)

e−NSLS 1.00527e-04 1.15016e-04 1.00179e-04 1.71902e-04 2.67251e-04

(3.50325e-06) (3.42765e-05) (1.53592e-05) (6.42923e-05) (4.82984e-05)

In the following experiments, we select the setonboundary
method as our boundary constraint handling strategy.

(2) Simulation results of DE operator in e-NSLS The
proposed local search schema designed for the MVCCO
problem has two main characteristics. One is that it uses a
mutation operation similar to DE operator for the purpose
of producing some neighborhoods as candidates. The other
one is that it generates two candidates by seeking two direc-
tions for the current individual, we shall refer to this strategy

as Two Candidates Strategy. In this section, we make the
first attempt in understanding the importance of the local
search schema.

First, we replace the DE operator by the evolution strate-
gies (ES) operator which was presented in [58] and [59].
The mutation mechanism of ES is to change each variable of
the solution by adding random noise derived from a Gaus-
sian distribution as: x ′

i = xi ± N(0, σ 2), i ∈ [1..n]. An
experiment is conducted to compare the effects of changing
DE operator to ES operator on the proposed algorithm. Here
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Fig. 1 Efficient frontiers for British FTSE 100 data set (P3) of li = 0.0, ui = 0.8
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Table 9 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems with cardinality constraint
(K = 8) and li = 0.01, ui = 1.0

Instance mean (std) P1 P2 P3 P4 P5

NSGA-II 2.78777e-04 3.21132e-04 2.54870e-04 2.10318e-04 7.16553e-05

(5.7247e-05) (8.02728e-05) (7.18994e-05) (4.18929e-05) (1.09698e-05)

SPEA2 4.98116e-04 4.20396e-04 2.89113e-04 2.43755e-04 9.89304e-05

(1.33880e-04) (8.00619e-05) (5.72844e-05) (4.69655e-05) (1.93536e-05)

MOEA/D-DE 2.10069e-04 2.74866e-04 1.91436e-04 1.90286e-04 1.39907e-04

(6.4112e-05) (4.30625e-05) (3.80357e-05) (3.97725e-05) (5.53971e-05)

e−NSLS 1.46640e-04 2.27097e-04 1.33261e-04 1.30626e-04 1.30581e-04

(5.06999e-05) (6.69567e-05) (2.6731e-05) (3.58381e-05) (5.35568e-05)

we set σ = 0.2. Table 4 presents the mean and standard
deviation results based on 30 independent runs on all test
problems with the IGD metric. It is obvious from Table 4
that e-NSLS with DE shows a minor improvement in all
cases, which reveals that the DE operator is a key feature in
the algorithm for dealing with the MVCCPO problems.

Second, to further verify the effectiveness of Two Can-
didates Strategy, another experiment is conducted to com-
pare the Two Candidates Strategy and One Candidate
Strategy. Table 5 reveals that Two Candidates Strategy
is a little better than One Candidate Strategy on all test

problems in terms of IGD metric, which reveals that Two
Candidates Strategy is really better than One Candidate
Strategy to a certain degree.

(3) Simulation results of the replacement strategy in
e-NSLS In this section, we investigate the role of the
replacement strategy in e-NSLS. The replacement strategy
of e-NSLS is modified by always accepting a candidate
solution (unlike before where the candidate is accepted only
if it was better or non-dominated). Table 6 systematically
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Fig. 2 Efficient frontiers for Hong Kong Hang Seng data set (P1) of K = 8, and li = 0.01, ui = 1.0



516 B. Chen et al.

Table 10 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems with cardinality constraint
(K = 2) and li = 0.01, ui = 0.8

Instance mean (std) P1 P2 P3 P4 P5

NSGA-II 1.33377e-04 1.48038e-04 1.43465e-04 5.18289e-05 1.96553e-04

(1.93122e-05) (2.35707e-05) (9.13701e-05) (7.36003e-06) (3.77761e-05)

SPEA2 2.32734e-04 1.32511e-04 3.20497e-04 9.31555e-05 2.73735e-04

(1.80286e-05) (1.59675e-05) (1.05807e-04) (4.35602e-05) (3.54402e-05)

MOEA/D-DE 2.08286e-04 1.75816e-04 1.91508e-04 6.42845e-05 2.57464e-04

(3.40791e-05) (1.15787e-05) (5.81048e-05) (5.26237e-06) (3.37446e-05)

e−NSLS 1.16568e-04 1.05562e-04 1.04006e-04 9.10271e-05 2.17225e-04

(2.07732e-05) (3.38895e-05) (5.26723e-06) (3.70775e-05) (4.98846e-05)

compares the effects of the original algorithm and remov-
ing the replacement strategy. It is clear from Table 6 that the
replacement strategy is effective.

(4) Simulation results of the farthest-candidate approach
The farthest-candidate approach plays an important role
in e-NSLS to maintain the diversity of the solutions. In
this section, to investigate the effectiveness of the farthest-
candidate approach, we present simulation results and show
comparisons based on the spread metric (	), which mea-
sures the distribution of these obtained non-dominated solu-
tions. In this experiment, the farthest-candidate approach
is substituted with the crowding distance approach in [13].
The experimental results are demonstrated in Table 7, from
which we can see e-NSLS has a better distribution than
NSLS. Thus, we can conclude that the farthest-candidate
approach is an effective skill to improve the performance of
the algorithm.

5.3.2 Experiment 2: Different parameter setting
with li = 0.0, ui = 0.8 and different cardinality constraint

This section provides the computational results obtained
by each algorithm when li = 0.0, ui = 0.8 and the
cardinality constraint is the assert number of each instance.

Table 8 shows the mean and standard deviation of the IGD-
metric values of the non-dominated solutions found by
NSGA-II, SPEA2, MOEA/D-DE and e-NSLS on the five
test problems in 30 independent runs. The best values of
the mean IGD among these four algorithms are noted with
bold font. As can be seen in Table 8, e-NSLS has a bet-
ter IGD-metric value than the other three algorithms for all
test problems. This indicates that e-NSLS is suitable for
solving the MVCCPO problem. The best obtained efficient
surfaces of British FTSE 100 data set (P3) in the 30 runs
of each algorithm are represented in Fig. 1. According to
the parameter setting, the cardinality constraint is ignored,
which means that it allows that a solution can hold 89 asserts
(P3 has 89 variables) at the same time. We can observe
from Fig. 1 that e-NSLS outperforms NSGA-II, SPEA2
and MOEA/D-DE in term of the diversity and convergence.
MOEA/D-DE cannot search the area with low variance and
low return while e-NSLS can.

5.3.3 Experiment 3: Different parameter setting
with li = 0.01, ui = 1.0 and K = 8

In this experiment, the lower proportion and upper propor-
tion of the total investment of asset i in each portfolio are set
at 1% and 100% (i.e., li = 0.01, ui = 1.0, i = 1, 2, . . . , n),

Table 11 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems with cardinality constraint
(K = 5) and li = 0.01, ui = 0.8

Instance mean (std) P1 P2 P3 P4 P5

NSGA-II 1.48900e-04 1.24768e-04 1.01812e-04 8.92138e-05 4.34399e-05

(1.31849e-05) (3.65273e-05) (3.22848e-05) (3.08637e-05) (7.20878e-06)

SPEA2 2.2859e-04 1.88044e-04 1.6594e-04 1.24588e-04 6.99569e-05

(3.00743e-05) (3.71782e-05) (5.4563e-05) (4.94274e-05) (1.19805e-05)

MOEA/D-DE 1.73138e-04 2.28178e-04 1.97975e-04 1.56806e-04 1.27920e04

(7.31571e-06) (5.81107e-05) (3.69499e-05) (3.44817e-05) (4.53111e-05)

e−NSLS 1.00057e-04 5.93127e-05 7.6096e-05 7.30457e-05 1.22930e-04

(9.48537e-06) (2.03598e-05) (1.2992e-05) (4.24315e-05) (5.45395e-05)
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Table 12 The IGD-metric values of the non-dominated solutions found by each algorithm on all five test problems with cardinality constraint
(K = 10) and li = 0.01, ui = 0.8

Instance mean (std) P1 P2 P3 P4 P5

NSGA-II 6.86043e-04 5.32154e-04 3.95745e-04 3.08198e-04 1.18127e-04

(1.71002e-04) (1.06619e-04) (7.0063e-05) (4.85185e-05) (2.29422e-05)

SPEA2 8.22846e-04 5.88174 e-04 4.22696e-04 3.32589e-04 1.42996e-04

(1.52676e-04) (1.06209e-04) (6.34234e-05) (6.59574e-05) (2.58666e-05)

MOEA/D-DE 2.79394e-04 2.94487e-04 2.21992e-04 2.30933e-04 1.56151e-04

(6.95866e-05) (4.85814e-05) (5.89064e-05) (5.07679e-05) (5.04274e-05)

e−NSLS 2.66178e-04 4.46525e-04 2.12372e-04 2.02461e-04 1.76195e-04

(4.45832e-05) (9.89781e-05) (3.80192e-05) (4.06889e-05) (4.85833e-05)

and the cardinality constraint is set to 8, which means that
the number of asserts a portfolio can hold is not greater than
8. Table 9 shows the mean and standard deviation of the
IGD-metric values of the non-dominated solutions found by
the four algorithms in 30 independent runs. The best values
of the mean IGD metric among these four algorithms are
noted with bold font as before. Table 9 shows that e-NSLS
is better than the other algorithm on four test problems
out of five test problems. This reveals that e-NSLS has a

better convergence and diversity than the other three algo-
rithms. Fig. 2 shows the efficient frontiers for Hong Kong
Hang Seng data set P1 of these four algorithms. We can
observe from Fig. 2 that e-NSLS has a uniform distribu-
tion of solutions while the other algorithms may not. Due to
the good convergence ability of the local search schema and
the effective diversity maintenance ability of the farthest-
candidate approach, e-NSLS achieves the best result in these
algorithms on most of the test problems.
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Fig. 3 Efficient frontiers for US S&P 100 data set (P4) of K = 2, and li = 0.01, ui = 0.8
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Fig. 4 Efficient frontiers for German Dax 100 data set (P2) of K = 5, and li = 0.01, ui = 0.8

5.3.4 Experiment 4: Different parameter setting
with li = 0.01, ui = 0.8 and K = 2, 5, 10

This section provides three experiments with different val-
ues of K. The lower proportion and upper proportion of
the total investment of asset i in each portfolio are set to
1% and 80% (i.e., li = 0.01, ui = 0.8, i = 1, 2, . . . , n),
and the cardinality constraint is set as 2, 5, and 10, respec-
tively. The corresponding results are shown in Tables 10,
11, 12. The experimental results presented in these tables
prove that none of the three algorithms which we took for
comparisons has distinct advantages. When K = 5, e-NSLS
performs better than the other algorithms on all test prob-
lems. When K = 2, e-NSLS performs better than the other
three algorithms on P1, P2, P3 and worse on P4 and P5.
When K = 10, e-NSLS performs better than the other three
algorithms on P1, P3, P4 and worse on P2 and P5. The prob-
able reason for this is that e-NSLS is based on local search
and is imposed on each variable. When the number of car-
dinality constraint is changed, it needs a different parameter
setting. Therefore, it may demand a different parameter set-

ting on e-NSLS. Improving the algorithm on P2 and P5 is
left as our future study.

Figures 3, 4, 5 show the non-dominated solutions found
by each algorithm under these parameter settings on P4 and
P2, respectively. We can see e-NSLS achieves a better con-
vergence and diversity over the true efficient frontier than
the other three algorithms on every test instance. Moreover,
P5, which has the highest number of variables in these
five test problems, is chosen to illustrate the performance
of these algorithms in Fig. 6. We can see from Fig. 6
that NSGA-II, MOEA/D-DE, e-NSLS can converge to the
TCCEF and have a uniform distribution along the TCCEF
when K = 2. MOEA/D-DE has a better convergence and
distribution than the other four algorithms. When K =
5, e-NSLS has a better performance than the other three
algorithms on P5, which is consistent with the results of
IGD-metric. When K = 10, e-NSLS is good at finding the
lower risk and return portfolio while MOEA/D-DE has a
uniform distribution along the TCCEF. However, it can be
seen that on average, e-NSLS is better approach than other
three algorithms for tackling the MVCCPO problem.
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Fig. 5 Efficient frontiers for US S&P 100 data set (P4) of K = 8, and li = 0.01, ui = 1.0

5.3.5 Results of the Wilconox’s signed rank test

The computational results are also compared statistically
using the Wilcoxon’s signed rank test [57] and the corre-
sponding results are given in Table 13. It is clear from this
table that all p-values are smaller than α = 0.05, which
further indicates that the proposed e-NSLS performs better
than the other algorithms.

5.3.6 Effectiveness of the farthest-candidate approach
for the portfolio optimization problems

In this section, to further demonstrate the effectiveness of
the farthest-candidate approach in maintaining the diversity
of the obtained non-dominated solutions, the spread metric
(	) is used to measure the distribution of these obtained
non-dominated solutions. For reason of paper space, we use
the experimental results in Section 5.3.2. The experimental
results are demonstrated in Table 14. It is clear from the
table that e-NSLS has a better distribution than the other
algorithms, which shows the effectiveness of the farthest-
candidate approach in e-NSLS.

5.3.7 Sensitivity

In this section, to verify the sensitivities of the performance
of μ and σ in the Gaussian distribution N(μσ 2), the dif-
ferent settings of μ and σ in e-NSLS on P2 are evaluated.
We use similar parameter settings as Section 5.3.4 (K = 5,
li = 0.01, and ui = 0.8) except the settings of μ and σ .

Figure 7 illustrates the values of the mean IGD metric in
30 independent runs versus the values of μ and σ , respec-
tively. For μ, it is clear from Fig. 7 that e-NSLS is getting
better and better from 0 to 0.5, and performs well for all val-
ues of μ except very small ones between 0.5 and 1.0 on P2.
For σ , we can observe that e-NSLS works well for all values
of σ from 0.0 to 0.2. Therefore, we can claim that e-NSLS
is not very sensitive to the setting of μ and σ .

There is another parameter ω, which is a control factor in
e-NSLS. To study the sensitivity of e-NSLS to ω, we repeat
the experiment in Section 5.3.4 with K = 5, li = 0.01,
and ui = 0.8 for ω ∈ [1, 7] with a step size one. Figure 8
illustrates the IGD values for different values of ω on the
problem P5. It is obvious from the figure that the IGD value
varies a little from 3 to 6. Therefore, it can be concluded that
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Fig. 6 Efficient frontiers for Japanese Nikkei 225 data set (P5) of K = 2,5,10

e-NSLS is not very sensitive to the setting of ω, and it has a
better performance when ω is set as 3 or 4.

5.3.8 Experiment 5 : e-NSLS VS. ABC-FS
and GRASP-QUAD

In this section, we extend the comparison with the results
of ABC-FS [47] and GRASP-QUAD [49], which are two
recent algorithms applied to solve the MVCCOP problem.
It is important to note that there are two main differences
between ABC-FS, GRASP-QUAD and our work. One is
that the MVCCPO problem ABC-FC and GRASP-QUAD

solved has a different constraint. In this paper, the proposed
algorithm is used to solve the MVCCPO problem applied
in [31] and [38] with the constraint “

∑n
i=1θi ≤ K”, which

means that the number of asserts a portfolio can hold is
within range [0,K], while in [47] and [49], the constraint
is “

∑n
i=1θi = K”, which means that a portfolio must hold

exactly K asserts. The other one is that they consider the
problem as a single objective optimization problem while in
our paper, it is a bi-objective optimization problem.

In this section, we directly refer to the empirical results
from [47] and [49]. The proposed algorithm e-NSLS is
tuned to solve the MVCCPO problem with cardinality
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Fig. 6 (continued)

constraint “
∑n

i=1θi = K”. To satisfy the cardinality con-
straint, when the number of asserts which are held by a
portfolio holds is less than K , we choose the first assert
(denoted as p) from the selected asserts and randomly select
an assert (denoted as q) from the unselected asserts in the
candidate list. Then, the proportion of q is allocated a half
proportion of p. It is worthy mention that p and q need
the additional procedure to satisfy the lower and upper limit
when generated. The tuned e-NSLS to solve the problem in
[49] is called as Ke-NSLS in brief.

Here, we use mean Euclidean distance in [32] to com-
pare the true and the obtained efficiency frontier. In the

experiment, the MVCCPO problems are solved by using the
parameter set in [49], namely, N = 51, K = 10, li = 0.01,
and ui = 1.0.

Table 13 Statistical results by Wilcoxon’s signed rank test for the
IGD-metric considering all test problems

e−NSLS vs. R+ R− p−value

NSGA-II 281 44 0.001430282

SPEA2 311 14 0.000064510

MOEA/D-DE 265 60 0.005816359
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Table 14 The spread-metric values on all five test problems with li = 0.00, ui = 0.8

Instance mean P1 P2 P3 P4 P5

(K = 31) (K = 85) (K = 89) (K = 98) (K = 225)

NSGA-II 4.59735e-01 5.82689e-01 6.2721e-01 5.96600e-01 9.0968e-01

(3.7586e-02) (4.8150e-02) (4.8763e-02) (4.06910e-02) (6.24810e-02)

SPEA2 0.63295e-01 7.08400e-01 7.39911e-01 6.88512e-01 8.75003e-01

(5.5065e-02) (3.22080e-02) (4.42450e-02) (3.80210e-02) (6.88650e-02)

MOEA/D-DE 7.51914e-01 1.008100e-00 9.94052e-01 8.99219e-01 9.85263e-01

(6.5118e-03) (2.62130e-02) (1.64380e-02) (1.57960e-02) (1.87320e-02)

e−NSLS 2.62023e-01 3.72841e-01 4.23952e-01 4.09717e-01 6.62137e-01

(3.2073e-02) (2.4595e-02) (4.02750e-02) (3.69190e-02) (2.93220e-02)
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Fig. 7 The mean IGD-metric values versus the value of μ and σ in e-NSLS for P2

Fig. 8 The mean IGD-metric
values versus the value of ω in
e-NSLS for P5
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Table 15 The mean Euclidean distance-metric values of the non-
dominated solutions found by each algorithm on all five test problems

Instance n ABC-FS GRASP-QUAD Ke-NSLS

P1 31 0.0004 0.0001 0.0001

P2 85 0.0009 0.0001 0.0000

P3 89 0.0003 0.0000 0.0000

P4 98 0.0001 0.0001 0.0000

P5 225 0.0000 0.0000 0.0000

The mean Euclidean distance is calculated as follows. Let
the point (vT

k , rT
k ) (k = 1, 2, 3, . . . , ζ ) denote the variance

and the return of the point in the true efficiency frontier, and
the point (vA

i , rA
i ) (i = 1, 2, 3, . . . , ξ ) represents the vari-

ance and return of the point in the efficient frontier obtained
by the algorithm, where ζ is the number of the true efficient
frontier points and ξ is the number of the efficient frontier
points obtained by the algorithm. Denote the point (vT

oi
, rT

oi
)

be the closet point in the true efficient frontier to the point
(vA

i , rA
i ).

oi = agrmink=1,2,3,...,ζ (

√(
vT
k − vA

i

)2 + (
rT
k − rA

i

)2
)

(21)

The mean Euclidean distance is calculated as:

med =
∑ξ

i=1

√
(vA

i − vT
oi

)
2 + (rA

i − rT
oi

)
2

ξ
(22)

Numerical results obtained by ABC-FS, GRASP-QUAD,
and Ke-NSLS are given in Table 15, from which we can see
the proposed algorithm obtains better (smaller) med values
than ABC-FS and GRASP-QUAD for all five benchmark
sets.

6 Conclusions

In this paper, we extend a local search based multi-objective
optimization (NSLS), which is a combination of a new local
search schema and a farthest-candidate approach to find the
cardinality constrained efficient frontier on the MVCCPO
problems. We have presented computational comparison of
e-NSLS with the other five state-of-the-art algorithms on the
public available benchmark data set containing the instances
that range from 31 to 225 assets. The capabilities of these six
algorithms are shown numerically, as well as, graphically,
comparing them with the true efficient points. Computa-
tional results reveal a good performance of e-NSLS in the

six algorithms in term of the diversity, convergence towards
the TCCEF, the coverage, and the stability.

Moreover, the Wilcoxon signed ranks test analysis has
been used to statistically test the significant performance
of e-NSLS with the other algorithms. The results reveal
that e-NSLS has a better performance than the other three
algorithms. In addition, the key steps of e-NSLS, namely,
the boundary constraint handling strategy, DE operator, the
replacement strategy and the farthest-candidate approach
are modified one-by-one. The experimental results show
that these modified algorithms failed to perform as effi-
ciently as e-NSLS on the MVCCPO problems. Furthermore,
The sensitivities to three parameters: μ, σ and ω of e-NSLS
are also experimentally investigated. The results show that
e-NSLS is not very sensitive to the settings of μ, σ and ω

on the MVCCPO problem.
In the near further, improving e-NSLS for solving portfo-

lio optimization problems with higher number of variables
will be our work. It will also be meaningful to design
a controlled rule to pursue the optimal number of assets.
Meanwhile the investor’s decision is going to be considered.
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