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Abstract In this paper, we present a novel algorithm for
efficiently mining high average-utility itemsets (HAUIs)
from incremental databases, in which their volumes can be
expanded dynamically. The previous algorithms have inef-
ficiencies in that they must scan a given database multiple
times so as to generate candidate itemsets and determine
valid itemsets level by level. The reason is that they follow
the basic framework of an Apriori-like approach. This draw-
back can cause critical problems in processing incremental
databases because scanning a database becomes a tougher
task as the size of the database is increased. In contrast, the
algorithm proposed in this paper builds a compact tree struc-
ture maintaining all necessary information in order to avoid
such excessive database scanning during its mining process.
The previous algorithms suffer from the huge generation of
unnecessary candidate itemsets at each level accompanied
by the naive combination based candidate generation man-
ner of an Apriori-like approach, which generates candidate
itemsets with (k + 1)-lengths by simply joining itemsets
with k-lengths. On the other hand, our algorithm employs
the pattern growth approach, which allows the algorithm
to generate a set of only essential candidate itemsets. In
order for our algorithm to constantly preserve the com-
pactness of its tree structure during the entire incremental
mining process, a restructuring technique is exploited. In
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the performance evaluation, we show that our algorithm is
faster and consumes less memory space than competitors.

Keywords Association rule mining · Incremental itemset
mining · High average-utility itemset mining

1 Introduction

In the beginning of association rule mining [21, 38, 39,
41], frequent itemset mining (FIM) [17, 19] was mainly
used in order to find useful itemset information that can
be referred to in decision making processes. In FIM, trans-
action databases are composed of multiple transactions
with items that have binary information, which determines
whether the corresponding items appear in transactions or
not. If the frequency (also called a support) of a given item-
set satisfies a predefined threshold, the itemset is mined as
a frequent itemset. The Apriori algorithm [1] is the most
well-known FIM algorithm discovering frequent itemsets
based on a level-wise approach, which generates (k + 1)-
itemsets by joining k-itemsets found in the previous level.
Since these join operations are based on a naive combina-
tion manner, the itemsets generated from the join operations
are potential frequent itemsets (called candidate itemsets),
which may have actual supports less than a threshold. Thus,
this algorithm requires a database scan at each level in order
to calculate actual supports of candidate itemsets. A range of
algorithms have been developed based on the methodology
of the Apriori algorithm called an Apriori-like approach.
However, a number of database scans cause significant per-
formance degradation. Therefore, the FP-Growth algorithm
[8] using a compact tree structure and a pattern growth
approach was proposed. This algorithm has much better
performance than Apriori because it generates frequent
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itemsets without the generation of candidate itemsets, and
scans a given database only two times for constructing its
tree structure compactly. Meanwhile, there are other various
association rule mining approaches such as sequential item-
set mining [7, 33, 40, 42], weighted frequent itemset mining
[18, 20, 37], and high utility itemset mining [5, 14, 22, 23,
28, 29, 31, 43]

In a variety of decisionmaking processes, high utility itemset
mining (HUIM) can be more advantageous than traditional
FIM. In this approach, if the utility of a given itemset
is greater than or equal to a given threshold, the itemset
becomes a high average utility itemset (HUI). Since HUIM
evaluates itemset utilities by considering non-binary item
information (called utility information) including the impor-
tance and quantity of each item, this approach can extract
more useful itemsets from a given database compared to FIM.

However, HUIM accompanies several problems in its
mining result. HUIM adds the utilities of all items included
in an itemset in order to calculate the utility of the item-
set. Since the summation of item utilities in an itemset is
more likely to become larger as the length of the item-
set is increased, HUIM generally mines a huge number of
HUIs, which consist of many items with low utilities. Note
that items with low utilities generally have high supports
and therefore appear in most transactions. This property of
HUIM can cause limitations in the usage of HUIM methods
because searching specific itemsets from a huge number of
result itemsets is a difficult task even to domain experts.

To supplement such drawbacks ofHUIM, a novel approach
called high average-utility itemset mining (HAUIM) [9,
13, 36] was suggested. HAUIM employs an average-utility
measure, which calculates the utility of an itemset as the
summation of item utilities divided by the length of the
itemset. In HAUIM, even though the length of an itemset is
long, the evaluated utility of the itemset can be low if most
items contained in the itemset have low item utilities. There-
fore, by using HAUIM methods, it is possible to provide a
lesser number of meaningful result itemsets to users.

Since new data are continually generated from various
sources and accumulated in databases, techniques for effi-
ciently yielding new mining results reflecting new data have
been required for data analysis. The algorithms for han-
dling static databases generally scan a given database two
times at the first steps of their mining processes so as
to pre-prune invalid items. In incremental itemset mining,
however, such pre-pruning strategies based on two database
scans cannot be employed because items that are not impor-
tant in a given database can have high importance after
new data are reflected into the database. For example, even
though certain items have supports less than a threshold
in an original database, their supports can be greater than
the threshold after a number of new transactions are added
into the database. Therefore, the algorithms for handling

static databases have to process all data from scratch in
order to mine itemsets from incremental databases when-
ever new data are generated. Since such mining processes
require excessive execution time and huge memory, incre-
mental itemset mining methods [32] for efficiently mining
itemsets from dynamic databases have been developed in
recent years. Even though the researches on methods for
mining high average-utility itemsets (HAUIs) from incre-
mental databases have been conducted in previous studies,
the existing algorithms still have inefficiencies in their run-
time and memory usage performances because they have
their roots in an Apriori-like approach.

Motivated by the problems of previous studies, we pro-
pose a novel algorithm named IMHAUI (Incremental min-
ing of high average-utility itemsets) that can mine HAUIs
from incremental databases more efficiently than the exist-
ing algorithms by employing a compact tree structure and
pattern growth approach. This paper has the contributions as
follows. 1) We suggest a new tree structure named IHAUI-
Tree (Incremental high average utility itemset tree) that
maintains the information of incremental databases so that
the proposed algorithm can mine HAUIs without a number
of database scans. 2) We adopt the path adjusting method
that is one of restructuring techniques in order to preserve
the compactness of IHAUI-Tree. The path adjusting method
is modified to restructure IHAUI-Tree based on an AUUB
descending order. 3) We perform a time complexity analysis
in order to prove that the proposed algorithm has better per-
formance than competitors theoretically. In addition, based
on the results of experiments conducted on four real datasets
and two groups of synthetic datasets, we provide empirical
proofs supporting that the proposed algorithm is much more
efficient than previous algorithms.

The rest of this paper is organized with the following
contents. In Section 2, we explain the background knowl-
edge related to the topic of this paper in order to gain
understanding. After that, in Section 3, the description of
the proposed algorithm is provided together with a multiple
number of running examples. In Section 4, we evaluate the
performance of the proposed algorithm in terms of runtime,
memory usage, and scalability through the investigation
of experimental results obtained from various experiments.
Finally, we conclude the paper in Section 5, summarizing
contents in the paper and suggesting the directions of our
future studies.

2 Background

2.1 High utility itemset mining

The Two-phase algorithm [24] firstly proposed the con-
cept of transaction weighted utilization (TWU) to maintain
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the anti-monotone property in HUIM. With TWU values,
Two-phase can determine whether itemsets can be extended
to HUIs or not. Thereafter, tree-based HUIM algorithms
such as IHUP [2], UP-Growth [30], MU-Growth [35], and
HUPID [34] were introduced in order to achieve more
efficient HUIM processes because Two-phase has many
drawbacks such as the requirement of multiple database
scans. Even though they have better performances com-
pared to Two-phase, they still require huge runtime and
memory space in order to validate a large number of gen-
erated candidate itemsets. In recent years, several list-based
algorithms such as HUI-Miner [25], FHM [6], and HUP-
Miner [12] that can mine HUIs without candidate generation
have been devised for facilitating more efficient HUI min-
ing processes, which directly generate actual HUIs without
excessive candidate itemset validation processes.

2.2 High average-utility itemset mining

Since the concept of high average-utility itemset mining
(HAUIM) was proposed to solve the problems of HUIM,
a number of HAUIM algorithms have been developed in
order to efficiently mine HAUIs from static databases. The
first HAUIM algorithm, TPAU (Two-phase average-utility
mining), [9] mines HAUIs by employing an Apriori-like
approach similar to the Two-phase algorithm. This algo-
rithm uses the concept of an average-utility upper-bound
so as to maintain the anti-monotone property in HAUIM
because anti-monotone properties used in other approaches
cannot be applied to HAUIM. However, even though this
algorithm can reduce its search space through the anti-
monotone property, it consumes excessive computational
resources for scanning databases in multiple times because
it follows the basic framework of an Apriori-like approach.
Therefore, several HAUIM algorithms have been proposed
to enhance the performance of TAPU by using novel
approaches such as the mining process based on a pro-
jected database [15], improved average-utility upper-bound
strategy [16], and an enumeration tree [26]. Since these
algorithms store the information of a given database in main
memory, they do not require multiple database scans in their
mining process. Thus, they have much better performances
compared to TPAU. However, these are not suitable for min-
ing HAUIs from incremental databases because they have to
perform their mining processes from the scratch whenever
new data should be reflected to mining results.

2.3 Mining high average-utility itemsets from
incremental databases

The ITPAU (Incremental two-phase average-utility min-
ing) [10] algorithm is a state-of-the-art algorithm for min-
ing HAUIs from incremental databases. This method also

employs the basic framework of an Apriori-like approach
similarly to TPAU, but additionally adopts an itemset
information maintenance technique [4] so as to increase
efficiency in each incremental mining process. The compre-
hensive HAUI mining procedure of ITPAU can be described
as follows. First, the mining process for an original database
is conducted in the same manner as that of TPAU. However,
the information of promising itemsets with average-utility
upper-bounds no less than a given threshold is stored in
main memory. The reason is that promising itemsets are
more likely to have high average-utilities after new trans-
actions are additionally inserted into the original database.
Therefore, the validation of the itemsets that are promis-
ing itemsets in the previous mining step can be completed
by scanning only the new transactions because their infor-
mation in the original database can be obtained by directly
accessing main memory. Therefore, ITPAU can attenuate
the difficultness of constant database scanning and make
each incremental mining process more efficient. Based on
such advantages of the itemset information maintenance
technique, ITPAU obviously has better runtime performance
than TPAU in incremental mining environments. However,
compared to the traditional TPAU algorithm, this algorithm
may require a little more memory space because itemset
information should be maintained in the main memory. In
addition, even though this algorithm can speed up the run-
time of incremental mining processes, it has an explicit
limitation because it follows the framework of Apriori.

2.4 Preliminaries

Table 1 presents a simple transaction database with util-
ity information. Table 1a shows the five transactions. The
transactions have the corresponding transaction identifiers
(called TIDs), which allow us to distinguish them. For

Table 1 Transaction database with utility information

TID Transaction

100 c(2) d(1), e(1)

200 a(2), b(1) c(3) e(1)

300 a(1), c(3) d(4)

400 a(3), b(1)

500 b(1), c(1)

(a)Transaction database

Item External utility

a 5

b 7

c 3

d 4

e 6

(b) External utility table
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example, the first transaction in Table 1a is denoted as T100.
In addition, each transaction consists of multiple items (‘a’,
‘b’, ‘c’, ‘d’, ‘e’) with internal utilities (presented by the
numbers in brackets), which indicate their own quantities
in the corresponding transactions. In this example database,
the internal and external utility of an item are positive inte-
gers. For example, the internal utility of ‘c’ in T100 is 2. On
the other hand, Table 1b shows the external utility of each
item, which signifies the importance of the corresponding
item. For example, the external utility of ‘a’ is 5. The fol-
lowing definitions have been used in the previous studies on
HAUIM.

Definition 1 (Item utility) The item utility of item i in
transaction T can be calculated by multiplying the external
utility of i and the internal utility of i in T . When eu(i) and
iu(T , i) respectively indicate the external utility of i and the
internal utility of i in T , the item utility of i in T is denoted
as u(T , i) and can be calculated by the following formula.

u (T , i) = iu (T , i) × eu(i)

For example, in Table 1, the item utility of ‘c’ in T100 is
iu (T100, ‘c’) × eu (‘c’) = 2 × 3 = 6.

Definition 2 (Average-utility) The average-utility of item-
set X in T can be obtained by dividing the summation of
item utilities contained in X by the length of X. When the
length of X is denoted as l(X), the average-utility of X

in T is denoted as au(T , X) and defined as the following
equation.

au (T , X) =
∑

i∈X⊆T u(T , i)

l(X)

For example, the average-utility of the itemset, {‘c’, ‘d’}, in
T100 is

u(T100,‘c’)+u(T100,‘d’)
l({‘c’, ‘d’}) = 6+4

2 = 5.
The average-utility of X in a given database can be com-

puted by summating average-utilities ofX in all transactions
having X as their own subset. Therefore, the average-utility
of X in D is denoted as au(X) and defined as follows.

au (X) =
∑

X⊆T ∈D
au(T , X)

For example, the average-utility of {‘c’, ‘d’} in Table 1 is
au (T100, {‘c’, ‘d’}) + au (T300, {‘c’, ‘d’}) = 5 + 12.5 =
17.5.

Definition 3 (Minimum utility threshold) A minimum util-
ity threshold is a criterion for determining whether itemsets
are valid or not in HAUIM. A percentage value denoted as
δ is initially given from a user. Then, a minimum utility
threshold can be gained through the product of δ and the
total utility denoted as U , which is the summation of all

utilities values in a database. Therefore, a minimum utility
threshold can be defined as the following equation.

minutil = δ × U

For example, when δ is given as 10 %, minutil in Table 1 is
11 because the total utility of the database is (6 + 4 + 6) +
(10+7+9+6)+ (5+9+16)+ (15+7)+ (7+3) = 110.

Definition 4 (High average-utility itemset) If X has an
average-utility greater than or equal to a minimum utility
threshold, X is a high average-utility itemset.

For example, when a minimum utility threshold is 11,
{‘c’, ‘d’} is a high average-utility itemset because its
average-utility is greater than 11.

In HAUIM, the anti-monotone property based on sup-
ports or TWU values cannot be directly employed. Thus,
the alternative way for maintaining the anti-monotone prop-
erty is necessitated in order to reduce the search space
of HAUIM. The following definitions associated with the
anti-monotone property holding in HAUIM are used in the
previous studies.

Definition 5 (Maximal utility) The maximal utility of T is
set as the item utility, which is the highest among all item
utilities in T . Therefore, the maximal utility of T is notated
as mu(T ) and can be defined as the following formula.

mu(T ) = max(u (T , i1) , u (T , i2) , . . . , u (T , in))

For example, the maximal utility of T100 in Table 1 ismax(u
(T100, ‘c’), u (T100, ‘d’), u(T100, ‘e’)) = max(6, 4, 6) = 6.

Definition 6 (Average-utility upper-bound) Based on the
concept of a maximal utility in Definition 5, the average-
utility upper-bound (AUUB) of X can be obtained by
summating maximal utilities of all transactions having X as
their own subset. The following equation is the definition of
AUUB.

ub (X) =
∑

X⊆T ∈D
mu(T )

For example, the AUUB value of {‘c’, ‘d’} is mu(T100) +
mu(T300) = 6 + 16 = 22.

Definition 7 (High average-utility upper-bound itemset) If
X has an average-utility upper-bound greater than or equal
to a minimum utility threshold, X is a high average-utility
upper-bound itemset (HAUUBI) based on Definition 6.

For example, {‘c’, ‘d’} is HAUUBI because its AUUB is
greater than 11.

The maximal utility of a transaction can indicate the
highest average-utility that any itemset included in the
transaction can have. Thus, the summation of all maximal
utilities of transactions including an itemset can indicate
the highest average-utility that the supersets of the itemset



118 D. Kim, U. Yun

can have. Consequently, if a certain itemset is not HAU-
UBI because its AUUB is less than a given minimum utility
threshold, the supersets of this itemset are not HAUIs.
Based on this property, an anti-monotone property can be
maintained in HAUIM.

Definition 8 (Anti-monotone property in HAUIM) Let X′
be any superset of X. If ub(X) < minutil, au(X′) < minutil.
Therefore, the search space of HAUIM can be significantly
reduced.

3 Mining high average-utility itemsets
from incremental databases

In this section, we describe how the proposed method mines
HAUIs from incremental databases. The algorithm uses a
tree structure named IHAUI-Tree that is similar to FP-Tree
employed by FP-Growth. IHAUI-Tree maintains the infor-
mation of an incremental database compactly through the
node sharing effect. Whenever newly generated transactions
are reflected into IHAUI-Tree, a restructuring technique is
applied to IHAUI-Tree in order to maximize the node shar-
ing effect so that the proposed algorithm can save memory
space. Each incremental mining process is performed based
on the pattern growth approach, which is widely employed
in other tree-based itemset mining algorithms because its
performance is more efficient than an Apriori-like approach.
Since our algorithm adopts the concept of a high average-
utility upper-bound, the result itemsets generated from each
mining process are candidate itemsets. Therefore, at the last
phase of the mining process, the actual average-utilities of
candidate itemsets need to be calculated through the can-
didate validation process requiring an additional database
scan. The overall mining process of the proposed algorithm
is shown in Fig. 1.

3.1 IHAUI-Tree construction

When a given incremental database is empty, IHAUI-Tree
is composed of an empty header table and a tree structure
having the root node without child nodes. After new trans-
actions are accumulated in the incremental database, the
information of the transactions is stored in IHAUI-Tree. The
header table maintains the information of distinct items such
as total AUUB values in the incremental database. On the
other hand, the information of each transaction can be stored
in IHAUI-Tree through transaction insertions, which create
unique paths referring to the corresponding transactions in
the tree. Here, sorting transactions in certain ordering man-
ners (e.g. a support descending order) has a great impact
on the compactness of the tree structure. The well-known
FIM algorithm, FP-Growth, using a tree structure arranges

transactions in a support descending order to maximize the
node sharing effect by locating items with high supports in
the upper parts of the tree. In the proposed algorithm, an
AUUB descending order is employed because of the follow-
ing two reasons. First, items with high AUUB values also
have high supports in general because the more frequently
an item is contained in transactions; the greater the AUUB
of the item becomes. Therefore, by sorting transactions in
an AUUB descending order the node sharing effect in the
construction of IHAUI-Tree can be reasonably maximized
in the same principle of the construction of FP-Tree. Sec-
ond, unessential items are more likely to be excluded from
the construction of local trees by constructing IHAUI-Tree
based on an AUUB ascending order.

Lemma 1 With an AUUB descending order, the unessential
items can be excluded from the construction of local trees.

Proof In HAUIM, items with insufficient AUUB values are
pruned according to the anti-monotone-property. Therefore,
during local tree construction, if items do not have suffi-
cient AUUB values, they can be removed from local trees.
In IHAUI-Tree, however, all information should be main-
tained in order to facilitate incremental mining processes.
Note that the construction of local trees in the pattern growth
approach is performed by extracting paths from the root
node to the nodes carrying the specific items. Therefore,
if items with insufficient AUUB values are positioned over
items with high AUUB values in the tree, they are more
likely to be included in the construction of local trees for
items having sufficient AUUB values even though they need
to be removed anyway. Consequently, by positioning items
with low AUUB values under items with high AUUB values
in IHAUI-Tree, the proposed algorithm can reduce compu-
tational overhead for constructing local trees in its mining
process.

Example 1 Assume that we build the initial IHAUI-Tree
based on the transaction database shown in Table 1. Figure 2
presents the process of transaction insertions for five trans-
actions in Table 1. We use an alphabetical order (a > b >

c > d > e) because there are no previous data stored in
IHAUI-Tree. Note that transactions in Table 1 are already
sorted in an alphabetical order. First, we insert the first trans-
action, T100, into IHAUI-Tree. Since items ‘c’, ‘d’, and ‘e’
are firstly inserted into IHAUI-Tree, the new entries are gen-
erated in the header table. In addition, since the tree does
not have any path, a whole new path for T100 is created
in the tree. In the creation of nodes, the created nodes are
connected with the entries having the same items by using
pointers. The AUUB values of the newly created entries
and nodes are initialized to 6 because the maximal utility
of T100 is mu(T100) = max(6, 4, 6) = 6. Figure 2a shows
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Fig. 1 Overall mining process of IMHAUI

IHAUI-Tree after T100 is inserted. The maximal utilities
of the remaining transactions can be obtained as follows:
mu(T200) = 10, mu(T300) = 16, mu(T400) = 15, and
mu(T500) = 7. Based on these values, we insert the rest of
transactions in IHAUI-Tree. In the insertion of T200 shown
in Fig. 2b, the AUUB values of the existing entries carry-
ing ‘c’ and ‘e’ are updated to 16 without the generation of
new entries. On the other hand, the entries for ‘a’ and ‘b’
are newly created in the header table and their AUUB val-
ues are initialized to 10. Furthermore, a whole new path is
additionally created for inserting T200 into the tree because
there is no node carrying the first item of T200, ‘a’, under
the root node. The AUUB values of the created nodes are
also initialized to 10. In the insertion of T300, the node with
‘a’ under the root node can be shared. Therefore, without
the generation of a new node for ‘a’, the existing node’s
AUUB is increased to 26. However, the rest of items, ‘c’
and ‘d’, are inserted by creating new nodes for them because
there is no existing node carrying ‘c’ under the node with
‘a’. The AUUB values of these nodes are initialized to 16.
Figure 2c shows IHAUI-Tree after inserting T300. In the
insertion of T400, the transaction can be inserted into the

tree without the generation of any new node because the
whole path with the nodes carrying ‘a’ and ‘b’ already exist
in the tree. Figure 2d presents IHAUI-Tree after inserting
T400 by sharing the path. When the last transaction, T500,
is inserted into IHAUI-Tree in the same manner as those
of above insertions, we can obtain IHAUI-Tree shown in
Fig. 2e.

3.2 IHAUI-Tree restructuring

IHAUI-Tree should be restructured by rearranging each path
based on the optimal AUUB descending order so as to
preserve its compactness. For conducting the restructuring
process of IHAUI-Tree, the path adjusting method [11] is
exploited. This method performs the bubble sort manner
based tree restructuring process through three basic steps
called “node insert”, “node exchange”, and “node merge”.
In the restructuring process, two adjacent nodes (parent and
child nodes) in each path of IHAUI-Tree are recursively
compared in order to determine whether they are sorted cor-
rectly or not. Here, there are two cases when two adjacent
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Fig. 2 Transaction insertion process for initial IHAUI-Tree

nodes need to be sorted. First, parent and child nodes can
have different AUUB values. In this case, the parent node
always has AUUB greater than the child node. Another case
is that parent and child nodes have the same AUUB value.

Lemma 2 In a given IHAUI-Tree, any node always has
AUUB greater than or equal to those of its child nodes.

Proof As mentioned in the description of IHAUI-Tree con-
struction, the AUUB values of all nodes participating in a
transaction insertion are increased by the maximal utility
of the corresponding transaction. In the transaction inser-
tion, each item in the transaction is inserted one by one
from the root node. Therefore, if a certain node partici-
pates in a transaction insertion, all of its ancestors positioned
between itself and the root node also participate in the cor-
responding transaction insertion. Let a set of nodes < n1,
n2, . . . , nk> be one of paths in a given IHAUI-Tree. nk
does not participate in a transaction insertion unless all of
its ancestors n1, n2, . . . , nk−1 participate in the transaction
insertion. Consequently, when the AUUB value of node n

is notated as AUUB(n), it is always true that AUUB(nk) ≤
AUUB(nk−1) ≤ . . . ≤ AUUB(n2) ≤ AUUB(n1).

If parent and child nodes have the same AUUB value, we
can simply exchange the positions of the two nodes through
“node exchange” without “node insert”. Otherwise, an addi-
tional node carrying the item of the parent node needs to
be inserted in the same level of the parent node through
“node insert”. The purpose of this process is to redistribute
the AUUB value of the parent node so that the parent and
child nodes can have the same AUUB value. Therefore, the
AUUB value of the newly created node is set to the sub-
traction of AUUB values of the parent and child nodes. In
this process, if the parent node has more than one child
node, all child nodes except for the one to be sorted are dis-
connected from the current parent node and reconnected to
the newly inserted node. After two adjacent nodes are rear-
ranged, duplicated nodes carrying the same item can appear
in a set of child nodes. In order to preserve the compactness
of the tree, these nodes are merged through “node merge”.
A restructuring process is conducted whenever newly gen-
erated transaction data need to be reflected in IHAUI-Tree.
Therefore, even though the size of an incremental database
continuously becomes huge, IHAUI-Tree can minimize the
memory consumption for storing data by maintaining an
optimal AUUB descending order all the time.

Example 2 Since the initial IHAUI-Tree in Example 1 was
constructed on the basis of an alphabetical order, it needs
to be restructured based on an optimal AUUB descend-
ing order before new transactions are inserted. The AUUB
descending order of items can be obtained from the header
table of IHAUI-Tree shown in Fig. 2e. Based on the AUUB
values of items in the header table, the following AUUB
descending order can be obtained: a > c > b > d > e
(41 > 39 > 32 > 22 > 16). To sort all paths in the tree
according to the obtained AUUB descending order, each
path is checked one by one. We can know that the two paths
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< ‘a’, ‘b’, ‘c’, ‘e’ > and < ‘b’, ‘c’ > need to be rearranged
because ‘c’ should appear in advance of ‘b’ according to the
obtained AUUB descending order. On the other hand, the
rest of paths do not need to be rearranged because they do
not include both ‘b’ and ‘c’. Note that, in real implementa-
tion, all the pairs of adjacent nodes in paths are compared to
each other on the basis of the bubble sort manner in order
to determine whether they are correctly sorted or not. When
each node in a path can be denoted as (item, AUUB), we can
sort < ‘a’, ‘b’, ‘c’, ‘e’ > by exchanging the positions of two
nodes, (‘b’, 25) and (‘c’, 10). Since the parent node, (‘b’,
25), has AUUB greater than that of the child node, (‘c’, 10),
we cannot simply exchange the items of two nodes. There-
fore, we insert a new node that is the sibling of the parent
node, and set its AUUB as the subtractions of 25 and 10,
which is 15. On the other hand, the path, < ‘b’, ‘c’>, does
not require “node insert” because the parent and child nodes

have the same AUUB value. Figure 3a shows IHAUI-Tree
after “node insert” is performed. After that, the items of two
nodes in each path can be exchanged without any problem
because the nodes have the same AUUB value. Figure 3b
presents IHAUI-Tree after “node exchange” is performed
by exchanging the items of nodes. We can see that the root
node and (‘a’, 41) have more than one child node carrying
‘c’. Therefore, “node merge” is conducted for these nodes
in order to preserve the compactness of IHAUI-Tree. After
duplicated nodes are merged into one node, we can obtain
IHAUI-Tree shown in Fig. 3c, which has a smaller number
of nodes compared to IHAUI-Tree in Fig. 2e.

Example 3 Consider inserting newly generated transactions
into the restructured IHAUI-Tree shown in Fig. 3c. Table 2
shows the transactions that are newly generated in the incre-
mental database. Before inserting them into the tree, we sort

Fig. 3 IHAUI-Tree
restructuring process
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Table 2 New transactions

TID Transaction

600 a(1), b(1), c(1), d(2)

700 b(1), c(3), d(2)

800 d(1), e(1)

them in the AUUB descending order (a > c > b> d > e),
which is used in the restructuring process of Example 2.
Therefore, we can obtain the reordered transactions as fol-
lows: T600 < a, c, b, d>, T700 < c, b, d>, and T800 <

d, e>. Thereafter, the ordered transactions are inserted into
IHAUI-Tree in the same manner as that used in the construc-
tion of the initial IHAUI-Tree. After all of three transactions
in Table 2 are completely inserted into IHAUI-Tree, we can
obtain IHAUI-Tree shown in Fig. 4, which maintains the
information of the original transactions in Table 1 and the
newly generated transactions in Table 2.

3.3 Mining HAUIs from IHAUI-Tree

The HAUI mining process of the proposed algorithm is
conducted based on the pattern growth approach by exploit-
ing only the information stored in IHAUI-Tree. Therefore,
it does not require constant database scans unlike the pre-
vious algorithms. This approach builds a number of local
trees for specific itemsets called prefixes. In our algorithm,
local trees for specific prefixes can be constructed via the
following manner. A prefix item is initially selected from
the header table of IHAUI-Tree and an itemset including
the selected prefix item becomes a new prefix. However,
if the selected item has a total AUUB value less than the
threshold in the header table, we do not construct the local
tree for the corresponding prefix item according to the anti-
monotone property. For constructing the local tree for the
prefix, we extract a set of paths related to the selected prefix
item (commonly called conditional pattern base). Each path
from the node with the selected prefix item to the root node
is extracted. Each extracted path has its path AUUB value,

which is set to the AUUB value of the node with the pre-
fix item. During this process, all nodes carrying a specific
item can be efficiently visited through the link information
embedded in IHAUI-Tree. Thereafter, the local tree is con-
structed based on the extracted conditional pattern base. In
the construction, any item that has a total AUUB value less
than the threshold is removed. During the above mining pro-
cess, the generated prefixes are added to a set of candidate
itemsets. After the mining process is completed, a candidate
itemset validation process is performed by calculating actual
average-utilities of candidate itemsets through an additional
database scan.

Example 4 Consider mining HAUIs from IHAUI-Tree
shown in Fig. 4. A minimum utility threshold is given as 25.
To perform pattern growth operations, we first select a pre-
fix item from the header table of IHAUI-Tree one by one.
In general, the selection of prefix items follows a bottom-
up sequence of the header table. Based on the bottom-up
sequence, we first select ‘e’ as a prefix item. However, we
can know that all itemsets extended from ‘e’ are invalid
itemsets because its AUUB in the header table is 22, which
is less than a minimum utility threshold. Therefore, any
extension from ‘e’ is not considered. In addition, the prefix
{‘e’} is not added to a set of candidate itemsets. On the other
hand, since the next prefix item, ‘d’, has AUUB greater than
25, we set {‘d’} as the current prefix and add it to a set of
candidate itemsets. Furthermore, the pattern growth oper-
ations for {‘d’} are performed. To construct the local tree
for {‘d’} , we extract the conditional pattern base of {‘d’}
from IHAUI-Tree. When each extracted path is presented
as < item1, item2, . . . , itemn,: path AUUB >, the condi-
tional pattern base of {‘d’} is extracted as follows: <‘a’, ‘c’,
‘b’: 8>, < ‘a’, ‘c’ : 16 >, < ‘c’ : 6 >, and < ‘c’, ‘b’ : 9
>. In the conditional pattern base, items have total AUUB
values as follows: ‘a’ = 24, ‘b’ = 17, ‘c’ = 39. Since the
items ‘a’ and ‘b’ have AUUB values less than 25, these
items are removed. Therefore, only ‘c’ remains in the con-
ditional pattern base as follows: < ‘c’: 8 >, < ‘c’: 16 >, <
‘c’ : 6 >, and < ‘c’ : 9 >. By using this conditional pat-
tern base, we can a build local tree for {‘d’} as shown in

Fig. 4 IHAUI-Tree after new
transactions are inserted
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Fig. 5a. Thereafter, ‘c’ is recursively selected as the next
prefix item. Then {‘d’, ‘c’} is added to a set of candidate
itemsets and becomes a new prefix. Since there is no item in
the conditional pattern base of {‘d’, ‘c’}, local trees are not
constructed additionally. Therefore, the pattern growth oper-
ation for {‘d’} is terminated. Subsequently, ‘b’ is selected
as the next prefix item in the header table of IHAUI-Tree.
The conditional pattern base of {‘b’} can be extracted as
follows: < ‘a’: 15 > , < ‘a’, ‘c’: 18>, < ‘c’: 16 >. The
AUUB values of ‘a’ and ‘c’ have are 33 and 34, respectively.
Therefore, any item is not removed from the conditional
pattern base. The local tree for {‘b’} can be built as shown
in Fig. 5b. ‘a’ and ‘c’ exist in the constructed local tree.
Based on the bottom-up sequence, ‘a’ is selected as a pre-
fix item in advance of ‘c’. Then, the prefix becomes {‘b’,
‘a’}. Therefore, we extract the conditional pattern base of
{‘b’, ‘a’} from Fig. 5b as follows: < ‘c’, 33>. By inserting
< ‘c’, 33> into an empty local tree, the local tree for {‘b’,
‘a’} can be constructed as shown in Fig. 5c. Since there is
no more available item after ‘c’ is selected and the prefix
becomes {‘b’, ‘a’, ‘c’} the current recursive process is ter-
minated and we return to the recursive mining step of the
local tree for {‘b’} . Then, ‘c’ is selected as the next prefix
item. Therefore, the prefix becomes {‘b’, ‘c’}. {‘b’, ‘c’} is
added to a set of candidate itemsets and the pattern growth
operations for ‘b’ are finished. The pattern growth opera-
tions for ‘a’ and ‘c’ are also conducted in the same manner
as those of the above processes. After the mining process
is completed, we can gain the following candidate itemsets:
{‘a’} , {‘c’} , {‘c’, ‘a’} , {‘b’} , {‘b’, ‘a’}, {‘b’, ‘c’}, {‘b’,
‘a’, ‘c’}, {‘d’}, and {‘d’, ‘c’}. The actual average-utilities of
these candidate itemsets are calculated by rescanning the
transactions in Tables 1 and 2. The actual average-utilities of
the generated candidate itemsets are computed as follows:
{‘a’} = 10 + 15 + 5 ∗ 2 = 35, {‘c’} = 6 + 9 + 9 + 3 +
3 + 9 = 39, {‘c’, ‘a’} = (19 + 14 + 8)/2 = 20.5, {‘b’}
= 7 ∗ 5 = 35, {‘b’, ‘a’} = (17 + 22 + 12)/2 = 25.5,
{‘b’, ‘c’} = (16 ∗ 2 + 10 ∗ 2)/2 = 26, {‘b’, ‘a’, ‘c’}
= (26+15)/3 = 13.7, {‘d’} = 4+16+8+8+4 = 40, and
{‘d’, ‘c’} = (10+25 + 11 + 17)/2 = 31.5. Consequently,
itemsets {‘a’}, {‘c’}, {‘b’}, {‘b’, ‘a’}, {‘b’, ‘c’}, and {‘d’} hav-
ing average-utilities greater than or equal to 25 are mined as
actual HAUIs by the proposed algorithm.

3.4 IMHAUI algorithm description

In this part, we describe the overall procedure of the pro-
posed algorithms through the analysis of pseudo codes.
Figure 6 shows the pseudo codes presenting the overall
mining process of the proposed algorithm. As shown in
Fig. 6, the overall mining process is composed of three
major functions named IMHAUI, Restructure, and Mining.

Fig. 5 Construction of local trees

The followings are the brief descriptions of these func-
tions. 1) IMHAUI function: this is the main function, which
continuously processes inputted transaction data and calls
Restructure and Mining functions for restructuring IHAUI-
Tree and performing the mining process. This function
receives two parameters, which are an incremental database
and a minimum utility threshold denoted as D and M ,
respectively. 2) Restructure function: this function is used
to restructure IHAUI-Tree according to the optimal AUUB
descending order. It receives IHAUI-Tree that needs to be
restructured as a parameter. 3) Mining function: this func-
tion is used to mine candidate HAUIs based on the pattern
growth approach. It receives three parameters, which are
IHAUI-Tree (this tree is either IHAUI-Tree constructed in
IMHAUI function or a local tree constructed in the previous
recursive mining step), a minimum utility threshold, and a
prefix itemset denoted as P .

First, we analyze the IMHAUI function shown in Fig. 6a.
In the beginning, the function initializes IHAUI-Tree in
order to accumulate the information of the incremental
database throughout the procedure. At the start of each
incremental mining step, if IHAUI-Tree is not empty,
the Restructure function is called in order to restructure
IHAUI-Tree based on the optimal AUUB descending order.
If IHAUI-Tree is empty, the Restructure function is not
called. After IHAUI-Tree is restructured, the newly gener-
ated transactions in the incremental database are inserted
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Fig. 6 IMHAUI algorithm

into IHAUI-Tree one by one through the loop operation.
Each transaction is sorted in the AUUB descending order
determined by the above restructuring process. After the
information of the newly generated transactions is reflected
into IHAUI-Tree, the Mining function is called in order to
perform the mining process. Finally, candidate itemsets gen-
erated during the mining process are validated through an
additional database scan. Then, itemsets satisfying a min-
imum utility threshold condition are provided as mining
results. This routine (from a restructuring process to the
mining process) is repeated in every incremental mining step.

The Restructure function presented in Fig. 6b sorts each
path of IHAUI-Tree in an optimal AUUB descending order
decided based on the total AUUB values of items in the
header table. For each path, all pairs of two adjacent nodes
are compared with each other in order to determine whether

they are correctly ordered or not. For each pair of adja-
cent nodes, the following restructuring steps are applied. If
a parent node has AUUB greater than that of a child node,
the “node insert” process is performed. After that, “node
exchange” is performed in order to change the order of
two nodes. Finally, when the identifiers of two nodes are
exchanged, the existence of duplicated nodes is checked and
“node merge” is performed if there are duplicated nodes.

The Mining function is a core function for performing
the pattern growth operations. This function builds local
trees for prefixes and recursively calls itself so as to perform
the pattern growth operations extending prefixes progres-
sively. At the first part of the algorithm each item in the
header table of IHAUI-Tree is selected one by one and
checked whether it has AUUB greater than or equal to a
minimum utility threshold. If the item has AUUB no less
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than a minimum utility threshold, the next prefix is gener-
ated by combining the selected prefix item and the previous
prefix itemset. The next prefix is added to a set of candidate
itemsets and the local tree for the next prefix is constructed
based on the conditional pattern base extracted from IHAUI-
Tree. Here, all unessential items which have AUUB values
less than a minimum utility threshold are discarded from
the conditional pattern base. Thereafter, Mining function is
recursively called by using the next prefix itemset and the
constructed local tree as parameters. The above recursive
processes are iterated until no valid item exists in the newly
constructed local tree.

3.5 Time complexity analysis

Let us calculate the time complexity of the proposed algo-
rithm when an incremental mining process is performed.
Let n be the number of distinct items contained in an incre-
mental database after new transactions with n

2 distinct items
being inserted into the database and l be the maximum
length of itemsets generated from the database. Therefore,
scanning the whole database requires the time complexity
of O(n) for processing all items. The proposed algorithm
scans the database two times in order to construct IHAUI-
Tree and validate candidate itemsets. Assume that initial
IHAUI-Tree is built before new transactions are added into
the database. Therefore, the proposed algorithm scans only
new transactions for inserting them into IHAUI-Tree. How-
ever, for validating candidate itemsets, the whole database
needs to be checked. Therefore, the proposed algorithm
requires the time complexity of O(n

2 + n) for scanning the
database during its entire incremental mining process. It can
be simplified as O( 3n2 ). On the other hand, ITPAU gener-
ates candidate itemsets at each level and scans the database
for identifying AUUB values of candidate itemsets. In addi-
tion, one database scan is required for calculating actual
average-utilities of candidates. Even though it utilizes the
information of itemsets generated in the previous mining
process, the whole database needs to be scanned for cal-
culating AUUB of newly generated itemsets. Therefore,
ITPAU requires the time complexity of O((l + 1) × n)

for scanning the database. Since l + 1 is greater than 3
2

in general, we can determine that the proposed algorithm
requires less time for scanning the database less than ITPAU
theoretically.

In each incremental mining process, the proposed algo-
rithm restructures IHAUI-Tree based on an AUUB descend-
ing order before conducting its mining process. Since the
path adjusting method sorts each path based on the bubble
sort manner, the time complexity for restructuring IHAUI-
Tree with n nodes is O(n2) in the worst case. In addi-
tion, the proposed algorithm constructs multiple local trees

recursively on the basis of the pattern growth approach for
mining candidate itemsets. For each item in IHAUI-Tree, a
new prefix for the item is generated and its local tree is con-
structed if AUUB of the item in the header table is greater
than or equal to minutil. The worst case assumes that all
items satisfy the minutil condition so that the number of
constructed local trees is maximized. In order to construct
a local tree, the conditional pattern base is extracted from
IHAUI-Tree by visiting node associated with i. Let m (m <

n) be the number of nodes participating in the construction
of a local tree of i and Ri be the time for the recursive
pattern growth operation of i’s local tree. Based on the infor-
mation of m nodes extracted from IHAUI-Tree, a local tree
withm nodes is constructed. Therefore, in order to construct
local trees for n items in IHAUI-Tree, the algorithm requires
the time complexity of O(2 × m × n). Since the recursive
pattern growth operation is performed for each local tree
constructed from IHAUI-Tree, the time complexity of the
entire mining process is O

(
n2 + 2 × m × n + ∑n

i=1 Ri

)
.

Each Ri can be expressed as follows. Since the local tree
of i is composed of m items, m local trees can be con-
structed from the local tree of i. In the construction of these
local trees, m′ (m > m′) nodes participate. Therefore, Ri =
O

(
2 × (m′) × m + ∑m

j=1 Rij

)
. As shown in the above

case, since time for the recursive pattern growth operations
of local trees gradually becomes smaller as the depths of the
recursive pattern growth operations are increased, the time
complexity of the entire mining process can be simplified as
O(n2) by considering only the highest order term.

On the other hand, ITPAU generates (k + 1)-itemsets
by joining k-itemsets. Therefore, ITPAU has the worst time
complexity when it has to generate all possible combina-
tions that can be generated from items in the database. Let
Lk be the number of generated itemsets with k-lengths and

kCi be the number of combinations of k items in groups of
i items. That is, L1 = kC1, L2 = kC2, . . . , Lk = kCk .
Since the number of items in the database is n, the number
of all possible combinations that can be generated from the
database is nC1+n C2+ . . .+n Cn = 2n −1 according to the
combination formula. Therefore, for generating all possi-
ble itemsets, ITPAU requires the time complexity of O(2n).
Consequently, since O(2n) > O(n2), the proposed algo-
rithm can finish its mining process much faster than ITPAU
theoretically.

In the above time complexity analysis, we determine
that the proposed algorithm outperforms the state-of-the-art
incremental HAUIM algorithm, ITPAU, theoretically. How-
ever, it is not enough to show that the proposed algorithm
substantially has better performance than ITPAU in the min-
ing processes using real data. Therefore, in the next section,
we evaluate the performance of the proposed algorithm
based on various experiments conducted on real datasets.
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4 Performance evaluation

4.1 Experimental settings

We implemented the two algorithms, ITPAU [10] and
HUPID [34], in order to compare their performances with
that of the proposed algorithm, HUPID, which is an HUIM
algorithm for processing incremental databases. This is one
of the most recent incremental HUIM algorithms using tree
structures and pattern growth approaches similarly to ours.
Therefore, we can show the differences between HUIM and
HAUIM by comparing this algorithm with the proposed
algorithm. On the other hand, ITPAU is a state-of-the-art
incremental HAUIM algorithm employing an Apriori-like
approach and the itemset information maintenance tech-
nique. We can thus prove that the proposed algorithm is
the most efficient incremental HAUIM algorithm through
the comparison of ITPAU and the proposed algorithm. Our
algorithm and HUPID perform tree restructuring processes
before beginning each incremental mining process. In the
construction of tree structures and restructuring processes,
the proposed algorithm and HUPID use an AUUB descend-
ing order and a TWU descending order, respectively. We
made all algorithms in C++ programming language. In
addition, a PC with 3.30GHz CPU, 8GB RAM, and the
Windows 7 64bit operating system was employed for per-
forming tests. We used the various datasets including both
real and synthetic datasets in experiments Table 3 provides
the detailed information of datasets, Chain-store, Foodmart,
Mushroom, Breast-cancerWisconsin, the group of T10I4Dx
datasets, and the group of Tx1Nx2Lx3 datasets.

Chain-store and Foodmart are datasets collected from
major grocery stores and have actual utility data. On the
other hand, Mushroom and Breast-cancer Wisconsin [3]
are datasets with information of mushroom species and
patients related to breast cancer diseases, respectively. They
have arbitrary utility values. Chain-store can be obtained
from NU-MineBench [27] version 2.0. Foodmart is con-
tained in the Microsoft Foodmart 2000 database. The rest of
real datasets, Mushroom and Breast-cancer Wisconsin, can
be gained from UCI Machine Learning repository (https://
archive.ics.uci.edu/ml/index.html). The group of T10I4Dx
datasets has characteristics in that the number of transac-
tions is increased in proportion to the increase of x. On the
other hand, the group of Tx1Nx2Lx3 datasets has character-
istics in that and the number of items, the average length
of transactions, and the number of discoverable itemsets are
raised according to the variables x1, x2, and x3, respectively.
All synthetic datasets were generated by the IBM generator
[1]. We conducted experiments for evaluating the perfor-
mances of algorithms in terms of their runtime, memory
usage, and scalability. The tests on runtime and memory
usage were conducted on real datasets while the synthetic
datasets were employed for the scalability tests.

4.2 Performance evaluation under different minimum
utility thresholds

We first compare the runtime performances of algorithms.
Figure 7 shows the experimental results of the runtime tests
conducted on the real datasets. The tests were performed by
gradually decreasing the minimum utility threshold denoted

Table 3 Datasets

Dataset Number of transactions Number of items Average length Number of discoverable itemsets

Chain-store 1,112,950 46,087 7.2 –

Foodmart 4,141 1,559 4.4 –

Mushroom 8,124 119 23 –

Breast-cancer Wisconsin 699 92 10 –

T10I4D100K 100,000 1,000 10 –

T10I4D200K 200,000 1,000 10 –

T10I4D400K 400,000 1,000 10 –

T10I4D600K 600,000 1,000 10 –

T10I4D800K 800,000 1,000 10 –

T10I4D1000K 1,000,000 1,000 10 –

T10N10000L1000 100,000 10,000 10 1000

T20N20000L2000 100,000 20,000 20 2000

T30N30000L3000 100,000 30,000 30 3000

T40N40000L4000 100,000 40,000 40 4000

https://archive.ics.uci.edu/ml/index.html
https://archive.ics.uci.edu/ml/index.html
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Fig. 7 Runtime performance
under different minimum utility
thresholds

as minutil. All algorithms perform their incremental min-
ing processes whenever 20 % of the whole dataset are
newly read. The runtime of algorithms was measured on
the total execution time for performing all incremental min-
ing processes. In figures, the y-axis shows the changes
of the algorithms’ execution times expressed in seconds
while the x-axis shows the variation of minutil conditions.
In the experimental results, we can observe that the run-
time performances of algorithms become worse as minutil
is decreased. The reason why the runtime performances
are degraded according to the decrease of the threshold is
that the number of generated itemsets is increased as the
threshold becomes lower. In the experiment on Chain-store,
Fig. 7a, the mining process of ITPAU was unfinished at all
thresholds because it required huge execution times (over
15000 s) in order to constantly scan the entire data of Chain-
store, which is a very huge dataset. Note that, therefore,
Fig. 7a does not show the runtime performance of ITPAU.
In addition, HUPID causes a memory overflow at thresh-
old 0.01 % because it generates a huge number of candidate
itemsets while the proposed algorithm generates much less
candidate itemsets. Figure 7b shows the result of the runtime
experiment on Foodmart. In Fig. 7b, we can see that the pro-
posed algorithm has much better runtime performance than
ITPAU in all cases. In particular, the runtime requirement
of ITPAU significantly increases at the 0.01 % threshold. In
the experimental results of the test on Mushroom, Fig. 7c,
the runtime performances of HUPID and ITPAU cannot be
measured at thresholds less than 3 % and 2 %, respectively.
The reason is that, at low thresholds, HUPID causes mem-
ory overflows and ITPAU consumes excessive runtime to
finish its mining process. Even though HUPID generates

more itemsets than ITPAU because it is an HUIM algorithm,
it generally has better runtime performance than ITPAU
because it uses a tree structure in order to avoid constant
database scanning. However, if the number of generated
HUIs overwhelms the number of generated HAUIs, the per-
formance of HUPID can be worse than that of ITPAU. For
example, in Fig. 7c, HUPID has runtime performance worse
than ITPAU. On the other hand, the proposed algorithm
always has the best runtime performance in Fig. 7c. The
experimental result of the test on Breast-cancer Wisconsin,
Fig. 7d, also shows that the runtime performance of the
proposed algorithm is much better than that of ITPAU.

Next, we compare the performances of algorithms in
terms of memory space consumed by the algorithms.
Figure 8 shows the experimental results of the memory per-
formance tests conducted on four real datasets. These tests
were conducted under the same experimental conditions
as those of the above runtime tests. The memory perfor-
mances of algorithms were measured on algorithms’ peak
memory usage during their entire incremental mining pro-
cesses. The y-axis in figures indicates the memory usage
of algorithms expressed in Megabytes. We can observe that
the memory performances of algorithms become worse as
minutil is decreased similarly to the aspect of the runtime
performances of algorithms. The reason is that the number
of generated candidates is raised according to the decrease
of the threshold and the generated candidate itemsets should
be stored in the main memory in order to be handled in
candidate validation processes. In the result of the mem-
ory test on Chain-store, Fig. 8a we can see that IMHAUI
and HUPID require somewhat similar memory usage. The
reason is that both of them have to use a huge amount
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Fig. 8 Memory performance
under different minimum utility
thresholds

of memory in order to maintain all information of Chain-
store in their tree structures. However, HUPID causes a
memory overflow at the threshold, 0.01 %, while IMHAUI
finishes its mining process normally at the same threshold.
The reason is that HUPID generates much more candidate
itemsets than IMHAUI because it is an HUIM algorithm.
Figure 8b shows the memory usage of algorithms in the
mining processes on Foodmart. From the figure, we can
learn that the proposed algorithm always has the highest
memory performance regardless of the minutil condition.
On the other hand, ITPAU has the worst memory perfor-
mance because a huge number of candidate itemsets are
generated in its mining process. Unlike the result in Fig. 8b,
HUPID requires the largest memory space at all cases in
Fig. 8c because the number of candidate HUIs generated
from Mushroom is much greater than the number of candi-
date HAUIs. Therefore, HUPID causes memory overflows
when minutil becomes lower than 3 %. In Fig. 8c and d,
we can observe that the proposed algorithm has the best
memory performance at all minutil settings.

4.3 Performance evaluation under different transaction
insertion ratios

In the experiments for the performance evaluation in
Section 4.2, we fixed the transaction insertion ratios of algo-
rithms’ incremental mining processes to 20 %. However, the
change of a transaction insertion ratio is an important factor
that determines the performance of algorithms in incremen-
tal mining environments. Therefore, we conducted experi-
ments under different transaction insertion ratios in order to

evaluate the runtime and memory performances of the pro-
posed algorithm. Figure 9 shows the results of the runtime
tests conducted under different transaction insertion ratios.
These tests were performed by decreasing the transaction
insertion ratio from 40 % to 10 %. The minutil settings used
in the experiments on Chain-store, Foodmart, Mushroom,
and Breast-cancer Wisconsin were fixed to 0.03 %, 0.05 %,
3 %, and 0.09 %, respectively. We can see that the execution
times of algorithms are increased as the transaction insertion
ratio is decreased. The reason is that the number of min-
ing processes performed in an incremental mining process is
increased as the transaction insertion ratio is reduced. When
a transaction insertion ratio is 10 %, the algorithms have to
perform mining processes 10 times throughout the duration
of their entire incremental mining process. Therefore, we
can learn that the algorithms require the highest execution
time when the transaction insertion ratio is 10 %. In Fig. 9a,
the runtime of ITPAU is not shown because it consumes too
much execution time. In addition, the runtime of HUPID is
not shown in Fig. 9c because it causes memory overflows
at every transaction insertion ratio. On the other hand, we
can observe that the proposed algorithm always has much
better performance than ITPAU regardless of a transaction
insertion ratio in all experimental results.

Figure 10 presents the results of the memory experi-
ments conducted under different transaction insertion ratios.
The experimental settings are same as those of the above
runtime tests. In Fig. 10a, the proposed algorithm and
HUPID consume similar memory space as in the case of the
result in Fig. 8a. We can see that ITPAU generally requires
more memory as the transaction insertion ratio is decreased
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Fig. 9 Runtime performance
under different transaction
insertion ratios

because more memory space is used to maintain the infor-
mation of itemsets generated during each mining process.
On the other hand, we can determine that the proposed algo-
rithm has the best memory performance at all transaction
insertion ratios in Fig. 10b, c, and d.

4.4 Scalability performance evaluation

In this subsection, we evaluate the scalability performance
of our algorithm, which indicates how well the algo-
rithm can handle incremental databases when their scales
such as the numbers of transactions and distinct items are

significantly increased. Figure 11 presents the experimental
results of scalability tests conducted on the two groups of
synthetic datasets (T10I4Dx and Tx1Nx2Lx3). In the test on
T10I4Dx, the number of transactions contained in a dataset
gradually increases from 100 K to 1000 K. On the other
hand, in the test on Tx1Nx2Lx3, the numbers of distinct
items, the average length of transactions, and the number
of discoverable itemsets are increased from 10000, 10, and
1000 to 40000, 40, and 4000, respectively. In the both of
tests, minutil was fixed to 0.1 % for the entirety of the test.
We can observe that the runtime performances of algorithms
generally become worse as the numbers of transactions and

Fig. 10 Memory performance
under different transaction
insertion ratios
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Fig. 11 Scalability performance

items are raised. However, we can also see that the perfor-
mance of IMHAUI slowly becomes worse while the perfor-
mances of others worsen much faster than that of IMHAUI.
In particular, the execution time of ITPAU is increased much
faster than those of the proposed algorithm and HUPID
because the large number of database scans causes dramatic
performance deterioration when the numbers of transactions
and distinct items are huge. The performance of HUPID
also becomes worse faster than that of IMHAUI because the
number of generated HUIs is increased significantly as the
scales of databases are expanded while the number of gen-
erated HAUIs is raised gently. Overall, we can know that
the proposed algorithm has the best scalability performance
among the compared algorithms.

5 Conclusions

In this paper, we proposed a novel algorithm for mining
HAUIs from incremental databases, which is much more
efficient than state-of-the-art algorithms. Unlike the previ-
ous ones, the proposed algorithm can generate candidate
itemsets without a number of database scans because all
necessary data of a given incremental database can be stored
in a compact tree data structure. In addition, our algorithm
periodically performs a restructuring process based on the
path adjusting method in order to preserve the compact-
ness of its data structure. In the performance evaluation,
we showed that the proposed algorithm outperformed com-
petitors in terms of runtime, memory usage, and scalability
performances. However, the validation of candidate itemsets
still requires excessive runtime, and this limitation can be a
crucial obstacle in mining tasks for incremental databases
with the rapid generation of new transaction data. Recently,
various algorithms have been proposed to mine itemsets
from static databases without the generation of candidate
itemsets. They employ list structures for capturing actual
utility information so that the validation of candidate item-
sets is not required. Therefore, based on such recent studies,
we are scheduled to conduct researches on the techniques
for mining HAUIs from incremental databases without the
generation of candidate itemsets in our future works.
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