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Abstract Twin support vector machine (TWSVM) is an
efficient supervised learning algorithm, proposed for the
classification problems. Motivated by its success, we pro-
pose Tree-based localized fuzzy twin support vector clus-
tering (Tree-TWSVC). Tree-TWSVC is a novel cluster-
ing algorithm that builds the cluster model as a binary
tree, where each node comprises of proposed TWSVM-
based classifier, termed as localized fuzzy TWSVM
(LF-TWSVM). The proposed clustering algorithm Tree-
TWSVC has efficient learning time, achieved due to the
tree structure and the formulation that leads to solving a
series of systems of linear equations. Tree-TWSVC deliv-
ers good clustering accuracy because of the square loss
function and it uses nearest neighbour graph based ini-
tialization method. The proposed algorithm restricts the
cluster hyperplane from extending indefinitely by using
cluster prototype, which further improves its accuracy. It
can efficiently handle large datasets and outperforms other
TWSVM-based clustering methods. In this work, we pro-
pose two implementations of Tree-TWSVC: Binary Tree-
TWSVC and One-against-all Tree-TWSVC. To prove the
efficacy of the proposed method, experiments are performed
on a number of benchmark UCI datasets. We have also given
the application of Tree-TWSVC as an image segmentation
tool.
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1 Introduction

Machine learning approaches can be broadly classified as
supervised and unsupervised learning, based on the avail-
ability of data labels or output. Supervised learning uses
labelled training samples, while unsupervised learning is
‘learning without label information’. Maximum margin
classifiers like support vector machines (SVM) [1] have
been successfully used for supervised classification. An
improvement over SVM was proposed by Jayadeva et al.
termed as TWSVM [2, 3]. TWSVM is a supervised learning
method that classifies data by generating two nonparallel
hyperplanes which are proximal to their respective classes
and at least unit distance away from the patterns of other
class. TWSVM solves a pair of quadratic programming
problems (QPPs) and is based on empirical risk minimiza-
tion principle; it is proved to be almost four times faster than
SVM [2]. Many variations of TWSVM have been proposed,
which include Least Squares TWSVM (LS-TWSVM) [4],
fuzzy version of LS-TWSVM [5] and robust energy-based
LS-TWSVM [6]. LS-TWSVM solves a system of linear
equations and hence, it is faster than TWSVM. Shao et
al. proposed least square twin parametric-margin SVM [7].
Recently, Khemchandani et al. proposed multi-category
Laplacian TWSVM [8].

In many practical problems, the cost of obtaining the
labels is very high as compared to the cost of generat-
ing the data, for example speech recognition, web page

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-016-0886-8&domain=pdf
mailto:reshma.khemchandani@sau.ac.in
mailto:pooja.saigal@students.sau.ac.in


Tree-based localized fuzzy twin support vector clustering with square loss function 97

classification, video surveillance, etc. In this scenario, unsu-
pervised learning approaches can be exploited, but they
are more challenging as the data labels are not available.
Clustering is an unsupervised learning task, which aims at
partitioning data into a number of clusters [9–11]. Patterns
that belong to the same cluster should have an affinity with
each other and must be distinct from the patterns in other
clusters. Clustering has its application in various domains
of data analysis which include medical science, finance,
pattern recognition and image analysis [12–14].

Clustering algorithms aim at partitioning the data into a
number of clusters [9] based on similar features by using
algorithms like K-means clustering [10] and hierarchical
clustering [11]. The K-means algorithm [10] is a centroid-
based clustering method that represents each cluster by
its mean vector. Hierarchical clustering [11] is based on
distance connectivity. Clusters can be identified by using
statistical distributions, such as multivariate normal distri-
butions used in expectation-maximization algorithm [15].
Al-Harbi et al. proposed adaptive K-means clustering [16].
Plane-based clustering methods have been proposed such as
K-plane clustering (KPC) [17] and local k-proximal plane
clustering (LkPPC) [18] by Bradley et al. and Yang et al.
respectively. For a K-cluster problem, theses algorithms
identify K clusters by generating K planes.

Following the success of margin-based classifiers in
supervised learning, researchers have been trying to extend
them to unsupervised learning. Recently, Xu et al. [19] pro-
posed maximum margin clustering (MMC) which performs
clustering in SVM framework and finds a maximum margin
separating hyperplane between clusters. Valizadegan et al.
proposed a variation of MMC termed as generalized MMC
[20]. Large margin supervised learning methods are usually
formulated as QPPs, which suggests that they could be com-
putationally more expensive. Since the labels are missing in
unsupervised problems, the resulting optimization problem
would be hard and non-convex that considers all the com-
binations over possible discrete class labels. MMC based
methods [20] resort to relaxing the non-convex clustering
problem as a semidefinite program (SDP) [21]. MMC can
not be used for very large datasets because SDP is computa-
tionally expensive [22]. Zhang et al. [23] proposed a feasible
variation for MMC and implemented MMC as an iterative
support vector machine (iterSVM).

Recently, Wang et al. proposed TWSVM for clustering
(TWSVC) [24] that uses information from both within the
cluster and between clusters. It requires that the plane of one
cluster should be a unit distance away from patterns of other
clusters on both the sides. TWSVC is an iterative clustering
algorithm that solves K QPPs for a K-cluster problem using
one-against-all approach (OAA) [25]. Due to the nature of
loss function used by TWSVC (as discussed in Appendix
A), the labels flip rarely in successive iterations i.e. change

their value from 0 to 1 or vice-versa. Hence, the accuracy
of TWSVC is limited by the performance of initialization
algorithm and the labels seldom change in the iterations.
Recently, Khemchandani et al. [26] proposed fuzzy least
squares TWSVC (F-LS-TWSVC) that uses fuzzy member-
ship to create clusters, which are further obtained by solving
systems of linear equations only.

In this paper, we propose Tree-TWSVC which is moti-
vated by MMC [19] and TWSVC [24]. Tree-TWSVC can
overcome the limitations of TWSVC and has the following
characteristics:

– Unlike MMC that solves expensive SDP problems,
the proposed clustering algorithm Tree-TWSVC formu-
lates convex optimization problems which are solved as
a system of linear equations. Also, MMC identifies only
two clusters whereas Tree-TWSVC identifies multiple
clusters by building a tree with LF-TWSVM classifiers
at each level.

– Tree-TWSVC recursively divides the data to form the
tree structure and iteratively generates the hyperplanes
for the partitioned data, until the convergence criterion
is met. Due to its tree structure, Tree-TWSVC is much
faster than the classical approaches like OAA (used
in TWSVC or F-LS-TWSVC), for handling multi-
cluster data. It can handle very large-sized datasets
with comparable or better clustering results than other
TWSVM-based clustering methods.

– At each node of the cluster tree, LF-TWSVM creates
two clusters so that the data points of one cluster are
proximal to their cluster plane and prototype, and the
data points of another cluster should be a unit distance
away from this cluster plane. The cluster prototype pre-
vents the plane from extending indefinitely and keeps
the plane aligned locally to its cluster.

– Tree-TWSVC avoids the approximation through Tay-
lor’s series expansion, as required by TWSVC and F-
LS-TWSVC due to constraints with mod (or absolute)
function and hence Tree-TWSVC gives more accurate
results.

– Tree-TWSVC determines a fuzzy membership matrix
for data samples which associates a membership value
of each data sample to all the given clusters. The initial
fuzzy membership matrix is obtained using localized
fuzzy nearest neighbour graph (LF-NNG).

– We have used square loss function which is symmetric
and allows the output to change (i.e. flip from +1 to -
1 or vice-versa) if required, in successive iterations. By
using the square loss function, the optimization prob-
lem is solved as a system of linear equations; whereas
TWSVC solves QPPs to generate the hyperplanes.

The paper is organized as follows: Section 2 gives a
brief introduction of MMC, TWSVC and F-LS-TWSVC;
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and introduces the notations and symbols used in the paper.
Section 3 presents the proposed classifier LF-TWSVM and
the clustering algorithm Tree-TWSVC, which is followed
by experimental results in Section 4. The paper is concluded
in Section 5.

2 Background

Supervised learning algorithms have been used to solve
clustering problems such as MMC [19], TWSVC [24] and
F-LS-TWSVC [26]. These clustering approaches are briefly
explained in the following section.

2.1 Maximum margin clustering (MMC)

Motivated by the success of maximum margin methods in
supervised learning, Xu et al. proposed maximum margin
clustering (MMC) that aims at extending maximum margin
methods to unsupervised learning [19]. Since its optimiza-
tion problem is non-convex, MMC relaxes the optimization
problem as semidefinite programs (SDP).

For the training set (xi)
m
i=1, where xi is the input in n-

dimension space and y = {y1, ...ym} are unknown cluster
labels. The primal problem for MMC is given as

Min
y

Min
w,b,ξ

‖w‖2
2 + 2CξT e

subject to yi(w
T φ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, yi ∈ {+1 , −1}, i = 1, ..., m

−l ≤ eT y ≤ l, (1)

where φ is the mapping induced by the kernel function and
ξ is a vector of error variables. ‖.‖2

2 represents L2-norm.
e is a vector of ones of appropriate dimension and (w, b)

are the parameters of the hyperplane that separates the two
clusters. The parameter C is a trade-off factor and l ≥ 0 is
a user-defined constant that controls class imbalance. Since
the constraint yi ∈ {+1, −1} ⇔ y2

i − 1 = 0 is non-convex,
(1) is a non-convex optimization problem. As discussed in
[19], MMC relaxes the non-convex optimization problem
and solves it as SDP. SDP is convex but computationally
very expensive and can handle small data sets only. Zhang et
al. proposed an iterative SVM approach to solve the MMC
problem (1) based on alternating optimization [23].

2.2 Twin support vector machine for clustering
(TWSVC)

TWSVC [24] is a plane-based clustering method which uses
TWSVM classifier and follows OAA approach to determine

K cluster center planes for a K-cluster problem. Since
TWSVC considers all the data points (in OAA manner) for
finding the cluster planes, it requires that each plane should
be close to its own cluster and away from other clusters’ data
points on both the sides. For a K-cluster problem, let there
be m data points X = (x1, x2, ..., xm)T where xi ∈ R

n,
with their corresponding labels in {1, 2, ..., K}; X is m × n

matrix. Let the data for ith cluster be represented by Xi and
the data points of all clusters other than ith cluster are given
by ̂Xi . For the K-cluster problem, TWSVC seeks K cluster
center planes, which are given as

xT wi + bi = 0, i = 1, 2, ..., K. (2)

The planes are proximal to the data points of their own clus-
ter. TWSVC uses initialization algorithm to get the initial
cluster labels for data points and determines the initial clus-
ter planes. The algorithm alternatively finds the labels of
data points and cluster center planes until some termination
condition is satisfied [24]. The cluster planes are obtained
by considering the following problem, with initial cluster
plane parameters [w0

i , b0
i ],

TWSVC:

min
w

j+1
i ,b

j+1
i ,ξ

j+1
i

1

2
‖Xiw

j+1
i + eb

j+1
i ‖2

2 + ceT ξ
j+1
i

subject to T (|̂Xiw
j+1
i + eb

j+1
i |)+ ξ

j+1
i ≥ e, ξ

j+1
i ≥ 0,

(3)

where i = 1, 2, ...K is index for the cluster and j =
0, 1, 2, ... is the index of successive problem. T (·) denotes
the first-order Taylor’s series expansion and parameter c is
the weight associated with the error vector. The optimiza-
tion problem in (3) determines the ith cluster center plane,
which is required to be as close as possible to the ith clus-
ter Xi and far away from the other clusters’ data points ̂Xi

on both the sides. The problem also minimizes the error
vector ξi which measures the error due to wrong assign-
ment of cluster labels. By introducing the sub-gradient of
|̂Xiw

j+1
i + eb

j+1
i |, (3) becomes

min
w

j+1
i ,b

j+1
i ,ξ

j+1
i

1

2
‖Xiw

j+1
i + eb

j+1
i ‖2

2 + ceT ξ
j+1
i

subject to diag(sign(̂Xiw
j
i + eb

j
i ))(̂Xiw

j+1
i + eb

j+1
i )≥ e,

ξ
j+1
i ≥ 0, (4)

The solution of the above problem can be obtained by
solving its dual problem [27] and is given by

max
α

eT α − 1

2
αT G(HT H)−1GT α

subject to 0 ≤ α ≤ ce, (5)
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where G = diag(sign(̂Xiw
j
i + b

j
i e))[̂Xi e], H =

[Xi e], and α ∈ R
m−mi is the Lagrangian multiplier vector.

The problem in (5) is solved iteratively by concave-convex
procedure (CCCP) [28], until the change in successive iter-
ations is insignificant. The problem is extended to manifold
clustering [24] by using kernel [29]. TWSVC uses an ini-
tialization algorithm [24] which is based on the nearest
neighbour graph (NNG) and provides more stability to the
algorithm.

2.2.1 Fuzzy least squares twin support vector clustering

Working on the lines of TWSVC [24] and least square SVM
[30], Khemchandani et al. proposed F-LS-TWSVC [26]
which is fuzzy based clustering method and its solution is
obtained by solving a series of system of linear equations.
Similar to TWSVC, F-LS-TWSVC uses OAA strategy to
determine the K-cluster planes. It uses fuzzy nearest neigh-
bour graph (FNNG) for label initialization and generates
fuzzy membership matrix S of size m × K . The ith column
of S gives the membership value of all data points in ith

cluster. The K clusters are obtained by solving following
optimization problem:

min
wi, bi , qi ,Xi

1

2
‖((SiXi)wi + bie)‖2

2 + ν

2
(‖wi‖2

2 + b2
i ) + C

2
‖qi‖2

2

subject to |((SiXi)wi + bie)| + qi = e, (6)

where i = 1, ..., K. The diagonal matrices Si and Si indi-
cate the fuzzy membership value of data points belonging to
and not belonging to ith cluster respectively [26]. This opti-
mization problem can be solved using the concave-convex
procedure(CCCP) similar to TWSVC. However, instead of
solving QPPs as in TWSVC, the solution of F-LS-TWSVC
is obtained by solving a series of system of linear equations.

2.2.2 Approximation used by TWSVC and F-LS-TWSVC

The shortcoming of both TWSVC and F-LS-TWSVC is
that their primal formulations involve constraints with mod
(|.|) function. To eliminate the mod function, they resort
to Taylor’s series expansion which gives an approximation
of the original constraint. This condition is avoided in the
proposed clustering algorithm by introducing the tree-based
approach.

3 Tree-based localized fuzzy twin support vector
clustering (Tree-TWSVC)

Taking motivation from MMC [19] and TWSVC [24], we
propose Tree-TWSVC, which is an iterative tree-based

clustering procedure that employs fuzzy membership matrix
to create clusters using LF-TWSVM. The proposed algo-
rithm can efficiently handle large multi-cluster datasets. For
a K-cluster problem, it initially generates a fuzzy member-
ship matrix for two clusters by using LF-NNG initialization
algorithm (discussed in Section 3.2.4). Based on higher
membership values, the data is partitioned into two clus-
ters. Since membership values are based on the proximity
of data points, the patterns of one cluster are similar to each
other and distinct from the other cluster’s patterns. Hence,
Tree-TWSVC considers the inter-cluster and intra-cluster
relationships. Each of the two clusters thus obtained can
be recursively divided until K clusters are obtained. With
each partition, the size of data is reduced which makes the
procedure more time-efficient.

The proposed algorithm Tree-TWSVC starts with initial
labels (+1, −1), as generated by LF-NNG. By using the ini-
tial labels, the data X with m points is divided into two
clusters, A and B, of size m1 and m2 respectively (where
m = m1 + m2) as shown in Fig. 1. The group A can be fur-
ther partitioned into A1 and A2, but Tree-TWSVC does not
consider data points of B at this stage. This is because, in
the first partition of dataset, the data points of A are sep-
arated from B, by considering inter-cluster relationship. In
the second partition, the algorithm concentrates on the data
points of A only and is able to generate more stable results
in lesser time. The proposed algorithm is more efficient than
plane-based clustering like TWSVC [24] and F-LS-TWSVC
[26] that use classical OAA multi-category approach and the
same is established by the results of numerical experiments
in Section 4.

TWSVM [2] is initially proposed for classification prob-
lems and uses L1 norm error function. When TWSVM-like
formulation is used in clustering framework, as done in
TWSVC [24], this could lead to premature convergence
as the error function does not facilitate flipping of cluster
labels, if required. The procedure gets stuck in a poor local

Fig. 1 Illustration of tree of clusters. Data is partitioned into two clus-
ters at every internal node by iteratively generating cluster hyperplanes
using LF-TWSVM
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optimum and there is little or no change in the initial and
final labels. This happens because the loss function is not
symmetric and fails to change the labels in successive itera-
tions (Please see Appendix A). To overcome this issue, we
propose a new classifier LF-TWSVM, that efficiently han-
dles the problem of premature convergence and is used to
build the cluster model of Tree-TWSVC.

3.1 Proposed classifier: localized fuzzy TWSVM
(LF-TWSVM)

In this work, we propose a novel classifier, termed as
LF-TWSVM which we further use in an unsupervised
framework. Unlike TWSVM, LF-TWSVM uses square loss
function and a prototype. The prototype prevents the hyper-
plane from extending indefinitely and keeps it aligned locally

to the data points.

3.1.1 LF-TWSVM: Linear version

Let the dataset X consist of m points in n-dimensional space.
The data is divided into two clusters and hyperplanes are
generated, which are given by

xT w1 + b1 = 0, xT w2 + b2 = 0. (7)

LF-TWSVM employs the fuzzy membership matrix
F ∈ R

m×2 generated by LF-NNG and based on higher
membership value, it partitions the data X into two clusters
A (positive cluster) and B (negative cluster), of size m1 and
m2 respectively. The planes for the two clusters A and B are
obtained by solving the following problems:

min
w1,b1,ξ2,A,v1

1

2
‖SAAAw1 + e1b1‖2

2 + c1

2
‖ξ2‖2

2

+ c2

2
‖SAAA − e1v1‖2

2 + c3

2
(‖w1‖2

2 + b2
1)

subject to −(SBABw1 + e2b1) + ξ2 = e2, (8)

min
w2,b2,ξ1,B,v2

1

2
‖SBBBw2 + e2b2‖2

2 + c1

2
‖ξ1‖2

2

+ c2

2
‖SBBB − e2v2‖2

2 + c3

2
(‖w1‖2

2 + b2
2)

subject to (SABAw2 + e1b2) + ξ1 = e1. (9)

The diagonal matrices SAA (size (m1 ×m1)) and SBA (size
(m2 × m2)) define the membership value of data points of A
and B respectively, in positive cluster, taken from matrix F .
Similarly, the other two diagonal matrices SAB and SBB are
defined for the negative cluster. The primal problems in (8)
and (9) are motivated from TWSVM [2] and are modified on
the lines of LS-TWSVM [4]. Thus, the inequality constraints
are replaced with equality constraints and L2-norm of error
variables ξ1 and ξ2 is used; c1 is the associated weight and
e1 , e2 are vectors of one’s of appropriate dimensions. The
constraints of LF-TWSVM (8) and (9) do not require mod

(|.|) function as required in the constraints of TWSVC (3).
TWSVC determines the cluster planes using OAA multi-
category approach and considers all the data points while
finding the cluster planes. The data points of other clusters
may lie on both sides of the cluster plane and hence, the con-
straints with mod function are required. For Tree-TWSVC,
the data is divided into two clusters at each node, therefore
one cluster would lie on only one side of another cluster.
Hence, the constraints of Tree-TWSVC are written without
mod function.

The first term in the objective function of (8) and (9) is
the sum of squared distances of the hyperplane to the data
points of its own cluster. Thus, minimizing this term tends
to keep the hyperplane closer to the data points of one clus-
ter (say cluster A) and the constraints require the hyperplane
to be at unit distance from the points of another cluster (say
cluster B). The error vectors ξ1 and ξ2 are used to measure
the error if the hyperplane is not a unit distance away from
data points of another cluster. The second term of the objec-
tive function minimizes the squared sum of error variables
ξ1 and ξ2. The variable vi (i = 1, 2) is the prototype [18] of
the ith cluster and prevents the cluster plane from extending
infinitely and controls its localization, proximal to the clus-
ter. The parameter c2 is weight associated with the proximal
term. LF-TWSVM takes into consideration the principle of
structural risk minimization (SRM) [31] by introducing the
term (wT

i wi + b2
i , i = 1, 2), in the objective function and

thus improves the generalization ability. It also takes care of
the possible ill-conditioning that might arise during matrix
inversion. The parameter c3 is chosen to be a very small
value.

The error function of (8) and (9) is different from that of
TWSVC (4) and has been modified for two major reasons.
First, to allow flipping of labels during subsequent itera-
tions, which is otherwise limited due to hinge loss function.
This is required to minimize the total error. The second rea-
son for using square loss function is that it leads to solving a
system of linear equations instead of a QPP. After substitut-
ing the equality constraints in the objective function of (8)
and (9), the problems become:
LF-TWSVM1:

min
w1,b1,A,v1

P1 = 1

2
‖SAAAw1 + e1b1‖2

2 + c1

2
‖SBABw1 + e2b1 + e2‖2

2

+ c2

2
‖SAAA − e1v1‖2

2 + c3

2
((‖w1‖2

2 + b2
1),

(10)

LF-TWSVM2:

min
w2,b2,B,v2

P2 = 1

2
‖SBBBw2+e2b2‖2

2+ c1

2
‖−(SABAw2 + e1b2) + e1‖2

2

+ c2

2
‖SBBB − e2v2‖2

2 + c3

2
((‖w2‖2

2 + b2
2).

(11)
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To get the solution of (10), set the gradient of P1 with
respect to w1, b1 and v1 equal to zero. We get

∂P1

∂w1
= 0 ⇒ (SAAA)T (SAAAw1 + e1b1) + c3w1

+c1(SBAB)T (SBABw1+ e2b1 + e2) = 0e1, (12)

∂P1

∂b1
= 0 ⇒ eT

1 (SAAAw1+e1b1)+c3b1+c1e
T
2 (SBABw1+e2b1+ e2) = 0, (13)

∂P1

∂v1
= 0 ⇒−c2e

T
1 (SAAA − e1v1) = 0. (14)

Let E = [SAAA e1], F = [SBAB e2] and z1 = [w1 b1]T , by
combining (12) and (13) we obtain

ET Ez1 + c3z1 + c1F
T Fz1 + c1F

T e1 = 0e1,

⇒ z1 = −c1(c1F
T F + ET E + c3I )−1FT e1. (15)

Here, I is an identity matrix of appropriate dimensions.
From (14),

v1 = (eT
1 SAAA)/(eT

1 e1). (16)

The second problem i.e. LF-TWSVM2 can be solved in
similar manner. From (11), we get

GT Gz2 + c3z2 + c1H
T Hz2 − c1H

T e2 = 0e2,

⇒ z2 = c1(c1H
T H + GT G + c3I )−1HT e2, (17)

where G = [SBBB e2], H = [SABA e1] and z2 = [w2 b2]T .
The prototype variable v2 is obtained as

v2 = (eT
2 SBBB)/(eT

2 e2). (18)

The augmented vectors z1 and z2 can be obtained from
(15) and (17) respectively and are used to generate the
hyperplanes, as given in (7). The prototypes vi for the two
clusters can be calculated by using (16) and (18) respec-
tively. A pattern x ∈ R

n is assigned to cluster i (i = 1, 2),
depending on which of the two hyperplanes given by (7) it
lies closer to, i.e.

y = argmin
i

(‖wT
i x + bi‖2

2 + c2‖x − vi‖2
2). (19)

It finds the distance of point x from the plane xT wi + bi = 0,
where i = 1, 2 and also considers distance from the cor-
responding prototype. The predicted label for pattern x is
given by y.

3.1.2 LF-TWSVM: Kernel version

The results can be extended to non-linear version by consid-
ering the kernel-generated surfaces and are given as

Ker(xT , CT )u1 + b1 = 0, Ker(xT , CT )u2 + b2 = 0,

(20)

where CT = [A B]T and Ker is an appropriately chosen
positive definite kernel. The primal QPP of the non-linear

LF-TWSVM corresponding to the first surface of (20) is
given as
KLF-TWSVM1:

min
u1,b1,KA,V1

Q1 = 1

2
‖KAu1 + e1b1‖2

2 + c1

2
‖KBu1 + e2b1 + e2‖2

2

+ c2

2
‖KA − e1V1‖2

2 + c3

2
((‖u1‖2

2 + b2
1), (21)

where KA = SAAKer(A, CT ), KB = SBAKer(B, CT ). The
solution for the problem (21) is obtained in similar manner
as the linear case. The augmented vector r1 = [u1 b1]T is
given as

r1 = −c1(c1K
T
F KF + KT

EKE + c3I )−1KT
F e1. (22)

Here, KE = [KA e1] and KF = [KB e2]. The identity
matrix I is of appropriate dimensions and the prototype V1

is determined as

V1 = (eT
1 KA)/(eT

1 e1). (23)

The second plane can be retrieved in a similar manner from
(24).
KLF-TWSVM2:

min
u2,b2,KB,V2

Q2 = 1

2
‖KBu2+e2b2‖2

2+ c1

2
‖−(KAw2 + e1b2)+ e1‖2

2

+ c2

2
‖KB − e2V2‖2

2 + c3

2
((‖u2‖2

2 + b2
2). (24)

Here KA = SABKer(A, CT ), KB = SBBKer(B, CT ). Once
we obtain the surfaces (20), a new pattern x ∈ R

n is assigned
to class 1 or class -1 in a manner similar to the linear case.

3.2 Clustering algorithms: Tree-TWSVC

Tree-TWSVC is a multi-category clustering algorithm that
creates a binary tree of clusters by partitioning the data
at multiple levels until the desired number of clusters are
obtained. Tree-TWSVC uses an iterative approach to gen-
erate two cluster center planes, using LF-TWSVM at each
node of the tree and updates the hyperplane parameters
in each iteration by aligning the cluster plane along the
data. Thus, it minimizes the empirical risk. Tree-TWSVC
also minimizes structural risk due to the regularization term
added to its formulation. In this work, we propose two
implementations for Tree-TWSVC, namely BTree-TWSVC
and OAA-Tree-TWSVC.

3.2.1 Binary tree-based localized fuzzy twin support vector
clustering (BTree-TWSVC)

BTree-TWSVC is an unsupervised learning procedure that
creates K clusters from m-data points. The algorithm takes
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two inputs: X ∈ R
m×n and K, where X represents m data

points in n-dimension feature space and K is the number of
clusters.

The Algorithm 1 for BTree-TWSVC generates the final
solution in the form of clusters identified by LF-TWSVM,
arranged as nodes of the tree. The root node contains the
entire data and leaf nodes correspond to the final clusters.
Thus, for a K-cluster problem, we obtain a tree with K leaf
nodes and (K − 1) internal nodes. Generally, most of the
clustering algorithms like K-means [10] and KPC [17] initi-
ate with randomly generated labels which leads to unstable
results due to their dependency on the initial labels. For
Tree-TWSVC, we use an initialization algorithm based on
K-nearest neighbour graph [32], termed as localized fuzzy
NNG (LF-NNG), discussed in Section 3.2.4.

BTree-TWSVC generates the fuzzy membership matrix
F2 ∈ R

m×2 through LF-NNG and assigns either of the cluster
labels (+1, − 1) to all data points based on higher mem-
bership value towards cluster 1 or -1 respectively. Then,
the two cluster center planes are determined and the mem-
bership matrix F2 is updated. BTree-TWSVC alternatively
determines the cluster planes and membership matrix for
data points until the convergence criterion is met (Step 5d)
and the two clusters Anew and Bnew are obtained. To decide
whether the obtained clusters, Anew and Bnew, can be further
partitioned or not, the proposed algorithm uses K-means
clustering [10] to get K clusters and labels Yk ∈ {1, ..., K}
for all the data points. If clusters Anew or Bnew are asso-
ciated with more than one label from Yk , then they can
be further partitioned by recursively calling the same algo-
rithm with new inputs. With the new inputs, size of the data
is approximately reduced to half (assuming Anew and Bnew

contain approximately an equal number of data points), due
to partitioning. Thus, the input data diminishes in size as we
traverse down the cluster tree and creates a tree of height
�log2K	.

3.2.2 One-against-all tree-based localized fuzzy twin
support vector clustering (OAA-Tree-TWSVC)

OAA-Tree-TWSVC is another tree-based implementation
of Tree-TWSVC and is explained in Algorithm 2.
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The algorithm for OAA-Tree-TWSVC generates clus-
ter model by arranging LF-TWSVM generated clusters in
the form of a tree. At each internal node, one cluster is
separated from rest of the clusters. Hence, this method
represents modified one-against-all (OAA) multi-category
strategy. The height of the tree is (K − 1).

3.2.3 Binary tree (BTree) vs. One-against-all tree
(OAA-Tree)

In this work, we have proposed two implementations for
Tree-TWSVC as discussed in Section 3.2.1 and 3.2.2. Out
of the two approaches, BTree-TWSVC is more robust
and achieves better clustering accuracy than OAA-Tree-
TWSVC which is experimentally proved in Section 4.

One such scenario is presented in Fig. 2 i.e. clustering
problem with four clusters (a.). Here, we present the
clustering result with TWSVC, OAA-Tree-TWSVC and
BTree-TWSVC. For TWSVC, the hyperplanes are obtained
using OAA strategy (b.) and this leads to an ambiguous
region i.e. the data points lying in this region might be
wrongly clustered. With OAA-Tree-TWSVC, one of the
clusters obtained with LF-NNG initialization is selected as
the positive cluster (green squares) and the remaining are
regarded as the negative cluster (red frames, violet triangles
and blue dots), as shown in (c.). The localized hyperplanes
are generated using LF-TWSVM, but it still leads to some
ambiguity. Once the green cluster is identified, we apply
the same procedure on remaining data points, as presented
in (d-e.).The final OAA-tree obtained is shown in (e.). For
BTree-TWSVC, LF-NNG is used to identify two clusters
at a time, as demonstrated in (f.), which separates the blue-
violet points from red-green points. BTree-TWSVC is able
to generate a stable clustering model as depicted in (f-h.)
and has got better clustering ability.

3.2.4 Initialization with localized fuzzy nearest neighbour
graph (LF-NNG)

Wang et al. proposed NNG based initialization method
for TWSVC [24] and F-LS-TWSVC [26] used fuzzy NNG
(FNNG) to generate the membership values. For this work,
we propose localized fuzzy nearest neighbour graph (LF-
NNG) which generates a membership matrix F . This matrix
is used to obtain the initial data labels to be used by Tree-
TWSVC. The steps involved in LF-NNG for getting initial
labels of K clusters are given in Algorithm 3.
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3.2.5 Complexity analysis

The strength of Tree-TWSVC is the tree-based approach
which reduces the complexity of the algorithm. The size of
data diminishes as it is partitioned to obtain the clusters.
This characteristic is of utmost importance for non-linear
(kernel) classifiers where the complexity is dependent on
the size of data. For a K-cluster problem, the OAA multi-
category approach uses entire dataset K-times to determine
the cluster planes. Assuming that all clusters have equal
size i.e. m/K, where m is the number of data points. If any
TWSVM-based classifier is used with OAA (as done in
TWSVC), then the algorithm solves K QPPs, each of size
((K − 1)/K) ∗ m. Hence, the complexity of TWSVM-based
clustering algorithm is given by

TOAA = K ∗ c ∗
(

K−1
K

∗ m
)3

,

� K ∗ c ∗ m3, (31)

where c is a constant that includes the count for maximum
number of iterations for finding the final cluster planes.
So, the complexity of OAA TWSVM-based clustering is
TOAA = O(m3).

In BTree-TWSVC, the optimization problem is solved
as a system of linear equations. For the linear case, LF-
TWSVM finds the inverse of two matrices, each of dimen-
sion (n + 1) × (n + 1), where n is the number of features, for
each internal node of the binary tree. As we traverse down

the tree, size of the data is approximately reduced to half.
Thus, the complexity of BTree-TWSVC can be recursively
defined as

T (m) = c(n + 1)3 + 2 ∗ T
(

m
2

)

,

T
( m

K

)

= 1, (32)

where m is the number of data points and c is the complexity
constant. We assume that data is divided into two clusters of
almost equal size. The base condition T

(

m
K

) = 1 represents
cost of leaf node that contains data from one cluster only.
The time complexity of (32) is given as [34]

T (m) = c(n + 1)3 + 2 ∗ c(n + 1)3

+... + 2h−1 ∗ c(n + 1)3 + 2h ∗ 1, (33)

where h = �log2K	. The height of the tree ‘h’ depends on the
number of clusters K. The above equation can be solved as

T (m) = c(n + 1)3(1 + 2 + 4 + ... + 2h−1) + 2h,

= c(n + 1)3(2h − 1) + 2h,

= c(n + 1)3(K − 1) + K.

≤ cK(n + 1)3 + K. (34)

Therefore, the complexity of linear BTree-TWSVC imple-
mented as a binary tree (BT) is TBT = O(Kn3) and is inde-
pendent of the size of data. For large-sized datasets (m �
n), the efficiency of BTree-TWSVC is not much affected,
but for TWSVC (implemented using OAA-TWSVM) the
learning time increases with size of data.

For kernel version, the complexity of BTree-TWSVC can
be recursively defined as

T (m) = c(m + 1)3 + 2 ∗ T (m
2 ),

T
( m

K

)

= 1, (35)

where m is the number of data points and c is the complexity
constant. The complexity (35) can be written as [34]

T (m) = c(m + 1)3 + 1

4
c(m + 1)3 + 1

16
c(m + 1)3

+ ... + 1

4h−1
c(m + 1)3 + 2h, (36)

where h = �log2K	. The above equation can be solved as

T (m) = c(m + 1)3(1 + 1

4
+ 1

16
+ ... + 1

4h−1
) + 2h,

≤ 4

3
c(m + 1)3 + K,

� 4

3
c(m + 1)3. (37)

So, the complexity of kernel BTree-TWSVC is independent
of the number of clusters K. BTree-TWSVC is more time-
efficient than OAA multi-category clustering for both linear
and kernel versions. We can discuss the time complexity of
OAA-Tree-TWSVC in a similar way as TWSVC as both of
them are based on OAA strategy. But OAA-Tree-TWSVC
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Fig. 2 Clustering with TWSVC and Tree-TWSVC for four clusters (a). Dataset with four clusters (b.) Clustering model with TWSVC (c-e.)
Clustering with OAA-Tree-TWSVC and resulting OAA-tree (f–h). Clustering with BTree-TWSVC and resulting binary tree

is more time-efficient than TWSVC because the number of
data points get diminished as we traverse down the OAA-
tree. To validate the efficiency of the proposed method,
we have compared the learning time of OAA-Tree-TWSVC
with TWSVC (also based on OAA strategy) in Section 4.

3.3 Discussion

In this section, we have discussed the comparison of pro-
posed clustering algorithm with MMC [23], TWSVC [24]

and F-LS-TWSVC [26].

3.3.1 Tree-TWSVC vs. MMC

The proposed clustering algorithm Tree-TWSVC deter-
mines multiple clusters by solving a system of linear

equations, whereas MMC is a binary clustering method
that solves a non-convex optimization problem which is
relaxed to solving expensive SDP. Unlike MMC, Tree-
TWSVC does not use alternate optimization to deter-
mine w and b, whereas they are obtained as vector zi =
[wi bi ]T , (i = 1, 2), by solving a system of linear (15) and
(17). Therefore, Tree-TWSVC is more time-efficient than
MMC. Also, Tree-TWSVC uses fuzzy nearest neighbour
based initialization method, which improves its clustering
accuracy.

3.3.2 Tree-TWSVC vs. TWSVC

TWSVC involves constraints with mod function (|.|) and
it uses Taylor’s series expansion to get an approximation
of this function. Whereas Tree-TWSVC considers only
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two clusters at each level of the tree and these clusters
would lie on either side of the mean cluster plane, hence it
does not require constraints with mod function. Also, Tree-
TWSVC formulation involves square loss function which
results in solving a series of systems of linear equations
whereas TWSVC solves a series of QPPs using the concave-
convex procedure. Therefore, Tree-TWSVC is more effi-
cient in terms of computational effort as well as cluster-
ing accuracy than TWSVC. Also, TWSVC is based on
OAA strategy, but Tree-TWSVC uses tree-based approach.
Tree-TWSVC uses a better initialization algorithm (i.e. LF-
NNG) and its decision function for test data also takes
into account the distance from the cluster prototype. Hence,
Tree-TWSVC achieves better results in lesser time than
TWSVC.

3.3.3 Tree-TWSVC vs. F-LS-TWSVC

F-LS-TWSVC solves a series of systems of linear equa-
tions to get the cluster planes, but similar to TWSVC, it
uses Taylor’s series approximation for the constraints and
therefore the results may not be accurate. Tree-TWSVC for-
mulates a convex optimization problem which is solved as
a series of systems of linear equations. F-LS-TWSVC is
based on OAA multi-category strategy and Tree-TWSVC
handles OAA using tree-based approach, which is more
efficient. Also, Tree-TWSVC has BTree-TWSVC approach
which is even faster than OAA-Tree-TWSVC.

4 Experiments and results

In this section, we compare the performance of two varia-
tions of Tree-TWSVC i.e. BTree-TWSVC and OAA-Tree-
TWSVC, with other clustering methods and investigate their
accuracy and computational efficiency. The other clustering
methods used for comparison are Fuzzy C-means (FCM)
clustering [35], TWSVC [24] and F-LS-TWSVC [26]. We
have also implemented a non-fuzzy version of OAA-Tree-
TWSVC, which is referred as OAA-T-TWSVC. These two
algorithms are compared to study the effect of adding fuzzi-
ness to the clustering model. For OAA-T-TWSVC, the ini-
tial clusters are generated using NNG [32]. The experiments
are performed in MATLAB version 8.0 under Microsoft
Windows environment on a machine with 3.40 GHz CPU
and 16 GB RAM. The experiments are conducted on bench-
mark UCI datasets [36]. In all experiments, the focus is on
the comparison of proposed method with clustering meth-
ods listed above. The parameters c1 and c2 are selected in the
range {0.01 to 1}; c3 ∈ {10−i , i = 1, ..., 5} and tol is selected
to be very small value of order 10−5. The kernel parameter is
tuned in the range {0.1 to 1}. The grid search method [37] is
applied to tune the parameters. For each dataset, a validation

set comprising of 10% randomly selected samples from the
dataset is used.

The metric Accuracy [38] is used to measure the perfor-
mance of clustering methods. For finding the accuracy of
clustering algorithm, a similarity matrix S ∈ R

m×m is com-
puted with the given data labels yi, yj ∈ {1 : K}, i = 1 :
m, j = 1 : m, where

S(i, j) =
{

1, if yi = yj

0, otherwise.

Let St and Sp be the similarity matrices computed by
the true cluster labels and predicted labels respectively.
The accuracy of clustering method is defined as the Rand
statistic [38] and is given as

Accuracy = nzeros + nones − m

m2 − m
× 100 (38)

where nzeros is the number of zeros at corresponding indices
in both St and Sp, and nones is the number of ones in both St

and Sp.

4.1 Out-of-sample testing

In an unsupervised framework, generally the clustering
model is built using an entire dataset. But, the formulation
of proposed Tree-TWSVC allows it to obtain the cluster-
ing model with learning data and the accuracy of the model
can be examined using out-of-sample (OoS) or unseen test
data [39, 40]. The clustering model is built with some part of
learning data provided as input to the Tree-TWSVC algo-
rithm and is used to predict the labels of the unseen OoS
data. This feature is particularly useful when working with
very large datasets where the clustering model can be built
with few samples and rest of the samples are assigned labels
using OoS approach. Tree-TWSVC also takes advantage of
the tree structure and LF-TWSVM formulation and gener-
ates the results in much less time. In our simulations with
UCI dataset, we have given the results with entire dataset
and OoS testing of clustering model. For OoS, 80 % sam-
ples are randomly selected from the entire data for learning
the model and the remaining 20 % are used to determine the
clustering accuracy.

4.2 Experiments on UCI datasets

We have selected 14 UCI multi-category datasets [36] for
the experiments- Zoo, Iris, Wine, Seeds, Segment, Glass,
Dermatology, Ecoli, Compound, Libra, Optical digits, Page-
blocks, Satimage and Pen digits. The number of samples,
features and classes are shown along with the datasets in
Table 1.
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Table 1 Clustering accuracy for UCI datasets (Linear version)

Data K-means FCM TWSVC F-LS-TWSVC OAA-T-TWSVC Tree-TWSVC

OAA-Tree BTree

(m×n, K) Accuracy (%)

Zoo (101× 16, 7 ) 92.92 85.70 88.20 92.16 95.00 95.23 95.49

Iris (150 × 4, 3) 87.37 89.88 89.88 94.61 89.23 93.33 95.33

Wine (178 × 13, 3) 90.38 89.18 73.46 88.65 89.82 90.06 90.84

Seeds (210× 7, 3) 85.20 83.93 75.14 86.74 86.36 88.02 91.20

Segment (210 × 19, 7) 82.91 71.43 77.29 82.65 84.28 86.86 88.56

Glass (214×9, 6) 68.14 54.21 68.08 69.02 69.29 71.07 73.25

Dermatology (366 × 34, 6) 92.00 55.89 82.31 91.44 93.33 93.79 94.30

Ecoli (336×7, 8) 82.25 79.59 83.60 86.24 80.90 84.05 83.93

Compound (399×2, 6) 82.68 82.85 86.53 88.70 87.38 89.06 90.06

Libra (360 × 90, 15) 80.53 64.82 88.06 90.14 85.26 89.12 92.76

Large Datasets

Pageblocks (5473 × 10, 5) 80.09 90.50 62.35 81.01 86.03 91.78 92.56

Optical digits (5620 × 64, 9) 73.47 42.15 48.45 80.17 78.74 81.76 82.44

Satimage (6435 × 36, 7) 78.05 73.07 59.95 75.29 73.96 80.65 79.18

Pen digits (10992 × 16, 9) 63.62 59.74 50.25 63.45 66.07 66.26 68.78

Average Accuracy 81.40 73.07 73.83 83.61 83.26 85.79 87.05

4.2.1 Results for linear case

The simulation results for UCI datasets with linear clustering
methods are recorded in Table 1 for K-means, FCM,
TWSVC, F-LS-TWSVC, OAA-T-TWSVC, OAA-Tree-
TWSVC and BTree-TWSVC. The simulation results
demonstrate that both versions of Tree-TWSVC i.e. BTree-
TWSVC and OAA-Tree-TWSVC, outperform K-means,

FCM, TWSVC and F-LS-TWSVC for clustering accuracy.
In Table 1, the entire dataset is used for building the cluster-
ing model. For 13 out of 14 UCI datasets, one of the two ver-
sions of Tree-TWSVC achieves the highest accuracy. This
can be attributed to the fact that a good initialization algo-
rithm can improve the accuracy of the clustering algorithm.
It is also observed that binary tree-based algorithm (BTree-
TWSVC) generates better result than OAA-Tree-TWSVC.

Table 2 OoS Clustering
accuracy for UCI datasets
(Linear version)

Data OAA-T-TWSVC OAA-Tree-TWSVC BTree-TWSVC

Accuracy (%)

Zoo 93.23 93.16 93.18

Iris 86.29 91.28 93.56

Wine 87.16 88.52 89.71

Seeds 81.84 87.65 88.90

Segment 81.51 83.75 85.27

Glass 65.26 65.72 72.82

Dermatology 90.56 91.84 91.14

Ecoli 78.19 82.65 79.61

Compound 85.88 86.34 86.41

Libra 82.45 88.45 91.02

Large Datasets

Pageblocks 83.25 87.33 88.73

Opt.digits 75.28 77.86 79.16

Satimage 71.87 78.52 77.29

Pendigits 63.84 64.52 65.29

Average Accuracy 80.47 83.40 84.43
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Table 3 Clustering accuracy for UCI datasets (Non-linear version)

Data K-means LkPPC FCM TWSVC F-LS- OAA-T- OAA-Tree- BTree-

TWSVC TWSVC TWSVC TWSVC

Accuracy (%)

Zoo 91.56 96.83 83.17 89.18 95.14 96.15 97.31 97.13

Iris 89.88 94.19 91.33 92.67 96.66 92.55 95.68 97.83

Wine 91.09 95.93 91.57 95.59 94.66 95.43 96.27 96.13

Seeds 80.95 92.09 86.52 84.76 88.37 86.62 88.11 92.85

Segment 78.33 86.45 70.95 80.32 84.61 85.49 86.35 88.87

Glass 71.52 72.95 55.61 69.04 70.96 69.56 71.87 73.56

Dermatology 90.13 96.28 87.45 86.71 93.22 93.81 94.26 95.30

Ecoli 80.80 86.76 77.37 85.45 90.17 84.83 87.40 87.40

Compound 88.63 92.37 81.45 96.19 95.38 93.52 94.47 96.43

Libra 90.83 92.06 77.89 90.08 92.01 91.10 92.86 93.64

Large Datasets

Pageblocks 89.29 75.20 92.56 64.01 82.38 91.69 93.65 94.51

Opt.digits 65.85 85.35 55.29 45.28 82.14 86.72 88.59 91.69

Satimage 78.35 78.36 78.82 77.29 81.02 80.94 87.42 88.69

Pendigits 69.61 75.82 63.85 53.94 62.27 66.29 73.51 73.56

Average 82.63 87.19 78.13 79.32 86.35 86.76 89.12 90.54

Accuracy

The table demonstrates that OAA-Tree-TWSVC (fuzzy
version) achieves better clustering accuracy than OAA-
T-TWSVC (non-fuzzy version). Table 2 shows accuracy
result with OoS clustering for OAA-T-TWSVC, OAA-Tree-
TWSVC and BTree-TWSVC. The clustering algorithms
achieve better results when entire data is used for clustering.

4.2.2 Results for non-linear case

The proposed method is extended using non-linear LF-
TWSVM classifier and Table 3 compares the performance
of Tree-TWSVC (both versions) with that of TWSVC, F-
LS-TWSVC, LkPPC, K-means and FCM using RBF kernel,

Table 4 OoS Clustering
accuracy for UCI datasets
(Non-linear version)

Data OAA-T-TWSVC OAA-Tree-TWSVC BTree-TWSVC

Accuracy (%)

Zoo 93.72 94.67 95.80

Iris 89.10 92.85 95.09

Wine 93.72 95.03 94.51

Seeds 84.50 87.91 89.03

Segment 82.11 84.82 86.95

Glass 65.42 67.55 72.88

Dermatology 91.12 92.17 92.54

Ecoli 82.49 84.52 84.66

Compound 88.50 90.28 91.56

Libra 90.46 91.14 92.19

Large Datasets

Pageblocks 87.51 88.75 90.03

Opt.digits 83.46 86.15 87.79

Satimage 76.22 84.91 86.34

Pendigits 64.27 68.59 71.94

Average Accuracy 83.76 86.38 87.95
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Fig. 3 Learning time (Linear)

Fig. 4 Learning time (Non-linear)
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Ker(x, x′) = exp(−σ‖x − x′‖2). The table shows the clus-
tering accuracy of these algorithms on UCI datasets. The
results illustrate that Tree-TWSVC (both versions) achieve
better accuracy for most of the datasets. It is also observed
that the clustering results are better for non-linear versions as
compared to linear ones. Table 4 shows accuracy result with
OoS clustering for non-linear versions of OAA-T-TWSVC,
OAA-Tree-TWSVC and BTree-TWSVC.

4.3 Learning time:

We have compared the learning time (i.e. time for building
the clustering model) of OAA-Tree-TWSVC with TWSVC
for UCI datasets in Fig. 3. In this figure, Derm, OD, SI,
PB and PD represent Dermatology, Optical digits, Satimage,
Pageblocks and Pen digits datasets respectively. Although,
both of these clustering methods are based on OAA multi-
category strategy, but OAA-Tree-TWSVC takes much less
time for building the tree-based model than TWSVC.
The efficiency of OAA-Tree-TWSVC is significant for
datasets with large number of classes i.e. Libra, Com-
pound, Satimage and Pen digits, where OAA-Tree-TWSVC

Fig. 5 Segmentation results on color images from BSD image dataset
(a.) Original image (b.) MSS-KSC [43] (c.) TWSVC (d.) BTree-
TWSVC

is much faster than TWSVC. For pen digits dataset, OAA-
Tree-TWSVC is almost 16 times faster than TWSVC.
The learning time of non-linear versions of OAA-Tree-
TWSVC and TWSVC are compared in Fig. 4. It is observed
that OAA-Tree-TWSVC is very efficient in dealing with
large datasets; whereas learning time of TWSVC is highly
affected by size and number of classes in the dataset.

4.4 Experiments on large datasets

In order to demonstrate the scalability and effectiveness of
Tree-TWSVC, we performed experiments on large UCI
datasets i.e. Optical digits, Satimage, Pen digits and Page-
blocks. It is observed that the performance of TWSVC
deteriorates as the size of data increases; whereas Tree-
TWSVC can efficiently handle large datasets. Similarly,
FCM fails to give good accuracy for Pen digits and opti-
cal digits. From Table 1, there is a significant difference
in the clustering accuracy achieved by Tree-TWSVC (both
versions) as compared to FCM and TWSVC, for the above
mentioned large datasets. Tree-TWSVC scales well on these
datasets and is not much affected by the number of classes.

4.5 Application to image segmentation

To evaluate the performance of Tree-TWSVC on large
datasets, we present its application on image segmentation
which can be considered as a clustering problem. The image
is partitioned into non-overlapping regions that share certain
homogeneous features. For the experiments, we have taken
color images from Berkeley image segmentation dataset
(BSD) [41]. These images have dimensions 481 × 321 or
321 × 481 i.e. 154,401 pixels in each image. The prob-
lem is to partition the image pixels into disjoint sets called
the regions. We use a dynamic method to determine the
number of regions for each image. The histogram for the
image is generated and the prominent peaks are identified.
The number of prominent peaks determines the number of
regions (L) in the image. The color image is then parti-
tioned using minimum variance color quantization with L

levels. For the experiments, we have taken a combination of
color and texture features. The image features used for this
work are Gabor texture features [42] and RGB color value
of the pixel. Gabor features are extracted with 4-orientation
(0, 45, 90, 135) and 3-scale (0.5, 1.0, 2.0) sub-bands and the
maximum of the 12 coefficients determine the orientation at
a given pixel location.

The segmentation model is built using OoS approach
with BTree-TWSVC and 1 % pixels are randomly selected
from the image for learning. The rest of the image pix-
els are used for testing the model. The images are seg-
mented using BTree-TWSVC and the results are compared
with linear TWSVC and multiclass semi-supervised kernel
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Table 5 Segmentation result for BSD color images

Image L F-measure Error rate

MSS-KSC TWSVC BTree-TWSVC MSS-KSC TWSVC BTree-TWSVC

385039 5 0.49 0.52 0.69 0.0726 0.0818 0.0499

8049 4 0.71 0.63 0.78 0.0784 0.0800 0.0676

100007 3 0.57 0.57 0.66 0.0774 0.0798 0.0463

295087 5 0.62 0.69 0.76 0.0910 0.0844 0.0527

372019 4 0.49 0.47 0.54 0.0624 0.0755 0.0420

388067 5 0.62 0.65 0.76 0.0980 0.1185 0.0887

55067 3 0.58 0.55 0.61 0.0214 0.0234 0.0201

113044 3 0.71 0.63 0.73 0.0348 0.0400 0.0312

118035 3 0.72 0.69 0.74 0.0513 0.0473 0.0431

124084 3 0.54 0.48 0.69 0.0637 0.0818 0.0577

161062 4 0.62 0.58 0.74 0.0343 0.0639 0.0168

198023 4 0.57 0.58 0.78 0.0235 0.0363 0.0228

388016 3 0.46 0.41 0.62 0.0806 0.1369 0.0490

51084 4 0.66 0.64 0.68 0.0695 0.0743 0.0613

196027 4 0.63 0.45 0.67 0.0294 0.0359 0.0159

spectrum clustering (MSS-KSC) [43] segmentation meth-
ods, as shown in Fig. 5. MSS-KSC uses few labelled pixels
to build the clustering model with kernel spectrum cluster-
ing approach. It is observed that the segmentation results of
BTree-TWSVC are visually more accurate than other algo-
rithms. For TWSVC, the image is over-segmented, which
results in the formation of multiple smaller regions within
one large region. For BSD images, the ground truth seg-
mentations are known and the images segmented by BTree-
TWSVC and TWSVC are compared with ground truth. To
statistically evaluate the segmentation algorithms, two eval-
uation criteria are used: F-measure (FM) and error rate (ER).
F-measure is determined as

FM = 2 × Precision × Recall

P recision + Recall
, (39)

and ER is given by

ER = FP + FN

Total pixels
, (40)

where Precision and Recall are defined as

Precision = T P

T P + FP
,

Recall = T P

T P + FN
.

T P, FP, T N, FN are true-positive, false-positive, true-
negative and false-negative respectively. These measures
are calculated with respect to ground-truth boundaries
and results are presented in Fig. 5 and Table 5. BTree-
TWSVC achieves better F-measure and error rate values
than TWSVC and MSS-KSC.

5 Conclusions

In this paper, we propose Tree-based localized fuzzy twin
support vector clustering (Tree-TWSVC) which is an iter-
ative algorithm and extends the proposed classifier, local-
ized fuzzy twin support vector machine (LF-TWSVM), in
unsupervised framework. LF-TWSVM is a binary classi-
fier that generates the nonparallel hyperplanes by solving
a system of linear equations. Tree-TWSVC develops a
tree-based clustering model which consists of several LF-
TWSVM classifiers. In this work, we propose two imple-
mentations of Tree-TWSVC, namely Binary Tree-TWSVC
and One-against-all Tree-TWSVC. The proposed clustering
algorithm outperforms the other TWSVM-based clustering
methods like TWSVC and F-LS-TWSVC, which are based
on classical one-against-all multi-category approach and
they use Taylor’s series for approximating the constraints of
the optimization problem. Experimental results have proved
that Tree-TWSVC has superior clustering accuracy and effi-
cient learning time for UCI datasets as compared to FCM,
TWSVC and F-LS-TWSVC. The proposed clustering algo-
rithm is extended for image segmentation problems also.
The future line of work is to validate the performance of
the proposed algorithm with different distance measures for
calculating fuzzy memberships.
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Fig. 6 Flipping of labels. a.
Hinge loss function; b. Square
loss function

(a) Hinge loss function (b) Square loss function

Appendix A: Loss function of TWSVM

TWSVM uses hinge loss function which is given by

Lh =
{

0, yifi ≥ 1
1 − yifi, otherwise

For any SVM or TWSVM based clustering method, the
clustering error or the hyperplanes change little after initial
labeling or during subsequent iterations. This arises due to
hinge loss function, as shown in Fig. 6a, where the classi-
fier tries to push yifi to the point beyond yifi = 1 (towards
right) [23]. Here, solid line shows loss with initial labels and
dotted line shows loss after flipping of labels. As observed
from the empirical margin distribution of yifi , most of the
patterns have margins yifi � 1. If the label of a pattern
is changed, the loss will be very large and the classifier
is unwilling to flip the class labels. So, the procedure gets
stuck in a local optimum and adheres to the initial label esti-
mates. To prevent the premature convergence of the iterative
procedure, the loss function is changed to square loss and is
given as Ls = (1 − yifi)

2. This loss function is symmetric
around yifi = 1, as shown in Fig. 6b and penalizes pre-
liminary wrong predictions. Therefore, it permits flipping of
labels if needed and leads to a significant improvement in
the clustering performance.
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